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Gravitational-wave signal recognition of LIGO data by deep learning
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The deep learning method has developed very fast as a tool for data analysis in recent years. Moreover,
as a technique, it is quite promising as a way to analyze gravitational-wave detection data. Multiple works
in the literature have already used deep learning to process simulated gravitational-wave data. In this paper,
we apply deep learning to LIGO data. In order to improve the weak signal recognition, we design a new
structure of the convolutional neural network (CNN). The key feature of our new CNN structure is the
sensing layer. This layer mimics matched filtering but is different from the usual matched-filtering
technique. Usually, the matched-filtering technique uses a full template bank to match the data. However,
our sensing layer only uses tens of waveforms. Our new convolutional neural network admits comparable
accuracy and efficiency of signal recognition compared to other deep learning works published in the
literature. Based on our new CNN, we can clearly recognize the 11 confirmed gravitational-wave events
included in O1 and O2. In addition, we find about 2000 gravitational-wave triggers in O1 data.
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I. INTRODUCTION

Gravitational waves (GW) are an important prediction
of Einstein’s general theory of relativity, which was
published a century ago. Gravitational-wave observations
of coalescing compact binaries are unique, unprecedented
probes of the strong field and of dynamical aspects of
general relativity. More importantly, they give us a brand-
new cosmic window to our Universe—gravitational-wave
astronomy [1-8].

The capability of searching for GW signals relies on
both the sensitivity of GW detectors and the theore-
tical waveform templates modeled for gravitational-wave
sources used in matched-filtering data analysis techniques.
Currently, the matched-filtering method is the standard and
the most optimal signal processing technique used by the
gravitational-wave community to find GW signals from
compact binary mergers in noisy detection data. Although
weak signal extraction and source information inversion of
GW based on matched-filtering techniques are very suc-
cessful, this has a great weakness as well as a potential
hazard. Data analysis through matched filtering has a huge
computational cost if the parameter space in question is
large. This is the major motivation behind many authors
proposing deep learning for GW data analysis [9—12].
Another possible problem with standard matched-filtering
techniques is that the completeness and accuracy of the
GW waveform template are prerequisites for it to work.
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This implies that there is a risk of losing GW signals
beyond the theoretical expectation. Yet, identifying GW
signals beyond the expectation of the theory will greatly
facilitate the development of astronomy and also provide
important insight into the problems of fundamental physics
such as quantum gravity and physics under extreme
conditions [13-15].

Although matched filtering provides an optimal solution
for identification of gravitational waves under Gaussian
noise, the data in practice from GW detectors contain many
non-Gaussian noise transients, also known as “glitches.” A
comprehensive classification and characterization of these
noise features may provide valuable clues for identifying
the source of noise transients and possibly lead to their
elimination. Machine learning is becoming more and more
important in various disciplines such as particle experi-
mentation [16,17], gamma ray detection [18,19], super-
novae classification [20,21], weak lensing data analysis
[22-25], source modeling [26-29], and others. There have
also been many attempts to use machine learning algo-
rithms in gravitational-wave data analysis to show promise
for the noise classification, categorization [30-38], and
cancellation [39,40]. Recently, an innovative project called
“Gravity Spy”' [41,42] has combined the power of machine
learning, with the help of volunteers, to label data sets
of glitches and create a superior classifier of glitches in
LIGO data. Machine learning has been widely used in
GW data processing, especially in the identification of
signals and the classification of noise.

'See WWW.gravityspy.org.
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In recent years, deep learning, a new area of machine
learning research, has been in the spotlight [43]. In the past
few years, some researchers have demonstrated empirical
success of deep neural networks in the application to data
analysis of gravitational waves [44—48]. These researchers
include George and his co-workers [9,10], Gabbard et al.
[49], and others [11,12,50]. These published works used
the convolutional neural network (CNN) from different per-
spectives to identify GW signals with low signal-to-noise
ratios (SNR). The works tell us that CNN architecture plays
an important role for recognition of CBC GWs (and also
continuous GWs [51,52] and CCSNe GWs [53]) in data
with simulated or real noisy background from LIGO.
Gebhard et al. [54] offered an enlightening discussion on
the general limitations of CNNs and proposed an alter-
native CNN-based architecture with proper performance
metrics. They also claimed that their trained network can
cover all the GW events in both the first and second obser-
vation run (0O1/02) of LIGO—except for GW 170817, the
first observation of GW from a binary neutron star inspiral.

In this paper, we aim to use the deep learning technique
to find all of the known GW events in the Ol and O2
data. In addition, we would like to mark other possible
GW event candidates. We have trained CNNs like the ones
used in [9-12]. Although these neural networks can find
GW150914, none of them can find other events in OlI.
Thus, we adjust the usual CNN a little bit. Based on our
adjusted CNN networks, we can find all 11 GW events
reported by LIGO [8]. Besides these confirmed events, we
have also found 2069 substantial triggers in O1.

The plan of this paper is as follows: In Sec. II, we
describe the adjustment of the CNN neural network. Based
on our adjusted CNN architecture, training data samples,
test data samples, training strategy, and search methodol-
ogy on the real LIGO recording are described in Sec. III.
Subsequently, we apply our trained network to the Ol and
02 data in Sec. IV. Lastly, Sec. V is devoted to a summary.

II. MATCHED-FILTERING CONVOLUTIONAL
NEURAL NETWORKS AND SIGNAL
RECOGNITION STRATEGY

A. Structure of matched-filtering convolutional
neural network

The conventional matched filtering technique uses each
waveform in the template bank to perform convolutional
matching with the data. Such convolution is frequently
called the inner product. The inner product operation is
usually done in the frequency domain

(dlh) = 4 A ” d(];)?;gﬁ 2miftetbe g (1)

But it can also be expressed as a convolution in the time
domain. Here, d represents data, & represents the theoretical

waveform, and S, represents the power spectrum of the
noise. Since noise always dominates the LIGO data, we use
the power spectrum of data d directly to estimate S,,.

Different than in the usual CNN network, we add
a sensing layer as the first layer. We further divide the
neurals of the sensing layer into N, groups. The coefficients
hij,i =1,...,N,, of each group are fixed, and they corre-
spond to a whitened theoretical waveform. The index j
corresponds to the data sequence of each waveform. After
the convolution operation between the input data and each
group of neurals (see the details of the operation in the
Appendix), we output the maximal value of each con-
volution. Then, we collect these maximal values as the
output of the first layer. The remaining layers are the same
as in the conventional CNN networks used in previous
work [9,10].

The coefficients h;; are analogous to the template
waveforms in matched-filtering data analysis. We use some
template waveforms used by LIGO to set these &;;. Our
basic idea is to use these specific template waveforms to
sense GW signals which are deeply buried in the noise. But
unlike the conventional matched-filtering technique, we
only need tens of templates here instead of millions of
templates. Apparently, if N, is taken to be the number of
waveforms in the template bank, the sensing layer is
nothing but the usual matched filtering. However, we are
only concerned about an N, in the tens to hundreds of
templates range. Within this range, our tests indicate that
the behavior of the network is roughly independent of N,.
In the current work, we use N, = 35, which works quite
well in finding signals in the LIGO data.

Logically, our newly designed CNN works in the
following way: The coefficients h;; we chose span a
subspace of the function space of the GW signal, and
after the first layer, the essential matched-filtering operation
isolates the signal buried in the noise and projects it into the
subspace. Certainly, such a projection will admit some
feature structures which may not be recognized by humans
but can be recognized by the following CNN layers. This
can be used to distinguish the GW signal from pure noise.

Regarding the N, =35 waveforms used in the first
layer of our newly designed CNN network, we choose
spinless equal mass binary black holes with total masses
M=5+2iMy, i=0,...N,—1.

Before we feed the data into our CNN model, a Tukey
window [55] with @ =1/8 is applied to remove edge
effects at the beginning and end of the data stretch.

Since our key layer mimics the matched-filtering oper-
ation, we call our newly designed CNN network a matched-
filtering convolutional neural network (MFCNN).

In the current work, we consider detectors H1 and L1
jointly and input two data streams at the same time into
our network. Our matched-filtering CNN network is
illustrated in Fig. 1. Here, N represents the length of the
input data stream, and L represents the length of each
template waveform. Both “template” and “weight” are
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FIG. 1.

coefficients of the network. But the template coefficients
are given by the template waveform, while the weight
coefficients are determined through learning.

B. Signal recognition strategy

With a very-long-duration data set D such as LIGO Ol
data or O2 data, our task is to identify the data segments
including GW signals. After being trained, our MFCNN
is ready for such a task. The basic strategy for signal
recognition is taking a given period 7 data segment, say
T =5 seconds, as input data and letting the MFCNN
process. Then, we move the time window to input different
time periods gradually.

In inner product calculations (A2), we need to estimate
the power spectrum §,, from the input data d. Since LIGO
noise is typically not stationary, it is better to estimate S,
using longer input data. However, longer input data mean a
more massive computation requirement. As a compromise,
we use S-second duration data as input, although typically,
the GW signal lasts half a second for LIGO. For each run,
we take a 5-second-long data segment from D. After
each segment, we move forward 1 second to get another
5-second-long data segment. So, each 1-second snippet
will appear in five segments and be processed 5 times
by our network. If we assume our network can recognize
GW signals lasting 1 second in duration, our network will
continuously alert 5 times for a true signal lasting 1 second.
For a true signal lasting more than 1 second, more than five
continuous alerts are expected.

If the output confidence value is bigger than a given
threshold value p > p_, our network gives an alert. If more
than five continuous alerts happen, a trigger for the GW
signal will be given.

Given a trigger, which part of the data should be
analyzed further to find that the signal is the practical
problem? Based on our algorithm described above, a trig-
ger corresponds to five or more alerts according to the
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Structure of the matched-filtering convolutional neural network (MFCNN).

output confidence value. Since each output alert corre-
sponds to a 5-second data segment, we enlarge the
corresponding time of the continuous alerts before the first
alert and after the last alert. The data segment correspond-
ing to the enlarged time segment is assumed to contain a
GW signal. For record purposes, we output the center time
of such a time segment and the duration time.

III. TRAINING AND TEST OF THE
NEURAL NETWORK

A. Training data set and test data sets

Each data sample includes a noise part and possibly a
signal part. We obtain the O1 data from the Gravitational
Wave Open Science Center (GWOSC) [56]. The back-
ground noises for training or testing are sampled from Ol
data that exclude GW150914, GW151012, and GW 151226
events. Together with a simulated GW signal. we construct
3220 samples for training data and test data, respectively.
Of these 3220 samples, half are pure noise and the other
half include signals.

We use our SEOBNRE model [57] to generate simulated
gravitational waveforms. In the current work, we only con-
sider circular, spinless binary black holes. Correspon-
ding to LIGO detectors, we adopt the configuration from
LALSimulation® that sets all binary sources at a right
ascension of 1 h 23 m 45 s, a declination of 45 degrees,
and a polarization angle of 30 degrees and consider the
total mass of the two black holes falling in the range
10 M5-150 M, with an interval 2 My and a mass ratio
q = m;/m, ranging from 1-10 with an interval 0.1.
Regarding the orbital plane direction, we set 1 = 0. We
determine the source luminosity distance D based on a
given SNR.

*See Iscsoft.docs.ligo.org/lalsuite/lalsimulation/group_ _
lalsim_ _detector_ _strain.html.
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FIG.2. SNR distribution of the training data set and testing data

set for the simulated signals.

We create training and testing data sets, both containing
1610 waveforms. After a transfer training process, the final
SNR distribution for the training data is shown in Fig. 2,
which has the same distribution of the testing data set. Each
data sample consists of two time series that are 5 seconds
long with a sampling rate of 4096 Hz. The two time series
correspond to detectors H1 and L1, respectively. For the
samples with a GW signal, we set the peak location of the
signal at the center of the time series. The mass distribution
of templates, training or test waveforms, and also the
11 GW events in O1/02 are plotted in Fig. 3.

B. Training strategy

The coefficients of our adjusted CNN network, except
the first layer, are determined through the training process.
First, we use the “Xavier” initialization [58] to assign initial
random values to these yet-to-be-determined CNN param-
eters. This initializer is designed to keep the scale of
gradients roughly the same in all layers. Then, we use the

Training data A GW151012 GW170729 A GWw170817

Testing data A GW151226 4 GW170809 A Gwi170818
x  Templates GW170104 A Gw170814 Ao GWw170823
A GW150914 A GW170608

1.0

0.8

0.6

0.4F

0.2

0 20 40 60 80 100 120 140

m1+my(Mo)
FIG. 3. The total mass and mass ratio of training or test data and

templates. The 11 GW events for both O1 and O2 are also shown.

binary output scores s from our network to calculate the
confidence for a GW signal using the sigmoid function:

- 1
S l4e

p (2)
Next, we use a binary cross-entropy loss function to
evaluate deviation between the predicted values and the
actual values in the training data. Based on this estimation,
a minibatch Adam algorithm [59] is applied to optimize
the kernel entries in the CNN. Here, we caution that this
confidence value cannot be interpreted as the statistical
significance of a detection [54].

Within every training epoch (i.e., a full pass over all
training data), not only is the entire training or test data set
randomly shuffled but also the background noise is newly
resampled in a random manner from O1 data, excluding the
three GW events. At the end of every epoch, the perfor-
mance of the network during training is evaluated based on
average accuracy for the networks in each minibatch. We
set the learning rate to 0.003 and batch size to 16. During
the curriculum learning, we gradually decrease the signal
strength, the ratio of the amplitude of the signal to the
standard deviation of the noise, of both training data and
test data from 1 to 0.02. The training process is accom-
plished within 6 hours on four NVIDIA GeForce GTX
1080Ti GPUs, each with 11 GB of memory. After training,
it takes less than 5 days to process all the O1 data. All the
implementations of the current work were coded with
PYTHON, based on the MXNet framework [60].

C. Accuracy and efficiency test
of the neural network based
on simulated data

The authors of [49] have compared the GW signal
recognition accuracy and efficiency of CNN networks
and conventional matched-filtering techniques. Based on
the test data set described in the above subsection, we can
calculate the corresponding true alarm probability and false
alarm probability.

For the usual problems faced by machine learning,
test data include a number of individual samples. As we
described in Sec. II B, our test data correspond to longer
duration data (5 seconds). The labeled data indicate
which time segments include the signal (denoting all
such segment sets as D7) and which time segments are
just pure noise (denoting all such segment sets as D).
After the data processing procedure, the time segments
that possibly contain the signal (denoting all such segment
sets as Dp) are determined. Accordingly, we can define
the true alarm probability and false alarm probability as
follows:

EDIﬂDP
Z 9

TAP (3)
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(a) The ROC curves for test data sets containing signals with matched-filtering SNR 6, 8, 10, and 12, respectively. We plot the

true alarm probability versus the false alarm probability estimated by our matched-filtering CNN network. (b) Efficiency curves for false
alarm probabilities 0.1, 0.01, and 0.001, respectively. The true alarm probability is plotted as a function of the optimal SNR. In this

figure, we use p. = 0.5, N, =35 and T = 5 seconds.

Dy

Apparently, Dp will be affected by the choice of p.. On
changing p.., different TAP and FAP will also be obtained.
Accordingly, we can construct the receiver operator char-
acteristic (ROC) curves.

We take some of the O1 data which do not contain any of
the three events as pure noise. Then, we randomly inject
simulated signals into this pure noise and use the resulting
data as test data. When we inject the simulated signal,
we adjust the amplitude according to the matched-
filtering SNR.

TAP

AN N=350
b’ oo random e
0 01 02 03 04 05 06 07 08 09 1
FAP
FIG. 5.

Stronger signals are more easily recognized. Thus, we
can see in Fig. 4(a) that larger SNR test data result in better
ROC curves. For a given SNR, the true alarm probability
can be used to describe the recognition efficiency. For given
representative false alarm probabilities 0.1, 0.01, and 0.001,
we plot the efficiency curves in Fig. 4(b).

It is interesting to ask how the number of templates N,
and the length of the input data segment 7 affect the
behavior of the MFCNN. Regarding the N, problem, we
compare cases including N, = 3, 16, 35, 70, 350 while
evenly locating the signal in the total mass range
[5,75] M. We plot the results in Fig. 5(a). We find that
even though very few templates, such as N, = 3, are used,
the MFCNN can still work well. If N, is larger than about
20, the behavior is roughly independent of template

0.7 |
06 | 1
Z o5} ]
=
0.4 1 (b) A
03} 1
0.2 T=1 ——— |
T=5 o
0.1 T=10Q --ooeeeeee 7
o bl s ‘ ‘ ‘ ‘ ,_random -----
0 01 02 03 04 05 06 07 08 09 1

FAP

Comparison of different superparameters of the MECNN network. (a) Comparison for different numbers N, of templates. Note

that SNR = 10 and 7 = 5 seconds are used. (b) Comparison for different data segment duration 7. Here, SNR = 10 and N, = 35

are used.
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numbers. So, we fix N, =35 in the remainder of the
current paper.

Regarding 7, we compare 7 = 1, 5, 10 seconds, letting
the time window advance at intervals of 0.2,1,2 seconds,
respectively, to ensure five consecutive passes for a signal
included in the 7' data segment. We plot the results in Fig. 5
(b). We can see that the behavior of the MFCNN is roughly
independent of the superparameter 7. Therefore, we fix
T =5 in the remainder of the current paper.

IV. SEARCH RESULTS OF THE
REAL LIGO DATA

A. Signal search results of 01/02

In this section, we apply our MFCNN to LIGO O1 and
02 data. We use T =5 seconds and N, = 35. Regarding
the threshold, we use p. = 0.5, which corresponds to
TAP =~ 0.7922 and FAP = 0.0228 for the case SNR = 10
in Fig. 4(a).

If the output confidence value is bigger than a given
threshold value p > p,, our network gives an alert. If we

get more than five continuous alerts, a trigger for the GW
signal will be given.

In Fig. 6, we plot the confidence values output by our
adjusted CNN near the GW150914, GW151012, and
GW151226 events for O1. Our network can show all three
events clearly. For GW150914 and GW 151226, there are
five continuous confidence values approaching 1, while
other confidence values are much smaller. For GW151012,
the confidence values marking the signal are not as big as
GW150914 and GW151226, but they are still bigger than
0.5 and also clearly bigger than nearby values.

It is interesting to check the effect of the noise used in
the training data set and the real data. To do this, some
authors [54] used a network trained with O1 noise to treat
02 data. We do the same test here. We apply the trained
network described in the above section directly to O2
data. We show the confidence values for the eight GW
events for O2 in Fig. 7. All eight events have been clearly
marked. The authors of [54] show that the network trained
with a binary black hole coalescence signal may fail to
identify the binary neutron star inspiral signal. This is not

1 1 1
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a a a
0.4 0.4 0.4
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FIG. 6. The output confidence values of our MFCNN near the three GW events of Ol.
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FIG. 7. The output confidence values of our MFCNN trained with O1 noise near the eight GW events of O2.
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TABLE I. Numbers and percentage of glitch types involved in
O1 data. The distinguishable percentage of the MFCNN is listed
in the third row.

Repeating
Blip Koi fish Chirp blips Others
Numbers in O1 506 247 22 21 16
% in O1 62%  30% 3% 3% 2%

% distinguishable 72%  65% 63% 92% >99%

true of our adjusted network. We can mark the GW 170817
event very clearly.

Besides the three confirmed GW events, we have also
applied our network to all of the Ol data. In the cur-
rent work, we set p. = 0.5. If there are more than five
continuous p > p., we output a signal alarm at the time of
the first p > p..

Ignoring the data quality, we find 3363 triggers in Ol,
which include GW150914, GW151012, and GW151226.
The LIGO data are marked with different tags. The data
marked with CBC-CAT3 are not affected by elevated
glitches due to environment factors [61]. If we consider
only the data marked with CBC-CAT3, there are 2069
triggers in Ol. On average, there is one trigger roughly
every 40 minutes. As noted by a previous researcher [54],
deep learning cannot assign a significance to each trigger.
So, we cannot tell which triggers are more believable than
others. We can only suggest that these triggers deserve to
be checked in more detail with other analysis methods.
We have listed these triggered data with center time and time
duration on GitHub.’

The authors of GWTC-1 reported three marginal GW
event candidates, besides the three known GW events in
Ol, in Table II of their paper [8]. All three marginal
candidates are different from our triggers.

Other authors [62] reported the first open gravitational-
wave catalog (1-OGC). Table I of their research [62] listed
the 20 event candidates sorted by false alarm rate, which
included the three known GW events. All 17 subthreshold
candidates differ from our triggers.

We have also checked the consistency between our
triggers and the gamma ray burst (GRB) events listed in
[63]. There were 1209 GRB events recorded during the O1
run of LIGO. But there were no consistent events found
between our triggers and these GRB records.

A recent paper [64] claimed that three more events are
found in 02—GW170121, GW170304, and GW170727.
Interestingly, we can also find these three events as shown
in Fig. 8.

When we increase the threshold value p,., the number of
triggers decreases. For a large p. ~ 1, we get 20 triggers, 15
of which fall in the known glitch catalog of O1 data [65].

3See https://github.com/WuShichao/mfcnn_catalog.

One of the remaining five triggers corresponds to
GW150914. Compared to the 2069 triggers of p. = 0.5,
these 20 triggers admit a much smaller false alarm
probability, although the true alarm probability is also
dramatically low. The low true alarm probability results in
the loss of many true signals in O1. But because of the
relatively small false alarm probability, the four remaining
triggers deserve a detailed analysis.

These four triggers happened on September 19, 2015,
December 19, 2015, December 22, 2015, and January 12,
2016, respectively. We have checked the Rayleigh-statistic
spectrum for these. The Rayleigh-statistic spectrums of
September 19, 2015, December 19, 2015, December 22,
2015 indicate that the detectors did not work well during
those times. On the contrary, the Rayleigh-statistic spec-
trum of January 12, 2016 indicates the corresponding data
were of quite good quality.

Based on a Q-transform analysis, we plot the time-
frequency representation of the data strain of the trigger on
January 12, 2016 in Fig. 9. The 1-OGC catalog reported
146 214 triggers in all. Among these 146214 triggers,
the one that happened on January 12, 2016 at GPS time
1136593848.9 admits a chirp signal starting from about 1
136593 846.8 and ending at about 1136593 847.7. So,
we conclude that our trigger is different from the one
reported by 1-OGC. At the same time, we note that 1-OGC
reported that the possible binary masses for the January 12,
2016 trigger are, respectively, m; = 4.34 My and m, =
1.65 M. From Fig. 9, we can infer that the total mass of
the binary is bigger than 50 M.

B. Statistical property of the triggers found by MFCNN

When matched filtering is used to extract the gravita-
tional-wave signal, the false alarm rate is an important
quantity to indicate its confidence level. Roughly, this false
alarm rate is a kind of statistical property of pure noise. It is
interesting to compare this property for pure noise to a
similar statistical property of the signal candidates. For
example, the lines in Fig. 4 of [1] represent the statistical
property of pure noise, and the points represent the
statistical property of signal candidates.

Although we cannot provide a false alarm rate as given
by matched filtering for the MFCNN, we can compare the
statistical properties between pure noise and the triggers.
We plot such a comparison in Fig. 10. We can see a
significant difference between the distribution of the
triggers and the noisy O1 data, which implies that the
triggers admit different properties than those of the full O1
data set.

C. Distinguishing glitches from the
gravitational-wave signal

Known glitches involved in the Ol data have been
cataloged in [65]. Glitches often affect the data analysis
significantly. So, it is very interesting to explore how our
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MEFCNN reacts to glitches. When we use our MFCNN to
treat the O1 data, we do not consider the glitches at all. If
our MFCNN treated some glitches as noise, the network
could distinguish the glitch in question from the GW signal.
Otherwise, it may confuse the glitch with the GW signal.
So, the glitches that fall in our trigger set are those that our

1000 ‘
o1 ——
triggers -
O1 without triggers -+

100 | ]

distribution function

0.01

FIG. 10. Comparison of distribution with respect to the
MFCNN output p value for triggers, all Ol data, and O1 data
without triggers. Note we have chosen p. = 0.5, so the distri-
bution for triggers starts from 0.5.

MFCNN cannot distinguish. According to [65], there are
7368 glitches included in O1 data, 812 of which fall in our
trigger set or about 10% of known instrumental glitches.
Roughly speaking, we find that our MFCNN distinguishes
glitches with higher frequency, longer duration, and higher
SNR more easily.

According to [65], the glitches in O1 can be catalogued
as blip type, koi fish type, and others. The ability of our
MEFCNN to distinguish different types of glitches differs.
We list the numbers and percentage of each type included in
Ol in Table I. We also list the percentage accuracy at which
our MFCNN can distinguish each type in the third row.

V. SUMMARY

There have been many works published about applying
deep learning techniques to gravitational-wave data analy-
sis in the past few years. Most of these works used
simulated data. In the current paper, we designed an
adjusted CNN and applied it to the entire O1 data of LIGO.

Trained with noise taken from Ol data and simulated
binary black hole coalescence waveform, our network can
clearly identify the three confirmed GW events. In addition,
we used this trained network to directly identify the eight
GW events found in O2, and we can also mark all eight
events clearly. Although this test is not consistent due to
different noise behavior between O1 and O2, our test
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results indicate that our network model and method are
robust with respect to the training data set. A similar
investigation has been done in [54].

Besides the three GW events included in O1, we have
also found more than 2000 candidates. As noted by the
authors of [54], we cannot assign a significance to each
candidate. So, we simply call these candidates triggers.
These triggered data segments deserve to be investigated in
detail.

We have compared our more than 2000 triggers with the
subthreshold events reported in GWTC-1 [8] and in 1-OGC
[62]. No consistent events were found between these
subthreshold events and our triggers. We have also checked
the reported GRB events listed in [63] that occurred during
the Ol observation time of LIGO. We have not found
consistent events between these GRB events and our
triggers.
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APPENDIX: CONVOLUTION OPERATION
IN THE FIRST LAYER OF THE ADJUSTED
CNN NETWORK

For a template A(r) and detected strain data d(r), the
matched-filter SNR is defined as

[(d]h) ()2

) =S (A1)

<d|]’l>(lc) _ Aw d({;)?}gf) ez’”'f’vdf, (A2)
(h|h) :4/)OOWW, (A3)

where |- | means the absolute value, * is the complex
conjugate, and ~ is the Fourier transformation,

A(f) = /_ " d(r)e2ifqr. (A4)

The quantity S,,(f) is the one-sided average power spectral
density of the detector noise. Due to the convolution
theorem and the relationship between convolution and
correlation, the correlation in Eq. (A2) can be rewritten as

(o =4 | mwez”i-f’df
=4 [T@PS,0- HS, ) a
=4 [ a0 (ferap
= 2d(t) * h(—-1), (AS)
a6) = d(o) < 5,(0), (86
(1) = h(e) < 5,00, (a7
5,00 = [ s Cemrar(a)

where d(r) * h(t) means the convolution of functions d()
and A(r). Similarly, (h|h) can also be calculated in this way
as (hlh) = 2[h(1) * h(=1)]|, o
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