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We investigate how a static and neutral distribution of external matter distorts a five-dimensional static
black ring. We obtain a general expression for the distorted metric in terms of the background metric
functions and the distortion fields, and find a multipole expansion for the latter. We demonstrate that the
gravitational field of these external sources can be adjusted to remove the conical singularity of the
undistorted black ring solution. We analyze properties of the distorted black ring for the specific cases of
dipole and quadrupole distortions.

DOI: 10.1103/PhysRevD.101.104002

I. INTRODUCTION

Black holes and black objects interact with external
matter and fields. In order to gain a full understanding of
the general theory of relativity and the properties of black
holes as gravitational objects predicted by the theory of
general relativity, one needs to study the interaction of
black holes with matter and sources. There are several ways
to study interacting black holes. Although the best way of
studying such dynamical systems is numerical analysis,
considerable insight can be gained from studying exact (or
approximate) solutions describing a black hole tidally
distorted by external matter. Distorted black holes have
been constructed and studied by many authors [1–28].
A distorted black hole can approximate a dynamical black
hole that relaxes on a timescale much shorter than that of
the external matter.
Originally, the term “distorted black hole” was used to

describe an asymptotically flat black hole solution pos-
sessing higher mass multipole moments. Such is, for
example, the Erez and Rosen solution [1], which represents
a generalization of the Schwarzschild black hole with a
quadrupole moment. However, by Israel’s theorem [29],
these solutions suffer from the appearance of curvature
singularities on the horizon or in its vicinity. The term
“distorted black hole” then broadened to also refer to an
asymptotically nonflat black hole solution that is consid-
ered to be valid only locally in a certain neighborhood of
the black hole horizon. Such solutions are interpreted as

describing a black hole located in the gravitational field
of external sources. Although the matter sources are not
explicitly included, the solution contains information about
their influence on the black hole properties.
We consider only this class of solutions in this paper.

This has the major advantage that these solutions are valid
for broad classes of external matter, the only restrictions
coming from some regularity conditions, and any sym-
metry imposed on the solution. One of the first solutions
of this class was constructed in 1965 by Doroshkevich,
Zel’dovich, and Novikov [8], who considered the
Schwarzschild black hole in an external quadrupole gravi-
tational field. Chandrasekhar obtained the equilibrium
condition for a black hole in a static external gravitational
field [4]. Geroch and Hartle [2] considered general static
black holes in four dimensions in the presence of external
matter fields, and performed a fundamental analysis of the
global characteristics of these solutions.
In higher dimensions, there is a menagerie of other black

hole solutions that do not have spherical horizons, such as
black rings, black saturns, black helical rings, di-rings, and
bicycling black rings, as well as more general blackfolds
[30–37]. While the list may not be complete, it is necessary
to investigate the features of distorted versions of these
black objects to investigate fully which properties of black
holes or black objects are more universal.
The construction of the vacuum solution of the Einstein

equations representing a static black hole in a static external
axisymmetric gravitational field relies on the Weyl form
[38]. A method for the construction of distorted higher-
dimensional black holes/objects based on the generalized
Weyl form [30] was developed [14].
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A four-dimensional Weyl solution is characterized by two
orthogonal commuting Killing vector fields generating an
R1 ×Uð1Þ isometry group. The generalized Weyl solution
(in a d-dimensional spacetime, d > 4) is characterized by
d − 2 orthogonal commuting Killing vector fields. In the
generalized Weyl form, the general solution of the
d-dimensional vacuum Einstein equations that admits d − 2
orthogonal commuting non-null Killing vector fields is
given in terms of d − 3 independent axisymmetric solutions
of Laplace’s equation in three-dimensional flat space. The
generalized Weyl solution allows for the construction of
many interesting black objects of different horizon topology
and configuration (see, e.g., Refs. [30,39]). The first
distorted solution constructed by this method was a dis-
torted five-dimensional Schwarzschild-Tangherlini black
hole [14]. Subsequently, a solution representing a distorted
five-dimensional Reissner-Nordström black hole was con-
structed [16]. A new exact solution of the 5D Einstein
equations in vacuum describing a distorted Myers-Perry
black hole with a single angular momentum was obtained
[17]. Locally, the solution is interpreted as a black hole
distorted by a stationary Uð1Þ ×Uð1Þ symmetric distribu-
tion of external matter. In this paper, we construct a distorted
black ring solution using the generalized Weyl solution.
The study of distorted black holes/objects is important

from a theoretical viewpoint. They are more general sta-
tionary and axisymmetric solutions than isolated black
holes, and they can provide deeper insights into black hole
properties. A series of studies were devoted to investigating
how the properties of isolated black holes are influenced if
they are distorted by an external matter field, and which of
them remain unaffected. It was established that 4D static
distorted black holes belong to the Petrov type D class on
the horizon, like their asymptotically flat counterparts,
although in the rest of the spacetime they are algebraically
general [40]. Within the framework of isolated horizons,
it was proven that a local first law of thermodynamics is
valid on a distorted black hole horizon [41–43], which
possesses the same form as the first law for the correspond-
ing asymptotically flat black holes. On the other hand, the
analysis of distorted black holes demonstrates that some
of the other features of black holes are not as universal.
For example, it was demonstrated that, in the case of a
distorted five-dimensional Myers-Perry black hole, the
ratio of the horizon angular momentum and the mass
J2=M3 is unbounded, and can grow arbitrarily large [17].
Similarly, for a distorted Kerr black hole, the solution is
regular outside the horizon even though the spin parameter
can satisfy J2=M4 > 1 [19]. This is in contrast to isolated
black holes, where such ratios of angular momentum
and mass lead to a naked singularity. Studies of the local
shadow of the distorted Schwarzschild black hole shows
that the external matter sources modify the light ring
structure and lead to the appearance of multiple shadow
images [20,28].

Classical general relativity in more than four spacetime
dimensions is interesting to study as an extension of
Einstein’s theory, and in particular its black hole solutions,
for at least the following reasons: String theory, TeV-scale
gravity, and brane models require more than four dimen-
sions. The AdS=CFT correspondence relates the properties
of a d-dimensional black hole with those of a quantum field
theory in d − 1 dimensions. As mathematical objects, black
hole spacetimes are among the most important Lorentzian
Ricci-flat manifolds in any dimension (see Ref. [44]). In
addition to these applications of the subject, there exists
intrinsic interest in higher-dimensional gravity. A number
of classical theorems show that black holes in four
spacetime dimensions are highly constrained objects. For
a stationary, asymptotically flat, vacuum black hole, event
horizons of nonspherical topology are forbidden [45]. In
five dimensions, the situation is not so simple. S1 × S2 is
one of the few possible topologies for the event horizon in
five dimensions. An asymptotically flat, stationary, vacuum
solution with a horizon of topology S1 × S2, a rotating
black ring was constructed [31]. An uncharged static black
ring solution is presented in Ref. [30], but it contains
conical singularities. We construct a solution representing a
local distorted uncharged static black ring distorted by
external static and neutral distribution of external matter,
which can be free of conical singularities.
Our paper is organized as follows: In Sec. II, we discuss

the generalized Weyl form. In Sec. III, we overview the
black ring solution. In Sec. IV, we construct the metric of a
distorted black ring. In Sec. V, we analyze the general
properties of the spacetime and conditions on the distortion
fields. In Sec. VI, we analyze the spacetime properties of
the distorted black ring further for dipole and quadropole
distortions. In this paper, we use the following convention
of units: Gð5Þ ¼ c ¼ 1, the spacetime signature is þ3, and
the sign conventions are those adopted in Ref. [46].

II. GENERALIZED WEYL SOLUTION

In Ref. [14], an ansatz was presented for deriving a
distorted five-dimensional black object with three commut-
ing, orthogonal Killing vector fields based on the gener-
alized Weyl form [30]. Here, we review this ansatz. In four
dimensions a general static, axisymmetric solution of
vacuum Einstein equations can be presented in the Weyl
form [38]. In this form, the vacuum Einstein equations
simplify. One of these equations is a three-dimensional
Laplace equation defined in a flat auxiliary space which is
solved by the first of the metric functions. The second
metric function can be found by a simple line integral
defined in terms of the first one. This simple structure of the
Einstein equations allows one to find exact analytic
solutions to many interesting models of classical general
relativity, e.g., the Israel-Khan solution representing a set
of collinear Schwarzschild black holes [47], a black hole
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with a toroidal horizon [48], a four-dimensional compacti-
fied black hole [49], and a distorted black hole [4,6,50,51].
The four-dimensional Weyl solution admits an isometry
group R1

t ×Oð2Þ. In other words, the Weyl solution is
characterized by two orthogonal, commuting Killing vec-
tors ξαðtÞ ¼ δαt and ξαðϕÞ ¼ δαϕ, which are generators of time

translations and two-dimensional rotations about the sym-
metry axis, respectively.
The d-dimensional generalization of the Weyl solution in

vacuum admits d − 2 commuting, non-null, orthogonal
Killing vector fields (see Refs. [30,52]). Note that the
static and axisymmetric generalization of the Weyl form
that admits the isometry groupR1

t ×Oðd − 2Þ is not known
(see, e.g., Ref. [53]).
As with the four-dimensional Weyl solution, the gener-

alized Weyl solution is defined by metric functions that
solve the corresponding Laplace equation. According to
analysis presented in Ref. [30], there are two classes of
the generalized Weyl solution. The first class is charac-
terized by d − 3 metric functions that solve the three-
dimensional Laplace equation, and the remaining metric
function is defined by a simple line integral of them. The
second class is characterized by d − 2 metric functions
that solve the two-dimensional Laplace equation. This class
has no four-dimensional analogue. Here we discuss a
five-dimensional Weyl solution of the first class, which
is characterized by three commuting, orthogonal Killing
vector fields, one of which ξαðtÞ ¼ δαt is timelike, and the

other two ξαðχÞ ¼ δαχ and ξαðϕÞ ¼ δαϕ are spacelike. These

Killing vectors are generators of the isometry group
R1

t ×Uχð1Þ ×Uϕð1Þ. Thus, the five-dimensional Weyl
solution can be presented as follows:

ds2 ¼ −e2U1dt2 þ e2νðdz2 þ dρ2Þ þ e2U2dξ2 þ e2U3dϕ2;

ð1Þ

where t; z ∈ ð−∞;∞Þ, ρ ∈ ð0;∞Þ, and χ;ϕ ∈ ½0; 2πÞ are
Killing coordinates. The metric functions Ui, i ¼ 1, 2, 3,
and ν depend on the coordinates ρ and z. Each of the
functions Ui, i ¼ 1, 2, 3 solves the three-dimensional
Laplace equation

Ui;ρρ þ
1

ρ
Ui;ρ þUi;zz ¼ 0; ð2Þ

such that the following constraint holds:

U1 þ U2 þ U3 ¼ ln ρ: ð3Þ

Here, and in what follows, ð…Þ;a stands for the partial
derivative of the expression ð…Þ with respect to the
coordinate xa.

If the functions Ui, i ¼ 1, 2, 3 are known, the function ν
can be derived by simple line integral from the following
equations:

ν;ρ ¼ −ρðU1;ρU2;ρ þ U1;ρU3;ρ þ U2;ρU3;ρ

−U1;zU2;z −U1;zU3;z −U2;zU3;zÞ; ð4Þ

ν;z ¼ −ρðU1;ρU2;z þ U1;ρU3;z þ U2;ρU3;z

þ U1;zU2;ρ þ U1;zU3;ρ þ U2;zU3;ρÞ: ð5Þ

Here, we shall consider a five-dimensional Weyl solution
representing a background Weyl solution defined by Ũi,
i ¼ 1, 2, 3, and ν̃, which is distorted by external, static,
axisymmetric fields defined by Ûi, i ¼ 1, 2, 3, and ν̂. The
metric functions of the corresponding spacetime can be
defined as follows:

Ui ≔ Ũi þ Ûi; ν ≔ ν̃þ ν̂; ð6Þ

where according to the constraint (3) we have

Ũ1 þ Ũ2 þ Ũ3 ¼ ln ρ; Û1 þ Û2 þ Û3 ¼ 0: ð7Þ

In what follows, we consider distortion by external gravi-
tational fields due to remote masses that have an axisym-
metric configuration with respect to the axes corresponding
to the Killing vectors ξαðχÞ ¼ δαχ and ξαðϕÞ ¼ δαϕ. To present

the ansatz, accordingly, we define [14]

Ũ1≔ ŨþW̃þ lnρ; Ũ2≔−W̃; Ũ3≔−Ũ; ð8Þ

ν̃ ≔ Ṽ þ Ũ þ W̃; ð9Þ

Û1 ≔ Û þ Ŵ; Û2 ≔ −Ŵ; Û3 ≔ −Û; ð10Þ

ν̂ ≔ V̂ þ Û þ Ŵ: ð11Þ

Then, the metric (1) takes the following generalized Weyl
form [30]:

ds2 ¼ e2ðŨþW̃þÛþŴÞ½−ρ2dt2 þ e2ðṼþV̂Þðdz2 þ dρ2Þ�
þ e−2ðW̃þŴÞdχ2 þ e−2ðŨþÛÞdϕ2: ð12Þ

The background fields Ũ and W̃ satisfy the three-
dimensional Laplace equation (2), and the function Ṽ
can be obtained via a simple line integral from the
following equations:

Ṽ;ρ¼ρðŨ2
;ρþW̃2

;ρþŨ;ρW̃;ρ− Ũ2
;z−W̃2

;z−Ũ;zW̃;zÞ; ð13Þ

Ṽ;z ¼ ρð2Ũ;ρŨ;z þ 2W̃;ρW̃;z þ Ũ;ρW̃;z þ Ũ;zW̃;ρÞ: ð14Þ
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The distortion fields Û and Ŵ satisfy the three-dimensional
Laplace equation (2), and the function V̂ representing
interaction between the distortion fields can be derived
by the line integral from the following equations:

V̂;ρ ¼ ρðÛ2
;ρ þ Ŵ2

;ρ þ Û;ρŴ;ρ − Û2
;z − Ŵ2

;z − Û;zŴ;z

þ Ũ;ρŴ;ρ þ W̃;ρÛ;ρ − Ũ;zŴ;z − W̃;zÛ;z

þ 2½Ũ;ρÛ;ρ þ W̃;ρŴ;ρ − Ũ;zÛ;z − W̃;zŴ;z�Þ; ð15Þ

V̂;z ¼ ρð2Û;ρÛ;z þ 2Ŵ;ρŴ;z þ Û;ρŴ;z þ Û;zŴ;ρÞ
þ Ũ;ρŴ;z þ Ũ;zŴ;ρ þ W̃;ρÛ;z þ W̃;zÛ;ρ

þ 2½Ũ;ρÛ;z þ Ũ;zÛ;ρ þ W̃;ρŴ;z þ W̃;zŴ;ρ�Þ: ð16Þ

In the following section, we use the generalized Weyl
form (Emparan-Real metric) [30], and this ansatz [14] to
construct a metric representing a five-dimensional distorted
black ring and study its properties.

III. BLACK RING

In this section, we present the static uncharged black ring
solution which was discovered in Ref. [30]. The Weyl form
of the metric is given by the functionsU1..3 and ν in ρ and z
coordinates [30]:

e2U1 ¼ R3 − ξ3
R2 − ξ2

; ð17Þ

e2U2 ¼ R1 − ξ1
A

; ð18Þ

e2U3 ¼ ðR1 þ ξ1ÞðR2 − ξ2Þ
AðR3 − ξ3Þ

; ð19Þ

e2ν ¼ 1þ μ

4A
Y23

R1R2R3

ffiffiffiffiffiffiffi
Y12

Y13

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − ξ2
R3 − ξ3

s
; ð20Þ

where

ξ≡ z − ci; ð21Þ

R1 ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ ξ21

q
; ð22Þ

R2 ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ ξ22

q
; ð23Þ

R3 ≡ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ ξ23

q
; ð24Þ

Yij ≡ RiRj þ ξiξj þ ρ2; ð25Þ

from which it follows that U1 is the Newtonian potential
produced by a finite rod −μ=ð2AÞ ≤ z ≤ μ=ð2AÞ, U2 is the

potential produced by a semi-infinite rod z ≥ 1=ð2AÞ,
and U3 is the potential produced by a semi-infinite rod
z ≤ −μ=ð2AÞ and a finite rod μ=ð2AÞ ≤ z ≤ 1=ð2AÞ. For
μ ¼ 1, these sources reduce to those of the five-
dimensional Schwarzschild solution. Here we have, with
α ¼ A, to reproduce the Weyl form of the metric:

c1 ¼ α=ð2A2Þ ¼ 1=ð2AÞ; c2 ¼ αμ=ð2A2Þ ¼ μ=ð2AÞ;
c3 ¼ −αμ=ð2A2Þ ¼ −μ=ð2AÞ: ð26Þ

The parameters μ and A will be taken to lie in the range
0 ≤ μ ≤ 1, A > 0. This metric can also be presented in a
more simple form:

ds2 ¼ −
FðxÞ
FðyÞ dt

2 þ 1

A2ðx − yÞ2
��

FðyÞ2
1 − x2

dx2

þ FðxÞFðyÞ
y2 − 1

dy2
�
þ FðxÞðy2 − 1Þdψ2

þ FðyÞ2
FðxÞ ð1 − x2Þdϕ2

�
; ð27Þ

where FðxÞ ¼ 1 − μx and FðyÞ ¼ 1 − μy. The coordinate x
is in the range −1 ≤ x ≤ 1, and the coordinate y is in the
range y ≤ −1 with the black hole horizon located at
y → −∞. The relation between the coordinates ðx; yÞ
and ðρ; zÞ is given by the following transformations:

ρ ¼ α

A2ðx − yÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FðxÞFðyÞð1 − x2Þðy2 − 1Þ

q
; ð28Þ

z ¼ αð1 − xyÞðFðxÞ þ FðyÞÞ
2A2ðx − yÞ2 : ð29Þ

The functions Ũ, W̃, and Ṽ in the coordinates ðρ; zÞ are the
following:

e2Ũðρ;zÞ ¼ AðR3 − ξ3Þ
ðR2 − ξ2ÞðR1 þ ξ1Þ

; ð30Þ

e2W̃ðρ;zÞ ¼ A
R1 − ξ1

; ð31Þ

e2Ṽðρ;zÞ ¼ 1þ μ

4A3

Y23

R1R2R3

ffiffiffiffiffiffiffi
Y12

Y13

s
ðR2

1 − ξ21Þ
�
R2 − ξ2
R3 − ξ3

�
3=2

:

ð32Þ

Note that y ¼ −1 is seen as the origin of polar coordinates,
and hence y cannot be continued beyond −1. Returning to
the metric (27), it is now clear that the topology of the
horizon is S1 × S2, which justifies calling this solution a
black ring. x is the polar coordinate on the S2; it follows that
x ¼ −1 points away from the ring and x ¼ 1 points into the
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hole in the center of the ring. It is clear from the metric (27)
that the only values of x and y that can correspond to
asymptotic infinity are x ¼ y ¼ −1. The black ring has a
conical singularity either at x ¼ 1 or at x ¼ −1. If the
asymptotic metric does not contain a conical singularity,
then the mass of the black ring is

M ¼ 3πμð1þ μÞ
4G5A2

; ð33Þ

where G5 is Newton’s constant in five dimensions. For
fixed A, a change in μ changes the black ring’s mass. On the
other hand, if the deficit membrane extends to infinity, the
mass of the ring is

M ¼ 3πμ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − μ2

p
4G5A2

: ð34Þ

IV. METRIC OF A DISTORTED BLACK RING

In the previous section, we reviewed Ref. [30], demon-
strating that the five-dimensional black ring solution can be
written in the generalized Weyl form. Here, we present a
metric describing a five-dimensional static vacuum black
ring distorted by external fields. The fields’ sources are
located at asymptotic infinity and are not included in the
metric. As a result, the corresponding spacetime is not
asymptotically flat. We consider the spacetime near the
regular black hole horizon, far away from the sources. In
this case, the solution represents a local black hole in
analogy with a four-dimensional distorted vacuum black
hole studied in Ref. [4]. We focus on the study of the
spacetime near the black hole horizon. The corresponding
metric ansatz of such a black ring is given by

ds2¼−e2ðÛþŴÞFðxÞ
FðyÞdt

2

þ 1

A2ðx−yÞ2
�
e2ðV̂þÛþŴÞ

�
FðyÞ2
1−x2

dx2þFðxÞFðyÞ
y2−1

dy2
�

þe−2ŴFðxÞðy2−1Þdψ2þe−2Û
FðyÞ2
FðxÞ ð1−x2Þdϕ2

�
:

ð35Þ

To derive the solution, it is easier to start from the ðρ; zÞ
coordinates. The next step is to find the functions Û, Ŵ,
and V̂. Once these functions are known in ðρ; zÞ, based on
the transformations (28) and (29), the functions Û, Ŵ, and
V̂ in x and y coordinates can be derived. We do not write the
functions explicitly in the x and y coordinates due to their
complexity.
We start with the Laplace equation (2) for the distortion

fields Û and Ŵ. In the cylindrical coordinates ðρ; zÞ, the
solution is well known and has the following form:

X̂ðρ; zÞ ¼
X
n≥0

½AnRn þ BnR−ðnþ1Þ�PnðcosϑÞ; ð36Þ

where

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ z2

p
m

; cosϑ ¼ z=R; ð37Þ

and PnðcosϑÞ are the Legendre polynomials of the first
kind. In what follows, X̂ is either Û or Ŵ. The coefficients
An and Bn in the expansion [Eq. (36)] correspond to interior
and exterior multipole moments, respectively [54,55].
We consider only the distortion fields defined by An’s
which describe a local black ring distorted by external
sources. For Û, An’s are named an, and for Ŵ, An’s are
named bn. We shall simply call the an and bn coefficients
multipole moments.
We note that our solution is valid for R < R0, where R0 is

the characteristic length scale at which the external sources
are located (i.e., outside the region where our solution is
valid). We consider distortions with janj < 1 and jbnj < 1.
For large values of an and bn, the gravitational effect of the
distorting fields dominates over that of the black ring.
Physically, a small multiple moment corresponds to dis-
tortion of the black object by masses smaller than the object
itself, whereas a large multiple moment would result from
surrounding the black object with masses much larger than
the object itself. Another way to see this is that for large
multipole moments, the quantity exp 2U is so large that it
dominates the spacetime gravitational potential. Referring
to Fig. 1, the local solution can be considered valid in the
interior region of one of the surfaces of constant y.
If the distortion fields Û and Ŵ are known, the function

V̂ can be derived from Eqs. (15) and (16). For the function
V̂, we write

V̂ ¼ V̂1 þ V̂2; ð38Þ

V̂1 ¼ V̂Û Û þ V̂Û Ŵ þ V̂Ŵ Ŵ; ð39Þ

V̂2 ¼ 2V̂Ũ Û þ V̂Ũ Ŵ þ V̂W̃ Û þ 2V̂W̃ Ŵ; ð40Þ

where each of the V̂ðfgÞ’s is given by the solution of

V̂ðfgÞ;ρ ¼ ρðf;ρg;ρ − f;zg;zÞ; ð41Þ

V̂ðfgÞ;z ¼ ρðf;ρg;z þ f;zg;ρÞ: ð42Þ

Note that ðfgÞ is the index, while comma ρ and z are the
partial derivatives with respect to ρ and z. This form of
function V̂ [Eqs. (38)–(40)] is read from Eqs. (15) and (16).
The three parts V̂Û Û, V̂Ŵ Û, and V̂Ŵ Ŵ involve only the
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distortion fields. We can write the function V̂1 in the
following form:

V̂1 ¼ V̂Û Û þ V̂Û Ŵ þ V̂Ŵ Ŵ

¼
X
n;k≥1

nk
nþ k

ðanak þ anbk þ bnbkÞ

× Rnþk½PnPk − Pn−1Pk−1�; ð43Þ

where Pn ≡ Pnðz=RÞ. The four parts V̂Ũ Û, V̂Ũ Ŵ , V̂W̃ Û, and
V̂W̃ Ŵ involve the interaction of the distortion fields with the
background fields Ũ and W̃. Note that the distortion fields Û
and Ŵ are independent in general. Therefore, one can
consider Û ¼ 0 or Ŵ ¼ 0, in which case the corresponding
part in V̂ has to be taken to zero. However, further conditions
on the metric may impose a relation between the distortion
fields. Due to the fact that Ũ and W̃ are logarithmic
functions, we can further decompose Eqs. (15) and (16)
for the derivation of V̂2 in the following manner:

V̂W̃ X̂ ¼ −V̂X̂R1−
; ð44Þ

V̂Ũ X̂ ¼ −V̂X̂R1þ − V̂X̂R2−
þ V̂X̂R3

; ð45Þ

where corresponding to each term, Eqs. (15) and (16) are
decomposed in the forms (41) and (42) with the following

notation: For V̂X̂R1−
, f ¼ X̂ and g ¼ 1=2 ln ½ðR1 − ξ1Þ=A�.

For V̂X̂R1þ, f ¼ X̂ and g ¼ 1=2 ln ½ðR1 þ ξ1Þ=A�. For V̂X̂R2−
,

f ¼ X̂ and g ¼ 1=2 ln ½ðR2 − ξ2Þ=A�. For V̂X̂R3
, f ¼ X̂ and

g ¼ 1=2 ln ½ðR3 − ξ3Þ=A�. Then, each term can be found by
a line integral

V̂□□ðρ; zÞ ¼
Z ðρ;zÞ

ðρ0;z0Þ
½V̂□□;z0 ðρ0; z0Þdz0 þ V̂□□;ρ0 ðρ0; z0Þdρ0�;

ð46Þ
where the integral is taken along any path connecting the
points ðρ0; z0Þ and ðρ; zÞ. Thus, the field V̂ is defined up to
an arbitrary constant of integration defined by the point
ðρ0; z0Þ. We choose this arbitrary constant using a boundary
condition. Here, □’s are to be filled with the corresponding
notation for each term in V̂2.
Thus, we have

V̂X̂Ri� ¼
Z

ρ

2Ri

�
ρ

Ri � ξi
X̂;ρ ∓ X̂;z

�
dρþ

X
n≥1

dn
zn

2mn þ C;

i ¼ 1; 2 ð47Þ

V̂X̂R3
¼

Z
ρ

2R3

�
ρ

R3 − ξ3
X̂;ρ þ X̂;z

�
dρþ

X
n≥1

dn
zn

2mn þ C;

ð48Þ

FIG. 1. Spatial sections of the black ring metric. The coordinate ϕ is suppressed. The surfaces of constant x are denoted by dotted lines.
The surfaces of constant y are nested surfaces of topology S2 × S1. The horizon is at y ¼ −∞. The surface at y ¼ −1 degenerates into an
axis of rotation where the orbits of ψ shrink to zero. The local distorted black ring solution is defined in the region y ≪ −1, near the
horizon and far away from the axis y ¼ −1. Image credit: Ref. [30].
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where i ¼ 1 or 2, and dn is an or bn. Therefore, we can derive V̂2 as the following for each of the multiple moments
n ¼ 1…4:

V̂2 ¼
1

2z
½a1ðR1 − 2R2 þ 2R3Þ − b1ðR1 þ R2 − R3Þ − 3ða1 þ b1Þz�RP1; n ¼ 1; ð49Þ

V̂2 ¼ −
3

2
ða2 þ b2ÞR2P2 þ

1

2m

�
ða2ðR1 − 2R2 þ 2R3Þ − b2ðR1 þ R2 − R3ÞÞ

þ 1

z
ða2ðR1c1 − 2R2c2 þ 2R3c3Þ − b2ðR1c1 þ R2c2 − R3c3ÞÞ

�
RP1; n ¼ 2; ð50Þ

V̂2 ¼ −
3

2
ða3 þ b3ÞR3P3 þ

1

4z3
ð−a3ðR3

1 − 2R3
2 þ 2R3

3Þ þ b3ðR3
1 þ R3

2 − R3
3ÞÞR3P3

1

þ 3

4zm2
½a3ððR1 − 2R2 þ 2R3Þz2 þ R1c21 − 2R2c22 þ 2R3c23Þ

þ b3ð−ðR1 þ R2 − R3Þz2 − R1c21 − R2c22 þ R3c23Þ�RP1; n ¼ 3; ð51Þ

V̂2 ¼ −
3

2
ða4 þ b4ÞR4P4 −

1

z3
ða4ðR3

1 − 2R3
2 þ 2R3

3Þ − b4ðR3
1 þ R3

2 − R3
3ÞÞR4P4

1

þ 1

m3

��
3a4

�
1

2
R1 − R2 þ R3

�
−
3b4
2

ðR1 þ R2 − R3Þ
�
z2

þ 3

�
−a4

�
1

2
R1c1 − R2c2 þ R3c3

�
þ b4

2
ðR1c1 þ R2c2 − R3c3Þ

�
z

þ a4r2

4z
ððR1 − 2R2 þ 2R3Þz − R1c1 þ 2R2c2 − 2R3c3Þ

−
b4r2

4z
ððR1 þ R2 − R3Þz − R1c1 − R2c2 þ R3c3Þ

þ 1

2z
ða4ðR1c31 − 2R2c32 þ 2R3c33Þ − b4ðR1c31 þ R2c32 − R3c33ÞÞ

þ 3

2
ða4ðR1c21 − 2R2c22 þ 2R3c23Þ − b4ðR1c21 þ R2c22 − R3c23ÞÞ

�
RP1; n ¼ 4: ð52Þ

Note that in practice, for the analysis of the distorted black
ring we restrict ourselves only up to n ¼ 2.

V. GENERAL CONDITIONS

The metric of a constant t slice through the horizon
(i.e., horizon surface) is

ds2 ¼ 1

A2

�
FðxÞe−2Ŵ0dψ2 þ μ2e2ðV̂0þÛ0þŴ0Þ dx2

1 − x2

þ μ2e−2Û0
1 − x2

FðxÞ dϕ2

�
: ð53Þ

Here, Û0, Ŵ0, and V̂0 are calculated on the horizon. One
can see that the distortion fields Û, Ŵ, and V̂ are smooth on
the black ring horizon. Thus, the horizon is regular, and this

solution represents a local black ring distorted by the
external static fields.
We shall regard the distorted black ring [Eq. (35)] as a

local solution, valid only in a certain neighborhood of the
horizon. The external sources distorting the black hole are
located beyond this neighborhood, where the spacetime is
not vacuum and the solution is not valid. In other words,
even though our metric represents a vacuum spacetime,
some matter sources exist exterior to the region of validity
of the solution and cause distortion of the black hole. A
global solution can be constructed by extending the metric
to an asymptotically flat solution by a sewing technique.
This can be realized by cutting the spacetime manifold in
the region where the metric is valid and attaching to it
another spacetime manifold where the solution is not
vacuum anymore, but the sources of the distorting matter
are also included. Beyond this nonvacuum region, we
assume to have an asymptotically flat vacuum solution.
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For the metric (35), the fttg component of the Einstein
equations reads

Rαβδ
α
t δ

β
t ¼ ρ2e−2V̂ð△Û þ△ŴÞ

¼ 8π

�
Tαβ −

Tγ
γ

3
gαβ

�
δαt δ

β
t ; ð54Þ

where Tαβ is the energy-momentum tensor representing the
sources, and △ is the Laplace operator. Strong energy
conditions impose a condition on the fields Û and Ŵ. If the
sources of the distortion were to be included in the solution,
the Einstein equations would not be vacuum. This would
require continuing the solution beyond the internal vacuum
region. Note that for the following analysis, it is not
necessary to formally implement this procedure. If the
sources satisfy the strong energy condition, the right-hand
side of Eq. (54) must be non-negative. The Laplace
operator △ is a negative operator; hence, the strong energy
condition implies that

Û þ Ŵ ≤ 0; ð55Þ

assuming that Û þ Ŵ ¼ 0 at asymptotically flat infinity.
One can use the analogy with the Newtonian picture in

order to give an interpretation for multiple moments, which
clarifies that higher-order multiple moments are expected
to be smaller than the lower-order multiple moments. In
Sec. VI, we restrict our analysis to n ¼ 0…2. The case with
a1 ≠ 0 and a2 ¼ 0 is called the dipole distortion. The case
with a1 ¼ 0 and a2 ≠ 0 is called the quadrupole distortion.
The case with a1 ≠ 0 and a2 ≠ 0 is called the dipole-
quadrupole distortion.
Boundary values of the distortion functions Û; Ŵ on the

horizon are given by

Û0 ¼ ÛðxÞjH ¼
X
n≥0

anxn; ð56Þ

Ŵ0 ¼ ŴðxÞjH ¼
X
n≥0

bnxn; ð57Þ

wherewe have chosenm ¼ μ=2A. Note thatm is an arbitrary
constant. This choice corresponds to a rescaling of the
multiple moments; we shall not rename them. The boundary
value of the distortion function V̂ on the horizon is

V̂0 ¼ V̂ðxÞjH ¼ −3
X4
n≥1

ðan þ bnÞxn þ
X2
n≥1

ð2a2n þ b2nÞ

−
X4
n≥1

ðan − bnÞ
2μn

þ C; ð58Þ

and in what follows, we shall set C ¼ 0 without loss of
generality; solutions with different values of constant C can

be related to this solution by rescaling the parameterA and the
periods of ψ and ϕ.
Another condition that we wish to formulate is the

conical regularity condition. The metric has no conical
singularities along the semiaxes θ ¼ 0 and θ ¼ π which
correspond to angular deficit or excess, if the space there is
locally flat. Consider the xϕ part of the metric, which is
conformal to

ds2xϕ ¼ e2ðV̂þ2ÛþŴÞ dx2

1 − x2
þ 1 − x2

FðxÞ dϕ2: ð59Þ

Let x ¼ − cos θ with 0 ≤ θ ≤ π. This gives

ds2xϕ ¼ e2ðV̂þ2ÛþŴÞdθ2 þ sin2 θ
1þ μ cos θ

dϕ2: ð60Þ

If the period of ϕ is considered to be Δϕ, we will have
conical regularity (no conical singularity) on the semiaxis
θ ¼ 0, provided

2π
ffiffiffiffiffiffiffiffiffiffiffi
1þ μ

p
eV̂þ2ÛþŴ jθ¼0 ¼ Δϕ; ð61Þ

whereas the regularity condition for the semiaxis θ ¼ π
reads

2π
ffiffiffiffiffiffiffiffiffiffiffi
1 − μ

p
eV̂þ2ÛþŴ jθ¼π ¼ Δϕ: ð62Þ

The conditions (61) and (62) guarantee that the space is
locally regular along the axis for all y, by requiring that the
ratio of the circumference to the radius of an infinitesimal
circle, drawn orthogonally to the axis, be 2π when the
period of ϕ is chosen as Δϕ. The conical regularity
conditions (61) and (62) combined read

eV̂þ2ÛþŴ jθ¼π

eV̂þ2ÛþŴ jθ¼0

¼
ffiffiffiffiffiffiffiffiffiffiffi
1þ μ

p
ffiffiffiffiffiffiffiffiffiffiffi
1 − μ

p : ð63Þ

In the case of an undistorted black ring, there exists a
conical singularity in one of the poles. In the full metric,
this singularity is extended in two other spatial directions
and describes a “deficit membrane,” which is the five-
dimensional analogue of a four-dimensional deficit string
[30]. For the general distortions V̂, Û and Ŵ, ðV̂ þ 2Û þ
ŴÞjθ¼π depends on the values of y, which makes it
impossible to remove the conical singularity by adjusting
the multiple moments. However, for Ŵ ¼ −Û=2, the left-
hand side of Eq. (63) is independent of y, and we can adjust
the multipole moments to remove the conical singularity
that exists in an undistorted black ring solution. Therefore,
in what follows, we consider Ŵ ¼ −Û=2. For the distortion
including n ¼ 0…4, Eq. (63) reads
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eV̂þ2ÛþŴ jθ¼π

eV̂þ2ÛþŴ jθ¼0

¼ exp

�
−
3

2
ð1 − μÞ

X4
n¼1

X4
k¼n

ak
μn

�
¼

ffiffiffiffiffiffiffiffiffiffiffi
1þ μ

p
ffiffiffiffiffiffiffiffiffiffiffi
1 − μ

p :

ð64Þ

For the dipole distortion (an>1 ¼ 0) in Eq. (64), we get the
following relation between a1 and the parameter μ:

a1 ¼
μ

3ð1 − μÞ ln
�
1 − μ

1þ μ

�
: ð65Þ

For the quadrupole distortion (a1 ¼ 0, a2 ≠ 0, an>2 ¼ 0) in
Eq. (64), we get the following relation between a2 and the
parameter μ:

a2 ¼
μ2

3ð1 − μ2Þ ln
�
1 − μ

1þ μ

�
: ð66Þ

Equations (65) and (66) satisfy Eq. (64), which makes sure
we have Eqs. (61) and (62) satisfied. The undistorted
black ring has conical singularities describing a deficit
membrane that either extends to infinity or forms a disc
inside the ring, which prevents the ring from collapsing to
form a spherical black hole horizon. In the latter case, the
solution is asymptotically flat. Here, we see that a static
ring could be free of conical singularities due to the
presence of the external matter sources, which prevent
the ring from collapsing to form a spherical black hole
horizon. Tuning at least one of the multipole moments, we
can remove the conical singularity that exists in the
undistorted black ring solution.
Let us consider the ðy;ψÞ section of the metric (35). As

y → −1, gψψ tends to zero. To analyze this, we set
y ¼ − coshðξ= ffiffiffiffiffiffiffiffiffiffiffi

1þ μ
p Þ. Near ξ ¼ 0, the ξψ part of the

metric is conformal to

ds2ξψ ¼ e−2ðV̂þÛþ2ÛÞjξ¼0dξ2 þ ξ2

1þ μ
dψ2: ð67Þ

The conical regularity condition would require that

e−2ðV̂þÛþ2ÛÞjξ¼0
Δψffiffiffiffiffiffiffiffiffiffiffi
1þ μ

p ¼ 2π: ð68Þ

It is not possible to satisfy Eq. (68) in general, since the
term ðV̂ þ Û þ 2ÛÞjξ¼0 depends on x. However, the
solution can be considered valid in the interior region of
one of the surfaces of y ¼ const., between the horizon at y
equal to −∞ and y ≪ −1. The matter sources are located in
an intermediate region between this y ¼ const: surface and
y ¼ −1. We can therefore identify ψ with period Δψ ¼ 2π,
without creating any conical singularity in our local black
hole solution, which is defined in the area near the horizon
(recall that infinity is at x ¼ y ¼ −1).

VI. ANALYSIS

The distorted black hole horizon is defined by y → −∞.
The area of the horizon is

AH ¼ 2μ2

A3
ΔψΔϕ ¼ 8π2μ2

A3

ffiffiffiffiffiffiffiffiffiffiffi
1þ μ

p
eV̂þ2ÛþŴjθ¼0 : ð69Þ

The area of the horizon for the first four orders is the
following:

AH ¼ 8π2μ2

A3

ffiffiffiffiffiffiffiffiffiffiffi
1þ μ

p
exp

�
3

2
ða0 − a1 − a3Þ þ

3

4

X4
n¼1

an
μn

�
:

ð70Þ

The surface gravity of a distorted black ring is given by

κ ¼ A
2μ

exp

�X4
n¼1

2n−1
�
A2

αμ

�
n

½anðcn1 − 2cn2 − 2cn3Þ

− bnðcn1 þ cn2 þ cn3Þ�
�
: ð71Þ

If we take into account that α ¼ A, Eq. (26), and the conical
regularity condition (bn ¼ −an=2), we get

κ ¼ A
2μ

exp

�X4
n¼1

3

4
anðμ−n − ð−1Þn − 1Þ

�
: ð72Þ

If we consider dipole-quadrupole, we get the following
relationship for κ̃ ¼ κ=κiso:

κ̃ ¼ e
−3ð2μ2a2−μa1−a2Þ

4μ2 : ð73Þ

Here, we should note that κiso ¼ A=ð2μÞ is the surface
gravity of the undistorted black ring. In Fig. 2, we have
plotted the behavior of κ̃ ¼ κ=κiso with respect to the
parameter μ. Relations (65) and (66) yield a prescription
for the multiple moments in terms of μ, fine-tuned to ensure
conical regularity, where μ is a parameter of the background
undistorted black ring. As noted above, we have restricted
our analysis to small multiple-moment values, so that the
resulting fine-tuned multiple moments are likewise small,
i.e., less than −1 [large values of μ imply correspondingly
large multiple moment values using Eqs. (65) and (66)].
For the dipole multiple moment, we have μ ∈ ð0; 0.656Þ,
and for the quadrupole multiple moment, we have
μ ∈ ð0; 0.771Þ. In the left diagram of Fig. 2, we consider
the case of the dipole multiple moment by setting a2 ¼ 0
and using Eq. (65) to relate a1 with the parameter μ:

κ̃ ¼ e
− lnð1−μÞþlnð1þμÞ

4μ−4 ; ð74Þ

where increasing μ implies increasingly negative a1.
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In the right diagram of Fig. 2, we consider a quadrupole
multiple moment by setting a1 ¼ 0 and using Eq. (66) to
relate a2 with the parameter μ:

κ̃ ¼ e
½lnð1−μÞ−lnð1þμÞ�ð2μ2−1Þ

4ðμ2−1Þ : ð75Þ

where again increasing μ implies increasingly negative a2.
We see that an increasingly large dipole moment weakens
the surface gravity of the distorted black ring, whereas
for an increasingly large quadrupole moment this happens
only up to a certain minimal value. Beyond this value, the

surface gravity of the black ring increases, ultimately
becoming larger than its undistorted counterpart as the
quadrupole parameter attains its maximal negative value.
We now consider a distorted black ring having both

dipole and quadrupole distortions. In Fig. 3, we have
plotted the behavior of κ̃ ¼ κ=κiso with respect to the
multiple moments for a fixed parameter μ ¼ 0.5 in the
case of a dipole-quadrupole. For joint dipole-quadrupole
distortion, we consider two cases. On the left, we fine-tune
a2, leaving a1 as a free parameter. We have plotted the
behavior of κ̃ with respect to the dipole multiple moment a1
by replacing

FIG. 3. On the left, we have plotted the behavior of κ̃ with respect to the dipole multiple moment a1 for μ ¼ 0.5. On the right, we have
plotted the behavior of κ̃ with respect to the quadrupole multiple moment a2 for μ ¼ 0.5.

FIG. 2. Behavior of κ̃ with respect to parameter μ. On the left, we have plotted the behavior of κ̃ for a dipole multiple moment with
μ ∈ ð0..0.656Þ. On the right, we have plotted the behavior of κ̃ for a quadrupole multiple moment with μ ∈ ð0..0.771Þ. The upper limits
for the parameter μ are chosen such that the resulting multiple moments (dipole or quadrupole) are less than −1.
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a2 ¼ −
lnð1þμ

1−μÞμ4 − 3μ4a1 þ 3μ3a1
3μ2ð1 − μ2Þ ; ð76Þ

which is derived from the “no conical singularity” con-
dition [Eq. (63)] for the dipole-quadrupole case. On the
right, we have fine-tuned a2 and plotted the behavior of κ̃
with respect to the quadrupole multiple moment a2 by
inverting Eq. (76):

a1 ¼ −
lnð1þμ

1−μÞμ2 − 3μ2a2 þ 3a2
3μð1 − μ2Þ ; ð77Þ

or alternatively using the conical regularity condition
[Eq. (63)].
For any fixed μ, it is straightforward to see that a2 is a

monotonically decreasing function of a1. We find, regard-
less of the value of μ, that the behavior of κ̃ remains the
same: it monotonically increases with the dipole moment
a1 and thus monotonically decreases with the quadrupole

moment a2, as illustrated in the left and right diagrams of
Fig. 3, respectively.
We now calculate the Kretchmann scalar (invariant),

K ¼ RαβγδRαβγδ, of the spacetime on the horizon, where
Rαβγδ is the Riemann curvature tensor. There exists a simple
relation between the Kretschmann scalar calculated on the
horizon of a five-dimensional, static, distorted black hole/
object and the trace of the square of the Ricci tensor of its
horizon surface [14]:

KH ¼ 6ðRABRABÞHS; ð78Þ

where the index HS stands for the horizon surface and the
index H corresponds to the horizon. It follows that the
Kretschmann scalar is regular on the black hole horizon, if
the distortion fields Û, Ŵ, and V̂ are smooth on a regular
horizon, which is the case according to Eqs. (56) and (58).
The Kretschmann scalar calculated on the horizon of the

undistorted black ring is given by

KjH ¼ A4ð3μ4x4 − 2μ4x2 − 12μ3x3 þ 3μ4 þ 4μ3xþ 20μ2x2 − 8μ2 − 16 μxþ 8Þ
4μ4ð1 − μxÞ4 ; ð79Þ

and the ratio of this quantity to that of a black ring with a monopole distortion is expð4b0 þ 4a0Þ. The corresponding ratio
for a dipole distortion to a monopole distortion is

K̃1;0 ¼ e
ð4 μxþ3Þa1

μ

�
1þ ðμx − 1Þ

ð6x4 − 4x2 þ 6Þμ4 þ ð−24x3 þ 8xÞμ3 þ ð40x2 − 16Þμ2 − 32 μxþ 16
ð7ðμx − 1Þ3ðx − 1Þ2ðxþ 1Þ2a41

þ ðμx − 1Þ2ð19μx2 − 21μþ 2xÞðx2 − 1Þa31 þ ðμx − 1Þð41μ2x4 − 16μ2x2 − 70μx3 þ 19μ2 − 18 μxþ 48x2 − 4Þa21
− 4ððx4 − 3x2 − 2Þμ3 − 2ð3x3 − xÞμ2 þ 5ð3x2 þ 1Þμ − 12xÞa1Þ

�
; ð80Þ

FIG. 4. On the left, behavior of K̃1;0 with respect to the coordinate x for a dipole multiple moment and for μ ¼ 0.1. On the right,
behavior of K̃1;0 with respect to the coordinate x for a dipole multiple moment and for μ ¼ 0.3.
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whereas

K̃2;0 ¼ e
ð4μ2x2−6μ2þ3Þa2

μ2

�
1þ ðμx − 1Þ

ð3x4 − 2x2 þ 3Þμ4 þ ð−12x3 þ 4xÞμ3 þ ð20x2 − 8Þμ2 − 16 μxþ 8

×

�
56x4ðμx − 1Þ3ðx − 1Þ2ðxþ 1Þ2a42 þ 4ðμx − 1Þ2x2ð23μx3 − 25 μx − 2x2 þ 4Þðx2 − 1Þa32

þ 2ðμx − 1Þð91μ2x6 − 72μ2x4 − 176μx5 þ 25μ2x2 þ 106μx3 þ 104x4 − 18 μx − 72x2 þ 12Þa22
− 12

�
μ3x5 − 3x3μ3 þ 2

3
μ3x − 4μ2x4 þ 4x2μ2 −

4

3
μ2 þ 25

3
μx3 −

5

3
μx − 6x2 þ 2

�
a2

��
ð81Þ

FIG. 5. On the left, behavior of K̃1;0 with respect to the coordinate x for a dipole multiple moment and for μ ¼ 0.5. On the right,
behavior of K̃1;0 with respect to the coordinate x for a dipole multiple moment and for μ ¼ 0.65.

FIG. 6. On the left, behavior of K̃2;0 with respect to the coordinate x for a quadrupole multiple moment and for μ ¼ 0.3. On the right,
behavior of K̃2;0 with respect to the coordinate x for a quadrupole multiple moment and for μ ¼ 0.5.
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is the corresponding ratio for a quadrupole distortion to a
monopole one. In Figs. 4 and 5, we have plotted the
behavior of ˜K1;0 with respect to coordinate x for a dipole
multiple moment and for four different values of the
parameter μ. In each case, the value of the dipole multiple
moment is chosen such that there is no conical singularity
in the black ring. In Figs. 6 and 7, we have plotted the
behavior of ˜K2;0 with respect to the coordinate x for a
quadrupole multiple moment and for four different values
of the parameter μ. In each case, the value of the quadrupole
multiple moment is chosen such that there is no conical
singularity in the black ring.

VII. SUMMARY

We have constructed the metric of a distorted five-
dimensional static black ring. The solution represents a
local black ring distorted by external static and neutral
distributions of matter sources. One of the interesting
features of this local solution is that by careful fine-tuning
of the external distorting sources, we can have a solution
that is free of the conical singularity that is present in the
isolated black ring.
Our analysis of the Kretschmann scalar on the horizon of

the distorted black ring indicates that these distortions do
not produce any new singularities, since the distortion
fields Û, Ŵ, and V̂ are regular on the horizon. We have also
analyzed the behavior of the distorted black ring’s surface
gravity. For joint dipole-quadrupole distortion, we found
that increasingly large (negative) dipole distortions weaken
the surface gravity of the black ring, and increasingly large
(positive) dipole distortions strengthen the surface gravity of
the black ring. However, for quadrupole distortions, increas-
ingly large (negative) quadrupole distortions strengthen

the surface gravity of the black ring, and increasingly large
(positive) quadrupole distortions weaken the surface gravity
of the black ring. The surface gravity of the distorted black
hole can become as much as 10 times larger than the
undistorted black ring.
We have also analyzed the behavior of the Kretschmann

scalar of the horizon for the dipole and quadrupole
distortions. For the dipole distortion and a1 greater than
−0.751 (which is an appropriate value of a1 for a black ring
with μ ¼ 0.612), the effect of the dipole distortion is to
decrease the curvature of the horizon. For a1 less than this
value, the Kretschmann scalar of the horizon can increase
under the effect of distortion, with its maximum value at
x ¼ −1. For the quadrupole distortion, and a2 greater than
−0.37 (which is an appropriate value of a2 for a black ring
with μ ¼ 0.612), the effect of the quadrupole distortion is to
decrease the curvature of the horizon. However, for
μ > 0.612, the external sources can increase the curvature
of the horizon.
For future work, it would be interesting to study the

effects of distortions on the shape of the horizon and the
stretched singularity of the black ring, and investigate
whether certain duality transformations exist between the
horizon and stretched singularity, similar to that observed
for distorted four- and five-dimensional Schwarzschild
black holes [11,14].
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FIG. 7. On the left, behavior of K̃2;0 with respect to the coordinate x for a quadrupole multiple moment and for μ ¼ 0.7. On the right,
behavior of K̃2;0 with respect to the coordinate x for a quadrupole multiple moment and for μ ¼ 0.8.
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