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The nonminimal coupling of the nonzero vacuum expectation value of the self-interacting antisymmetric
Kalb-Ramond field with gravity leads to a power-law hairy black hole having a parameter s, which
encompasses the Reissner-Nordstrom black hole (s ¼ 1). We obtain the axially symmetric counterpart of
this hairy solution, namely, the rotating Kalb-Ramond black hole, which encompasses, as special cases,
Kerr (s ¼ 0) and Kerr-Newman (s ¼ 1) black holes. Interestingly, for a set of parameters (M, a, and Γ),
there exists an extremal value of the Kalb-Ramond parameter (s ¼ se), which corresponds to an extremal
black hole with degenerate horizons, while for s < se, it describes a nonextremal black hole with Cauchy
and event horizons, and no black hole for s > se. We find that the extremal value se is also influenced by
these parameters. The black hole shadow size decreases monotonically and the shape gets more distorted
with an increasing s; in turn, shadows of rotating Kalb-Ramond black holes are smaller and more distorted
than the corresponding Kerr black hole shadows. We investigate the effect of the Kalb-Ramond field on
the rotating black hole spacetime geometry and analytically deduced corrections to the light deflection
angle from the Kerr and Schwarzschild black hole values. The deflection angle for Sgr A* and the shadow
caused by the supermassive black hole M87* are included and compared with analogous results of Kerr
black holes. The inferred circularity deviation ΔC ≤ 0.10 for the M87* black hole merely constrains the
Kalb-Ramond field parameter, whereas shadow angular diameter θd ¼ 42� 3 μas, within the 1σ region,
places bounds Γ ≤ 0.09205 for s ¼ 1 and Γ ≤ 0.02178 for s ¼ 3.
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I. INTRODUCTION

The Kalb-Ramond field [1] appears as a self-interacting
second-rank antisymmetric tensor field in the heterotic
string theory [2] and is attributed as the closed string
excitation. The nonminimal coupling of the nonzero
vacuum expectation value of the tensor field with the
gravity sector leads to the spontaneous Lorentz symmetry
violation: The ground state of a physical quantum system is
characterized by nontrivial vacuum expectation values
[3,4]. It is found that the presence of the Kalb-Ramond
field leads to many interesting implications; namely, the
derived third-rank antisymmetric tensor can act as a
spacetime torsion [5], topological defects lead to
the intrinsic angular momentum to the structures in
galaxies [6], affect the observed anisotropy in the cosmic
microwave background [7], provide crucial insights in the

leptogenesis [8], and so on. The Kalb-Ramond field has
been studied widely in the context of gravity and particle
physics [9,10]. The compelling resemblance of the Kalb-
Ramond field with the spacetime torsion ascertains that the
Einstein gravity with the Kalb-Ramond field as a source is
equivalent to a modified theory of gravity incorporating the
spacetime torsion. The Solar System–based tests, employed
to test general relativity, reveal that the change incurred in
the bending of light or perihelion precession of Mercury
due to the presence of the Kalb-Ramond field would
produce very tiny effects impossible to be detected with
present-day precision [11]. However, the possibilities of
detection in quasars or black hole spacetimes, where the
spacetime curvature effects are strong, are still open and
will have far-reaching consequences [12].
The Kalb-Ramond field can be considered as a gener-

alization of the electromagnetic potential with two indices,
such that the gauge potential Aμ is replaced by the second-
rank antisymmetric tensor field Bμν associated with the
gauge-invariant rank-3 antisymmetric field strength Hαμν,
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viz., Hαμν ¼ ∂ ½αBμν�; Hαμν is analogous to the Faraday
field tensor Fμν [1]. The Einstein-Hilbert action nonmini-
mally coupled with the self-interacting Kalb-Ramond field
reads [3]

S¼
Z ffiffiffiffiffiffi

−g
p

d4x

�
R

16πG
−

1

12
HαμνHαμν−VðBμνBμν�bμνbμνÞ

þ 1

16πG
ðξ2BμλBν

λRμνþξ3BμνBμνRÞ
�
; ð1Þ

where R and Rμν are, respectively, the Ricci scalar and
Ricci tensor and ξ2;3 are the nonminimal coupling con-
stants. The potential term V drives the development of a
nonzero vacuum expectation value for the tensor field, i.e.,
hBμνi ¼ bμν, which breaks local Lorentz and diffeomor-
phism symmetry. The static spherically symmetric solution
of the modified Einstein equations leads to the hairy black
hole solution [13]

ds2 ¼ −
�
1 −

2M
r

þ Γ
r2=s

�
dt2 þ 1

ð1 − 2M
r þ Γ

r2=s
Þ dr

2

þ r2dθ2 þ r2sin2θdϕ2: ð2Þ

Here, M is the black hole mass, and Γ and s are the
spontaneous Lorentz violating parameters related to the
vacuum expectation value of the Kalb-Ramond field and
the nonminimal coupling parameters, respectively, viz.,
s ¼ jb2jξ2 with b2 ¼ bμνbμν. M has dimension of length
[L], whereas Γ has dimensions of ½L�2=s. The power-law
hairy black hole (2) encompasses the Schwarzschild
solution when s ¼ 0 and Schwarzschild–de Sitter for
s ¼ −1, and when s ¼ 1 it resembles the Reissner-
Nordstrom black hole. However, nonrotating black holes
can hardly be tested by observations, as black hole spin is
crucial for the astrophysical processes. The Kerr metric [14]
is one of the most important solutions of general relativity
which represents a rotating black hole that can result
from gravitational collapses. This prompted us to seek
an axisymmetric generalization of the metric (2) or finding
a Kerr-like metric, namely, a rotating Kalb-Ramond black
hole metric, and to test it with astrophysical observations.
We discuss the various black hole properties including the
horizon structure and the static limit surfaces, calculate
the corresponding conserved quantities, and establish the
Smarr formula. We explore the Kalb-Ramond field sig-
natures in black hole spacetimes in the context of available
astrophysical observations. Then, we study photon motion
in the rotating Kalb-Ramond black hole spacetime, as they
play crucial roles in determining the strong gravitational
field features, such as gravitational lensing and shadow.
Furthermore, the Gauss-Bonnet theorem is utilized to
discuss the gravitational lensing of light and to analytically
calculate the deflection angle in the weak-field limit caused
by the rotating Kalb-Ramond black hole, considering the

source and observer at finite distances from the black
hole. The correction in the deflection angle due to the
presence of the Kalb-Ramond field for the supermassive
black hole Sgr A* at the Galactic center is estimated and
found to be within the resolution of today’s observational
facilities. Moreover, the recent observation of the M87*
black hole shadow by the Event Horizon Telescope
(EHT) Collaboration has facilitated direct probing of
the near horizon regime and offers an unprecedented
opportunity to test the nature of strong gravity [15–18].
We examine the viability of the obtained rotating black
hole in attributing the observed asymmetry in the M87*
black hole emission ring.
The organization of this paper is as follows. We begin in

Sec. II with the construction of the rotating counterpart of
the metric (2), namely, the rotating Kalb-Ramond metric.
We also discuss generic features of the black hole including
horizon structures and static limit surfaces. In Sec. III, we
exploit the spacetime isometries to deduce the conserved
mass and angular momentum of the rotating Kalb-Ramond
black hole. The discussion of a black hole shadow and the
effect of the Kalb-Ramond field on the shape and size of
shadows are the subjects of Sec. IV. In Sec. V, we set
the premises for the gravitational deflection of light in the
stationary spacetime and estimate the correction in the
deflection angle owing to the Kalb-Ramond field. Finally,
we summarize our main findings in Sec. VI.

II. ROTATING BLACK HOLE

Here, we find the stationary and axisymmetric counter-
part of the spherically symmetric solution (2) governed by
four parameters M, Γ, a, and a free parameter s (Kalb-
Ramond parameter) that measures the potential deviation
from the Kerr solution [14] and also generalizes the
Kerr-Newman solution [19], which in Boyer-Lindquist
coordinates reads

ds2¼−
�
Δ−a2sin2θ

Σ

�
dt2þΣ

Δ
dr2

−2asin2θ

�
1−

Δ−a2sin2θ
Σ

�
dtdϕþΣdθ2

þsin2θ

�
Σþa2sin2θ

�
2−

Δ−a2sin2θ
Σ

��
dϕ2; ð3Þ

with

Δ ¼ r2 þ a2 − 2Mrþ Γ
r−2ðs−1Þ=s

; Σ ¼ r2 þ a2cos2θ;

ð4Þ

and a is the spin parameter. The metric Eq. (3) reverts to
Kerr black holes as the special case s → 0, to Kerr-Newman
black holes for s ¼ 1, and to spherically symmetric black
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holes (2) when only a ¼ 0. For definiteness, we call the
four parameter metrics (3) the rotating Kalb-Ramond black
holes, which contain all known stationary black holes of
general relativity. Interestingly, like the Kerr spacetime, the
rotating Kalb-Ramond black hole spacetime metric (3) still
possesses the time-translational and rotational invariance
isometries, which, respectively, entail the existence of two
Killing vector fields ημðtÞ ¼ ð ∂∂tÞμ and ημðϕÞ ¼ ð ∂

∂ϕÞμ.
The event horizon is a null stationary surface that

represents the locus of outgoing future-directed null geo-
desic rays that never manage to reach arbitrarily large
distances from the black hole [20–22]. The outward normal
to such surfaces is proportional to ∂μr; therefore, horizons
are defined by the surfaces gμν∂μr∂νr ¼ grr ¼ Δ ¼ 0, and,
thus, their radii are zeros of

r2 þ a2 − 2Mrþ Γ
r−2ðs−1Þ=s

¼ 0: ð5Þ

For the special case s ¼ 1, Eq. (5) reduces to

r2 þ a2 − 2MrþQ2 ¼ 0; ð6Þ

where Γ is identified as the charge Q2, and solutions of the
above equation give radii of horizons for the Kerr-Newman
black hole given by

r� ¼ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2 −Q2

p
: ð7Þ

A numerical analysis of Eq. (5) reveals that it has maximum
two real positive roots, corresponding to the inner Cauchy
horizon (r−) and outer event horizon (rþ), such that r− ≤
rþ (cf. Fig. 1). Two distinct real positive roots of Δ ¼ 0
infers the nonextremal black hole, while no black hole in
the absence of real positive roots of Eq. (5); i.e., no horizon
exists. There exists a particular value of the parameter s,
s ¼ se, for which an extremal black hole occurs, such that
Eq. (5) admits a double root; i.e., the two horizons coincide
r− ¼ rþ ¼ re. We have explicitly shown that, for fixed
values of a and Γ, rþ decreases and r− increases with
increasing s and eventually coincide for the extremal value
of s, i.e., r− ¼ rþ ¼ re for s ¼ se (cf. Fig. 1). Horizon radii
vary in a similar way with increasing a and Γ. Moreover,
the numerical analysis infers that it is possible to find
extremal values of parameters a ¼ ae for fixed s and Γ,
and Γ ¼ Γe for fixed a and s, for which algebraic equation
Δ ¼ 0 has double roots as depicted in Fig. 1. Figure 1 also
shows that, for the fixed values of M and a, the event
horizon radii for rotating Kalb-Ramond black holes are
smaller as compared to those for the Kerr black hole, which
is a potentially generic effect of certain classes of gravity
theories [23].
The static observers in the stationary spacetime follow

the worldline of timelike Killing vector ημðtÞ, such that their

four-velocity is uμ ∝ ημðtÞ with the proper normalization

factor. These observers can exist as long as ημðtÞ is timelike,

such that ημðtÞημðtÞ ¼ gtt ¼ 0 or

r2 þ a2 cos2 θ − 2Mrþ Γ
r−2ðs−1Þ=s

¼ 0 ð8Þ

defines the boundary of the static limit surface (SLS),
which apart from black hole parameters also depends on θ
and coincides with the event horizon only at the poles.
For the particular case s ¼ 1, Eq. (8) corresponds to the
Kerr-Newman black hole as

r2 þ a2cos2θ − 2MrþQ2 ¼ 0 ð9Þ

and admits the solutions

r�SLS ¼ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2 cos2 θ −Q2

p
;

which can be identified as the SLS radii for the Kerr-
Newman black hole. Equation (8) is solved numerically,
and the behavior of SLS is shown in Fig. 2. It is clear from
Fig. 2 that radii of the SLS decrease with increasing Γ
and a. The two SLS, corresponding to the real positive
roots of Eq. (8), coincide for suitably chosen parameters.
However, these extremal values are different from those for
the degenerate horizons. For fixed values of M and a, the
SLS radii for the rotating Kalb-Ramond black holes are
smaller than the Kerr black hole values. Likewise, the Kerr
black hole, apart from Δ ¼ 0, which is merely a coordinate
singularity, rotating metric (3) is also singular at Σ ¼ 0,
which is attributed to a ring-shaped physical singularity at
the equatorial plane of the center of the black hole with
radius a.
Zero angular momentum observers are the stationary

observers with zero angular momentum with respect to
spatial infinity, but due to frame dragging they have the
position-dependent angular velocity ω:

ω ¼ dϕ
dt

¼ −
gtϕ
gϕϕ

¼ 2Mar − Γa
r−2ðs−1Þ=s

½ðr2 þ a2Þ2 − a2Δ� ; ð10Þ

which increases as the observer approaches the black
hole and eventually takes the maximum value at the event
horizon:

Ω ¼ ωjr¼rþ ¼
2Marþ − Γa

r−2ðs−1Þ=sþ

ðr2þ þ a2Þ2 ; ð11Þ

such that observers are in a state of corotation with the
black hole. Here, Ω is the black hole angular velocity,
which in the limits s ¼ 0 reads
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Ω ¼ a
r2þ þ a2

; ð12Þ

and corresponds to the Kerr black hole value [22,24].

III. KOMAR MASS AND ANGULAR MOMENTUM

The mass and angular momentum attributed to the
stationary, asymptotically flat black hole spacetime corre-
spond to the conserved quantities associated with the

asymptotically timelike and spacelike Killing vector fields,
respectively, ημðtÞ and ημðϕÞ. A general argument for equality

of the conserved Arnowitt-Deser-Misner mass [25] and of
the Komar mass [26] for stationary spacetimes having a
timelike Killing vector is established in Refs. [27,28].
Following the Komar [26] definitions of conserved quan-
tities, we consider a spacelike hypersurface Σt, extending
from the event horizon to spatial infinity, which is a surface
of constant t with unit normal vector nμ [24,29]. The two-
boundary St of the hypersurface Σt is a constant t and
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FIG. 1. The behavior of horizons with varying black hole parameters a, Γ, and s. The black solid line corresponds to the extremal black
hole with degenerate horizons.
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constant r surface with unit outward normal vector σμ.
The effective mass reads [26]

Meff ¼ −
1

8π

Z
St

∇μηνðtÞdSμν; ð13Þ

where dSμν ¼ −2n½μσν�
ffiffiffi
h

p
d2θ is the surface element of St,

h is the determinant of (2 × 2) metric on St, and

nμ ¼ −
δtμ

jgttj1=2 ; σμ ¼
δrμ

jgrrj1=2 ; ð14Þ

are, respectively, timelike and spacelike unit outward
normal vectors. Thus, mass integral Eq. (13) turned into
an integral over closed 2-surface at infinity:

Meff ¼
1

4π

Z
2ϕ

0

Z
ϕ

0

ffiffiffiffiffiffiffiffiffiffiffiffiffigθθgϕϕ
p
jgttgrrj1=2∇

tηrðtÞdθdϕ

¼ 1

4π

Z
2ϕ

0

Z
ϕ

0

ffiffiffiffiffiffiffiffiffiffiffiffiffigθθgϕϕ
p
jgttgrrj1=2 ðg

ttΓr
tt þ gtϕΓr

tϕÞdθdϕ: ð15Þ

Using the metric elements Eq. (3), we obtain the effective
mass of the rotating Kalb-Ramond black hole:

Meff ¼ M þ 1

2ras

�
ðr2 þ a2Þðs − 2Þ tan−1

�
a
r

�
− ars

�

×
Γ

r−½ðs−2Þ=s�
; ð16Þ

which is clearly corrected due to the Kalb-Ramond field
and goes over to the Kerr black hole case that isMeff ¼ M,
when s ¼ 0. For the special case s ¼ 1, Eq. (16) resembles
the effective mass for the Kerr-Newman black hole with Γ
as the electric charge Q2 and reads [30]

Meff ¼ M −
Q2

2r2a

�
ðr2 þ a2Þ tan−1

�
a
r

�
þ ar

�
: ð17Þ

The effective mass for the spherically symmetric Kalb-
Ramond black hole (a ¼ 0) is obtained from Eq. (16)
and reads

Meff ¼ M −
1

s
Γ

r−½ðs−2Þ=s�
;

which reduces to the Reissner-Nordstrom black hole for
s ¼ 1:
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FIG. 2. The behavior of the SLS with varying parameters a, Γ, s and θ ¼ π=4. The black solid curve in each plot corresponds to the
degenerate SLS.
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Meff ¼ M −
Q2

r
;

and to Schwarzschild black hole Meff ¼ M, when s ¼ 0.
Now, we use the spacelike Killing vector ημðϕÞ to calculate

the effective angular momentum [26]

Jeff ¼
1

16π

Z
St

∇μηνðϕÞdSμν; ð18Þ

using the definitions of the surface element, Eq. (18)
recast as

Jeff ¼ −
1

8π

Z
2ϕ

0

Z
ϕ

0

∇μηνðtÞnμσν
ffiffiffi
h

p
dθdϕ

¼ 1

8π

Z
2ϕ

0

Z
ϕ

0

ffiffiffiffiffiffiffiffiffiffiffiffiffigθθgϕϕ
p
jgttgrrj1=2 ðg

ttΓr
tϕ þ gtϕΓr

ϕϕÞdθdϕ:

ð19Þ

After performing the integration for the rotating Kalb-
Ramond black hole Eq. (3), this reads

Jeff ¼ Maþ Γ
4ra2s

1

r−½ðs−2Þ=s�

�
ðr2 þ a2Þ2ðs − 2Þtan−1

�
a
r

�

− ðð3s − 2Þa2 þ r2ðs − 2ÞÞra
�
; ð20Þ

which identically vanishes in the limiting case of a ¼ 0,
and for the particular case of s ¼ 1 it reduces to

Jeff ¼ Maþ Γðr2 − a2Þ
4ar

−
Γ

4a2r2
ðr2 þ a2Þ2 tan−1

�
a
r

�
;

ð21Þ

which can be identified as the Kerr-Newman black hole
value [30]. In the asymptotic limits r → ∞, the effective
angular momentum Eq. (20) restores the value Jeff ¼ Ma,
which corresponds to the value for the Kerr black hole.
Thus, the effects of the Kalb-Ramond field subside at a very
large distance from the black hole. Equations (16) and (20)
imply that at a finite radial distance the values of the
effective mass and angular momentum get modified from
their asymptotic values and depend on the sign of Γ. In
Fig. 3, we have shown the normalized effective mass and
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FIG. 3. The behavior of effective mass and angular momentum vs r for different values of the parameters. Black solid curves
correspond to the Kerr-Newman black hole, and red dots in each curve denote the locations of the event horizon.
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angular momentum variation with radial distance r for
various values of black hole parameters, such that, at
asymptotically large r, the normalized values become unity,
as expected. It is clear that, for fixed values of a and s, the
effective values of Meff=M and Jeff=Ma decrease with
increasing field parameter Γ, whereas, for fixed values of a
and Γ, the effective mass and angular momentum show
diverse behavior with varying s. Moreover, outside the
event horizon, the effective angular momentum of the
black hole reduces with increasing Kalb-Ramond field
parameter s. Thus, for the rotating Kalb-Ramond black
hole, the values of effective mass and effective angular
momentum are smaller as compared to those for the Kerr
black hole.
It is well known that the Killing vectors ημðtÞ or η

μ
ðϕÞ are

not the generators of the stationary black hole horizon;
rather, it is their specific linear combination [24] as

χμ ¼ ημðtÞ þ ΩημðϕÞ; ð22Þ

such that χμ is globally timelike outside the event horizon,
though it is a Killing vector only at the horizon [24]. The
Komar conserved quantity at the event horizon associated
with χμ reads as [26]

Jχ ¼ −
1

8π

Z
St

∇μχνdSμν

¼ −
1

8π

Z
St

∇μðημðtÞ þΩημðϕÞÞdSμν: ð23Þ

Using Eqs. (16) and (20), we obtain

Jχ ¼ Meff − 2ΩJeff

¼ Mðr2þ − a2Þ
ðr2þ þ a2Þ −

ðr2þ − ðs − 1Þa2Þ
ðr2þ þ a2Þs

Γ
r−ðs−2Þ=sþ

: ð24Þ

To understand the implication of the above conserved
quantity, we calculate the black hole horizon temperature [24]

Tþ ¼ κ

2π
¼ Δ0

4πðr2þ þ a2Þ

¼ ðrþ −MÞ
2πðr2þ þ a2Þ þ

ðs − 1Þ
2πsðr2þ þ a2Þ

Γ

r−ðs−2Þ=sþ
; ð25Þ

whereas entropy is defined as follows:

Sþ ¼ A
4
¼ πðr2þ þ a2Þ: ð26Þ

Equations (24)–(26) clearly infer that

Jχ ¼ Meff − 2ΩJeff ¼ 2SþTþ: ð27Þ

Therefore, the Komar conserved quantity corresponding to
the null Killing vector at the event horizon χμ is twice the
product of the black hole entropy and the horizon temperature
and hence satisfies the Smarr formula [31,32].

IV. BLACK HOLE SHADOW

The light originating from either the luminous back-
ground or the accretion disk surrounding the black hole
passes in the vicinity of the event horizon, and a part of it
gets trapped inside the horizon while another part escapes
to infinity. This results in the optical appearance of the
black hole, namely, the black hole shadow encircled by the
bright photon ring [33–36]. Synge [33], in pioneering
work, calculated the shadow cast by a Schwarzschild black
hole, and thereafter Bardeen [35] studied the shadow of
Kerr black holes. In the past decade, shadows have been
extensively studied for varieties of black holes [37,38].
Interestingly, it is found that the photon emission ring,
i.e., the light rays that orbit around the black hole many
times before they reach the distant observer, explicitly
depends on the spacetime geometry but is independent
of the astrophysical details of the accretion flow model
[39–41]. Thus, the structure of the photon ring encompass-
ing the black hole shadow is a potential tool to test the
signatures of strong gravitational lensing of nearby radi-
ation, and, hence, its shape and size can reveal valuable
information regarding the near-horizon field features of
gravity.
For this purpose, we study the motion of a test particle in

a stationary and axially symmetric black hole spacetime,
which neglecting the backreaction is completely defined by
the four integrals of motion: the particle rest mass m0, total
energy E, axial angular momentum L, and the Carter
constant Q, related to the latitudinal motion of the test
particle [42]. Using these integrals of motion, we obtained
the null geodesics equation of motion in the first-order
differential form [24,42]

Σ
dt
dτ

¼ r2 þ a2

Δ
ðEðr2 þ a2Þ − aLÞ − aðaE sin2 θ − LÞ;

ð28Þ

Σ
dr
dτ

¼ �
ffiffiffiffiffiffiffiffiffiffi
RðrÞ

p
; ð29Þ

Σ
dθ
dτ

¼ �
ffiffiffiffiffiffiffiffiffiffi
ΘðθÞ

p
; ð30Þ

Σ
dϕ
dτ

¼ a
Δ
ðEðr2 þ a2Þ − aLÞ −

�
aE −

L
sin2 θ

�
; ð31Þ

where τ is the affine parameter along the geodesics and

RðrÞ ¼ ððr2 þ a2ÞE − aLÞ2 − ΔððaE − LÞ2 þKÞ; ð32Þ
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ΘðθÞ ¼ K −
�

L2

sin2 θ
− a2E2

�
cos2 θ; ð33Þ

and K stands for the separable constant which is related
with Carter’s constant of motion Q ¼ Kþ ðaE − LÞ2
[24,42]. For K ¼ 0, photon motions are restricted only
to the equatorial plane. RðrÞ and ΘðθÞ are related to the
effective potentials for the radial and the latitudinal motion
of the photon, such that zeros of these potentials determine
the turning point in the photon trajectories. Let us define the
dimensionless impact parameters

η≡K=E2; ξ≡ L=E; ð34Þ

which characterize the null geodesics, such that, depending
on their values, photons may undergo scattering orbits
(η > ηc), capturing orbits (η < ηc), and unstable orbits
(η ¼ ηc), which are very crucial for the shadow formation
and indeed mark the shadow silhouette. Thus, on the
observer’s celestial sky, the scattered photons account for
the bright region, whereas captured photons attribute to the
dark region. These unstable photon orbits, of constant radii
rp, witness continuum radial turning points, i.e., _rp ¼
r̈p ¼ 0, corresponding to the extrema of effective potential

Rjðr¼rpÞ ¼
∂R
∂r

����
ðr¼rpÞ

¼ 0 and
∂2R
∂r2

����
ðr¼rpÞ

> 0; ð35Þ

and form a photon region around the black hole.
Furthermore, due to rotation of the black hole, photons
can have either prograde motion or retrograde motion,
whose respective radii r−p and rþp can be obtained as zeros
of ηc ¼ 0. For the Kerr black hole, the photon orbit radii
rp are

r−p ¼ 2M

�
1þ cos

�
2

3
cos−1

�
−
jaj
M

���
;

rþp ¼ 2M

�
1þ cos

�
2

3
cos−1

�jaj
M

���
; ð36Þ

which for the Schwarzschild black hole (a ¼ 0) takes the
degenerate value r−p ¼ rþp ¼ 3M. For the visualization of
the black hole shadow, one has to consider the projection of
the photon region onto the image plane. Thereby, the locus
of the shadow boundary is defined in terms of two celestial
coordinates α and β, which by construction lie in the
celestial plane perpendicular to the line joining the observer
and the center of the black hole and are related to the
photon four-momentum pðμÞ measured in the orthonormal-
tetrad basis [35]. For an observer at position (ro, θo), in the
far exterior region of the black hole, they read [36]

α ¼ −ro
pðϕÞ

pðtÞ ; β ¼ ro
pðθÞ

pðtÞ : ð37Þ

On using geodesic Eqs. (28), (30), and (31), the celestial
coordinates yield

α ¼ −ro
ξcffiffiffiffiffiffiffigϕϕ

p ðζ − γξcÞ
����
ðro;θoÞ

;

β ¼ �ro

ffiffiffiffiffiffiffiffiffiffiffiffi
ΘθðθÞ

p
ffiffiffiffiffiffi
gθθ

p ðζ − γξcÞ
����
ðro;θoÞ

; ð38Þ

with

ζ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gϕϕ
g2tϕ − gttgϕϕ

s
; γ ¼ −

gtϕ
gϕϕ

ζ: ð39Þ

For an observer sitting in the asymptotically flat region
(ro → ∞), the celestial coordinates Eq. (38) can be sim-
plified as [35,36]

α ¼ −ξc csc θo; β ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηc þ a2cos2θo − ξ2ccot2θo

q
:

ð40Þ

We further consider that the observer is perceiving the
black hole at an inclination angle θ0 ¼ π=2. Using geodesic
Eqs. (29)–(31) and celestial coordinate (38), we obtain

α ¼ 1

a2½mðrpÞ þ rpð−1þm0ðrpÞÞ�2
½r3pð−r3p þmðrpÞ

ð4a2 þ 6r2p − 9mðrpÞrpÞ
− 2rpð2a2 þ r2p − 3mðrpÞrpÞm0ðrpÞ − r3pm0ðrpÞ2Þ�;

β ¼ ða2 − 3r2pÞmðrpÞ þ rpða2 þ r2pÞð1þm0ðrpÞÞ
aðmðrpÞ þ rpð−1þm0ðrpÞÞÞ

; ð41Þ

where, for brevity, we have defined

mðrÞ ¼ M −
Γ

2r−ðs−2Þ=s
: ð42Þ

For the nonrotating case, Eq. (41) yields

α2 þ β2 ¼
2r2p

h
4r2p − 12M2 − 3 Γ2

r−2ðs−2Þ=sp
þ 12M Γ

r−ðs−2Þ=sp

i
�
2M − Γ

r−ðs−2Þ=sp
− 2rp

	
2

;

ð43Þ

which clearly elucidates that for the static spherically
symmetric Kalb-Ramond black hole metric the shadow
is circular in shape. For the Schwarzschild black hole
(a ¼ 0, s ¼ 0, rp ¼ 3M), Eq. (41) reduces to
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α2 þ β2 ¼ 27M2 ð44Þ

and infers that the shadow radius is 3
ffiffiffi
3

p
M. Taking the

unstable photon orbit radius rp as a parameter, the para-
metric plot β vs α in Eq. (41) delineates the shadows for
rotating Kalb-Ramond black holes. Shadows of nonrotating
Kalb-Ramond black holes are smaller than those for the
Schwarzschild black holes, and the shadow size decreases
with both increasing s and Γ (cf. Fig. 4). Shadows of
rotating Kalb-Ramond black holes for various values of
black hole parameters are shown in Fig. 5, which infers that
the presence of the Kalb-Ramond field has a profound
influence on the apparent shape and size of the shadow. For
the characterization of shadows, we define two astronomi-
cal observables, namely, shadow area A and oblateness
parameter D [43,44]

A ¼ 2

Z
βðrpÞdαðrpÞ ¼ 2

Z
rþp

r−p

�
βðrpÞ

dαðrpÞ
drp

�
drp;

ð45Þ

D ¼ αr − αl
βt − βb

; ð46Þ

where A and D, respectively, characterize the shadow size
and shape. In Fig. 6, shadow observables A and D are
plotted with varying Γ for different values of s and a, and it
is evident that shadow size decreases whereas distortion
increases with increasing Γ (cf. Fig. 6). The variation of A
and D with spin parameter a is shown in Fig. 7. Moreover,
the shadows of the rotating Kalb-Ramond black holes are
smaller and more distorted than the corresponding Kerr
black hole shadows (Γ ¼ 0 or s ¼ 0). The black solid curve
in Fig. 7 corresponds to the Kerr black hole. For the

estimation of black hole parameters, we plotted these
shadow observables in the (a, Γ) plane for different values
of s in Fig. 8. It is evident that each curve of constant A
and D intersects at a unique point, which gives the value of
black hole parameters a and Γ.
The EHT Collaboration [45] using the very large base-

line interferometry technique has recently observed the
central compact emission region at the center of galaxy
M87 at the 1.3 mm wavelength, thereby opening a new
window to test gravity in the strong-field regime [15–18].
The central flux depression by ≳10∶1 and the asymmetric
emission ring of crescent diameter 42� 3 μas in the
captured image of the black hole M87* provide direct
evidence of the black hole shadow, which is consistent
with the predicted image of a Kerr black hole in general
relativity [15–18]. The observed shadow of the M87* black
hole has been used to constrain or rule our various black
hole models in general relativity as well in modified
gravities [46]. We can use the relevant shadow observable,
the asymmetry parameter ΔC, to constrain the parameter
space of rotating Kalb-Ramond black holes. The shadow
boundary can be described by a one-dimensional closed
curve characterized by the radial and angular coordinates
[RðφÞ;φ] in a polar coordinate system with the origin at the
shadow center (αC, βC). The shadow average radius R̄ is
defined by [40]

R̄ ¼ 1

2π

Z
2π

0

RðφÞdφ; ð47Þ

with

RðφÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðα−αCÞ2þðβ−βCÞ2

q
; φ≡ tan−1

�
β

α−αC

�
:

4 2 0 2 4

4

2

0

2

4

0.7

s 4.0
s 2.0
s 1.5
s 1.0
s 0.0

4 2 0 2 4

4

2
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s 1.5

1.0
0.9
0.7
0.5
0.0

FIG. 4. Nonrotating Kalb-Ramond black hole shadows with varying parameters s and Γ. The black solid line corresponds to the
Schwarzschild black hole shadow.
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The circularity deviation ΔCmeasures the deviation from a
perfect circle and defined in terms of the root-mean-square
distance from the average radius [40,41]

ΔC ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2π

Z
2π

0

ðRðφÞ − R̄Þ2dφ
s

; ð48Þ

such that, for a perfect circular shadow, ΔC identically
vanishes. Tracing the emission ring, the EHT deduced that
the circularity deviation in the observed image of the M87*
black hole is ΔC ≤ 0.10 [15]. We calculate the circularity
deviation for metric Eq. (3) and use the EHT bound to put
constraints on the black hole and the Kalb-Ramond field
parameters. The interplay between black hole spin a and
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FIG. 6. Shadow area A and oblateness observables D vs Γ for rotating Kalb-Ramond black holes (solid black curve) for the
nonrotating black hole a ¼ 0.0, (solid green curve) for a ¼ 0.3, (dashed blue curve) for a ¼ 0.5, and (dotted red curve) for a ¼ 0.8.
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field parameters Γ and s for the shadow asymmetry
parameter ΔC is shown in Fig. 9. It is evident that ΔC
merely constrained the Γ.
The black hole shadow with areal radius Rs ¼

ffiffiffiffiffiffiffiffiffi
A=π

p
deduces an angular diameter θd on the observer’s
celestial sky:

θd ¼ 2
Rs

d
; ð49Þ

where d is the black hole distance from Earth, d ¼
16.8 Mpc for M87*. The emission ring diameter in the
observedM87* black hole shadow is θd ¼ 42� 3 μas. The
angular diameter for the rotating Kalb-Ramond black hole
shadow is calculated and shown as a function of Γ and a in
Fig. 10 for s ¼ 3 and s ¼ 1, consideringM¼6.5×109M⊙.
The region enclosed by the black solid line, θd ¼ 39 μas,
falls within the 1σ region of the M87* shadow angular
diameter. Figure 10 infers that the M87* shadow angular
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FIG. 8. Contour plots of the observables A andD in the plane ða;ΓÞ for the rotating Kalb-Ramond black hole (left panel) for s ¼ 1 and
(right panel) for s ¼ 3. Each curve is labeled with the corresponding values of A and D. Solid red curves correspond to the area A, and
dashed blue curves for oblateness D.

FIG. 9. Deviation from circularity ΔC for rotating Kalb-Ramond black holes shadows as a function of parameters (a, Γ). The black
solid line corresponds toΔC ¼ 0.10, such that the region above the black line is excluded by the measured circularity of the M87* black
hole reported by the EHT, ΔC ≤ 0.10.
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size sufficiently constrains the black hole parameters (a, Γ);
however, the constraints on the Γ are more strong for large
values of s, s ¼ 3.

V. GRAVITATIONAL DEFLECTION OF LIGHT

Gibbon and Werner [47] used the Gauss-Bonnet theo-
rem, which connects the differential geometry of the
surface with its topology, in the context of optical geometry
to calculate the deflection angle of light in a spherically
symmetric black hole spacetime [48]. Later, Ishihara et al.
[49], taking into account the finite distance from the black
hole to a light source and an observer, calculate the light
deflection angle in static, spherically symmetric and
asymptotically flat spacetimes, which is generalized by
Ono, Ishihara, and Asada [50] for stationary and axisym-
metric spacetimes and, later, extensively used for varieties
of black hole spacetimes [51]. We follow their approach
to calculate the light deflection angle in the weak-field
limit caused by the rotating Kalb-Ramond black hole. We
assume that both the observer (O) and the source (S) are at a
finite distance from the black hole (L) (cf. Fig. 11). The
deflection angle at the equatorial plane can be defined in
terms of the angle made by light rays at the source and
observer ΨS and ΨO, respectively, and their angular
coordinate separation ΦOS [50]:

αD ¼ ΨO −ΨS þΦOS: ð50Þ

Here,ΦOS ¼ ΦO −ΦS, whereΦO andΦS are, respectively,
the angular coordinates of the observer and the source. We
consider a three-dimensional Riemannian manifold ð3ÞM
defined by optical metric γij, in which photon motion is

described as a spatial curve [47]. To calculate the deflection
angle using the Gauss-Bonnet theorem, we consider a
quadrilateral ∞O□

∞
S , the domain of integration, embedded in

the curved space ð3ÞM which consists of a spatial light
ray curve from the source to the observer, a circular arc
segment Cr of coordinate radius rC ðrC → ∞Þ, and two
outgoing radial lines from O and from S (cf. Fig. 11). The
Gauss-Bonnet theorem yields the geometrically invariant
definition as follows [50]:

αD ¼ −
Z Z

∞
O□

∞
S

KdSþ
Z

O

S
kgdl; ð51Þ

where K is the Gaussian curvature of the two-dimensional
surface of light propagation and kg is the geodesic curvature
of light curves, a measure for the deviation of curve from
the geodesics. dS and dl are, respectively, the infinitesimal
area element of the surface and arc length element. Since

FIG. 10. Shadow angular diameter θd for rotating Kalb-Ramond black holes as a function of parameters (a, Γ). The black solid line
corresponds to θd ¼ 39 μas, such that the region below the black line falls within the 1σ region of the measured angular diameter of the
M87* black hole reported by the EHT, θd ¼ 42� 3 μas.

FIG. 11. Schematic figure for the quadrilateral ∞O□
∞
S embedded

in the curved space. Light emitted by the source S gets deflected
by the black hole L and reaches the observer O.
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Eq. (51) is invariant in differential geometry, αD is well
defined even if focal point L is a singularity [49]. For the
null geodesics ds2 ¼ 0, we get

dt ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γijdxidxj

q
þ Nidxi; ð52Þ

with

γijdxidxj ¼
Σ2

ΔðΔ− a2 sin2 θÞdr
2þ Σ2

Δ− a2 sin2 θ
dθ2

þ
�
r2þ a2þ 2mðrÞra2 sin2 θ

Δ− a2 sin2 θ

�
Σ sin2 θdϕ2

ðΔ− a2 sin2 θÞ ;

Nidxi ¼ −
2mðrÞar sin2 θ
Δ− a2 sin2 θ

dϕ: ð53Þ

An optical (or spatial) metric defined in this way gives the
arc length (l ¼ γijdxidxj), where l is the affine parameter
along the light curve [52]. The deflection angle αD defined
in Eq. (51) has a contribution from the curvature of the
surface of light propagation ð3ÞM and the geodesics
curvature of light curves as well. The Gaussian curvature
of the surface is defined as [53]

K ¼
3Rrϕrϕ

γ
¼ 1ffiffiffi

γ
p

� ∂
∂ϕ

� ffiffiffi
γ

p
γrr

ð3ÞΓϕ
rr

�
−

∂
∂r

� ffiffiffi
γ

p
γrr

ð3ÞΓϕ
rϕ

��
;

ð54Þ

where γ ¼ detðγijÞ. For a generic rotating and axially
symmetric metric Eq. (3), the Gaussian curvature K is
computed as

K ¼ −1
6r5ðr − 2mðrÞÞ ð6r

2ðr − 2mðrÞÞðΔþ a2Þm00ðrÞ

þ 6rm0ðrÞðrm0ðrÞ −mðrÞÞðΔþ 5a2Þ þ 6rmðrÞ2
− ð7r2 þ a2ÞmðrÞ þ 2rðr2 þ 3a2ÞÞ; ð55Þ

and, using the Kalb-Ramond black hole mass function
defined in Eq. (42) and considering a special case of s ¼ 1,
Eq. (55) yields

K ¼ 3Γ
r4

þ 2Γ2

r6
þ 8Γa2

r6
−
3Γ3

2r8
−
6Γ2a2

r8
−
�
2

r3
þ 6Γ

r5

þ 6a2

r5
−
12Γa2

r7

�
M þ

�
3

r4
−
6a2

r6
þ 30Γa2

r8

�
M2

−
12M3a2

r7
−
�
24a2

r8
−
112Γ
r8

�
M4

þO
�
MΓ2a2

r9
;
M3Γa2

r9

�
: ð56Þ

A fully consistent analytic treatment of the metric Eq. (3)
will involve an expansion in the powers of (1=r), which
will lead to a very complicated expression. We exclu-
sively work in the weak-field limit, ensuring that it
captures all the effects of the Kalb-Ramond field, and
consider only the leading-order contributing terms. The
surface integral of Gaussian curvature over the closed
quadrilateral ∞

O□
∞
S reads [50]

Z Z
∞
O□

∞
S

KdS ¼
Z

ϕO

ϕS

Z
r0

∞
K

ffiffiffi
γ

p
drdϕ; ð57Þ

where r0 is the distance of closest approach to the black
hole. The boundary of integration domain, namely, the
curve from S to O in the quadrilateral ∞

O□
∞
S , is unknown

a priori; hence, we first obtain the light orbit equation
using Eqs. (29) and (31), that reads

�
du
dϕ

�
2

¼ FðuÞ; ð58Þ

with

FðuÞ ¼ ð1þ a2u2 − ð2M − ΓuÞuÞ2
½ð2M − ΓuÞuða − bÞ þ b�2 ½1þ ða2 − b2Þu2

þ ð2M − ΓuÞu3ða − bÞ2�; ð59Þ

where u ¼ 1=r and b≡ ξ is the impact parameter. In the
weak-field approximation, we obtain the solution [54]

u ¼ sinϕ
b

þMð1 − cosϕÞ2
b2

−
2Mað1 − cosϕÞ

b3

−
M2ð60ϕ cosϕþ 3 sin 3ϕ − 5 sinϕÞ

16b3

þ a2 sin3 ϕ
2b3

þO
�
MΓ
b4

;
M3

b4

�
; ð60Þ

and the integral Eq. (57) can be recast as

Z Z
∞
O□

∞
S

KdS ¼
Z

ϕO

ϕS

Z
u

0

−
K

ffiffiffi
γ

p
u2

dudϕ; ð61Þ

which for the rotating metric Eq. (53) reads as
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Z Z
KdS ¼ ðcos−1 buo þ cos−1 busÞ

�
−
3Γ
4b2

−
21Γa2

16b4
þ 15Γ2

64b4
þ 15M2

4b2
−
4M2a
b3

þ 105M2a2

16b4
−
15M2Γ
b4

�

þ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1− b2u2o

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− b2u2s

q ��
2M
b

þ 2Ma2

b3
−
13MΓ
3b3

þ 6MΓa
b4

�

þ
�
uo

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− b2u2o

q
þ us

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− b2u2s

q ��
−
3Γ
4b

−
21Γa2

16b3
þ 15Γ2

64b3
−
M2

4b
þ 81M2a2

16b3
−
39M2Γ
16b3

−
3M2Γa
b4

�

þ
�
u2o

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− b2u2o

q
þ u2s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− b2u2s

q ��
−
2MΓ
3b

þMa2

b
þ 43MΓ2

30b3
−
191MΓa2

30b3
−
5MΓ2a
3b4

�

þ
�
u3o

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− b2u2o

q
þ u3s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− b2u2s

q ��
−
7Γa2

8b
þ 5Γ2

32b
þ 5Γ2a2

12b3
−
15M2Γ
16b

þ 15M2a2

8b
þ 325M2Γ2

64b3
−
45M2Γ2a

8b4

�

þO
�
M3

b3
;
M2aΓ
b5

�
: ð62Þ

Here, uo and us, respectively, are the inverse of the ro
and rs, the distances of observer and source from the
black hole, and we have used cosϕo ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − b2u2o

p
and

cosϕs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − b2u2s

p
; the negative sign is because the

source and the observer are at the opposite sides to the
black hole. Interestingly, a term linear in a appears in
Eq. (62); thus, the contribution from the Gaussian curvature
is sensitive to the direction of black hole rotation. Next, we
calculate the geodesic curvature of the light curves, which
is the surface-tangential component of the acceleration of
the parameterized curve and given by

kg ¼ −
1ffiffiffiffiffiffiffiffi
γγθθ

p Nϕ;r: ð63Þ

For the metric (53), this reads

kg ¼ −
2Ma
r3

þ 2aΓ
r4

−
2M2a
r4

−
3M3a
r5

þ 3MaΓ
r5

−
aΓ2

r6

þ 6M2aΓ
r6

−
5M4a
r6

−
15MaΓ2

4r7
þ 25M3aΓ

2r7

þ 152M5a
r7

þO
�
M2aΓ2

r8
;
M4aΓ
r8

;
M6a
r8

�
; ð64Þ

which identically vanishes for the nonrotating black hole.
For the path integral of the kg along the light curve in
Eq. (51), the line element dl is given by

dl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
γrr

�
dr
dϕ

�
2

þ γϕϕ

�s
dϕ: ð65Þ

It is worthwhile to note that the geodesic curvatures of the
curves from S to S∞ and from O to O∞ in Fig. 11 are both
zero, since these paths are geodesics, whereas kg is the
geodesic curvature of the photon rays from S toO, which is
a spatial curve. Using Eqs. (53), (59), and (60), this gives

Z
O

S
kgdl ¼ ðcos−1 buo þ cos−1 busÞ

�
aΓ
2b3

−
6M2a
b3

þ 6M2a2

b4

�
þ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − b2u2o

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − b2u2s

q ��
−
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b2
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b4

�

þ
�
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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q
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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2b2

−
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16b4
−
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þ 2M2a2
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þ 115M2aΓ

8b4

�

þ
�
u2o

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − b2u2o

q
þ u2s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − b2u2s

q ��
2MaΓ
b2

−
4Ma2Γ
3b3

−
2MaΓ2

b4

�

þ
�
u3o

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − b2u2o

q
þ u3s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − b2u2s

q ��
−
3aΓ2

8b2
þ 45M2aΓ

8b2
−
15M2a2Γ

2b3

�
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�
M3

b3
;
M2aΓ
b5

�
: ð66Þ

Here, we have assumed that dl > 0 such that the orbital
angular momentum of the photons is aligned along the
black hole spin; for other cases, dl < 0 can be taken which
will lead to an extra “−” sign in Eq. (66). Using Eqs. (62)

and (66) in Eq. (51), we obtain the analytical expression for
the gravitational deflection angle of light in the rotating
Kalb-Ramond black hole spacetime Eq. (3), which leads to
a very lengthy expression. Nevertheless, in the asymptotic
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limits uo → 0 and us → 0, i.e., the source and observer are
at a very far distance from the black hole, the deflection
angle for the rotating Kalb-Ramond black hole takes a
rather simpler form as follows:

αD ¼ αDjKerr −
3πΓ
4b2

þ aπΓ
2b3

−
32MΓ
3b3

þ 76MaΓ
3b4

−
15πM2Γ

b4
−
21πa2Γ
16b4

þ 15πΓ2

64b4

þO
�
MΓ2

b5
;
M2aΓ
b5

;
M3Γ
b5

�
; ð67Þ

where αDjKerr corresponds to the Kerr deflection angle and
reads as

αDjKerr ¼
4M
b

−
4Ma
b2

þ 15πM2

4b2
−
10πM2a

b3
þ 4Ma2

b3

þ 128M3

3b3
þO

�
M4

b4
;
M3a
b4

�
; ð68Þ

which is in agreement with the recent results on the
deflection of light in the Kerr background with the
higher-order contributing terms [54–56]. The deflection
angle for the nonrotating Kalb-Ramond black hole can be
obtained as a special case of a ¼ 0 from Eq. (67):

αD ¼ 4M
b

þ 15πM2

4b2
−
3πΓ
4b2

−
32MΓ
3b3

þ 128M3

3b3

−
15πM2Γ

b4
þ 15πΓ2

64b4
þO

�
M4

b4
;
MΓ2

b5
;
M5

b5

�
; ð69Þ

which further reverts the value for the Schwarzschild black
hole in the limiting case of Γ ¼ 0 [54,57 as

αDjSchw ¼ 4M
b

þ 15πM2

4b2
þ 128M3

3b3
þO

�
M4

b4

�
: ð70Þ

Setting up the premises for the gravitational lensing, next
we discuss the possible astronomical implications of the
rotating black holes in the presence of the Kalb-Ramond
field background.
We aim to compare the lensing predictions of rotating

Kalb-Ramond black holes (3) with those for Kerr and
Schwarzschild black holes. We consider that the light
coming from a distant source gets deflected by the Sgr
A* black hole at the Galactic center (M ¼ 4.0 × 106 M⊙,
ro ¼ d ¼ 8.3 kpc) and reached the observer at Earth. In
this case, the observer’s distance ro is much larger than the
impact parameter of light, whereas a source star may live in
the bulge of our Galaxy. Therefore, even though the source
can be still in the weak-field regime, we have to take
account of finite-distance corrections due to the source.
We calculate the light deflection angle and estimate the
corrections from the Schwarzschild (a ¼ Γ ¼ s ¼ 0) and

the Kerr (s ¼ 0) black holes. Tables I and III summarize
these corrections, respectively, δαD ¼ αDjKerr − αD and
δαD ¼ αDjSchw − αD, in the deflection angle for various
values of black hole parameters and ro ¼ ∞ and
rs ¼ 105M. We consider the S2 star as the source, which

TABLE I. The corrections in the deflection angle δαD ¼
αDjKerr − αD for Sgr A* with b ¼ 103M, source at rs ¼ 105M,
and varying Γ and a; δαD is in units of arcsec.

Γ a ¼ 0.1 a ¼ 0.3 a ¼ 0.5 a ¼ 0.7 a ¼ 0.9

0.1 0.0486227 0.0486161 0.0486096 0.048603 0.0485965
0.3 0.145868 0.145848 0.145829 0.145809 0.145789
0.5 0.243113 0.243081 0.243048 0.243015 0.242982
0.7 0.340359 0.340313 0.340267 0.340221 0.340175
0.9 0.437604 0.437545 0.437486 0.437427 0.437368
1.1 0.534849 0.534777 0.534705 0.534633 0.534561

TABLE II. The corrections in the deflection angle δαD ¼
αDjKerr − αD for Sgr A* with b ¼ 103M, source star S2 at
rs ¼ 1400M, and varying Γ and a; δαD is in units of arcsec.

Γ a ¼ 0.1 a ¼ 0.3 a ¼ 0.5 a ¼ 0.7 a ¼ 0.9

0.1 0.0440628 0.0440569 0.044051 0.044045 0.0440391
0.3 0.132188 0.132171 0.132153 0.132135 0.132117
0.5 0.220314 0.220284 0.220255 0.220225 0.220195
0.7 0.30844 0.308398 0.308357 0.308315 0.308274
0.9 0.396565 0.396512 0.396458 0.396405 0.396352
1.1 0.484691 0.484626 0.48456 0.484495 0.48443

TABLE III. The corrections in the deflection angle δαD ¼
αDjSchw − αD for Sgr A* with b ¼ 103M and source at
rs ¼ 105M; δαD is in units of arcsec.

Γ a ¼ 0.1 a ¼ 0.3 a ¼ 0.5 a ¼ 0.7 a ¼ 0.9

0.1 0.131438 0.297011 0.462519 0.62796 0.793335
0.3 0.228683 0.394244 0.559738 0.725166 0.890528
0.5 0.325928 0.491476 0.656957 0.822372 0.987721
0.7 0.423174 0.588708 0.754176 0.919578 1.08491
0.9 0.520419 0.68594 0.851395 1.01678 1.18211
1.1 0.617664 0.783172 0.948614 1.11399 1.2793

TABLE IV. The corrections in the deflection angle δαD ¼
αDjSchw − αD for Sgr A* with b ¼ 103M and source star at
rs ¼ 1400M; δαD is in units of arcsec.

Γ a ¼ 0.1 a ¼ 0.3 a ¼ 0.5 a ¼ 0.7 a ¼ 0.9

0.1 0.114519 0.255378 0.396175 0.536909 0.677581
0.3 0.202644 0.343492 0.484277 0.624999 0.76566
0.5 0.29077 0.431606 0.572379 0.713089 0.853738
0.7 0.378896 0.519719 0.66048 0.801179 0.941816
0.9 0.467021 0.607833 0.748582 0.889269 1.02989
1.1 0.555147 0.695947 0.836684 0.977359 1.11797
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in May 2018 approached the closest distance to Sgr A*,
rs ¼ 1400M, and presented the corrections in deflection
angle in Tables II and IV. One can see from Tables I and III
that the presence of the Kalb-Ramond field significantly
lowers the deflection angle as compared to those for the
Schwarzschild or Kerr black holes, and the order of
correction is arcsec, which is within the resolution of
today’s observational facilities. The Kalb-Ramond field
parameter Γ gets nontrivially coupled with the black hole
spin parameter a, such that, for fixed values of Γ and b, the
correction in the deflection angle from the Kerr black hole
decreases with increasing a (cf. Table I). Nevertheless, αD
increases with increasing Γ, and a nonrotating black hole
causes a larger deflection angle as compared to the rotating
one. This is because, in rotating spacetimes, the local
inertial frame dragged along the black hole rotation, and it
takes a shorter time for a prograde light ray to feel the
gravitational pull. In Fig. 12, we have shown how the
difference in the deflection angle δαD ¼ αDjSchw − αD
varies with dimensionless impact parameter b=M for
different values of Γ. As the impact parameter b increases,
the correction in the deflection angle due to the Kalb-
Ramond field subsides.

VI. CONCLUSION

The detection of the Kalb-Ramond field, which appears
as closed string excitations in the heterotic string spec-
trum, may provide profound insights to our understanding
of the current Universe [1,10,11]. The gravitational action,
when nonminimally coupled to the Kalb-Ramond field,
admits spherically symmetric hairy black holes [13]. We
derived the rotating counterpart of this solution, i.e., a
rotating Kalb-Ramond black hole. The derived Kerr-like
black hole has an additional Kalb-Ramond parameter s
besides mass M and spin parameter a. The Kalb-Ramond
field produces a hair that changes the structure of the
rotating black hole through an extra term in the metric (3).
Obviously, this rotating Kalb-Ramond black hole metric is

asymptotically flat and encompasses Kerr (s ¼ 0), Kerr-
Newman (s ¼ 1), Reissner-Nordstrom (s ¼ 1, a ¼ 0), and
Schwarzschild (s ¼ 0, a ¼ 0) black holes. The rotating
Kalb-Ramond black hole, like the Kerr black hole, still
admits the Cauchy and event horizons, as well as the SLS.
However, the radii of horizons and SLS decrease due to s,
and the ergosphere is also affected and, thereby, can have
interesting consequences on the astrophysical Penrose
process.
Despite the complicated rotating metric (3), using the

Komar prescription, we analytically derived the exact
expressions for conserved mass Meff and angular momen-
tum Jeff , valid at any radial distance. Furthermore, the
presence of the Kalb-Ramond field significantly altered
these conserved quantities as compared to those for the
Kerr black hole, which is restored in the limit s ¼ 0; Meff
and Jeff decrease with increasing Γ or s for fixed values of
other parameters. Nevertheless, the effect of the Kalb-
Ramond field subsides at far distances from the horizon,
as at asymptotically large r (r → ∞) Meff and Jeff take the
values for the Kerr black hole. We further calculate the
conserved quantity attributing to the generator of the
event horizon to derive an interesting and important feature
of the rotating black hole, namely, the generalized Smarr’s
formula.
Considering the observer and the luminous source at

finite distances from the black hole, the analytical expres-
sion for the deflection angle in the weak-field limit is
deduced, and also the higher-order correction terms to the
deflection angle for the Schwarzschild and Kerr black
holes due to the Kalb-Ramond field are calculated. We
illustrated that the presence of the Kalb-Ramond field leads
to a smaller deflection angle as compared to Kerr and
Schwarzschild black hole values. This change in the
deflection angle, for the supermassive black hole Sgr A*
and the light source star in the bulge of the Galaxy, is as
large as a few arcsec and, thus, feasibly measurable with
present-day astronomical observations. For fixed values of
black hole parameters (M, Γ, s) and impact parameter b,
nonrotating Kalb-Ramond black holes are found to cause a
larger deflection angle in contrast to rotating black holes.
We also discussed the effects of the Kalb-Ramond field

on black hole shadows, an extreme case of light gravita-
tional lensing. It is found that shadows of rotating Kalb-
Ramond black holes become smaller and more distorted
with increasing field parameter s. The shadow observables,
namely, area A and oblateness D, are used to characterize
the size and shape of the shadows and, thus, in turn, to
extract the values of black hole parameters. The recent
shadow observational results of the M87* black hole are
used to put constraints on the Kalb-Ramond field parameter
in the supermassive black hole context.
More severe constraints can be expected by taking into

account the surrounding accretion disk. The study of
energy extraction and the particle production rate in the
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FIG. 12. Correction in the deflection angle δαD ¼ αDjSchw −
αD for rotating Kalb-Ramond black holes with s ¼ 1, a ¼ 0.90,
and varying b; δαD is in units of arcsec.
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rotating Kalb-Ramond black hole spacetime are being
considered for future projects. It will also be interesting
to investigate the stability of the obtained rotating solution
against the scalar perturbations in the context of gravita-
tional wave observational data.
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