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We consider dark matter represented by the light scalar field whose coupling to the ordinary matter is
extremely suppressed. We assume that this interaction can be described as the coupling of the square of the
field to the energy-momentum tensor. We study the effect of this interaction on the evolution of dark matter
scalar, as well as bounds on the model parameters that come from the variation of fundamental constants at
big bang nucleosynthesis.
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I. INTRODUCTION

An interesting possibility for dark matter explanation is
the light scalar dark matter. Such scalar fields with
extremely low masses of order 10−20 eV are common
in string theory models [1–4], as well as in another
Standard Model (SM) extensions. The spatially homo-
geneous light scalar field is thought to be displaced from
the minimum of the potential, thus, leading to the
oscillations behaving as the cold dark matter in the
expanding Universe made of the condensate of the scalar
particles with zero momenta. This type of dark matter
interacts with normal matter only gravitationally and,
thus, is practically invisible for detection in experiments
and observations. However, light dark matter can have
other couplings to the SM particles. This would raise the
chances of its detection in experiments.
The scalar field can be coupled to the SM in many

different ways. Here we restrict ourselves on the quadratic
in the field ϕ interaction which preserves the ϕ → −ϕ
symmetry. Namely, we assume that the scalar field describ-
ing dark matter is coupled to the trace of the energy-
momentum tensor.
In this work, we consider the action for the scalar field

coupled to the energy-momentum tensor,

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
gμν∂μϕ∂νϕ −

�
m2

2
þ 1

Λ2
Tμ
μ

�
ϕ2

�
:

ð1Þ

Here we concentrate on the mass range
m ¼ 10−16 ÷ 10−21 eV1 [in this range, the scalar starts
to oscillate after big bang nucleosynthesis (BBN)], although
we discuss larger masses too. The value of Λ is thought to be
close to the reduced Planck mass MP ¼ 2.43 × 1018 GeV.
The interaction (1) leads to the variations of the funda-

mental constants, such as masses of particles and SM
couplings. These variations in principle can be measured
directly in different experiments such as atomic clocks (see
[9] for a recent review). But the most stringent (indirect)
constraints are set by the BBN epoch since the amplitude of
the field is much larger at that time. The BBN bounds on
dark matter couplings were obtained in [10]. However,
these studies do not account for an important effect. In the
presence of coupling (1), the evolution of the scalar field
differs from the case of free massive scalar because the
value of Tμ

μ=Λ2 can be larger than the mass term. The goal
of this paper is that we compute the evolution of the scalar
field before BBN including the interaction term and set
more accurate bound on this kind of dark matter. We
obtained that the amplitude of the scalar field is falling
before the stage of oscillations which leads to additional
constraints. The reason is that for the significant part of the
parameter space it is impossible to provide the correct dark
matter abundance.
The paper is organized as follows. In Sec. II Awe discuss

contributions of all the SM particles that are in thermal
equilibrium with the radiation bath in the early Universe to
the trace of energy-momentum tensor. In Sec. II B we obtain
an analytical solution for the approximate choice of the trace
of energy-momentum tensor for a qualitative understanding
of the field dynamics. Then, in Sec. II C under the
assumption that this scalar field forms all dark matter, we
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1Dark matter with low masses, m≲ 10−21 eV, was recently
constrained from the star cluster dynamics [5], galactic rotation
curves [6], and SDSS Lyman-α forest data [7,8].

PHYSICAL REVIEW D 101, 103535 (2020)

2470-0010=2020=101(10)=103535(11) 103535-1 Published by the American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.101.103535&domain=pdf&date_stamp=2020-05-27
https://doi.org/10.1103/PhysRevD.101.103535
https://doi.org/10.1103/PhysRevD.101.103535
https://doi.org/10.1103/PhysRevD.101.103535
https://doi.org/10.1103/PhysRevD.101.103535
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


use these results to derive a constraint. In Sec. III A we
discuss the bounds that appeared from considering the
influence of the dark matter scalar on the BBN dynamic.
In Sec. IV we suggest the model that can come over this
restriction. In Sec. V we summarize our results.

II. COSMOLOGICAL EVOLUTION OF THE
SCALAR FIELD COUPLED TO THE
ENERGY-MOMENTUM TENSOR

A. Trace of the energy-momentum tensor during
the radiation dominated stage

During radiation domination, the equation of state
p ¼ ρ=3 implies that the energy-momentum tensor is trace-
less, Tμ

μ ¼ ρ − 3p ¼ 0. However, this relation is approxi-
mate. Tμ

μ receives contributions from different sources. At
temperatures higher than 100 GeVits value is defined by the
gauge trace anomaly [11–13],

Tμ
μ ¼ βρ; β ∼ 10−3: ð2Þ

At lower temperatures, the main effect is provided by
the particles that become nonrelativistic. In this case, in
hydrodynamic limit, the trace can be written down as
follows [14],

Tμ
μðTÞ ¼

X
i

gim2
i

2π2

Z
∞

mi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −m2

i

p
expðE=TÞ � 1

dE

¼
X
i

gi
2π2

m2
i T

2

Z
∞

mi=T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 − ðmi=TÞ2

p
expðuÞ � 1

du; ð3Þ

where we have introduced u ¼ E=T as the integration
variable in the last line; i is the index of all SM particle
species that are nonrelativistic at the temperature T;mi is the
particle’s mass, gi is the number of degrees of freedom for
the particle species; T is the temperature of the radiation
bath; and theþ sign in the denominator applies to fermions,
while the − sign applies to bosons. Figure 1 shows the
numerical dependence of Tμ

μ=ρ on the temperature.
In particular, at the time of BBN, the trace is mostly

determined by the annihilation of electrons and positrons.
The value of β ¼ Tμ

μ=ρ varies with the temperature from
10−3 (at high temperatures) to 10−2 during the annihilation
of electrons and positrons. Thus, for analytical estimation
of the effect of the interaction between dark matter and
SM plasma, in the next section, we use a constant value
of β ¼ 10−3.

B. Analytic solution to the field equations

Here we use a formula (2) for Tμ
μ, in order to study how

the evolution of the scalar field is affected by the time-
dependent contribution to its effective mass. As a first
approximation, we take a constant value of β ∼ 10−3. In this
case, we obtain the following equation of motion for the
field ϕ,

t2ϕ̈þ3

2
t _ϕþðm2t2þα2Þϕ¼ 0; ϕðt0Þ¼Λ; _ϕðt0Þ¼ 0;

ð4Þ

where α ¼ 3βM2
Pl

2Λ2 . Here we set the initial conditions at some
moment of time, t0. If we switch off the extra coupling to
the trace of energy-momentum tensor, the concrete value of
t0 < 1=m does not matter since the solution is constant
until t ∼ 1=m (here we neglect the falling solution). We
show that it is not the case if the coupling to matter is
included. In analogy with the axion, we interpret the initial
moment as a moment of phase transition when the shift
symmetry gets broken to the discrete subgroup and the
scalar gains the mass and interaction terms. We assume that
it happens fast, so in such a way that we can simply start the
evolution from the moment t0. The natural value of ϕ at this
moment is of order Λ, since ϕ has a discrete symmetry.
This equation has an analytical solution in terms of

Bessel functions,

ϕðtÞ ¼ C1m3=4t−1=4J1
4

ffiffiffiffiffiffiffiffiffiffiffi
1−16α2

p ðmtÞ
þ C2m3=4t−1=4J−1

4

ffiffiffiffiffiffiffiffiffiffiffi
1−16α2

p ðmtÞ; ð5Þ

where the dimensionless constants C1 and C2 are defined
by the initial conditions.
At small t ≪ 1=m the solution has a form

ϕðtÞ ≈ Λ
�
t0
t

�1
4
ð1−

ffiffiffiffiffiffiffiffiffiffiffi
1−16α2

p
Þ
; ð6Þ

in case of α ≤ 1=4, and

FIG. 1. The function βðTÞ ¼ Tμ
μ=ρ as a function of the temper-

ature. β deviates from zero when the temperature falls below the
mass of a particle that is in thermal equilibrium with the radiation
bath. It includes contributions from all the SM-particles. The
discontinuity at the temperature of 170 MeV corresponds to the
QCD phase transition.
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ϕðtÞ ≈ Λ
�
t0
t

�
1=4

sin

�
γ ln

�
mt
2

þ const

��
;

γ ¼ 1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16α2 − 1

p
; ð7Þ

when α > 1=4.
After t ¼ 1=m the scalar in both cases starts to oscillate.

The solution that corresponds to the initial conditions
(B14) is,

ϕ ≈ Λðmt0Þ14ð1−
ffiffiffiffiffiffiffiffiffiffiffi
1−16α2

p
ÞðmtÞ−3=4 cosðmtþ constÞ; ð8Þ

for the case of α ≤ 1=4, and

ϕ ≈ ΛðmtÞ−3=4ðmt0Þ1=4 cosðmtþ constÞ; ð9Þ

for α ≥ 1=4.

We see that the coupling of dark matter to the energy-
momentum tensor drastically changes the behavior of the
field before oscillations. Namely, the solution is falling
which can lead to several bounds of the model parameters.
It is clear that in some cases the field value would fall so
fast that it cannot provide the needed amount of dark matter
anymore. In general, the dynamics of the scalar could be
quite complicated, see Fig. 2 for numerical computations.
In the next section, we find the model parameters which
still allow for the scalar field to explain all dark matter in
the late Universe.

C. Constraints from the dark matter production

As wementioned above, the extra coupling to the trace of
energy-momentum tensor leads to the falling of the field’s
amplitude. Due to this falling, it does matter when the phase

FIG. 2. The variety of solutions for different parameters of the model. Numerical results were obtained for the trace of the form (3), see
also Fig. 1. In the last two plots, we draw the solution in a model without the coupling to the matter (orange line) which produces the
same amount of dark matter in the late Universe.
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transition of the field ϕ has happened. As we see later, it is
not possible in all cases to obtain the energy density required
for this field, in order to explain dark matter.
To obtain constraints on the parameters that allow our

field to be the observed dark matter, we employ the
conservation of entropy n=s ¼ const. Here n is the number
density of dark matter particles and s is the total entropy
density of all particles in thermal equilibrium with the
radiation bath.
At the moment t ∼ 1=m, the field starts to oscillate and

its energy density is,

hρϕi ≈
m2Λ2

2
ðmt0Þ12ð1−

ffiffiffiffiffiffiffiffiffiffiffi
1−16α2

p
Þ; ð10Þ

for case α ≤ 1=4 (Λ ≥
ffiffiffiffiffiffiffiffi
24β

p
MP); and

hρϕi ≈
m2Λ2

2
ðmt0Þ12; ð11Þ

when α ≥ 1=4 (Λ ≤
ffiffiffiffiffiffiffiffi
24β

p
MP).

Dividing these expressions by m, we obtain the number
density nϕ of dark matter particles for this epoch:

nϕ ≈
mΛ2

2
ðmt0Þ12ð1−

ffiffiffiffiffiffiffiffiffiffiffi
1−16α2

p
Þ; ð12Þ

for case α ≤ 1=4 (Λ ≥
ffiffiffiffiffiffiffiffi
24β

p
MP); and

nϕ ≈
mΛ2

2
ðmt0Þ12; ð13Þ

when α ≥ 1=4 (Λ ≤
ffiffiffiffiffiffiffiffi
24β

p
MP).

The entropy density s at the time is

s ¼ 2π2

45
gρðToscÞT3

osc: ð14Þ

Here gρðTÞ is the number of degrees of freedom in the
cosmic plasma as a function of the temperature T of the
radiation bath and Tosc is the temperature at which the field
starts to oscillate,

Tosc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mMPl

1.66 ffiffiffiffiffigρp
s

; ð15Þ

where MPl ¼ 1.2209 × 1019 GeV is the Planck mass [15].
The current energy density of the dark matter is charac-

terized by density parameter ΩDM ≡ ρDM=ρcrit ¼ 0.2581
[15], where ρcrit ¼ 0.53 × 10−5 GeV=cm3 is the critical
density. Thus, the number density n0 can be evaluated as,

n0 ¼ ρcritΩDM=m: ð16Þ
The present value of the entropy density is

s0 ¼ 2.9 × 103 cm−3: ð17Þ
Now let us write down the conservation of entropy for

the moments t ∼ 1=m and today:

nϕ
s

¼ n0
s0

: ð18Þ

Substituting here (12)–(17) and solving this equation for
t0, we obtain,

t0ðm;ΛÞ ¼

8>>><
>>>:

1
m ð4π

2ΩDMρcrit
45s0m2Λ2 Þ

2

1−

ffiffiffiffiffiffiffiffiffiffiffi
1−

24βM2
P

Λ2

q
; if Λ ≥

ffiffiffiffiffiffiffiffi
24β

p
MP

1
m ð4π

2ΩDMρcrit
45s0m2Λ2 Þ2; if Λ ≤

ffiffiffiffiffiffiffiffi
24β

p
MP

:

Then, using this equation and the ratio between the age
of the Universe t and its temperature T,

TðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MPl

1.66 ffiffiffiffiffigρp
s

t1=2; ð19Þ

FIG. 3. The sensitivity of binary pulsar observations to the
quadratically coupling between dark matter and ordinary matter
on the example of several known systems [16] versus constraints
obtained in Sec. II C. Black symbols are constraints derived using
the existing data on the time derivative of the orbital period of
binary system h _Pi which interacts with the dark matter back-
ground; values above the symbols are excluded. Orange symbols
show the sensitivity that can be achieved if h _Pi is measured for a
given system with the accuracy of 10−16. Empty symbols
correspond to resonances on higher harmonics. The colored
regions of the dark matter parameter space are excluded by PTA
[17] (olive), and Cassini bound on stochastic GW background
[18] (red). Olive lines show future sensitivities of European
Pulsar Timing Array (upper) and Square Kilometer Array
(lower), as estimated in [19]. Also, this plot shows the constraint
(20) that comes from the requirement that the field starts its
evolution (i.e., gains the mass) before BBN and neutron freeze-
out (blue region); and after BBN (yellow region), see the model
constructed in Sec. IV. In the dark blue region, in order for ϕ to be
all dark matter, one needs ϕðt0Þ < Λ.
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we can express the temperature T0ðm;ΛÞ of the phase
transition of the field ϕ. Since we do not specify how
the scalar ϕ gains its mass, we assume that the moment
T0 happened before the weak interaction freeze-out
(Tf ∼ 3 MeV). In this case, the details of this process do
not affect BBN. Thus,

Tf ≤ T0ðm;ΛÞ; ð20Þ

which provides us with the constraints in the parameter
space ðm;ΛÞ, see Fig. 3.
From Fig. 3 we find that the values of the scale Λ

allowing for the scalar field to be all the dark matter are
quite high. These scales lie beyond the availabilities of the
existing observations of binary pulsars. The effects of the
lightest dark matter on the pulsar dynamics can be observed
only if the time derivative of the period is measured with the
accuracy of 10−16. However, this bound comes from
the condition that the evolution of the scalar field (i.e.,
the phase transition in the model of the axionlike particle)
starts before BBN. In Sec. IV, we show that the model
avoiding this bound still can be constructed. For this model,
the yellow region of Fig. 3 is allowed which makes it
reachable for the pulsar timing observations.

III. THE BBN CONSTRAINTS ON
THE COUPLING TO MATTER

A. Variations of the fundamental constants
induced by the scalar field

The coupling of the DM field to the stress-energy tensor
of the ordinary matter directly leads to small variations
of particle masses. For example, in the low energy SM
effective action, the electron mass term contributes to Tμ

μ as,

Tμ
μðeÞ ¼ meψ̄ψ : ð21Þ

Therefore, the coupling (1) leads to the shift of the electron
mass,

me ¼ m0
e

�
1þ ϕ2

Λ2

�
: ð22Þ

Note that masses of quarks are changed in a similar way.
However, the variations of the proton and neutron mass
and the neutron lifetime requires more involved computa-
tions because they are also affected by the QCD strong
coupling scale ΛQCD [20]. The result computed for the SM
β-function is

ΛQCD ¼ Λ0
QCD

�
1 −

14

27

ϕ2

Λ2

�
; ð23Þ

The neutron-proton mass difference, the crucial quantity for
the BBN calculations, is then obtained as [21]

mn −mp ¼ ðmn −mpÞ0
�
1þ w

ϕ2

Λ2

�
;

w ¼ fs þ
2

9
−
14

27
þ 1 ≈ 0.82: ð24Þ

Here fs ¼ 0.113� 0.053 [19] characterizes the strange
quark impact on the nucleon mass difference, 2=9 comes
from the dependence of the heavy quarks (c, b, t) mass
thresholds on the scalar field, ϕ.
The Fermi constant is affected by the varying scalar field

as well,

GF ¼ G0
F

�
1 − 2

ϕ2

Λ2

�
ð25Þ

The neutron lifetime scales as τn ∼ G2
Fm

5
e, thus

τn ¼ τ0n

�
1þ ϕ2

Λ2

�
: ð26Þ

If these two fundamental constants, mn −mp and τn, differ
from their SM values, the dynamics of BBN is affected.
Namely, helium production is highly sensitive to the
difference between neutron and proton mass. In the next
section, we discuss the numerical results for the primordial
production of 4He in the model with light scalar dark matter.

B. Numerical results for the helium production

Calculation of the primordial helium abundance at the
time of BBN requires the numerical computation of the
asymptotically surviving neutron abundance Xn ≡ nn

nB
, in

the presence of a scalar field ϕ. Here nn, nB are neutron and
baryonic number densities respectively, nB ¼ nn þ np. In
our computations, we used an analytic description of the
neutron freeze-out process given in [22]2

XnðTÞ≡ XnðyðTÞÞ ¼ Xeq
n ðyÞ

þ
Z

y

0

dy0ey0 ðXeq
n ðy0ÞÞ2 expðKðyÞ − Kðy0ÞÞ; ð27Þ

yðTÞ ¼ ΔmðϕÞ=T;ϕ ¼ ϕðTÞ; ð28Þ

where ΔmðϕÞ is the neutron-proton mass difference in the
presence of the field ϕ which is given by (24).

2Here we have in mind that the dynamics of BBN is changed
only slightly (typically the constants deviate from their SM values
by the factor 1� 10−3) otherwise the analytical approach does
not work anymore and full computation within the nuclear
network is required. However, as we are interested only in the
cases when the helium amount satisfies Planck bound we expect
that the approximate computation of helium production still
works.
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The equilibrium neutron abundance is

Xeq
n ðTÞ ¼ ð1þ eyðTÞÞ−1: ð29Þ

The function KðyÞ defining the rate of neutron produc-
tion is given by,

KðyÞ ¼ −b
��

4

y3
þ 3

y2
þ 1

y

�
þ
�
4

y3
þ 1

y2

�
e−y

�
; ð30Þ

b¼ a

�
45

4π3gρðTBBNÞ
�

1=2 MP

τnðϕÞΔmðϕÞ2 ; a¼ 253; ð31Þ

where TBBN ≃ 6.3968 × 10−5 GeV is the moment of
helium production [15], in terms of the temperature; and
τnðϕÞ is the neutron lifetime in presence of ϕ which is
given by the (26).
Thus, the mass fraction of helium in the presence of the

light scalar field is given by3

X4HeðϕÞ≃2XnðTBBNÞexp
�
−
Z

tBBN

t0ðm;ΛÞ
τnðϕðtÞÞ−1dt

�
; ð32Þ

where tBBN ≃ 180 s is the time of the BBN [15]. In our
model with the scalar field, the resulting Helium fraction
appears to be larger than those in the Standard Model.
For the helium fraction we conservatively took a 2σ

bound from [23].4

X4He ≤ 0.2505: ð33Þ

We computed numerically the helium production with
the scalar field normalized on the dark matter abundance,
for several values of m, Λ. We used a numerical solution
for the field ϕ obtained with the realistic behavior of the
trace of energy-momentum tensor (see Fig. 1). We took
the initial moment from (20) and assume that the
derivative of the field is zero. Then, we chose the initial
field value in such a way that the amplitude of the late
time oscillations corresponds to those of dark matter.
Within this solution, we found that in most points
satisfying the constraint Fig. 4 the amount of helium
falls into the allowed region. However, we obtained some
small exclusion regions. They correspond to the masses
of dark matter at which the field starts to oscillate at the
time of BBN, thus providing nontrivial dynamics during

this transition period. Since the values of constants in
these cases can have large (and time-dependent) devia-
tions from the Standard model values, the dynamics of
BBN can be different from the usual one. In particular,
the deuterium production can be affected. In Appendix B
we show that for deviations smaller than 0.1 percent the
final deuterium abundance is still within the observational
constraints [27], although the bound coming from
deuterium can be stronger than those from helium. We
leave an accurate study of deuterium production for
future work.
For dark matter with low masses, we obtained the bound

on the scale Λ approximately consistent with the results
obtained in [28]. For a dark matter which starts to oscillate
during the neutron freeze-out and BBN, our constraint is
somewhat weaker than those of [28] because, in opposition
to this paper, we did not make averaging of the oscillations.
The integral (27) appears to be closer to the SM one, due to
the oscillatory behavior of the integrand, as compared to the
case of the averaged field. Thus, we obtained that, in fact,
the model is bounded mostly by the requirement that we set
the initial conditions before the neutron freeze-out. In the
next section, we construct an example of the model which
allows for overcoming this constraint.

FIG. 4. The colored regions of the dark matter parameter
space (m, Λ) are allowed by the mentioned constraints. Blue
region is a constraint derived using the existing data on the
amount of dark matter in the Universe (Section II C). Red
points are the lattice nodes in the parameter space for which the
resulting abundance of helium satisfies the Planck bound. Blue
points are not compatible with the observed range. The region
upper the line on the top of the colored region is also allowed
by the BBN constraint. However, one needs ϕ < Λ, in order to
produce the correct amount of dark matter.

3This approximate formula, nevertheless, provides with correct
results, since the neutrons freeze-out much earlier than tBBN and
the neutron decay does not affect the production of neutrons.

4The recent helium abundance measurements were reported in
[23–25]. The first two results are in a good agreement while the
last paper gives somewhat larger abundance (see [25] for the
discussion on possible reasons of such a deviation). CMB data
itself [26] lead to weaker constraints on helium abundance.
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IV. CAN DARK MATTER BE
PRODUCED AFTER BBN?

In the previous section, we obtained that the limits
coming from the condition that the scalar field forms all
dark matter do not leave a window for other searches of
dark matter. At first glance, the values ofm and Λ available
for the astrophysical probes with binary pulsars are for-
bidden by these constraints. Does it mean that these
searches are not motivated? Here we show that it is still
possible for this type of dark matter to avoid the BBN
constraints, together with the constraints from the initial
time of the phase transition, if dark matter is formed after
BBN. In this case, the values of fundamental constants
during BBN are the same as in the Standard model.
However, in the late Universe, the constants can vary with
the scalar field value providing dark matter coupled to the
mass [16] relevant for pulsar timing searches. Here we
present a concrete model that allows for avoiding the BBN
constraints.
Assume the scalar field has a discrete shift symmetry and

its potential has a usual form,

VðϕÞ ¼ m2Λ2

�
1 − cos

�
ϕ

Λ

��
: ð34Þ

This scalar is coupled with the Standard Model particles via
the term

Lintðϕ; TÞ ¼ κTμ
μðTÞ

�
1 − cos

�
4ϕ

Λ

��
: ð35Þ

Here we take

Tμ
μðTÞ ¼ βg�

π2

30
T4: ð36Þ

In the late Universe, the minimum of the effective
potential V þ Lint is ϕ ¼ 0. Thus, expanding the action
around this minimum one obtains the model (B14) with the
quadratic coupling to Tμ

μ. However, in the early Universe,
it can happen that the interaction term dominates over
the potential and the scalar is in another minimum,
ϕ=Λ ≃ π=2. This lasts until some critical temperature T0

(see Fig. 5),

κβg�
π2

30
T4
0 ¼ 0.23m2Λ2: ð37Þ

At this temperature, the minimum disappears and the scalar
starts rolling down and oscillating. From the conservation
of entropy, one can derive an amount of dark matter in the
present Universe. The scalar field explains all dark matter if
the condition

mΛ ¼ 1.25 × 10−20κ−3=2 GeV2; ð38Þ

is satisfied.5 The condition that BBN is not affected by this
scalar dark matter (we take T0 < 1 keV, which corre-
sponds to the time of when BBN is finished) implies,

κβ ≳ 5.7 × 10−5: ð39Þ

At the same time, since it is natural to have the
coupling constant κ < 1, we expect κβ ≲ 10−2. These
bounds leave the allowed region for m and Λ which is
shown in Fig. 4. One can see that this region is quite
large and it covers values available for the observations
of binary pulsars.
Let us check that, under the listed conditions, BBN is

indeed not affected by the varying fundamental constants.
In this model, during BBN the scalar is in the other
minimum ϕmin=Λ ¼ π=2 − 0.068ðT0=TÞ4 where the inter-
action term with matter can be written as,

Lint ≃ 0.01κTμ
μ

�
T0

T

�
8

: ð40Þ

This means that the SM couplings at the temperature T
differ from the present ones by Δg=g ∼ 0.01αðT0=TÞ8
which is negligible for the interesting values of
T0 ∼ 1 keV. Thus, the model (34), (35) is indeed a self-
consistent description of dark matter which leads to varying
constants and quadratic coupling to masses in the late
Universe and, at the same time, does not affect BBN. Note
that this mechanism of dark matter production also does not
lead to extra entropy and does not affect the Universe
expansion rate. Thus, this model allows for avoiding all the
observational constraints related to BBN.

V. CONCLUSIONS

In this work, we considered a light scalar field which is
introduced to explain all dark matter in the late Universe.

FIG. 5. Effective potential (34), (35) for different values of
temperature before the minimum disappears.

5We assume that the field starts to oscillate immediately after
the moment T0. This assumption works if Λ < 4 × 1018

ffiffiffiffiffi
κβ

p
.
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Analogically to the case of the axion, after the phase
transition breaking its shift symmetry, this field gains a
mass and coupling to matter. We examined the case in
which this coupling is universal (i.e., the field interacts with
the trace of energy-momentum tensor) and quadratic in the
field. We found that in the early Universe, the average value
of Tμ

μ might be much larger than the mass term in the
equation of motion, providing with the drastic change of
the dynamics before the oscillation period. We took into
account this effect and obtained the accurate bounds on the
mass and coupling to matter which allows for the field to be
dark matter. We found that if the field was initiated before
BBN the allowed region is, unfortunately, far from the
parameters which can be probed within the observations of
binary pulsars.
This kind of dark matter would affect the values of all the

fundamental constants. This leads to the constraints coming
from the abundance of light elements produced during the
nucleosynthesis. In this work, we computed the helium
production with the fundamental constants (the neutron-
proton mass difference mn −mp and the neutron lifetime
τn) varying with the field evolution. We found that, except
for several small exclusion regions, the final helium
abundance appears to fall into the region allowed by the
Planck data. Thus, the bound connected with the very
possibility to obtain the correct amount of dark matter
occurred to be more restrictive. However, the bound set by
the deuterium abundance can appear to be somewhat
stronger than the discussed ones.
Unfortunately, this bound does not leave a possibility to

probe this model in experiments and observations.
However, we suggested a model that allows for avoiding
the constraints coming from BBN, as well as the bounds
connected with dark matter production. We have shown
that the scalar field can start to evolve after BBN leaving all
the fundamental constants unchanged during the primordial
production of the light elements. In this case, the coupling
to matter is less suppressed which allows for the exper-
imental searches for this kind of dark matter coupled
to mass.
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APPENDIX A: COMPUTATION OF HELIUM
PRODUCTION

In this Appendix, we discuss briefly the Standard BBN
model. A more detailed review is given in [22].
The evolution of the fractional neutron abundance Xn is

described by the balance equation,

dXnðtÞ
dt

¼ λpnðtÞð1 − XnðtÞÞ − λnpðtÞXnðtÞ; ðA1Þ

where λpn is the summed rate of the reactions which convert
neutrons to protons,

λpn ¼ λðnνe → pe−Þ þ λðneþ → pν̄eÞ þ λðn → pe−ν̄eÞ;
ðA2Þ

and λnp is the rate of the reverse reactions which convert
protons to neutrons is given by the detailed balance,

λpn¼ λnpe−Δm=TðtÞ; Δm≡mn−mp¼1.293MeV: ðA3Þ

The equilibrium solution is obtained by setting
dXnðtÞ=dt ¼ 0,

Xeq
n ðtÞ¼ λpnðtÞ

ΛðtÞ ¼ð1þeΔm=TðtÞÞ−1; Λ≡λpnþλnp; ðA4Þ

while the general solution is

�XnðtÞ ¼
R
t
ti
dt0Iðt; t0Þλðt0Þ þ Iðt; tiÞXnðtiÞ;

Iðt; t0Þ ¼ exp ð− R
t
t0 dt

00Λðt00ÞÞ: ðA5Þ

Since the rates λpn and λnp are very large at early times,
Iðt; tiÞ will be negligible for a suitably early choice of the
initial epoch, hence the initial value of the neutron
abundance XnðtiÞ plays no role and thus does not depend
on any particular model of the very early Universe. For the
reason, ti may be replaced by zero and the above expression
simplifies to

XnðtÞ¼
Z

t

0

dt0Iðt;t0Þλðt0Þ¼λpnðtÞ
ΛðtÞ −

Z
t

0

Iðt;t0Þ d
dt0

�
λpnðt0Þ
Λðt0Þ

�
:

ðA6Þ

The neutron freeze-out temperature can be evaluated
from dimensional considerations which give

Tfr ∼
�

g1=2ρ

G2
FMP

�1=3

∼ 1 MeV; ðA7Þ

where GF is the Fermi constant.
The rates of reactions is given by the formula

λðnνe → pe−Þ ¼ λðneþ → pν̄eÞ
¼ AT3ð24T2 þ 12TΔmþ 2ðΔmÞ2Þ: ðA8Þ

The constant A is related to τn as follows,
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1

τn
¼ 0.0158AðΔmÞ5: ðA9Þ

Hence the total reaction rate can be expressed in terms of
the neutron lifetime as,

λpnðtÞ ≃ 2λðnνe → pe−Þ ¼ a
τny5

ð12þ 6yþ y2Þ;

y≡ Δm
T

; a ¼ 253: ðA10Þ

The integrating factor in (A5) can now be calculated,

Iðy;y0Þ ¼ exp

�
−
Z

y

y0
dy00

dt00

dy00
Λðy00Þ

�
¼ expðKðyÞ−Kðy0ÞÞ;

ðA11Þ

where

KðyÞ ¼ −b
��

4

y3
þ 3

y2
þ 1

y

�
þ
�
4

y3
þ 1

y2

�
e−y

�
; ðA12Þ

and

b ¼ a

�
45

4π3gρ

�
1=2 MP

τnðΔmÞ2 : ðA13Þ

The neutron abundance is therefore,

XnðyÞ ¼ Xeq
n ðyÞ þ

Z
y

0

dy0ey0 ðXeq
n ðy0ÞÞ2 expðKðyÞ − Kðy0ÞÞ:

ðA14Þ

By the time of BBN the neutron abundance surviving at
freeze-out has been depleted by β-decay to,

XnðtBBNÞ ≃ Xnðy → ∞Þe−tBBN=τn : ðA15Þ

Nearly all of these surviving neutrons are captured in 4He
because of its large binding energy (Δ4He ¼ 28.3 MeV).
Hence the resulting mass fraction of helium is simply
given by

X4He ≃ 2XnðtBBNÞ: ðA16Þ

APPENDIX B: ESTIMATES FOR THE
DEUTERIUM PRODUCTION

In this Appendix, we show that the effect of varying
coupling constants on the deuterium production is expected
to be quite small. This conclusion holds for quite small
deviations, at the level of 0.1 percent while for larger
deviations a comprehensive numerical analysis is still
required.

Freeze-out concentration of deuterium is given by the
relation [29]

Xf
D ¼ 2R2

expðAη10Þ − 1
; ðB1Þ

where

R2 ¼ 2Xp
λpD
λDD

:

In this formulas λab is the aþ b reaction rate, η10 is a
baryon-to-photon ratio multiplied by 1010 and

AðTÞ ¼ 2aR2KðTÞT; a ¼ 0.85 × 105: ðB2Þ

A numerical function KðTÞ equals to

KðTÞ ¼ −
1

4aη10ð∂T∂tÞ
λDD;

δK
K

¼ δλDD

λDD
: ðB3Þ

Therefore, this function is also influenced by the change of
the fundamental constants through the reaction rate λDD.
From these formulas we can derive

δR2 ¼ 2
λpD
λDD

δXp þ 2Xp
δλpD
λDD

− 2Xp
λpD
λ2DD

δλDD; ðB4Þ

and

δR2

R2

¼ δλpD
λpD

−
δλDD

λDD
þ δXp

Xp
: ðB5Þ

Using (B1) we can write down the following equation for
a variation of deuterium freeze-out concentration δXf

D,

δXf
D ¼ 2δR2

expðAη10Þ − 1
−

2R2

ðexpðAη10Þ − 1Þ2 expðAη10Þη10δA;

ðB6Þ

and then, taking into account (B2) and (B3), we arrive at

δXf
D

Xf
D

¼
���� δR2

R2

− κ
δA
A

���� ¼
���� δR2

R2

− κ

�
δR2

R2

þ δλDD

λDD

�����
¼ κ

δλDD

λDD
þ ðκ − 1Þ δR2

R2

: ðB7Þ

Here κ stands for the following ratio,

κ ¼ Aη10 expðAη10Þ
expðAη10Þ − 1

≃ 1.3 ðB8Þ

for the values of A ¼ 0.1 and η10 ¼ 6.1 [29].
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Substituting this value into (B7) we obtain

δXf
D

Xf
D

≃ 1.3
δλDD

λDD
þ 0.3

δR2

R2

: ðB9Þ

Thus, we have to find numerical values for the reaction
rates given in (B9) in terms of the field ϕ.
In general, reaction rate is given by the expression [30],

hσvi¼ 2ffiffiffi
3

p ð2παÞ4=3σ0
�
M
T

�
2=3

exp

�
−
3

2

�
M
T

�
1=3

ð2παÞ2=3
�
:

ðB10Þ

Here M is an effective mass of the colliding nuclei and for
the aþ b reaction equals to mamb

maþmb
; α is the fine-structure

constant which equals to 1=137.
For the DþD reaction we have

M ¼ mp ðB11Þ

Hereafter we neglect the binding energy of a deuterium
nucleus and set mD ≈ 2mp.
For the Dþ p reaction we have

M ¼ 2

3
mp: ðB12Þ

For a deviation of the aþ b reaction one can obtain

δhσviab
hσviab

¼
�
δM
M

��
2

3
−
1

2

�
M
T

�
1=3

ð2παÞ2=3
�
: ðB13Þ

Taking into account that λab ¼ hσviabnB, nB is a baryon
concentration [29], we conclude that

δλab
λab

¼ δhσviab
hσviab

: ðB14Þ

Let us turn to the last term of the right-hand side of (B5).
Assuming that all neutrons are confined in 4He we can write

Xn

2
¼ X4He:

Also we assume that all baryonic matter is consisted
of protons and neutrons so we can conclude that
Xp ¼ 1 − Xn ¼ 1–2X4He. Thus, we have

δXp

Xp
¼ δX4He

X4He
: ðB15Þ

Eventually, from (B9), (B10), (B13), (B14), and (B15)
we obtain

δXf
D

Xf
D

¼ 0.3
�
δX4He

X4He
þ
�
δmp

mp

�

×

�
1

2
ð2παÞ2=3

�
mp

T

�
1=3

�
1 −

�
2

3

�
4=3

�
−
5

9

��

þ 1.3

�
δmp

mp

��
2

3
−
1

2

�
mp

T

�
1=3

ð2παÞ2=3
�
: ðB16Þ

In our model, the change of the fundamental constants
(in this case, proton mass) due to the coupling with the
scalar field ϕ is given by the relation,

δmp

mp
¼ ω

ϕ2

Λ2
; ðB17Þ

where ω ≈ 0.82.
Taking the following values of the SM constants,

mp ≃ 0.938 GeV;

TBBN ≃ 6.4 × 10−5 GeV;

and the value of the allowed helium-4 abundance deviation,
from (B16) one can obtain,

δXf
D

Xf
D

≃ 0.703

�
δmp

mp

�
þ 0.3

δX4He

X4He
: ðB18Þ

and using the relation (B17) we have,

δXf
D

Xf
D

≃ 0.576
ϕ2

Λ2
þ 0.3

δX4He

X4He
: ðB19Þ

If ϕ2=Λ2 ≲ 0.001 than the helium constraint is satisfied and
the last term is smaller than 0.005. The first term appears to
be of the same magnitude leading to the total deviation of
deuterium abundance at the level of 1 percent which is
allowed by the observational constraints [27]. This deu-
terium bound on the scalar field magnitude during BBN
could be somewhat stronger than those of the helium since
for ϕ2=Λ2 ∼ 0.001 we obtained the helium abundance in
the allowed range. However, the dependence of ϕ on time
can, of coarse, change this order-of-magnitude estimate of
the deuterium production. Therefore, more accurate analy-
sis of deuterium production including the time dependence
of the scalar field is required. We leave this problem for
future study.
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