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The paper studies the physical characteristics for the extended fðPÞ cubic gravity from a transitive
perspective based on dynamical system analysis, by considering the linear stability theory in two specific
cases, corresponding to power–law fðPÞ ¼ f0Pα and exponential fðPÞ ¼ f0eαP gravity types, where f0
and α are constant parameters. In these cases we have analyzed the effects in the phase space complexity,
revealing the cosmological solutions attached to the critical points. For the power–law and exponential
gravity types, we have noticed the presence of two cosmological epochs associated to the critical points
involved, corresponding to de Sitter eras and quintessencelike epochs, described by a constant effective
equation of state. For all of these solutions we have studied the dynamical characteristics which are
associated to the stability properties, determining possible constraints to various parameters from a
transient perspective. The dynamical prospects asserted that the extended fðPÞ cubic gravity can represent
a promising modified theory of gravitation, leading to the manifestation of the accelerated expansion at late
time evolution.
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I. INTRODUCTION

An important topic in the present cosmological context is
related to the introduction of various modifications for the
gravitational sector, adding to the Einstein-Hilbert action
various components based on viable geometrical quantities.
The development of such viable theories of gravitation
based on different geometrical components can lead to new
premises which might explain the current state of the
Universe, the past history in the corresponding evolution,
bordering the theoretical framework for interesting view-
points and applications. In the modified gravity context [1],
an important direction was established with the appearance
of the fðRÞ theory of gravitation [2] which revise the
Einstein-Hilbert action by introducing a specific function f
based on the scalar curvature R. In this manner, this
approach paved the way for the development of various
theories of gravitation based on different components [3].
The modified gravity theory based on the fðRÞ action
represent an interesting theory which has been studied in
a variety of analyses [4–9]. Furthermore, the introducing
of the fðGÞ theory of gravitation [10,11] has occurred
naturally within this context, a specific theory based on
the Gauss-Bonnet term G which represents an invariant
which can lead to interesting cosmological effects [12,13].
Later on, in the recent years, different modified gravity
theories have been constructed in the scalar tensor theories
based on general relativity and also teleparallel gravity. The

modified gravity theories which add higher–order terms
to the Einstein-Hilbert action represent viable theoretical
approaches which can originate from string theory [14],
particular attempts of a more complete and renormaliz-
able [15] theory for the gravitational interaction.
Within this framework, the Einsteinian cubic gravity [16]

represents a particular theory for the gravitational inter-
action which is based on a specific contraction of the
Riemann tensor at the cubic order. The introduction in
the general framework of modified gravity theories for the
Einsteinian cubic gravity has been done recently in a paper
[16] which introduced the specific form of the correspond-
ing nontopological term P which represents the foundation
of the latter theory. The authors have investigated the
specific linearization technique in the context of higher-
order gravity theories, obtaining the Einsteinian cubic
gravity. Furthermore, in the recent years several authors
[17–33] have investigated different applications of the
Einsteinian cubic gravity.
In a recent paper [34] the authors have proposed a new

modification of gravity, adding to the Einstein-Hilbert
action a viable geometrical model fðPÞ based on a specific
invariant P, which encodes specific contractions of the
Riemann tensor in the cubic order [16]. As shown in the
paper, this nontopological term can lead to second order
equations in the cosmological context for specific inter-
relations between various parameters associated to the
cubic Riemann component. After extending the action
by proposing a new type of gravity type in scalar tensor
theories, the authors have investigated the dynamical*mihai.marciu@drd.unibuc.ro
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consequences by adopting a numerical approach based
on fine–tuning methods. In the analysis different specific
models for the fðPÞ have been considered, which includes
linear, power–law models, and cases where the super-
position of the latter cases is exhibited. The study [34]
revealed that the resulting specific evolution can exhibit
quintessence, phantom and quintom behaviors for the
early time, while at late time the model evolves near
the cosmological constant boundary. Hence, in principle
this model can represent a viable theory of gravitation,
exhibiting the accelerated expansion as a fundamental
dynamical effect.
In this context, we have further studied the new gravity

type proposed recently byErices et al. [34] by considering an
approach based on linear stability theory [35]. The linear
stability theory represents a powerful analytical technique
which associates a phase space structure to a gravity model
constructed in scalar tensor theories, revealing the cosmo-
logical epochs in the evolution and some of the viable
trajectories which can lead to the present era characterized by
the accelerated expansion. In themodified gravity context the
linear stability theory [35] has been considered by various
authors in different studies [36–47], revealing possible
epochs which can appear in the evolution of the Universe.
The analysis of the phase space structure in the Einsteinian
cubic gravity for the specific case which include the addition
of a cosmological constant has appeared recently [48].
The current paper continues with the latter mentioned

technique in modified gravity context, analyzing the
possible dynamical effects for the cubic extension of
gravity. The plan of the paper is the following. In the
Sec. II we present the basic ingredients of the extended
cubic gravity and the modified Friedmann relations which
are obtained. Furthermore, in Sec. III we investigate the
power law type of gravity fðPÞ ¼ f0Pα, where f0 and α are
constant parameters which encode the effects from the
geometrical coupling to the new nontopological invariant P
based on third order contractions of the Riemann tensor.
The Sec. IV continues with the exponential gravity type
where fðPÞ ¼ f0eαP. Finally, in Sec. V we present a short
summary and the final concluding remarks for the specific
gravity type, the cubic extension of Einstein-Hilbert action.

II. THE EQUATIONS FOR THE EXTENDED
f ðPÞ CUBIC GRAVITY

Within this section we shall present the action and the
field equations for the extended fðPÞ cubic gravity in the
case of the Friedmann-Robertson-Walker (FRW) cosmo-
logical model which assumes the Robertson-Walker metric
of the type,

ds2 ¼ −dt2 þ a2ðtÞδikdxidxk; ð1Þ

where aðtÞ represents the cosmic scale factor, and δik the
discrete Kronecker symbol. In this geometrical setup we

shall define the Hubble parameter in the usual way as
H ¼ _a=a, where the dot(s) represents the derivative with
respect to the cosmic time, and 0 the derivative of a function
with respect to its argument. In what follows we rely the
presentation of the theoretical arguments for the extended
fðPÞ cubic gravity on different aspects introduced by
Erices et al. in a recent paper [34]. Hence, we consider
an extension of the Einstein-Hilbert action by including in
the geometrical background the extended fðPÞ cubic
gravity based on the P invariant, a new theory having
the following action [34]:

S ¼ Sm þ
Z

d4x
ffiffiffiffiffiffi
−g

p �
R
2
þ fðPÞ

�
; ð2Þ

where f ¼ fðPÞ is a functional which depends on the
nontopological cubic invariant P [16] defined as

P ¼ β1Rμ
ρ
ν
σRρ

γ
σ
δRγ

μ
δ
ν þ β2R

ρσ
μνR

γδ
ρσR

μν
γδ

þ β3RσγRμνρσR
μνρ
γ þ β4RRμνρσRμνρσ þ β5RμνρσRμρRνσ

þ β6Rν
μR

ρ
νR

μ
ρ þ β7RμνRμνRþ β8R3; ð3Þ

with βi; i ¼ 1; 8 constant parameters. The action for the
matter component is denoted as Sm, encoding the physical
effects of a perfect fluid having a barotropic equation of
state pm ¼ wmρm, with pm the pressure, ρm the density, and
wm the state parameter. As can be noted, the nontopological
cubic invariant P is based on different contractions of the
Riemann tensor in the third order, a geometrical construc-
tion which lead to second order field equations if the
following conditions for the constant parameters are
imposed [16,34]:

β7 ¼
1

12
½3β1 − 24β2 − 16β3 − 48β4 − 5β5 − 9β6�; ð4Þ

β8 ¼
1

72
½−6β1 þ 36β2 þ 22β3 þ 64β4 þ 5β5 þ 9β6�; ð5Þ

β6 ¼ 4β2 þ 2β3 þ 8β4 þ β5: ð6Þ

Furthermore, let us define an additional parameter β̄ based
on the following identity:

β̄ ¼ ð−β1 þ 4β2 þ 2β3 þ 8β4Þ: ð7Þ

It can be shown that using these parameter’s constraints for
the FRW metric (1), the nontopological cubic invariant P
reduces to

P ¼ 6β̄H4ð2H2 þ 3 _HÞ; ð8Þ

containing derivatives of the cosmic scale factor in the
second order.
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For the specific theory characterized by the action (2)
we can obtain the modified Friedmann relations by the
principle of least action in the case of FRW metric,

3H2 ¼ ρm þ ρde; ð9Þ

3H2 þ 2 _H ¼ −pm − pde: ð10Þ

In this manner we can define the energy density of the
geometrical contribution of dark energy [34],

ρde ¼ −fðPÞ − 18β̄H4

�
H

d
dt

−H2 − _H

�
f0ðPÞ; ð11Þ

its corresponding pressure component,

pde ¼ fðPÞ þ 6β̄H3

�
H

d2

dt2
þ 2ðH2 þ 2 _HÞ d

dt

− 3H3 − 5H _H

�
f0ðPÞ; ð12Þ

the expressions for the dark energy equation of state,

wde ¼
pde

ρde
; ð13Þ

and the effective equation of state associated to the
cosmological model,

weff ¼
pm þ pde

ρm þ ρde
: ð14Þ

Note that in the subsequent calculations we shall omit the
bar in the notation for the β̄ constant parameter, considering
β ≔ β̄. Since the matter sector is decoupled from the
geometrical component, the dark energy sector satisfies a
continuity equation,

_ρde þ 3Hðρde þ pdeÞ ¼ 0; ð15Þ

and the matter constituent satisfies a similar relation,

_ρm þ 3Hðρm þ pmÞ ¼ 0: ð16Þ

Furthermore, let us define the density parameter for the
matter component,

Ωm ¼ ρm
3H2

; ð17Þ

and the corresponding density parameter associated to the
geometrical dark energy component,

Ωde ¼
ρde
3H2

; ð18Þ

yielding the usual constraint,

Ωm þΩde ¼ 1: ð19Þ

III. THE POWER LAW f ðPÞ CUBIC GRAVITY

In this section we shall study the physical features of
the fðPÞ cubic gravity by considering the linear stability
theory, in the case of a power law decomposition
fðPÞ ¼ f0Pα, where f0 and α are constant parameters.
We proceed by introducing the following auxiliary varia-
bles which permits us to close the dynamical system and
approximate the evolution in the first order as an autono-
mous system of ordinary differential equations:

x1 ¼
ρm
3H2

; ð20Þ

x2 ¼
fðPÞ
3H2

; ð21Þ

x3 ¼ 6βH3
d2fðPÞ
dP2

_P ¼ 6βH3αðα − 1Þ fðPÞ
P2

_P; ð22Þ

x4 ¼ 2βH4
dfðPÞ
dP

¼ 2βH4α
fðPÞ
P

: ð23Þ

Furthermore, we consider the transformation of the cos-
mological system from the cosmic time t to N, where N
represents the logarithm of the comic scale factor,
N ¼ logðaÞ. In these variables, the Friedmann constraint
equation has the following form:

x1 ¼ −αx2 þ x2 þ x3 − x4 þ 1; ð24Þ

while the second Friedmann relation, the acceleration
equation can be written as

P̈ ¼ H2Pð−ðα − 1Þx4ð9x1wm þ 3x4 þ 5Þ − ðα − 2Þx23 þ 2ðα − 1Þx4x3 − ðα − 1Þx2ð2αþ 4αx3 þ ð9 − 15αÞx4ÞÞ
9ðα − 1Þ2x24

: ð25Þ
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From the definition of the cubic term P in Eq. (8) we can
write the following relation:

_H ¼ 1

3

�
αx2
x4

− 2

�
: ð26Þ

Moreover, the effective (total) equation of state can be
written as

weff ¼ −
2αx2
9x4

−
5

9
: ð27Þ

The evolution associated to the cosmological model can
be approximated as an autonomous first order system of
differential equations where only three auxiliary variables
are independent (x2, x3, x4),

dx2
dN

¼ x2ð−2ðα − 1Þαx2 þ αx3 þ 4ðα − 1Þx4Þ
3ðα − 1Þx4

; ð28Þ

dx3
dN

¼ 3ðα − 1Þx4℧þ ðα − 2Þx23
3ðα − 1Þx4

þ x3

�
αx2
x4

− 2

�
; ð29Þ

dx4
dN

¼ 1

3
ð4αx2 þ x3 − 8x4Þ; ð30Þ

where

℧ ¼ P̈
H2P

: ð31Þ

Considering the acceleration relation (25) in terms of the
auxiliary variables, we can obtain the final form specific for
the variation of x3,

dx3
dN

¼ 1

3

�
x2

�
15αþ 9ðα − 1Þwm −

αðx3 þ 2Þ
x4

− 9

�

þ 9x4wm − x3ð9wm þ 4Þ − 9wm − 3x4 − 5

�
: ð32Þ

For the power law fðPÞ cubic gravity, where fðPÞ ¼
f0Pα with f0; α constant parameters we have determined
the critical points of the autonomous system by analyzing
the case where the rhs of the Eqs. (28)–(30) are equal to
zero. In this specific case the investigation revealed that we
have two classes of critical points.
The first critical point is located at the following

coordinates:

P1 ¼
�
x2 → 0; x3 → −

8

7
; x4 → −

1

7

�
; ð33Þ

representing a cosmological epoch where the dark energy
component dominates over the matter sector (x1 ¼ 0),
corresponding to an era associated to a constant equation
of state weff ¼ − 5

9
, the geometrical dark energy compo-

nents acts as a quintessence model. From a dynamical point
of view we have obtained the following eigenvalues:

EP1
¼

�
−
7

3
;
4 − 12α

3 − 3α
;−3wm −

5

3

�
: ð34Þ

In this epoch, the validation of the following conditions:

1

3
< α < 1 ∧ wm > −

5

9
; ð35Þ

results in a stable critical point with a quintessential
origin where the dark energy phenomenon appears as a
geometrical consequence. Due to the value of the x2
variable specific to this critical point we have at the limit
3H2 ≫ jfðPÞj. The evolution in the phase space structure
towards the P1 critical point is represented in Fig. 1 for
specific initial conditions which are fine-tuned.
The second critical point denoted as P2 is located at the

coordinates,

P2 ¼
�
x2 →

2

3α − 2
; x3 → 0; x4 →

α

3α − 2

�
; ð36Þ

FIG. 1. The numerical evolution towards the critical points P1 for specific initial conditions corresponding to a stable scenario
(α ¼ 0.5).
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describing a de Sitter cosmological epoch where the dark
energy component dominates in terms of density param-
eters, (x1 ¼ 0). In this case we note that the value of the
constant parameters affects the physical location in the
phase space structure. The effective equation of state
corresponds to a cosmological constant (weff ¼ −1), a
cosmological solution capable of explaining the current
accelerated expansion, a physical effect as a geometrical
consequence. The corresponding eigenvalues have the
following form:

EP2
¼

�
−3wm − 3;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
225α3 − 450α2 þ 257α − 32

p

ð6 − 6αÞ ffiffiffi
α

p

þ 9α

6 − 6α
−

9

6 − 6α
;

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
225α3 − 450α2 þ 257α − 32

p

ð6 − 6αÞ ffiffiffi
α

p

þ 9α

6 − 6α
−

9

6 − 6α

�
: ð37Þ

For this specific critical point the validation of the follow-
ing condition:

�
1

30
ð15 −

ffiffiffiffiffi
97

p
Þ < α <

1

3
∨ 2

3
< α <

1

30
ð

ffiffiffiffiffi
97

p
þ 15Þ

�

∧ wm > −1; ð38Þ

corresponds to a stable solution, displayed in Fig. 2. As in
the previous case, this cosmological solution corresponds
to the domination of the geometrical dark energy compo-
nent. The nature of this epoch is affected by the fðPÞ
function and its first variation with respect to the non-
topological P component. The evolution in the phase
space structure for different initial conditions near the P2

critical point is displayed in Fig. 3, for specific initial
conditions which are fine-tuned. Lastly, we have dis-
played in Fig. 4 the evolution of the effective equation of
state weff towards the critical points P1 and P2 for specific
initial conditions corresponding to a stable scenario in
both cases, validating the previously obtained results in an
analytical manner.

IV. THE EXPONENTIAL f ðPÞ CUBIC GRAVITY

The case of an exponential fðPÞ ¼ f0eαP cubic gravity
is also analyzed, where f0 and α are constant parameters.

FIG. 2. Possible regions where the critical point P2 for the
power law scenario fðPÞ ¼ f0Pα represents a stable cosmologi-
cal solution.

FIG. 3. The numerical evolution towards the critical points P2 for specific initial conditions corresponding to a stable scenario
(α ¼ 0.2).

FIG. 4. The variation of the effective equation of state weff
towards the critical points P1 (left panel) and P2 (right panel) for
specific initial conditions corresponding to a stable scenario.
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As in the previous section, we proceed with the introduc-
tion of the specific auxiliary variables for the corresponding
exponential model,

x1 ¼
ρm
3H2

; ð39Þ

x2 ¼
fðPÞ
3H2

; ð40Þ

x3 ¼ 6βH3
d2fðPÞ
dP2

_P ¼ 6βH3 _Pα2fðPÞ; ð41Þ

x4 ¼ 2βH4
dfðPÞ
dP

¼ 2βH4αfðPÞ; ð42Þ

x5 ¼
dfðPÞ
dP

P
3H2

¼ αfðPÞ P
3H2

: ð43Þ

In terms of auxiliary variables, the first Friedmann equation
(constraint Eq.) becomes

x1 ¼ x2 þ x3 − x4 − x5 þ 1; ð44Þ

reducing the dimensionality of the autonomous system
with one. Furthermore, introducing the specific form of the
auxiliary variables into the second Friedmann equation,
we get

P̈ ¼ −
H2ðx4ð9x1wm þ 9x2 − 15x5 þ 5Þ þ x23 − 2ðx4 − 2x5Þx3 þ 3x24 þ 2x5Þ

9αx24
: ð45Þ

Considering the transformation from the cosmic time t to N, where N ¼ logðaÞ, we can write the evolution of the
cosmological model as an autonomous system of ordinary differential equations,

dx2
dN

¼ x2ðx3 þ 4x4 − 2x5Þ
3x4

; ð46Þ

dx3
dN

¼ −
x24ð3 − 9wmÞ þ x4ð9ðx2 þ x3 − x5 þ 1Þwm þ 9x2 þ 4x3 − 15x5 þ 5Þ þ ðx3 þ 2Þx5

3x4
; ð47Þ

dx4
dN

¼ 1

3
ðx3 − 8x4 þ 4x5Þ; ð48Þ

dx5
dN

¼ x2x3 þ x5ðx3 þ 4x4 − 2x5Þ
3x4

: ð49Þ

Moreover, we can also write the following relation:

_H
H2

¼ ðx5 − 2x4Þ
3x4

; ð50Þ

allowing us to determine the value of the effective equation
of state for the exponential model,

weff ¼ −
2x5
9x4

−
5

9
: ð51Þ

The next step in the linear stability theory consists in
determining the critical points of the autonomous system
(46)–(49) by analyzing the case where the right-hand side
of the corresponding equations is zero. In this analysis, we
have identified three critical points which are subsequently
investigated within the present section.
The first class of critical points represents a cosmological

solution where the auxiliary variables x2 and x5 are related

to x4, corresponding to the first variation of the fðPÞ
function with respect to the P component. The physical
location in the four-dimensional phase space structure can
be written as

A1 ¼ fx2 → 3x4 − 1; x3 → 0; x5 → 2x4g: ð52Þ

These solutions corresponds to a de Sitter epoch where the
total effective equation of state act and describe a cosmo-
logical constant behavior, weff ¼ −1. At this epoch we
also note the domination of the geometrical dark energy
component in terms of density parameters, x1 ¼ 0. The
eigenvalues of the Jacobian corresponding to this specific
class of cosmological solutions are the following:

EA1
¼

�
0;−3ð1þ wmÞ;�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
297x24 − 48x4 þ 8

p
6x4

−
3

2

�
;

ð53Þ

describing a nonhyperbolic solution which cannot be stable
due to the behavior of the square root component. Hence,
from a dynamical perspective this class of solutions
represents a saddle epoch.
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The next critical point A2 is located at the following
coordinates:

A2 ¼
�
x2 → 0; x3 → −

8

7
; x4 → −

1

7
; x5 → 0

�
; ð54Þ

describing an epoch characterized by the domination of the
geometrical dark energy component in terms of density
parameters (x1 ¼ 0), having a constant equation of state,

weff ¼ −
5

9
; ð55Þ

which corresponds to a quintessence regime. From a
dynamical point of view we have obtained the following
eigenvalues:

EA2
¼

�
4; 4;−

7

3
;−3wm −

5

3

�
; ð56Þ

describing a cosmological era which has a saddle comport-
ment which does not depend on the value of the α and f0
constant parameters.
The last critical point for the fðPÞ ¼ f0eαP cubic gravity

case where f0 and α are constant parameters represents also
a de Sitter epoch where

A3 ¼
�
x2 → 0; x3 → 0; x4 →

1

3
; x5 →

2

3

�
; ð57Þ

a solution dominated by the non–negligible value of the
x4 and x5 variables, embedding physical effects form the
specific variation of the geometrical extension in the cubic
order. This specific case corresponds to a de Sitter regime
(weff ¼ −1) determined by the domination of the geomet-
rical dark energy component (x1 ¼ 0). The eigenvalues of

the Jacobian specific for this type of solutions are the
following:

EA3
¼ f−4; 1; 0;−3ðwm þ 1Þg: ð58Þ

Hence the cosmological solution has a saddle dynamical
behavior and can explain the current acceleration of the
known Universe near the de Sitter regime. The evolution
near the A3 critical point for the exponential fðPÞ ¼ f0eαP

cubic gravity have been displayed in Fig. 5 by fine-tuning
the initial conditions in the dynamical basin. The analysis
presented in this section for the exponential fðPÞ cubic
gravity have shown that the resulting dynamics can exhibit
the Universe’s acceleration as the specific physical effect, a
consequence of the geometrical coupling in the cubic order.

V. SUMMARY AND CONCLUSIONS

In this paper we have studied a recently proposed
cosmological theory, the extended fðPÞ cubic gravity
which is based on a novel cubic invariant P which
represents a nontopological component leading to second
order equations for the gravitational part in the FLRW
cosmological background. After presenting the modified
Friedmann relations which are obtained by the variation of
the action with respect to the inverse metric gμν, we have
explored the physical features of the latter theory by
adopting the linear stability method. In this case we have
considered two specific models, the exponential type and
the power law form. In the power–law case the adopted
specific functional is described by fðPÞ ¼ f0Pα, with f0
and α constant parameters, while for the exponential case
we have fðPÞ ¼ f0eαP, encoding the geometrical aspects
of the nontopological cubic invariant P. Considering an
approach based on the linear stability theory, we have
introduced the specific auxiliary variables for each of these
models which enables us to approximate the dynamical
model as an autonomous system of ordinary differential
equations, investigating the locations of the critical points
and the corresponding dynamical features encoded into the
eigenvalues.
For these specific models our investigation revealed that

the structure of the phase space is not very complex in
terms of physical or dynamical features. The cosmological
epochs which are associated to the critical points show the
existence of two families of dynamical eras, corresponding
to different cosmological stages. The first stage represents a
de Sitter epoch where the geometrical dark energy com-
ponent mimics a cosmological constant solution, a critical
point which can explain the present accelerated expansion
of the Universe, and the dynamics close to the de Sitter
background. A second stage observed in the analysis is
represented by another epoch where the geometrical dark
energy component has a constant equation of state. In this
epoch, the geometrical dark energy component dominates
in terms of density parameters, having a quintessence

FIG. 5. The evolution near the A3 critical point for the
exponential fðPÞ ¼ f0eαP cubic gravity, where f0 and α are
constant parameters. Different specific initial conditions have
been fine-tuned.
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behavior. In the power law case, the structure of the phase
space has three dimensions, associated to the x2, x3, x4
auxiliary variables. The choice of the specific auxiliary
terms has been done in the usual manner, by analyzing and
rewriting the Friedmann constraint equation, introducing
time depending independent variables. For this model we
have presented the critical points and the corresponding
dynamical features in the hyperbolic case, supporting the
results also with specific numerical aspects, revealing some
trajectories in the phase structure.
The second cosmological scenario corresponds to the

exponential type fðPÞ ¼ f0eαP, where the phase space
structure has four independent auxiliary variables, encoded
into x2, x3, x4, x5. In this scenario we have obtained three
classes of critical points, corresponding to different pos-
sible eras for the evolution of the Universe. In this case, we
have obtained two critical points which corresponds to a de
Sitter evolution, while the last class corresponds to an
epoch characterized by a constant equation of state where
the geometrical dark energy acts as a quintessence model.
For each critical point obtained we have determined the
corresponding eigenvalues which encode the dynamical
effects. Hence, in the structure of the phase space the
quintessential epoch represents a saddle dynamical behav-
ior, while one of the remaining critical points which

corresponds to a de Sitter evolution is also saddle. The
remaining de Sitter epoch is a critical point which is
nonhyperbolic due to the presence of one zero eigenvalue,
analyzed only in the saddle context due to the limitations
associated to the linear stability theory.
For each family of cosmological scenarios investigated,

the power–law case and the exponential type, the current
analysis revealed that in the phase space structure the
cosmological solutions can describe the evolution of the
Universe at the background level near the cosmological
constant boundary, explaining the accelerated expansion
as a fundamental dynamical effect. The existence of these
cosmological solutions which can explain the accelerated
expansion can solve the dark energy problem as a geomet-
rical effect from the coupling to a nontopological cubic
invariantP in the context of the extended fðPÞ cubic gravity.
We can finally note that this gravity type can represent a
possible viable theory of gravitation which should be further
investigated by adopting various viable approaches.
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