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We analyze the dynamics of a Taub cosmological model in the presence of a massless minimally coupled
scalar field and a cosmological constant, in the limit when both the universe volume and the scalar field live
in a quasiclassical approximation. In other words, we study the dynamics of a quantum small anisotropy
evolving on a de Sitter background and in the presence of a kinetic term of the inflaton field. We
demonstrate that the quantum anisotropy exponentially decays during the universe expansion, approaching
a finite and small value. This result suggests that the quantum isotropization of the universe during a de
Sitter phase is much weaker than the corresponding classical evolution, favoring the survival of certain
degree of anisotropy to the de Sitter phase. Finally we analyze the case when also the scalar field is
considered as quantum variable, by showing how its variance naturally spreads because of no potential term
significantly affects its dynamics. This behavior results to be different from the anisotropy which is
subjected to the potential coming out from the spatial curvature.
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I. INTRODUCTION

One of the most interesting open questions in theoretical
cosmology concerns how a primordial quantum universe
(whose cosmological singularity is intended regularized by
a cutoff effect into a big bounce [1]) reaches a classical
isotropic limit [2]. The reason to hypothesize, near the
singularity, a very general morphology of the universe,
relies on the request to address the quantum cosmological
problem on a general ground, at least within the framework
of the Bianchi homogeneous models [3] (we recall that the
Bianchi types VIII and IX are prototype for the generic
inhomogeneous cosmological problem) [4–6]. In fact, the
isotropic Robertson-Walker model is highly symmetric and
it does not contain real gravitational degrees of freedom
(actually in cosmology, the two gravitational degrees of
freedom are identified in the anisotropies of space).
Furthermore, the implementation of symmetry restrictions
and the canonical quantization procedure do not commute
in general.
In [7] it was argued that, starting with a generic quantum

inhomogeneous universe, it can reaches a classical limit
only after it has also became essentially isotropic, otherwise
no stable averaged background can emerge.

While the question concerning how the quantum anisot-
ropies can be reduced to small effects is still fully open, in
[8] it was shown how such small anisotropies can be
naturally damped on a quantum level. This conclusion was
mainly based on the features of the basic modes of the
associated quantum dynamics.
Here, we focus our attention to the Taub cosmological

model [9] in order to deepen and complete the
previous study, by analyzing in detail the evolution of
wave packets.
More specifically, we consider a Taub cosmology, in the

presence of a cosmological constant and a free minimally
coupled scalar field (these two last ingredients well mimic
the slow-rolling phase of an inflationary scenario [2,10]).
The analysis of the dynamics is performed in the semi-
classical picture developed in [11] to interpret the
anisotropy wave function. By other words, we consider
the universe volume and the scalar field as quasiclassical
variables while the anisotropy variable contained in the
model is fully quantized. The potential term appearing
in the Taub Hamiltonian is then expanded for small value of
the anisotropy, according to the idea proposed in [11] that
the quantum subsystem must be “small,” for a better
characterization of this hypothesis see also [12]. Validity
of the small anisotropy approximation across the system
dynamics is then ensured by analyzing the time dependence
of the surviving harmonic potential and of the decaying of a
tunneling process probability toward large values of the
anisotropy variable.
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The resulting system is a quantum harmonic oscillator in
the anisotropy variable, having a frequency rapidly increas-
ing with time. The behavior of Gaussian packets is
investigated both via an expansion of the initial condition
in terms of the basic modes of the time-dependent harmonic
oscillator, as well as by an exact Gaussian solution (taken in
the spirit of [13]). Both these studies unambiguously
demonstrate that the variance of the anisotropy rapidly
decreases, reducing to a small but finite nonzero value.
This result suggests that if the slow-rolling phase starts

when the anisotropy of the universe is still a quantum
degree of freedom, under suitable conditions, it would have
chances to survive after the de Sitter phase. Actually, the
present analysis also amends for the conclusion in the
analysis [8]. In fact, by a refined analytical treatment we
demonstrated that the asymptotic limit of the anisotropy
standard deviation, for large universe volume, peaks a small
but not zero value. We also analyzed the classical behavior
of the anisotropy for a comparison for the quantum
analyses, also in this case it decays to a constant value
but differently from the quantum case this value can be
gauged out by a redefinition of the spatial coordinate.
Finally, we consider separately the case when the free

massless scalar field is quantum too, in order to outline that
its behavior is intrinsically different to that one of the
anisotropy. In fact, the scalar field is essentially potential-
free during the slow-rolling phase and we see that its
quantum variance spreads, suggesting that it is not sup-
pressed by the exponential expansion of the universe, but it
remains a pure quantum degree of freedom. It is just such a
behavior that allows the scalar field inhomogeneities (not
addressed here) to be the natural origin of the actual
universe clumpiness, while the scalar curvature acts on
the anisotropy degrees of freedom so that their evolution is
strongly damped.
The paper is structured as follows. In Sec. II we give a

detailed description of the Taub cosmological model,
showing the metric morphology and the associated dynam-
ics. In Sec. III we discuss the WKB approach to a small
quantum subsystem, expressing a necessary condition for a
possible division of the phase-space into a classical and
quantum one. In Sec. IV we derive the basic equations and
solutions to describe the anisotropy dynamical evolution,
showing its behavior during a de Sitter phase. Section V is
devoted to analyze the behavior of probability density of
the anisotropy variable as the universe expands from the
singularity, building a complete wave function and study-
ing the wave packets with a Gaussian Ansatz. In Sec. VI we
show the behavior of the anisotropy considered as a
classical degree of freedom. In Sec. VII we justify the
small oscillation assumption for the considered model. In
Sec. VIII we investigate quantum scalar field fluctu-
ations showing how they can survive to the de Sitter
phase producing seeds. Finally in Sec. IX conclusions
are drawn.

II. THE TAUB MODEL

The Taub cosmological model is an homogeneous
universe. The presence of a different evolution of a scale
factor from the other two makes this model anisotropic. For
this reason, Taub universe is invariant around rotation about
one axis of three-dimensional space.
The line element of the space-time reads as

ds2 ¼ N2ðtÞdt2 − e2αðe2βÞabωaωb; ð1Þ

where ωa ¼ ωa
i dx

i are the left-invariant one-forms. The
variable αðtÞ describes the isotropic expansion of the model
and the gravitational degrees of freedom of the universe are
associated to βþ, the anisotropy. It is determined in the
following traceless symmetric matrix

βab ¼ diagðβþ; βþ;−2βþÞ: ð2Þ

In addition, Taub model is a particular case of Bianchi IX
model once β− ≡ 0. We introduce the cosmological con-
stant Λ because we want to describe the de Sitter phase and
a scalar field ϕ. The behavior of a massless scalar field well
approximates that one of an inflation field during the slow-

rolling dynamics, _ϕ2 ≪ jVðϕÞj, when the potential term is
essentially constant and it provides the cosmological term.
We adopt natural units ℏ ¼ c ¼ 1 apart from where the

classical limit is discussed.
The dynamics of the Taub model is described by the

action I with the Misner variables

I ¼
Z

dtðpα∂thα − NHÞ; ð3Þ

in which NðtÞ > 0 is the lapse function, hα is an unified
notation for minisuperspace variables (i.e., hab and ϕ,
α ¼ 1, 2) and pα the conjugate momenta of hα. The
variation with respect to N generates the scalar constraint
H ¼ 0 which reads as

H ¼ k
3ð8πÞ2 e

−3αð−p2
α þ p2þ þ p2

ϕ þ V þ Λe6αÞ ¼ 0; ð4Þ

in which k ¼ 8πG is the Einstein constant and the potential
V takes the form

V ≡ −
6ð4πÞ4
k2

η3R ¼ 3ð4πÞ4
k2

e4αUðβþÞ ð5Þ
where the spatial scalar of curvature generates Taub
potential term UðβþÞ

UðβþÞ ¼ e−8βþ − 4e−2βþ : ð6Þ

The conjugate momenta expression can be constructed by
the inversion of the relation coming from the first of the
Hamilton equations
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pα ¼ −
6ð4πÞ2
Nk

e3α _α: ð7Þ

Adopting the change of variable aðtÞ as eα, H ¼ 0
becomes

H ¼ k

�
−
p2
a

a
þ p2þ þ p2

ϕ

a3

�
þ aUðβþÞ

4k
þ Λa3

k
¼ 0; ð8Þ

in which pϕ is a constant of motion because of the absence
of a potential term VðϕÞ. The phase space of this system
is six-dimensional with coordinates a, pa, βþ, pþ, ϕ, pϕ.
The dynamical picture is completed by taking into account
the choice N ¼ a3=k which fixes the temporal gauge. The
cosmological singularity appears as a → 0. Far from the
singularity, the cosmological constant term dominates over
the scalar fields kinetic energy and it is necessary for the
development of the inflationary scenario.

III. VILENKIN APPROACH TO THE SMALL
QUANTUM SUBSYSTEM

In quantum cosmology, the wave function of the universe
is a functional defined on the minisuperspace metric
habðxÞ, i.e.,

ψðhabðxÞÞ: ð9Þ

We stress that an external time definition is absent because
of the null scalar constraint H ¼ 0. In this perspective, we
can consider a small quantum subsystem of the semi-
classical universe. Hence, the Hamiltonian reads as

H ¼ H0 þHq: ð10Þ

We also assume that the quantum variables qν with ν ¼
ð1;…; n −mÞ does not effect the dynamics of the
classical ones hα with α ¼ ð1;…; mÞ which is a
Wentzel-Kramers-Brillouin approach and the Born-
Oppenheimer approximation.
The Wheeler-DeWitt equation corresponding from the

action (3) can be written as follows

ð∇2
0 − U0 −HqÞψ ¼ 0; ð11Þ

in which the operator H0 ¼ ∇2
0 −U0ðhÞ represents the

classical Hamiltonian obtained by neglecting the quantum
variables and the respective momenta pν ¼ −i∂=∂qν. To
justify the smallness of the quantum subspace, Vilenkin
[11] imposed the following reasonable assumption

Hqψ

H0ψ
¼ OðℏÞ; ð12Þ

so that

∇2
q ¼ Oðℏ−1Þ: ð13Þ

The necessary condition for a possible division of the
full phase-space into a classical and a quantum subsystem

is that the minisuperspace metric tensor gð0Þab ∼ 1 and
gab ¼ OðℏÞ.
The wave function of the universe can be written as

ψðh; qÞ ¼ ψðhÞχðh; qÞ; ð14Þ

where ψðhÞ ¼ AðhÞeiIðhÞ.
In such a way, Eq. (11) can be decomposed in three

equations in order of ℏ. In the lowest order we obtain the
Hamilton-Jacobi equation for the classical action I and, in
the next order, an equation for the amplitude A which takes
the form of a continuity equation. They respectively are

gabð∇aIÞð∇bIÞ þU ¼ 0 ð15Þ

2∇A · ∇I þ A∇2I ¼ 0: ð16Þ

The equation for the wave function χðh; qÞ of the
quantum subspace at the same order in ℏ of (16) has the
form

2ið∇0IÞ∇0χ ¼ Hqχ; ð17Þ

derived by decoupling it via the adiabatic approximation
expressed by the condition j∂hAðhÞj ≫ j∂hχðh; qÞj. Using
the Hamilton-Jacobi equation, (17) can be rewritten as

i
∂χ
∂τ ¼ Hqχ; ð18Þ

with dτ ¼ NðtÞdt. Hence, the Schrödinger equation we
find for the subsystem in the background defined by hα

allows to define a dynamical evolution for the quantum
subspace. In both follows, the minisuperspace variables
division between hα and qν corresponds to the following:
the volume of the universe and the scalar field are taken as
classical variables, while the anisotropy βþ is regarded as
the quantum one.
The total probability density is defined by the wave

function ψ ¼ AðhÞeiIðhÞχðh; qÞ and corresponds to a con-
served current. It is the product of the classical and the
quantum part

ρðh; q; tÞ ¼ ρ0ðh; tÞjχðq; hðtÞ; tÞj2 ð19Þ
in which ρ0ðh; tÞ ¼ jAðhÞj2 and it is normalized byZ

ρ0dΣ0 ¼ 1; ð20Þ

where dΣ0 is the surface element in the subsystem defined
by hα and χðq; h; tÞ can be normalized by
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Z
jχj2dΩq ¼ 1 ð21Þ

in which dΩq ¼ j det gμνj1=2dnq. This is the standard
interpretation of the wave function for a small subspace
of the universe.

IV. BASIC EQUATIONS AND SOLUTIONS FOR
THE TAUB MODEL

To describe the dynamical evolution of the Taub model,
we need to analyze the three equations derived by Vilenkin
approach. Equation (15) and (16) become

−ð∂αIÞ2 þ ð∂ϕIÞ2 þ Λe6α ¼ 0; ð22Þ

∂αðA2∂αIÞ þ ∂ϕðA2∂ϕIÞ ¼ 0: ð23Þ

It has been used the notation eα to simplify the analytical
integration.
From (22) we construct the classical dynamics, corre-

sponding to the zero order in ℏ. In solving (22), we see that
the implementation of the standard Hamilton-Jacobi
method suggests that ∂ϕI ¼ pϕ ¼ const (this fact reflects
the massless free nature of the scalar field at the zero order
in ℏ) and the solution can be expressed with the ansatz

Iðα;ϕÞ ¼ fðϕÞ þ gðαÞ; ð24Þ

and reads as

Iðα;ϕÞ ¼ pϕϕþ ĨðαÞ; ð25Þ

where

ĨðαÞ ¼∓1

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λe6α þp2

ϕ

q
�pϕ

3
arctanh

2
64

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λe6α þp2

ϕ

q
pϕ

3
75þ c;

ð26Þ

with c integration constant.
From the continuity equation (23) it has been found the

amplitude A by variables separation

Aðα;ϕÞÞ ¼ A1ðαÞA2ðϕÞ: ð27Þ

As a result, a simple solution of this nonlinear equation is

Aðα;ϕÞ ¼ e
− c
6pϕ

arctanh

� ffiffiffiffiffiffiffiffiffiffiffi
Λe6αþp2

ϕ

p
pϕ

�
− c
2pϕ

ϕ

ðΛe6α þ p2
ϕÞ1=4

ð28Þ

with c parameter of the variables separation.

The functions I and A provide a complete characteriza-
tion of the quasiclassical system.

A. Time-dependent harmonic oscillator

To describe the behavior of the anisotropy βþ we now
study Eq. (17), that is a pure Schrödinger-like equation

2i
e3α

Nk

�
_α
∂χ
∂αþ _ϕ

∂χ
∂ϕ

�
¼ Hqχ; ð29Þ

where χ ¼ χðαðtÞ;ϕðtÞ; βþÞ. Hence, using the previously
introduced change of variables eα ¼ a and the fixed
temporal gauge, (29) can be rewritten as

i∂τχ ¼ Hqχ; ð30Þ

in which the quantum Hamiltonian Hq reads as

Hq ¼ −
∂2

∂β2þ þ a4

4k2
UðβþÞ: ð31Þ

We highlight that the variable α increases with the
synchronous time while τ decreases. In this respect,
we have

dα
dτ

¼ −2kpα < 0; ð32Þ

with pα ∼
ffiffiffiffiffiffiffiffiffiffi
Λe6α

p
.1 If we solve (32), we get τ ¼

a−3=ð6k ffiffiffiffi
Λ

p Þ. To show the behavior of τ compared to
the new variable a, we compute

dτ
dt

¼ −
1

2k
ffiffiffiffi
Λ

p
a4

da
dt

: ð33Þ

Moreover, according to the Vilenkin idea of a small
quantum system (see also [12]), we consider the quasi-
isotropic regime jβþj ≪ 1 so that the potential term gets a
quadratic form

UðβþÞ ¼ −3þ 24β2þ; ð34Þ

in which the zero order of the approximate potential,
substituted in WDW (i.e., −3e4α ≡ −3a4) would provide
a contribution to the Hamilton-Jacobi equation (22) and
becomes negligible when the cosmological constant domi-
nates. Instead for the Eq. (30) we get

1In (22), p2
ϕ can be neglected for high values of α. We stress

that, since we are considering an expanding universe in the
adopted time variable we must take the positive square root when
solving the α dependence.
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i∂τχ ¼
�
−

∂2

∂β2þ þ ω2ðτÞβ2þ
�
χ; ð35Þ

in which the frequency term is ω2ðτÞ ¼ 6τ−4=3=k̃2,
and k̃2 ¼ k2ð6k ffiffiffiffi

Λ
p Þ4=3.

Harmonic oscillator quantum theory with time depen-
dent frequency is known and the solution to (30) can
be obtained analytically by using the exact invariant
method and some transformations [14–16]. An exact in-
variant JðτÞ is a constant of motion (namely J0 ≡ dJ=dτ ¼
∂τJ − i½J; Ĥq� ¼ 0Þ, is Hermitian and for the Hamiltonian
Hq it explicitly reads

Jþ ¼ 1

2
ðρ−2βþ þ ðρpþ − _ρβþÞ2Þ; ð36Þ

in which ρ ¼ ρðτÞ is the function satisfying the auxiliary
differential equation

ρ̈þ ω2ρ − ρ−3 ¼ 0: ð37Þ

The solution is connected to the J-eigenfunctions ψn by
the relation χnðβþ; τÞ ¼ eiαnðτÞψnðβþ; τÞ but the general one
is a linear combination χðβþ; τÞ ¼

P
n cnχnðβþ; τÞ, in

which cn are real or complex coefficients that weight the
different wave functions. χn reads as

χnðβþ; τÞ ¼
eiαnðτÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π

p
n!2nρ

p hn

�
βþ
ρ

�
e
½ i
2
ð_ρρþi 1

ρ2
Þβ2þ�: ð38Þ

In (38) hn are Hermite polynomials and the phase αðτÞ is
given by

αn ¼ −
�
nþ 1

2

�Z
dτ

ρ2ðτÞ : ð39Þ

The nontrivial step in this construction is to obtain an
analytical solution of the auxiliary equation for ρ.
In this respect, we make use of the method in [14]. In

fact, by writing the most general such invariant in
terms of two independent and linearly solutions [i.e.,
hðτÞ and rðτÞ] of

d2q
dτ2

þ ω2ðτÞq ¼ 0; ð40Þ

which gives the motion in a straight line of a harmonic
oscillator, it is possible to write the general solution of the
non linear equation for ρ

ρ ¼ ðWÞ−1ðA2r2 þ B2h2 þ 2ðA2B2 − ðWÞ2Þ1=2hrÞ1=2;
ð41Þ

where A2, B2 are arbitrary real constants.
Hence, we have

hðτÞ ¼
� ffiffiffi

6
p

cos
h
3
ffiffi
6

p
τ1=3

k̃

i
þ 18τ1=3 sin

h
3
ffiffi
6

p
τ1=3

k̃

i�
ffiffiffi
6

p
k̃

;

rðτÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2

�
−18τ1=3 cos

h
3
ffiffi
6

p
τ1=3

k̃

i
þ ffiffiffi

6
p

k sin
h
3
ffiffi
6

p
τ1=3

k̃

i�r

8k̃
ð42Þ

and the Wronskian is

W ¼ hr0 − rh0 ¼
81

ffiffi
3
2

q
2k̃3

: ð43Þ

By substituting our results of hðτÞ and rðτÞ, we obtain

ρðτÞ¼ k̃3

324
ffiffiffi
3

p
�
1

k̃2

�
ð9A2þ64B2Þðk̃2þ54τ2=3Þþ

�
−9A2ðk̃2−54τ2=3Þþ64B2ðk̃2−54τ2=3Þ−144

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
24A2B2−

59049

k6

r
k̃τ1=3

�

×cos
�
6

ffiffiffi
6

p
τ1=3

k̃

�
þ6

ffiffiffi
2

p �
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8A2B2−

19683

k̃6

r
k̃2þ

ffiffiffi
3

p
ð−9A2þ64B2Þk̃τ1=3−108

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8A2B2−

19683

k̃6

r
τ2=3

�

×sin

�
6

ffiffiffi
6

p
τ1=3

k̃

���
1=2

: ð44Þ

The above scheme allows us to analyze the evolution of
the wave function once assigned a generic initial condition.

V. ANALYSIS OF THE WAVE PACKETS

In this section, we analyze the evolution of small
quantum subsystem in correspondence to a Gaussian initial

condition for the probability distribution of βþ.
The probability density for a generic expansion takes the
form

jχðβþ; τÞj2 ∝ j
X
n

cnχnðβþ; τÞj2: ð45Þ
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We consider the following initial condition

χiðβþ; τiÞ ¼ De−β
2
þ=2σ

2
i ; ð46Þ

where D is a normalization constant (i.e., D ¼ 1=
ffiffiffiffiffiffiffiffiffi
2πσi

p
).

By doing this, we can calculate cnðτiÞ and their evolution

cn ¼
Z

dβþχnðβþ; τÞχiðβþ; τiÞ: ð47Þ

To build the complete probability distribution we calculate
jχnðβþ; τiÞj2 with n ¼ ð0;…; 35Þ terms of Hermite poly-
nomials. Then, in order to show the time evolution, we
compute the wave function at different values of τ.
We see (Fig. 1) that the profile of the Gaussian

probability density becomes more and more peaked as
the volume of the universe expands during the de Sitter
phase, i.e., as τ → 0. However, the analytical behavior we
fixed for the function ρ suggests that the Gaussian cannot
reach a real delta function as indicated in [8], while it must
emerge a steady small, but finite value of the standard
deviation of the quantum variable βþ

ρðτ → 0Þ ¼
2

ffiffi
2
3

q
81

k̃3 þ 2

3
k̃τ2=3 −

3
ffiffiffi
6

p
τ4=3

k̃
þOðτÞ5=3: ð48Þ

This behavior is also confirmed by the asymptotic study
of an exact Gaussian solution of the time-dependent
Schrödinger equation, we will discuss below. In other
words, the de Sitter exponential expansion of the universe
strongly depresses the quantum universe anisotropy, but a
small relic standard deviation survives also at the end of the
inflation. This a bit surprising result suggests that, as we

shall see below, although the anisotropy can not have the
same nonsuppressed behavior of a scalar field (considered
the source of inhomogeneous fluctuations at the ground of
the structure formation across the universe), a small tensor
degree of freedom can also remain present on a quantum
level, which in the full inhomogeneous scenario could
originate a smaller tensorial component of the primordial
spectrum. Also on a classical level, the universe anisotropy
decays to a constant value, but it has no physical meaning
since it can be reabsorbed into the definition of the 1-forms
of the Taub model, differently from the relic quantum
fluctuating one.
Since it is evident from the harmonic oscillator eigen-

function that the simplest way to locate the universe is a
Gaussian shape, we now search for an exact solution of the
time-dependent Schrödinger equation [13] as

χðβþ; τÞ ¼ NðτÞe−1
2
ΩðτÞβ2þ : ð49Þ

We insert this ansatz in (35) and separating all the terms
with βþ of zero and quadratic order, we get the following
two equations

iN0ðτÞ ¼ 1

2
NðτÞΩðτÞ; ð50Þ

iΩ0ðτÞ ¼ ðΩðτÞÞ2 − ω2ðτÞ: ð51Þ

In addition, we also request a normalized wave function for
any given time and this provides the modulus of the
normalization factor

jχðβþ; τÞj2 ¼ jNj2
Z þ∞

−∞
e−

1
2
ðΩ�þΩÞβ2þdβþ

¼ jNj2
ffiffiffi
π

p
ffiffiffiffiffiffiffiffiffiffiffi
ℜðΩÞp ≡ 1: ð52Þ

It is enough to solve (51) for the inverse Gaussian width,
to get the physically information on the behavior of the
anisotropy.
If we separateΩ in its real and complex part respectively,

i.e., we set Ω ¼ fðτÞ þ igðτÞ, then (51) provides the
following nonlinear system

2g ¼ f0

f
; ð53Þ

g0 ¼ g2 þ ω2 − f2: ð54Þ

These two coupled equations do not admit a simple
analytical solution, but we are interested to the limit
τ → 0 and we can easily construct the asymptotic behavior.
In fact, if we set the condition

FIG. 1. Time evolution of jχðβþ; τÞj2 is highlighted by different
colors. The considered initial time is τi and we show the
difference between the square absolute value of the initial
condition (46) (dashed line) and the solution with Hermite
polynomials (continuous line). The not well defined behavior
by the wavy trend is given by the truncation of the Hermite

polynomials. In the plot we take A ¼ 81
ffiffiffiffiffiffi
3=2

p
2B and B ¼ 1.
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g0 ¼ ω2ðτÞ ¼ c2

τ4=3
⇒ gðτ → 0Þ ≃ −

3c2

τ1=3
; ð55Þ

where c2 ¼ 6=k̃2, then for the real part of Ω from (53) we
get the following asymptotic expression

fðτ → 0Þ ≃ f0e−6c
2τ2=3 ð56Þ

where f0 is an integration constant.
Since the standard deviation σ of the Gaussian proba-

bility distribution is 1=
ffiffiffiffiffiffiffiffiffiffiffi
ℜðΩÞp

, we have

σðτ → 0Þ ≃ 1ffiffiffiffiffi
f0

p e
6
2
c2τ2=3 : ð57Þ

Hence, when the universe expands (i.e., τ ∼ 1=a3

decreases) the standard deviation exponentially decays
(see Fig. 2). However, the salient point is that it has to
approach a constant value. From the point of view of an
exact Gaussian solution, this feature corresponds to the
constant value assumed by the function ρ when τ
approaches zero, as in (48).
This study confirms the idea that, although it is in

principle a small value, the quantum anisotropy approaches
a finite nonzero limit even after a de Sitter phase. By other
words, if the universe anisotropy is small enough to be in a
quantum regime when inflation starts, it is still present in
the late universe.
The nonvanishing behavior of the standard deviation of

βþ, in the limit τ → 0 could seem a natural implication of
the Heisenberg uncertainty principle, since pþ cannot
diverge (actually, in the considered scheme, it must remain
small, see [12]). However, the frequency of the considered
harmonic oscillator is diverging as ω ∼ τ−2=3 when τ → 0.
Thus, ωhβ2þi1=2 can remain small and positive for τ → 0

even in case when the standard deviation approaches zero
(ωhβ2þi1=2 is the right variable to be addressed in compari-
son with a time-independent harmonic oscillator, having a
constant frequency). The request that the addressed quan-
tum subsystem remains “small” in the sense discussed in
[11,12] leads to link the limiting small value of the βþ
standard deviation to the value τf when the de-Sitter phase
ends, i.e., ðτfÞ−2=3 ≪

ffiffiffiffiffi
f0

p
.

VI. CLASSICAL ANISOTROPY BEHAVIOR

To better understand if only the quantum anisotropy will
survive in the late universe, in this section we will analyze
the behavior of the classical one.
To find the explicit expression for βcþðτÞ, it has been

calculated by the Hamilton equation

∂βcþ
∂τ ¼ ∂H

∂pþ
: ð58Þ

As a result

βcþðτÞ ¼ 2kpþτ þ β0; ð59Þ

where the integration constant β0 can be set equal to zero by
redefinition of the space coordinates. In this respect, in the
limit of the expanding universe, differently from its
quantum behavior, it is associated to a vanishing value
after the de Sitter phase.

VII. THE POTENTIAL AS AN ATTRACTOR

As we see from (31), the time-dependent frequency term
is multiplied in the exact Hamiltonian by the Taub
potential. Hence, we get a potential term which changes
its shape with the universe expansion

Uðτ; βþÞ ¼
1

τ4=3
UðβþÞ; ð60Þ

becoming an attractor with a remarkable restoring force.
We obtain an increase in depth and width of the potential
well as time goes to zero. We retained the only large
contribution for βþ → ∞, when

−
1

τ4=3
e−2βþ ≪ 1; ð61Þ

to validate the theory of small oscillations approximation of
the potential.
In term of βþ the condition above reads as

βþ ≫ −
2

3
ln τ: ð62Þ

Since this condition holds for any values of βþ as far as τ
approaches zero, we see that the small oscillation model is a
very reliable paradigm for the present analysis (see Fig. 3).

FIG. 2. Time evolution of jχðβþ; τÞj2 is highlighted by different
colors. The considered initial time is τi. In the plot we take
1ffiffiffiffi
f0

p ¼ 2
ffiffiffiffiffiffi
2=3

p
81

.
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VIII. BEHAVIOR OF THE QUANTUM
SCALAR FIELD

The cosmological classical field, responsible for the
inflation has also small inhomogeneous quantum fluctua-
tions and the generation of density inhomogeneities relies
just in considering such small quantum corrections during
the slow rolling phase as the sources of the perturbations
observed today. Actually, our analysis demonstrated that a
quantum anisotropy degree of freedom would be strongly
damped during the de Sitter phase.
Since the addressed model is intrinsically homogeneous,

we cannot consider here the spatial dependence of the
quantum field, none the less we can study the case in which
also the scalar field is a quantum degree of freedom
and compare its behavior with that one of the anisotropy.
Thus, now the classical Hamiltonian contains only the time
variable a while the quantum subsystem Hamiltonian
reads as

Hq ¼
�
−
� ∂2

∂ϕ2
þ ∂2

∂β2þ
�
þ UðβþÞ

�
ð63Þ

leading to the Schrödinger equation

i∂τχ ¼
�
−

∂2

∂ϕ2
þHAO

q

�
χ; ð64Þ

in which HAO
q refers to (31). To solve (64), we take the

following wave function

χðβþ; τÞ ¼ e−ip
2
ϕτξðβþÞ ð65Þ

in which a phase factor in ϕ is added. It is easy to check that
the function χðβþ; τÞ still satisfies (30). Moving to the
general solution, we get

Ψðβþ;ϕ; τÞ ¼
Z

dpϕ

2π
e−ip

2
ϕτeipϕϕξðβþÞ; ð66Þ

which represents a spreading wave packet in ϕ (times the
wave function of the small anisotropy) due to the absence
of any potential, since during the slow-rolling phase the
universe is on a potential plateau. This can be considered as
a starting point to understand that, by adding the depend-
ence on space, its fluctuations can survive to the de Sitter
phase producing the seeds for structure formation.

IX. CONCLUDING REMARKS

In this paper we analyzed the quasi-isotropization
process of a Taub universe in which the volume is
quasiclassical and exponentially expands during a
de Sitter phase, while the anisotropy degree of freedom
is treated on a pure quantum level. We included into the
dynamics also a massless and a minimally coupled scalar
field, analyzed first as a classical field which contributes
through its energy to the volume dynamics and then on a
quantum level, like the anisotropy variable. This field
mimics here the contribution of the kinetic term of the
inflaton field during a slow-rolling phase, when its potential
energy is well summarized by the cosmological constant
term [2,10].
The main merit of the present analysis consists of a

detailed characterization of the quantum anisotropy
decaying, as an effect of the exponential expansion of
the universe volume, here behaving as an external clock
[11,17]. Actually, we solved a time-dependent Schrödinger
equation for the anisotropy quantum degree of freedom,
analyzing the behavior of Gaussian packets, both as
expanded in the basic problem eigenfunctions, as well as
exact states of the quantum dynamics. We see that the
variance of the anisotropy variable decreases to a finite
small value as the expansion goes by. Hence, a crucial point
is that it survives after the de Sitter phase, differently from
its classical behavior described by pure classical Hamilton
equations and in which the spatial curvature is negligible
with respect to the cosmological constant term.
Furthermore, when we consider the scalar field as a

quantum degree of freedom we see that its variance has a
very different behavior with respect to that one of the
anisotropy. In fact, such a quantity spreads as the expansion
goes by and this reflects the absence of a significant
potential governing its dynamics during the slow-rolling
phase.
Here, we are considering a pure homogeneous field but

its dynamics could be easily extended to the presence of
inhomogeneous quantum corrections and it is clear that just
the nonsuppression of the scalar mode by the exponential
expansion is the reason why it can generate seeds for later
structure formation across the universe.
On the contrary, we identified in the spatial curvature

the ingredient responsible for the anisotropy quantum
suppression. In other words, when the universe can be
characterized by small quantum anisotropies, in the sense
discussed in [11] and in [12], the scalar potential takes

FIG. 3. The 3D graph shows the time evolution of the potential
Uðτ; βþÞ.
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the form of a harmonic oscillator which frequency
increases with time as the universe volume expands.
This potential term is then responsible for the damping
of the anisotropy.
The validity of this picture has to be regarded as viable

on a rather general setting also in the presence of local
inhomogeneities in the universe. This offers an intriguing
paradigm for the emergence of a classical and quasiho-
mogeneous (a part from a relic quantum anisotropy)
universe from a primordial quantum age.

In this respect, a crucial question calls now attention to
be investigated: how the full quantum universe can sponta-
neously evolves to the proposed picture a la Vilenkin, when
its volume is a quasiclassical variable and the anisotropies
are small. An answer to this highly nontrivial question
probably requires us to account for the presence of a
universe radiation component, able to alter the mixmaster
dynamics in such a way that central regions of the
Bianchi IX potential (though also in a local inhomogeneous
scenario) are favored, see [18] and reference therein.
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