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We present a fast implementation of the next-to-leading order (one-loop) redshift-space galaxy power
spectrum by using FFTLog-based methods. Desjacques et al. [J. Cosmol. Astropart. Phys. 12 (2018) 035]
have shown that the one-loop galaxy power spectrum in redshift space can be computed with 28
independent loop integrals with 22 bias parameters. Analytical calculation of the angular part of the loop
integrals leaves the radial part in the form of a spherical Bessel transformation that is ready to be integrated
numerically by using the FFTLog transformation. We find that the original 28 loop integrals can be solved
with a total of 85 unique FFTLog transformations, yet leading to a few orders of magnitude speed up over
traditional multidimensional integration.
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I. INTRODUCTION

The next frontier of precision cosmology is the study of
a large-scale structure (LSS) traced by the distribution of
galaxies with many LSS surveys imminent; for example,
Hobby-Eberly Telescope Dark Energy Experiment
(HETDEX) [1], Dark Energy Spectroscopic Instrument
(DESI) [2], The Subaru Prime Focus Spectrograph (PFS)
[3], Wide Field Infrared Survey Telescope (WFIRST) [4],
The Large Synoptic Survey Telescope (LSST) [5], Spectro-
Photometer for the History of the Universe, Epoch of
Reionization and Ices Explorer (SPHEREx) [6], and Euclid
[7]. By locating billions of galaxies, the main goal of these
surveys is to provide cosmological probes complementary
to the temperature anisotropies and polarization of the
cosmic microwave background (CMB). More specifically,
combining the two will lead to more precise measurements
of cosmological parameters to study, for example, the
properties of dark energy, the sum of neutrino masses,
and the physics of the early Universe.
The increase in the number density of galaxies with these

surveys reduces the statistical uncertainties of measuring
the galaxy power spectrum and calls for more accurate
modeling for extracting more of the cosmological infor-
mation without modeling systematics. Traditional LSS
analysis focuses on the baryon acoustic oscillations
(BAO) feature (e.g. [8,9]), but the constraints on cosmo-
logical parameters can be improved with a full shape (FS)

analysis which is sensitive to all cosmological parameters
[10–12]. This allows for galaxy clustering analysis to
measure more than just geometrical quantities such as
angular diameter distance and the Hubble expansion rate
from BAO, but also probe the linear growth rate through
redshift-space distortions (RSD) [13], the shape of the
primordial power spectrum [14], primordial non-Gaussianity
[15], the equation of state of dark energy [16], and neutrino
mass [17].
To unlock the full potential of the galaxy power

spectrum, that is, to use the FS analysis, accurate modeling
of the nonlinearities in the galaxy power spectrum is
essential. For the high redshift Universe which these
surveys are targeting, there are ample quasilinear regimes
in which nonlinear perturbation theory (PT; see [18] for a
review) accurately models the matter clustering beyond
the linear theory [19,20]. We can, therefore, extend the
cosmological analysis using the power spectrum on these
quasilinear scales, and hence improve the cosmological
constraints from the surveys. The recent studies [12,14,21]
have successfully applied the PT-based analysis for the
BOSS DR12 data, and it will only be more powerful with
high-redshift galaxy surveys.
Modeling the observed galaxy power spectrum must

include two more nonlinearities besides the evolution of the
matter density on quasilinear scales: nonlinear galaxy bias
and nonlinear redshift-space distortion. First, what we
observe in galaxy surveys is some sampling of the galaxy
distribution, which is a biased tracer of the underlying
matter density field [22–24]. Thanks to the complex
gastrophysical nature of the formation and evolution of
galaxies, predicting the galaxy distribution from first
principles is beyond our reach at present. Instead, on
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quasilinear scales, we have created an effective description
of galaxy statistics by means of the perturbative bias
expansion that includes all possible physical quantities
that the galaxy distribution can depend on. A recent review
[25] has presented a complete description of bias by
including all observables that a local observer in the galaxy
can measure, at any given order in PT.
In galaxy redshift surveys we infer the distance to the

galaxies by their observed spectral shift, assuming that it is
solely due to the Hubble flow. The term “redshift space”
refers to the galaxies’ position measured in this way. The
issue is that peculiar velocities also contribute to the
spectral shift and distort the galaxy distribution in redshift
space. Because the peculiar velocity is strongly correlated
with density field, this effect leads to a systematic change in
clustering statistics, so-called RSD. Reference [26] has
established the linear RSD model, and Refs. [27–29], for
example, have presented a perturbative description of
modeling the nonlinear RSD effect.
In addition to the nonlinear galaxy bias and nonlinear

RSD, the line-of-sight directional selection effects can
further distort the observed galaxy power spectrum. As
the name suggests, the selection effect arises because of the
way that we select the sample of galaxies [30,31]. For
example, because of the intrinsic alignment [32–38], gal-
axies orientation with respect to the line-of-sight direction
can be correlated to the large-scale tidal field. If the survey
preferentially selects a particular orientation (face-on or
edge-on) of galaxies, then the observed galaxy power
spectrum can also depend on the line-of-sight directional
projection of the large-scale tidal field [31]. Another example
is for the emission-line selected galaxy samples, where the
radiative transfer effects generate a strong dependence on the
line-of-sight directional velocity flow [30]. The bias review
[25] has also described a general bias expansion that can be
used to take all of the above effects into account at any given
order in perturbation theory, resulting in a description of the
next-to-leading order (NLO) or one-loop power spectrum
and the leading order (LO) or tree-level bispectrum in a
complete bias expansion in [39].
The typical expressions for the observed galaxy power

spectrum in NLO involves the integrals over the three-
dimensional Fourier space, the so-called one-loop contribu-
tion. The naive implementation of these multidimensional
integrals, however, does not meet the requirements for the
data analysis. For example, for the cosmological analysis,
the computation of NLO terms needs to be paired with the
Markov chain Monte Carlo (MCMC) analysis pipeline that
calls the NLO calculation for each set of cosmological
parameters. To get robust constraints on cosmological
parameters, we typically need parameter chains as long as
a few million realizations; that means we need to compute
the NLO power spectra millions of times.
This requirement for the data analysis has motivated the

development of fast calculation algorithms. For example,

the FAST-PT methods developed by [40,41] precalculates
the angular parts of the loop integrals analytically,
leaving the radial parts in terms of spherical Bessel trans-
formations (SBTs). The SBTs can be computed efficiently
by using what is commonly known as FFTLog-based
methods [42–45]. This analysis was extended to higher-
order (two-loop) corrections to the matter power spectrum
in [46,47], and to more complicated integration kernels
in [48]. Recently [12] used a similar technique but for a
biased tracer model similar to the one in this work but
without the selection effects. The authors of Ref. [49] took
a different approach by parametrizing the power spectrum
as a sum of power laws and factoring out the cosmological
dependence so all integrals could be done only once for all
sets of parameters. We follow the same procedure as
Refs. [40,41] and arrive at a model for the power spectrum
of galaxies solely in terms of SBTs, leading to a reduction
of computation time per cosmological model by a factor of
a thousand (from ∼10 min to ∼1 s) compared to the naive
three-dimensional integration using quadrature methods.
The paper is organized as follows. We start with briefly

restating the relevant parts of [39] in Sec. II, followed by
restating a fast method of calculating spherical Bessel trans-
formations in Sec. III. Then in Sec. IV we describe the
transformation of the integrals needed to calculate the NLO
power spectrum into the form of a spherical Bessel trans-
formation and give a complete formulation of the redshift-
space galaxy power spectrum with FFTLog. In Sec. V we
describe various tests of our code to ensure its validity, and
then in Sec. VI we show the response of the NLO power
spectrum to changes in the various bias parameters. We
conclude in Sec. VII. Following that, Appendix A lists some
important coefficient matrices needed to calculate the NLO
power spectrum, and in Appendix B we derive some of the
fast integral expressions used throughout the work. Last, in
Appendix C we give some mathematical identities used
throughout the work, and Appendix D describes our empiric
corrections for selecting the optimal biasing parameter.
Throughout this work we use the following conventions

and shorthand notations:

fðxÞ≡
Z

d3k
ð2πÞ3 fðkÞe

ik·x ≡
Z
k
fðkÞeik·x; ð1Þ

μk;q ¼ k̂ · q̂: ð2Þ

II. FORMALISM: REDSHIFT-SPACE GALAXY
POWER SPECTRUM INCLUDING

SELECTION EFFECTS

A. General bias expansion and the galaxy density
contrast in redshift space

The expression for the one-loop galaxy power spectrum
in redshift space requires the perturbative bias expansion
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[25] up to third order. Here, we summarize the third-order
expression for the observed (redshift-space) galaxy density
contrast as derived in [39], including the line-of-sight
directional selection effects caused by radiative-transfer
effects [30] or tidal alignment [31].
Throughout, we work in comoving coordinates x and the

conformal time variable τ. We denote the matter density
contrast δðx; τÞ, galaxy density contrast (in real space)
δgðx; τÞ, and matter velocity vðx; τÞ. We also define the
scaled matter velocity uðx; τÞ ¼ 1

HðτÞ vðx; τÞ, where H ¼
aH is the Hubble expansion rate. We denote the unit
vector along the line of sight direction as n̂, and the line-of-
sight directional derivative ∂k ≡ n̂i∂i. This gives the
parallel derivative of the scaled line-of-sight velocity
ηðx; τÞ ¼ ∂kukðx; τÞ. We denote the matter power spectrum
Pδδðk; τÞ while we denote the galaxy power spectrum as
Pggðk; τÞ in real space and Pgg;sðk; μ; τÞ in redshift space
with the line-of-sight directional cosine μ ¼ k̂ · n̂.
The key for the general perturbative bias expansion [25]

is to expand the galaxy density contrast δgðx; τÞ in the
following form:

δgðx; τÞ ¼
X
O

½bOðτÞ þ ϵOðx; τÞ�Oðx; τÞ þ ϵðx; τÞ; ð3Þ

where O stands for any operator that contributes to the
formation and evolution of the galaxies, bO is the bias
parameter associated with that operator. Both ϵO and ϵ
stand for stochastic parameters encoding the stochastic
processes on subgrid scales that are uncorrelated with the
operators Oðx; τÞ defined on the large scales where PT is
valid. Note that, although only operators at equal time
explicitly appear in Eq. (3), the expression also includes the
effects of all operators along the galaxies’ world line, that
is, operators at all past times. This is because we can trace
the time evolution of operators at each order on large scales
where the PT-based models operate.
The central idea behind the perturbative bias expansion

in Eq. (3) is to include all local observables. Following
Ref. [25], we construct the local gravitational observables
in PT starting from the quantity combining the matter
density contrast δ and the tidal field Kij as

Π½1�
ij ¼ Kij þ

1

3
δijδ ¼ ∂i∂jΦ; ð4Þ

where Φ is proportional to the gravitational potential ϕ:
ϕðx; τÞ ¼ 4πGa2ðτÞρ̄mðτÞΦðx; τÞ. The superscript ½1� here
means that the leading order term in Π½1� is linear order in
PT. The authors of Ref. [25] have demonstrated that one
can define the higher-order quantities

Π½n�
ij ¼ 1

ðn − 1Þ!
�
ðHfÞ−1 D

Dτ
Π½n−1�

ij − ðn − 1ÞΠ½n−1�
ij

�
; ð5Þ

which, as nth order convective derivatives of Π½1�
ij ¼ ∂i∂jΦ,

capture all local gravitational observables at higher orders.
Here, D=Dτ ¼ ∂τ þ vi∂x;i is the convective derivative
following the peculiar velocity field. The nth order

rank-2 tensors Π½n�
ij , therefore, form our building blocks

for the perturbative bias expansion. Taking every combi-
nation up to third order, we find the following set of
operators

fδ; δ2; δ3; tr½KK� ¼ K2; δK2; K3; Otdg ð6Þ

suffices the description of galaxy clustering to third order,
or NLO in the galaxy power spectrum. Here,

Otd ¼
8

21
Kij

�∂i∂j

∇2
−
1

3
δij

��
δ2 −

3

2
K2

�
ð7Þ

that appears in third order is the lowest order nontrivial
quantity, which cannot be formed by an algebraic combi-
nation of δ and Kij, of galaxy bias expansion. It is,
however, clearly a local observable, as Otd is proportional
to the convective derivative of the tidal field.
In addition to the deterministic bias expansion above, we

also include the stochastic contribution to the galaxy power
spectrum given as

PϵðkÞ ¼ Pf0g
ϵ þ k2Pf2g

ϵ þOðk4Þ; ð8Þ

where the superscript {} denotes the order, or power of k, of
the stochastic terms, and the higher derivative bias terms
that incorporate the feedback from the small-scale dynam-
ics, which is simply b∇2δ∇2δ at third order.
Transferring to redshift space, we need to model

the peculiar velocity field of galaxies. In linear order, the
peculiar velocity field vg of galaxies coincides with the
cosmic matter flow velocity, v, but vg in general can be
different from v because of the dynamical friction or non-
gravitational momentum exchange due to feedback, for
example. We include these effects as the velocity bias,
deviation of galaxy velocity field from the matter velocity
field, with additional higher derivative bias parameters β∇2v
and β∂2kv, as

vg ¼ vþ β∇2v∇2vþ β∂2kv∂2
kvþ εv: ð9Þ

In this notation, we write the line-of-sight directional
velocity divergence as

ηg ¼ ð1 − β∇2vk
2 − β∂2kvk

2μ2Þηþ εη; ð10Þ

where μ ¼ k̂ · n̂. The coordinate transformation between the
real space and the redshift space is
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xs ¼ xþ ukn̂; ð11Þ

and the number of galaxies stays invariant under the
coordinate transformation:

ð1þ δg;sðxsÞÞd3xs ¼ ð1þ δgðxÞÞd3x: ð12Þ

Here, we neglect the terms proportional to 1=r in favor of ∂k
whose contribution dominates on the quasilinear scales
where NLO terms are important. By expressing Eq. (12)
at the redshift-space coordinates, we find the expression for
the galaxy density contrast to third order

δg;s ¼ δJacg þ δdispg ; ð13Þ

δJacg ¼ ð1þ δgÞð1 − ηg þ η2gÞ − η3g − 1; ð14Þ

δdispg ¼−ugk∂kδJacg þ1

2
u2gk∂2

kδ
Jac
g þðugk∂kugkÞ∂kδJacg : ð15Þ

Note that the δJacg terms corresponds to the Jacobian
(∂x=∂xs) of the coordinate mapping to redshift space,
and the δdispg terms correspond to the displacement of the
fields from the real space coordinate x to the observed
redshift coordinate xs.
In order to include the line-of-sight dependent selection

effects, which treat the line of sight n̂ as a preferred
direction, we need to employ additional bias terms con-
structed by combining the local gravitational observables

Π½n�
ij with the line-of-sight directional unit vector n̂,

allowing for combinations such as Πk ¼ Πijn̂in̂j. To third
order in PT, the additional terms are

n
η; δη; ðKKÞk; η2;Π½2�

k ; δΠ½2�
k ; ðKΠ½2�Þk;

ηΠ½2�
k ;Π½3�

k ; ∂2
kδ;∇2η; ∂2

kη
o
: ð16Þ

Note that we count the last three higher-derivative terms as
third order as they are suppressed by a factor of ðk=k⋆Þ2
compared to the respective linear order quantities [25].
Here, k⋆ ≃ 1=R⋆ is the wave number corresponding to the
relevant length scale R⋆ where the high-derivative effect, or
nonlocality, starts to be important. Assuming that the
Lagrangian radius of typical halos R⋆ ∼ 1 Mpc=h sets
the relevant nonlocality scale, we count each power of
k=k⋆ as an extra order in perturbation theory.

B. Redshift-space galaxy power spectrum

Combining all contributions we have discussed in
Sec. II A, we find the expression for the one-loop (adding
LO and NLO) galaxy power spectrum in redshift space as
follows. Following the convention in [39], we organize the
final result in the following way:

Pgg;s
LOþNLOðk; μÞ ¼ Pgg;s

lþhdðk; μÞ þ Pgg;s
22 ðk; μÞ þ 2Pgg;s

13 ðk; μÞ:
ð17Þ

Here, we absorb all of the nonintegral terms into a single
term Pgg;s

lþhdðk; μÞ which contains the LO Kaiser terms, the
stochastic terms, and the higher derivative terms:

Pgg;s
lþhdðk; μÞ ¼ ðb1 − bηfμ2Þ2PLðkÞ þ Pf0g

ϵ þ k2Pf2g
ϵ

þ μ2k2bηP
f2g
ϵεη − 2 ½b1b∇2δ

− μ2fbη ðb∇2δ þ b1β∇2v þ b1β∂2
kv
μ2Þ

þ μ4f2b2η ðβ∇2v þ β∂2kvμ
2Þ� k2PLðkÞ:

ð18Þ

We further divide the rest of the NLO terms as Pgg;s
22 ðk; μÞ

that comes from the multiplication of two second order
quantities, and Pgg;s

13 ðk; μÞ that comes from the multiplica-
tion of linear order quantities and third order quantities.
Including all local and selection observables in Eq. (6) and
Eq. (16), there are 16 deterministic bias parameters to
begin with.
The expression for Pgg;s

22 ðk; μÞ may be written as

Pgg;s
22 ðk; μÞ ¼

X
O;O0∈D2

bObO0IO;O0 ðk; μÞ; ð19Þ

where the summation runs over all second order terms D2

contributing to δg;s in Eq. (13):

D2 ¼
n
δð2Þ; ηð2Þ; δ2; K2; δη; η2; ðKKÞk;Π½2�

k ; uk∂kδ; uk∂kη
o
;

ð20Þ

with associated coefficients for the second order contribu-
tions that we call bO

fbOgD2
¼

n
b1; bη; bδ2 ¼ b2=2; bK2 ; bδη; bη2 ; bðKKÞk ;

bΠ½2�
k
;−b1;−bη

o
: ð21Þ

The superscript () denotes the order of the operator, and no
superscript denotes linear order. The functions IO;O0

are the
two-point correlators of the second-order operators:

hOðkÞO0ðkÞi ¼ ð2πÞ3IO;O0 ðk; μÞδDðkþ k0Þ; ð22Þ

and one can find the explicit formula of IO;O0 ðk; μÞ in terms
of a loop integration over two linear power spectra in
Ref. [39]. Taking all binary combinations of 10 terms in the
second order expansion [Eq. (20)], one might expect that
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we need to compute 55 different IO;O0 ðk; μÞ terms. The
authors of Ref. [39], however, further reduce the number of
integrals and end up finding that

Pgg;s
22 ðk; μÞ ¼

X4
n¼0

X
ðm;pÞ

Anðm;pÞðf; fbOgD2
ÞImpðkÞμ2n;

ð23Þ

with

ImpðkÞ≡ 2

�Z
q

qp−2k6−p

jk − qj4 μm
k̂;q̂
PLðqÞPLðjk − qjÞ

−
δp6

mþ 1

�Z
q
½PLðqÞ�2

��
: ð24Þ

It turns out that 23 combinations of ðm;pÞ pairs suffices for
the calculation of Pgg;s

22 ðk; μÞ.
Note that this form of Pgg;s

22 ðk; μÞ does not suit the
FFTLog-based fast calculation method that we are devel-
oping in this paper, and we develop an alternative expres-
sion using the Hankel transformation in Sec. IV.
The expression for Pgg;s

13 ðk; μÞ takes a similar form:

Pgg;s
13 ðk; μÞ ¼

X
O∈D3

ðb1 − bηfμ2ÞbOfnfðOÞfOðk; μÞPLðkÞ:

ð25Þ

The NLO term Pgg;s
13 ðk; μÞ is constructed from multiplying

third order quantities with the linear order quantities that
are encoded in the ðb1 − bηfμ2Þ term in the expression. The
summation runs over the third order contributions D3,
which are

D3 ¼
n
δð3Þ; ηð3Þ; 2tr½KKð2Þ�; δηð2Þ; 2ηηð2Þ; 2ðKKð2ÞÞk;

Otd; δΠ
½2�
k ; ηΠ½2�

k ; ðΠ½2�KÞk; sk∂kΠ
½2�
k ;

uð2Þk ∂kδ; u
ð2Þ
k ∂kη; uk∂kηð2Þ; uk∂kΠ

½2�
k ;Π½3�

k
o
; ð26Þ

with corresponding coefficients fbOgD3
in the third order

expression of δg;s:

fbOgD3
¼

n
b1; bη; bK2 ; bδη; bη2 ; bðKKÞk ; btd; bδΠ½2�

k
;

b
ηΠ½2�

k
; bðΠ½2�KÞk ;−bΠ½2�

k
;

− b1;−bη;−bη;−bΠ½2�
k
; bΠ½3�

k
þ 2bΠ½2�

k

o
: ð27Þ

Note that the set D3 excludes the third order contributions
coming from the product of three first-order operators. This
is because we absorb their contribution into the coefficients

of Eq. (18) by renormalization (see Appendix C.1 of
Ref. [39] for the details). In addition to the bias parameters,
each velocity-oriented operator inD3 is multiplied with the
linear growth rate f with the power denoted as nfðOÞ in
Eq. (25). This power is the same as the number of velocity
terms (either η or uk) in the operator:

fnfðOÞgD3
¼ f0; 1; 0; 1; 2; 0; 0; 0; 1; 0; 0; 1; 2; 2; 1; 0g;

ð28Þ

in the same order as the previous two sets.
Finally, the function

fOðk; μÞ ¼ ð1; μ2; μ4ÞMðOÞ

2
6666664

I1ðkÞ
I2ðkÞ
I3ðkÞ
I4ðkÞ
I5ðkÞ

3
7777775

ð29Þ

contains the loop integrals InðkÞ, which are (see
Appendix D of [39] for the details)

I1ðkÞ ¼ k2
Z
q

k · q
q2jk − qj2 ð1 − μ2k;qÞPLðqÞ;

I2ðkÞ ¼ k2
Z
q

q2

q2jk − qj2 ð1 − μ2k;qÞPLðqÞ;

I3ðkÞ ¼
Z
q

�
q2

jk − qj2 ð1 − μ2k;qÞ −
2

3

�
PLðqÞ;

I4ðkÞ ¼
Z
q

�ðk̂ · qÞ2
jk − qj2 ð1 − μ2k;qÞ −

2

15

�
PLðqÞ;

I5ðkÞ ¼
Z
q

� ðk̂ · qÞ4
q2jk − qj2 ð1 − μ2k;qÞ −

2

35

�
PLðqÞ: ð30Þ

Here, MðOÞ is the 3 × 5-coefficient matrix defined for
each third-order operator. We present the matrices in
Appendix A.
The main equation, Eq. (17), combined with each

component in Eq. (18), Eq. (23), and Eq. (25) completes
the expression for observed (redshift-space) galaxy power
spectrum to one-loop (LOþ NLO) order. To compute
the one-loop power spectrum, we need to evaluate the
28 [23 for Impðk; μÞ and 5 for InðkÞ] two-dimensional
integrals. The remaining task of this paper is to reduce the
computational burden by reducing them into the one-
dimensional integrals which can be carried out faster by
using the FFTLog-based method [42–45].

III. FFTLOG TRANSFORMATION

The FFTLog-based integration accelerates the compu-
tation speed of the spherical Bessel transformations, SBTs,
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sometimes known as Hankel transformations. For the
implementation of the one-loop power spectrum expres-
sion, we only need the SBTs involving a single Bessel
function:

ξlnðrÞ ¼
Z

∞

0

k2dk
2π2

knjlðkrÞPLðkÞ: ð31Þ

Due to the oscillatory nature of the integrand, mainly
caused by the spherical Bessel functions, these integrals are
often slow to compute with ordinary quadrature methods.
The key observation [42–45] for the fast integration of

Eq. (31) is to perform the integration in the logarithmic
space. That is, defining

k ¼ k0eκ; r ¼ r0eρ ð32Þ

reduces Eq. (31) to a convolution integral in κ and ρ:

ξlnðrÞ ¼
k30e

−ρqðk0r0Þn
2π2

Z
∞

−∞
dκeκð3−qþnÞPLðk0eκÞ

× eqðκþρÞjlðk0r0eκþρÞ; ð33Þ

which can instead be performed as a multiplication in the
Fourier-dual space of κ. Here, we introduce a power law
factor, ðkrÞq, to enhance the performance of the numerical
implementation, more specifically, to reduce the aliasing
effect. This is known as the FFTLog biasing parameter, q,
distinct from the bias expansion discussed in this work. This
factor, which formally leaves the result unchanged, allows
for the input function, PLðkÞ in this case, to be “biased” by
k−q to behave better numerically, while absorbing the
opposing factor kq into the spherical Bessel function. Of
course, the readers should not confuse this biasing factor
with the galaxy bias. Explicitly, we define the one-
dimensional Fourier transform of the biased power spectrum
and the biased spherical Bessel function, respectively, as

ϕqðtÞ ¼
Z

∞

−∞

dκ
2π

eiκteκð3−qÞPðk0eκÞ; ð34Þ

eqðκþρÞjlðk0r0eκþρÞ ¼
Z

∞

−∞

dt
2π

eiðκþρÞtMq
lðtÞ; ð35Þ

where inverting Eq. (35) serves as the definition of Mq
l. We

use Eqs. (34) and (35) to rewrite Eq. (31) as the integration in
the dual (t) space as

ξlnðrÞ ¼
k30e

−ρqðk0r0Þn
2π2

Z
∞

−∞

dt
2π

eiρtϕq−nðtÞMq
lðtÞ: ð36Þ

The Fourier transform of the biased spherical Bessel
function, Mq

lðtÞ, can be defined analytically in terms of
Gamma functions [45]:

Mq
lðtÞ ¼ 2n−1

ffiffiffi
π

p ðk0r0Þit−q
Γ½1

2
ðlþ q − itÞ�

Γ½1
2
ð3þ l − qþ itÞ� : ð37Þ

So calculating ξlnðrÞ amounts to just another Fourier
transform of ϕq−nðtÞMq

lðtÞ using Fast-Fourier Transform
(FFT).
In order to implement the FFTLog-based method, we

need to set three parameters: k0, r0, and q. Following the
discussion in [44], we set k0 and r0 so that k0r0 ≈ 1. The
choice of the biasing parameter q is more subtle. While
Ref. [45] have systematically studied the choice of the
biasing parameter, their prescription of choosing a q value
to make the slopes at the end of the input equal only applies
for calculating transformations of the linear power spec-
trum. On the other hand, calculating the one-loop power
spectrum that we consider here requires the FFTLog
transform of various other types of functions. We therefore
extend the prescription of Ref. [45], primarily by intro-
ducing empirical corrections based on the input function.
We present the extended prescription in Appendix D.
Besides the choice of the biasing parameter, all of our
FFTLog computations use the implementation of [45].

IV. REDSHIFT-SPACE GALAXY POWER
SPECTRUM WITH FFTLOG

In this section, we present the details of our implemen-
tation of the redshift space one-loop power spectrum using
the FFTLog transformation in Sec. III.

A. P22ðkÞ
Although the expression Eq. (23) is compact with only

23 ImpðkÞ integrals, we find it difficult to manipulate
ImpðkÞ integrals into a form suitable for the FFTLog
transformation. To take advantage of the FFTLog trans-
formation, instead, we start from the second order kernel
for the redshift-space density contrast as presented in
Eq. (86) of [39]:
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Z2ðq1; q2Þ ¼
1

2
b2 þ

1

9
bðKKÞk −

1

3
bK2 þ 5

7

�
b1 þ bΠ½2�

k
μ2
�
−
3

7
fbημ2

þ 1

2
ðb1 − fbημ2Þ

k2q1 · q2
q21q

2
2

þ
�
bK2 −

5

7
b1 þ

�
3

7
fbη −

5

7
bΠ½2�

k

�
μ2
� ðq1 · q2Þ2

q21q
2
2

þ
�
bΠ½2�

k
þ bðKKÞk

� ðq1 · q2Þq1zq2z
q21q

2
2

−
1

6

�
3fðbδη þ b1Þ þ 2bðKKÞk

�
q21zq

2
2 þ q21q

2
2z

q21q
2
2

þ f2ðbη2 þ bηÞ
q21zq

2
2z

q21q
2
2

þ ðfkμÞ2
2

q1zq2z
q21q

2
2

þ fkμ
2

�
q1z
q21

�
b1 − fðbη þ 1Þ q

2
2z

q22

�
þ q2z

q22

�
b1 − fðbη þ 1Þ q

2
1z

q21

��
; ð38Þ

where we define qiz ¼ qiμn;qi ¼ qiðn̂ · q̂iÞ. With the kernel Z2, the expression for Pgg;s
22 ðk; μÞ becomes

Pgg;s
22 ðk; μÞ ¼ 2

Z
q
½Z2ðq; k − qÞ�2PLðqÞPLðjk − qjÞ − 2

Z
q
½Z2ðq;−qÞPLðqÞ�2

¼ 2ð2πÞ3
Z
p

Z
q
½Z2ðp; qÞ�2PLðpÞPLðqÞδDðpþ q − kÞ − 2

Z
q
½Z2ðq;−qÞPLðqÞ�2: ð39Þ

Note that we subtract the constant term that renormalizes the shot-noise contribution P0. Next, we expand ½Z2ðp; qÞ�2,
separating the angular dependence in terms of Legendre polynomials for each of the angles in the kernel, n̂ · q̂, n̂ · p̂, and
p̂ · q̂. The expression for Pgg;s

22 ðkÞ then becomes the linear combination

Pgg;s
22 ðk; μÞ ¼ 2

X
abcn1n2

Cn1n2abc ðk; μ; f; bOÞIn1n2
abc ðk; μÞ; ð40Þ

with the coefficients Cn1n2abc and the integral

In1n2
abc ðk; μÞ ¼ ð2πÞ3

Z
q

Z
p
qn1−2pn2−2δDðpþ q − kÞPLðqÞPLðpÞLaðn̂ · q̂ÞLbðn̂ · p̂ÞLcðp̂ · q̂Þ: ð41Þ

The angular integral can be further simplified to yield

In1n2
abc ðk; μÞ ¼ ð2πÞ3ð−1Þaþbþc

X
lr

LlrðμÞð2lr þ 1Þ
�
a b lr

0 0 0

�X
lalb

ilaþlb−lrð2la þ 1Þð2lb þ 1Þ

×

�
a la c

0 0 0

��
b lb c

0 0 0

��
lr la lb

0 0 0

��
a b lr

lb la c

�Z
dr
2π2

r2jlrðkrÞξlan1−2ðrÞξ
lb
n2−2ðrÞ; ð42Þ

with aWigner-3j symbol ða
0
b
0
c
0
Þ, a Wigner-6j symbol fad b

e
c
fg,

and ξlnðrÞ defined in Eq. (31). We present the detailed
derivation of the angular integration in Appendix B.
Note that the Wigner symbols in Eq. (42) dictate that

(A) la þ lb − lr is even which guarantees the integrand is
real, and (B) the values of la, lb, and lr are bounded by
triangle conditions, for example, jlr−laj≤lb≤lrþla,
for any permutation and likewise for every other 3j symbol.
We refer the readers to Ref. [50] for the other properties of
Wigner symbols.
The coefficients Cn1n2abc are too lengthy to list in the paper,

and we present them in the supplementary material [51].
In total there are 51 unique coefficients for the 83
different possible combinations of indices when taking
into account the symmetry of the expression In1n2

abc ¼ In2n1
bac .

Implementation of Eq. (40) along with Eq. (42) requires 98
FFTLog computations.
To reduce the number of FFTLog transformations, we

manipulate Eq. (40) and Eq. (42) such that the FFTLog
(r-integration) operation takes place only at the last step.
That is, for a given combination of knLlðμÞjlrðkrÞ, we
precompute all internal summations in Eq. (40) and
Eq. (42) so that the final expression for the Pgg;s

22 ðk; μÞ
becomes

Pgg;s
22 ðk; μÞ ¼ 2ð2πÞ3

X4
l¼0

L2lðμÞ
X4
n¼0

kn

×
X8
lr¼0

Z
dr
2π2

r2jlrðkrÞMn;l
lr

ðf; bO; rÞ: ð43Þ
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Here, M contains summation over Wigner symbols and
ξlnðrÞ functions and depends on the parameters such as f
and bO. We have also absorbed the renormalization
contributions into M0;l

lr
. Again, the expression for M is

very lengthy, so we present them only in the supplementary
material [51]. The final expression in Eq. (43) reduces the
number of FFTLog transformation down to 73, a signifi-
cant decrease from the earlier method using Eq. (42). For
the numeric calculations in this work, and the code we
provide, therefore, we use this form of Pgg;s

22 ðk; μÞ.

B. P13ðkÞ
To transform the 1–3 integrals in Eq. (25) into the

numerically faster form of Eq. (31) we first factor them into
radial and angular components, then do the angular integral
analytically. This leaves us with just a radial integral which
is in the form of a spherical Bessel transformation and can
be done very quickly with FFTLog. That is, we can directly
transform these integrals, I iðkÞ defined in Eq. (30), with an
identity from Ref. [40],

Z
q

1

jk − qj2 q
nðk̂ · q̂ÞlPLðqÞ ¼

Xl
l0¼0

ð2l0 þ 1Þαll0
Z

∞

0

drrjl0 ðkrÞξl0
n ðrÞ≡

Xl
l0¼0

ð2l0 þ 1Þαll0Pl;n
13 ðkÞ; ð44Þ

with

αll0 ¼
� l!

2ðl−l0Þ=2½ðl−l0Þ=2�!ðlþl0þ1Þ!! if l ≥ l0 and l and l0 are both even or odd:

0 otherwise:
ð45Þ

Applying this identity to the five integrals in Eq. (30)
results in

I1ðkÞ ¼
2k3

5

�
P1;−1

13 ðkÞ − P3;−1
13 ðkÞ

�
;

I2ðkÞ ¼
2k2

3

�
P0;0

13 ðkÞ − P2;0
13 ðkÞ

�
;

I3ðkÞ ¼
2

3

�
P0;2

13 ðkÞ − P2;2
13 ðkÞ

�
;

I4ðkÞ ¼
2

15
P0;2

13 ðkÞ þ
2

21
P2;2

13 ðkÞ −
8

35
P4;2

13 ðkÞ;

I5ðkÞ ¼
2

35
P0;2

13 ðkÞ þ
2

21
P2;2

13 ðkÞ −
32

385
P4;2

13 ðkÞ

−
16

231
P6;2

13 ðkÞ: ð46Þ

Using these identities, we can calculate all of the integrals
required for Pgg;s

13 ðk; μÞ with 16 unique FFTLog transforma-
tions. It is worth noting that we have dropped the renorm-
alization terms present in the original integrals, for example,
in I3ðkÞ, I4ðkÞ, and I5ðkÞ. This is because FFTLog is
immune to the constant (k-independent) contributions which
requires the inclusion of q ¼ 0 (logq ¼ −∞).
The expressions for Pgg;s

22 and Pgg;s
13 have exactly four

overlapping FFTLog transformations, resulting in a final
total of 85 for the entire one-loop power spectrum model in
the general bias expansion. Despite the seemingly large
number of integrals that need to be done, this method is
about a factor of a thousand faster than using those integrals
in Ref. [39], for example, going from ∼10 min to ∼1 s per
power spectrum model on a 3.2 GHz Intel CPU with our
Julia implementation.

C. Multipole expansion

We decompose the line-of-sight angle dependence of
the redshift-space power spectrum by expanding the
μ-dependence into Legendre polynomials.When considering
statistically homogeneous density and velocity fields at a
constant time, the forward-directional velocity field is sta-
tistically indistinguishable from the backward-directional
velocity field; hence, the redshift-space power spectrum in
this case only contains even power in μ. This case must be
contrasted with the real Universe where large-scale structure
evolves along the line-of-sight direction, and such evolution
generates odd multipoles in the redshift-space power spec-
trum. This effect, however, is suppressed by a factor of 1=kr
where r is the distance to the galaxy survey volume [26].
We denote the even-order Legendre multipoles as

Pgg;s
LOþNLOðk; μÞ

¼
X4
l¼0

Pgg;s
LOþNLO;2lðkÞL2lðμÞ

≡X4
l¼0

�
Pgg;s
lþhd;2lðkÞ þ Pgg;s

22;2lðkÞ þ 2Pgg;s
13;2lðkÞ

�
L2lðμÞ;

ð47Þ

where

Pgg;s
X;l ðkÞ ¼

2lþ 1

2

Z
1

−1
dμLlðμÞPgg;s

X ðk; μÞ: ð48Þ

We find the Legendre multipoles for the linear and higher
derivative terms in Eq. (18) as
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Pgg;s
lþhd;0ðkÞ ¼ b21PLðkÞ −

2

15
b1PLðkÞ

h
fbηð−5β∇2vk

2 − 3β∂2
kv
k2 þ 5Þ þ 15b∇2δk

2
i

−
1

35
f2PLðkÞb2η

h
14β∇2vk

2 þ 10β∂2
kv
k2 − 7

i
þ 1

3
k2bη

h
2b∇2δfPLðkÞ þ Pf2g

ϵεη

i
þ k2Pf2g

ϵ þ Pf0g
ϵ ;

Pgg;s
lþhd;2ðkÞ ¼

2

21
bη

�
2fPLðkÞ ½fbη ð3 − k2ð6β∇2v þ 5β∂2kvÞÞ þ b1 ðk2ð7β∇2v þ 6β∂2kvÞ − 7Þ�

þ 7k2
	
2b∇2δfPLðkÞ þ Pf2g

ϵεη


�
;

Pgg;s
lþhd;4ðkÞ ¼ −

8

385
fPLðkÞbη

h
fbηð22β∇2vk

2 þ 30β∂2kvk
2 − 11Þ − 22b1β∂2kvk

2
i
;

Pgg;s
lþhd;6ðkÞ ¼ −

32

231
β∂2kvf

2k2PLðkÞb2η: ð49Þ

For the 1–3 loop terms we get

Pgg;s
13;lðkÞ ¼

X5
n¼1

C1−3;ln ðf; fbOgD3
ÞInðkÞPLðkÞ; ð50Þ

where C1−3;ln is a coefficient matrix listed in the supple-
mentary material of [39]. The 2-2 loop terms are already in
the proper format for multipole decomposition in Eq. (43).

V. NUMERICAL IMPLEMENTATION

For the nonlinear redshift-space power spectrum, we
have implemented Eq. (18), Eq. (43), and Eq. (25) along
with Eq. (46) in Julia. For the FFTLog transformations, we
use the implementation of the TwoFAST module [45]. Our
Julia module takes the linear power spectrum as an input and
calculates the nonlinear redshift-space power spectrum as a
function of ðk; μÞ for given bias parameters bO as well as
the linear growth rate parameter f ¼ d lnD=d ln a. One can
of course calculate the multipole power spectrum as a
function of wave number k as well.
In this section, we shall compare the outcome of the

implementation with the previous results in literature
[19,20,39,40] to test the numerical stability and accuracy.
For the calculations in this paper we use the following
numeric parameters, 1D grid size N ¼ 16384, kmin ¼
e−25 h/Mpc, kmax ¼ e25 h/Mpc, rmin ¼ e−11 Mpc=h, and
rmax ¼ e−11 Mpc=h. Our choice of FFTLog biasing param-
eter q is done using the procedure detailed in Appendix D.

A. Pδδ
13ðkÞ and Pδδ

22ðkÞ
First, we perform the comparison with Pδδ

22ðkÞ and
Pδδ
13ðkÞ, both of which can be obtained by setting b1 ¼ 1

and all other parameters 0, in Fig. 1. Note that, in our
implementation, Pδδ

13 is given as

Pδδ;I
13 ¼3PLðkÞ

�
2

63
I1ðkÞþ

1

42
I2ðkÞ−

1

18
I3ðkÞ−

1

18
k2σ2v

�
;

ð51Þ

with

σ2v ¼
Z
q

PLðqÞ
q2

: ð52Þ

That is, in order to obtain P13ðkÞ, in addition to the full 1–3
term with setting bO ¼ 0, f ¼ 0, b1 ¼ 1, we need to add
−PLðkÞk2σ2v=6. In Fig. 1, we also plot Pδδ;quad

13 ðkÞ and

Pδδ;quad
22 ðkÞ with the same computation method used in

[19]. As shown there, different calculation methods agree

FIG. 1. In green is our fiducial power spectrum. In blue is our
codes calculation of Pδδ

22ðkÞ, and orange is our calculation of
Pδδ
13ðkÞ. Both of these calculations were done using the methods

described in Sec. V. The dashed red and purple lines are results of
manually integrating equations for Pδδ

22ðkÞ and Pδδ
13ðkÞ. We see

excellent agreement between the two methods, with the FFTLog-
based method being orders of magnitude faster. Note that the
NLO perturbation theory breaks down around 0.2–0.5 h/Mpc
depending on redshift.
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within a subpercent accuracy for all wave numbers that we
plot here.
We have also calculated Pδδ

22ðkÞ and Pδδ
13ðkÞ by using an

alternative FFTLog implementation of [40]:

Pδδ;SVM
13 ðkÞ ¼ PLðkÞ

�
67

189
k2P0;0

13 ðkÞ −
1

3
k4P0;−2

13 ðkÞ

þ 227

315
k3P1;−1

13 ðkÞ − 37

45
kP1;1

13 ðkÞ

−
2

3
k4P2;−2

13 ðkÞ − 46

189
k2P2;0

13 ðkÞ

þ 76

105
k3P3;−1

13 ðkÞ þ 4

15
kP3;1

13 ðkÞ
�
; ð53Þ

Pδδ;SVM
22 ðkÞ ¼ 4π

Z
∞

0

drr2j0ðkrÞ
�
1219

735
ðξ00ðrÞÞ2

þ 1

3
ξ0−2ðrÞξ02ðrÞ −

124

35
ξ1−1ðrÞξ11ðrÞ

þ 1342

1029
ðξ20ðrÞÞ2 þ

2

3
ξ2−2ðrÞξ22ðrÞ

−
16

35
ξ3−1ðrÞξ31ðrÞ þ

64

1715
ðξ40ðrÞÞ2

�
: ð54Þ

In Fig. 2, we plot the residuals between the method
developed in this work with the previously discussed
methods of calculating Pδδ

13 and Pδδ
22 [quadrature and

Eqs. (51) and (54)]. We again find excellent agreement
between all methods, with differences consistently below
0.3% validating our numerical implementation. We also get

an interesting result from expanding our method analyti-
cally for the case of Pδδ

22ðkÞ,

Pδδ
22ðkÞ ¼ 4π

Z
∞

0

drr2j0ðkrÞ
�
80

147
ðξ00ðrÞÞ2 −

800

1029
ðξ20ðrÞÞ2

þ 80

343
ðξ40ðrÞÞ2 þ k2

�
4

7
ðξ3−1ðrÞÞ2 −

4

7
ðξ1−1ðrÞÞ2

�

þ k4
�
1

6
ðξ0−2ðrÞÞ2 þ

1

3
ðξ2−2ðrÞÞ2

��
; ð55Þ

which provides a slightly faster way to compute Pδδ
22, going

from 12 total transformations to 10.

B. Pb2ðkÞ and Pb22ðkÞ
We next consider two other limiting cases of Pgg;s

22 ðkÞ,
Pb2ðkÞ, and Pb22ðkÞ which are defined by considering only
the local-in-matter-density (LIMD) bias expansion of
Pgg;s
22 ðkÞ [20,52]:

PLIMD
22 ðkÞ ¼ b21½Pδδ

22ðkÞ þ b2Pb2ðkÞ þ b22Pb22ðkÞ�; ð56Þ

where the Pb2ðkÞ and Pb22ðkÞ are defined as

Pb2ðkÞ ¼ 2

Z
q
PLðqÞPLðjk − qjÞFðsÞ

2 ðq; k − qÞ ð57Þ

and

Pb22ðkÞ ¼
1

2

Z
q
PLðqÞ½PLðjk − qjÞ − PLðqÞ�: ð58Þ

FIG. 2. Left: The relative residuals of Pδδ
13ðkÞ from this work calculated using three different methods. Pδδ

13 is first calculated using our
full one-loop code with the only bias parameters being b1 ¼ 1, and then we compare it to the three methods described in Sec. VA. First
we compute the integration directly using quadrature, quadosc, and then as additional tests we use the additional expressions from
Eq. (51) and Eq. (53). The errors compared to the quadrature method and Eq. (53) are around 0.001% well within any reasonable
bounds, while the error compared to Eq. (51) is negligible. Right: The relative residuals of Pδδ

22ðkÞ from this work calculated using two
different methods. Pδδ

22 is first calculated using our full one-loop code with the only bias parameter being b1 ¼ 1, and then we compare it
to the two methods described in Sec. VA. First we compute the integration directly using quadrature, and then as an additional test we
use Eq. (54). The error on small scales is consistent with Pδδ

13 at around 0.001% with the large-scale errors, where the loop terms are less
important, reaching 0.3%.
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On the other hand, we can also extract Pb2ðkÞ and Pb22ðkÞ
using our general bias method by solving the system of
linear equations at each wave number k. In Fig. 3, we show
the residuals between the results of the two different
implementations. For all wave numbers for which NLO
contributions are relevant, the differences stays within a
subpercent accuracy.

VI. POWER SPECTRUM RESPONSE

With selection effects, the expression for the nonlinear
order one-loop power spectrum contains 22 bias parame-
ters. The consistent cosmological analysis of the galaxy
power spectrum in redshift space, therefore, must include
these parameters along with the cosmological parameters.
Having a plethora of parameters, the natural question is
whether any of these parameters are strongly degenerate
or not. The answer to this question depends, of course,
sensitively on the survey parameters such as survey
volume, number density, and selection function. We can,
however, glimpse the possible degeneracy between bias
parameters by studying the power spectrum response,
which is defined as

Flðθ; kÞ ¼
1

PLðkÞ
dPgg;s

LOþNLO;lðkÞ
dθ

����
θ¼θf

; ð59Þ

for each parameter θ. Here, θf is the fiducial value listed
in Table I. The response appears in the usual statistical
analysis based on the Fisher information matrix as follows:

Fij ¼
X
l

X
k

wlðkÞ
�

PLðkÞ
Pgg;s
LOþNLO;lðkÞ

�
2

Flðθi; kÞFlðθj; kÞ;

ð60Þ

where

wlðkÞ ∝
Vsurveyk2δk

½1þ 1=ðn̄Pgg;s
LOþNLO;lðkÞÞ�2

ð61Þ

weights each k-mode differently taking into account
the cosmic variance (numerator) and the finite galaxy
density (denominator) effect. Note that wlðkÞ is inversely

FIG. 3. Left: Relative residuals for Pb2 calculated using the full general bias expansion method described in this work, where we use
two different sets of parameters for Eq. (56), compared to manually integrating using Eq. (57). We see a similar trend as in Pδδ

22 with the
error maximizing at large scales, where the loop terms are negligible, but remaining under 2%. Right: Relative residuals for Pb22
calculated using the full general bias expansion method described in this work, where we use two different sets of parameters for
Eq. (56), compared to manually integrating using Eq. (58). We see a similar trend to Pb2 but with generally smaller errors, maxing out
around 0.2%.

TABLE I. The fiducial values of each bias parameter that we
take derivatives about for calculating the response function. The
fiducial values of b1, b2, and bK2 come from Table 6 of [25],
while the fiducial values of bη, bδη, bη2 , bðKKÞk , bΠ½2�

k
, b

δΠ½2�
k
, b

ηΠ½2�
k
,

bðΠ½2�KÞk , bΠ½3�
k
, β∂2kv come from considering no selection effects;

see Eq. (2.30) of [39]. The fiducial higher derivative biases are
simply set to 1 arbitrarily. The fiducial value for btd is set by
Eq. (2.53) of [25]. The fiducial stochastic parameters are set as 0.
Finally the fiducial value of f is set by f ≈ Ω0.55

m [54] with our
fiducial Ωm set by [55].

Fiducial parameters for Figs. 4–8
b1 1.5 bΠ½2�

k
0

b2 −0.69 bΠ½3�
k

0

bη −1 Pf0g
ϵ 0

bK2 −0.14 b∇2δ 1
bδη −1.5 β∇2v 1
bη2 1 β∂2

kv
0

bðKKÞk 0 Pf2g
ϵ 0

btd 0.27 Pf2g
ϵεη 0

b
δΠ½2�

k
0 bðΠ½2�KÞk 0

b
ηΠ½2�

k
0 f 0.53
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proportional to the variance of the power spectrum multi-
poles [53]. That is, we can think of the k-depending
response functions as vectors whose inner product is the
Fisher information matrix as defined above. The parameter

degeneracy happens when the two response functions
behave exactly the same way as a function of k.
In this section, we use our code for calculating

Pgg;s
LOþNLO;l to examine the power spectrum response func-

tion defined in Eq. (59) for each bias parameter and f. For
reference, we show the power spectrum multipoles with the
fiducial parameters shown in Table I in Fig. 4. For l < 6,
the NLO multipole power spectrum is proportional to
PLðkÞ on larger scales, which is our motivation of including
PLðkÞ in the definition of the response in Eq. (59).
In Figs. 5–8, we show the response for the multipole

power spectra PlðkÞ (l ¼ 0, 2, 4, 6, 8). The responses
for themonopole can be seen in Fig. 5.Whilemany of the bias
parameters are distinct, b1, bη, and f are almost perfectly
degenerate on large scales, which is already expected from
the linear theory prediction: Pgg;s

lþhd;0ðkÞ∋ ðb21− 2
3
b1fbηþ

1
5
f2b2ηÞPLðkÞ. On small scales, k≳0.1h=Mpc, however,
the NLO contribution potentially distinguishes f. We also
find that bK2 and bðKKÞk are degenerate on small scales,

FIG. 4. The power spectrum multipoles [Pgg;s
LOþNLOlðkÞ] gen-

erated using the bias values in Table I.

FIG. 5. The response function for the monopole LOþ NLO power spectrum. We neglect a few bias parameters that are described
exactly analytically from Eq. (49). For discussion about the degeneracies between parameters see Sec. VI.

FIG. 6. The response function for the quadrupole LOþ NLO power spectrum. We neglect a few bias parameters that are described
exactly analytically from Eq. (49). For discussion about the degeneracies between parameters see Sec. VI.
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although they behave differently on large scales. In the right
panel, we show that, when just considering themonopole, the
parameters btd, bδΠ½2�

k
, bηΠ½2� , and bðΠ½2�KÞk are also nearly

perfectly degenerate on large scales.
The quadrupole (l ¼ 2) responses are presented in Fig. 6.

Focusing on just the unresolved degeneracies in monopole,
we find that, on small scales (k≳ 0.1h=Mpc), we gain the
ability to distinguish between b1 and bη. The quadrupole
also further breaks the bK2 − bðKKÞk degeneracy on small
scales. With regards to the four parameters with the worst
degeneracy we see some potential for b

ηΠ½2�
k
to be isolated on

small scales, leaving only the three parameters b
δΠ½2�

k
, btd, and

bðΠ½2�KÞk which are degenerate with each other. If we further

include the octopole (l ¼ 4), Fig. 7, then we see that it is
independent of btd, useful for breaking the primary remain-
ing degeneracy, and that bðΠ½2�KÞk could potentially be

determined based on small scales, leaving no strong degen-
eracies between the parameters. While there is some

potential in the l ¼ 6 mode (Fig. 8) to clarify some of
the parameters, given the small signal-to-noise ratio we
anticipate that it does not significantly contribute toward
breaking degeneracies, and similarly for the l ¼ 8 mode
(Fig. 8).
Of course, the discussion in this section is only based on

the shape of the power spectrum response function. We,
however, stress here that the scale and angular dependen-
cies of all bias parameters are quite distinctive, so, when
applied to the high-z galaxy surveys, the NLO power
spectrum has a great potential for exploiting the cosmo-
logical information. In particular, the unique scale and
angular dependencies of the linear growth rate parameter f
may enable us to measure the parameter as it is, instead of
the usual combination of fσ8.

VII. CONCLUSION

In this paper we present a fast method of implementing
the nonlinear galaxy power spectrum in redshift space
including the line-of-sight dependent selection bias that

FIG. 7. The response function for the octopole LOþ NLO power spectrum. We neglect a few bias parameters that are described
exactly analytically from Eq. (49). For discussion about the degeneracies between parameters see Sec. VI.

FIG. 8. Left: The response function for the hexadecapole LOþ NLO power spectrum. We neglect a few bias parameters that are
described exactly analytically from Eq. (49). Right: The response function for the l ¼ 8 LOþ NLO power spectrum. For discussion
about the degeneracies between parameters see Sec. VI.
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arises from, for example, the radiative-transfer effect or
tidal alignment effect.
This work extends the previous fast-integration formal-

ism [40,41] using the FFTLog-based method [42–45]
leading to multiple orders of magnitude speed up while
maintaining accuracy. Including the selection bias param-
eters, however, we have transformed the loop integral to
ensure convergence.
Our implementation allows the computation of the full

NLO power spectrum very quickly, which is essential for
the full-shape power spectrum analysis for the future LSS
surveys, similar to [12]. This is particularly apt as to unlock
the full potential of current and future surveys we need to
take into account all possible biases up to third order to
reduce modeling uncertainty and extract more information
from the smaller scales.
Although there might be some significant partial degen-

eracies among the 22 bias parameters that contribute to the
NLO galaxy power spectrum, we have demonstrated that the
scale and angular dependencies of the response function for
these bias parameters are rather unique. Furthermore, as
discussed in [39], using the leading order or tree-level
bispectrum can help to break many of the degeneracies
present due to the direct dependency on the angles between
the different ki and n̂. Themethods discussed in thiswork and
that of [25] can also be applied to the NLO bispectrumwhich
we are hopeful will break even more of the degeneracies in
these parameters and allow for more precise and unbiased
results from future surveys; we leave this for future work.
As discussed in Ref. [39], for many situations some of the

selection effects can be argued to be negligible on physical
grounds. This of course would greatly improve the cosmo-
logical constraints from the analysis. The selection bias may
not be negligible for all cases, for example, the radiative
transfer effects [30] can be significant for galaxy samples
selected based on emission lines such as HETDEX [1],

WFIRST [4],Euclid [7], andSPHEREx [6]. Theother primary
selection effect is the tidal alignment bias, and although some
work has gone into measuring it for early-type galaxies [37],
many properties of this effect are still unknown.
One caveat is that the general bias expansion, the higher

derivative terms more specifically, introduce an additional
length scale that needs to be examined, the nonlocality
scale of galaxy formation. Any scales smaller than this one
cannot be described by a perturbative approach since all
higher derivative terms become relevant. For dark matter
halos this scale is simply the Lagrangian halo radius, as can
be seen in simulations [56], but for galaxies it is unclear
what the best answer is. If galaxy formation is entirely
controlled by host halos, then they have the same non-
locality scale, but there are many effects that, if they
contribute to galaxy formation, could lead to a larger
nonlocalilty scale. Two significant examples of this are
significant radiation field effects, which could have a scale
as large as the absorption length for these photons [57–59],
and cosmic ray heating of the intergalactic medium [60,61],
which also have large mean free paths.
The Julia implementation for the methods described in

this paper is available at [51].
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APPENDIX A: Pgg;s
13 BIAS COEFFICIENT

MATRICES: MðOÞ
Here we merely state the matrices. For a derivation see

Ref. [39] Appendix F.

MðOtdÞ ¼
1

7

0
BB@

4 −6 2 0 0

0 0 0 0 0

0 0 0 0 0

1
CCA; MðδΠ½2�

k Þ ¼ 1

7

0
BB@

0 0 5 −5 0

0 0 −15 15 0

0 0 0 0 0

1
CCA;

Mðf−1ηΠ½2�
k Þ ¼ 1

7

0
BB@

0 0 − 15
4

15
2

− 15
4

−5 15
2

20 −60 75
2

5 − 15
2

− 65
4

125
2

− 175
4

1
CCA; MððΠ½2�KÞkÞ ¼

1

7

0
BB@

5
4

− 15
8

35
24

− 5
6

0

5
4

− 15
8

− 15
8

5
2

0

0 0 0 0 0

1
CCA;

Mðf−1uð2Þk ∂kδÞ ¼
1

7

0
BB@

0 0 3 −3 0

0 −3 −6 9 0

0 0 0 0 0

1
CCA; Mðf−2uð2Þk ∂kηÞ ¼

1

7

0
BB@

0 0 − 9
4

9
2

− 9
4

− 9
4

27
8

63
8

− 63
2

45
2

15
4

− 21
8

− 39
8

30 − 105
4

1
CCA;
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Mðsk∂kΠ
½2�
k Þ ¼ 1

7

0
BB@

5
4

− 15
8

25
8

− 5
2

0

− 15
4

45
8

− 75
8

15
2

0

0 0 0 0 0

1
CCA; Mðf−1uk∂kΠ

½2�
k Þ ¼ 1

7

0
BB@

0 0 15
4

− 15
2

15
4

15
4

− 45
8

− 225
8

135
2

− 75
2

− 25
4

75
8

225
8

−75 175
4

1
CCA;

MðΠ½3�kÞ ¼ 1

7

0
BB@

13
8

− 39
16

65
16

− 13
4

0

− 101
24

101
16

− 569
48

39
4

0

0 0 0 0 0

1
CCA; Mðδð3ÞÞ ¼ 1

7

0
BB@

2
3

1
2

− 7
6

0 0

0 0 0 0 0

0 0 0 0 0

1
CCA;

Mðf−1ηð3ÞÞ ¼ 1

7

0
BB@

0 0 0 0 0

−2 3
2

1
2

0 0

0 0 0 0 0

1
CCA: ðA1Þ

Note that the above matrix for f−1ηð3Þ has had a typo fixed from Ref. [39], replacing 2 and − 1
2
with −2 and 1

2
, respectively.

We also use

Mð2KKð2ÞÞ ¼ 5

2
MðOtdÞ;

Mðf−1δηð2ÞÞ ¼ −
3

5
MðδΠ½2�

k Þ;

Mðf−1uk∂kηð2ÞÞ ¼ −
3

5
Mðuk∂kΠ

½2�
k Þ;

Mð2f−2ηηð2ÞÞ ¼ −
6

5
MðηΠ½2�

k Þ;
Mð2ðKKð2ÞÞkÞ ¼ 2MððΠ½2�KÞkÞ: ðA2Þ

APPENDIX B: NEW P22 INTEGRALS

Unfortunately the integral forms of Pgg;s
22 ðk; μÞ from [39], when converted into radial integrals, lead to combinations of

divergent integrals that we assume have some canceling divergences but are numerically problematic. To avoid this issue we
need to consider a much earlier version of the form of Pgg;s

22 that looks more like

Pgg;s
22 ðk; μÞ ¼ 2

Z
q
½Z2ðq; k − qÞ�2PLðqÞPLðjk − qjÞ; ðB1Þ

where Z2 is the bias kernel corresponding to all appropriate parameters; for more discussion of the kernel see Sec. IVA.
When considering this form we get integrals such as

ð2πÞ3
Z
q

Z
p
qn1−2pn2−2δDðpþ q − kÞPLðqÞPLðpÞðn̂ · q̂Þaðn̂ · p̂Þbðp̂ · q̂Þc; ðB2Þ

which we can write as Legendre polynomials such as

In1n2
a0b0c0 ¼ ð2πÞ3

Z
q

Z
p
qn1−2pn2−2δDðpþ q − kÞPLðqÞPLðpÞLa0 ðn̂ · q̂ÞLb0 ðn̂ · p̂ÞLc0 ðp̂ · q̂Þ: ðB3Þ

Then expanding the dirac delta into plane waves, Eq. (C1), and decomposing into angular and radial components

In1n2
a0b0c0 ¼ ð2πÞ3

Z
dr
2π2

r2
Z

dq
2π2

q2qn1−2
Z

dp
2π2

p2pn2−2PLðqÞPLðpÞIa0b0c0 ; ðB4Þ
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where

Ia0b0c0 ¼
Z

dΩr

4π

Z
dΩq

4π

Z
dΩp

4π
eiðpþq−kÞ·rLa0 ðn̂ · q̂ÞLb0 ðn̂ · p̂ÞLc0 ðp̂ · q̂Þ; ðB5Þ

is the angular part of the integral. We can write this in spherical harmonic form using Eq. (C3)

Ia0b0c0 ¼
Xa0

ma¼−a0

X
mb

X
mc

Z
dΩr

4π

Z
dΩq

4π

Z
dΩp

4π
e−ik·r

�
4π

2a0 þ 1
Ya0ma

ðq̂ÞY�
a0ma

ðn̂Þeiq·r
�

×

�
4π

2b0 þ 1
Yb0mb

ðp̂ÞY�
b0mb

ðn̂Þeip·r
��

4π

2c0 þ 1
Yc0mc

ðp̂ÞY�
c0mc

ðq̂Þ
�
; ðB6Þ

which we denote

Ia0b0c0 ¼
1

ð2a0 þ 1Þð2b0 þ 1Þð2c0 þ 1ÞAa0b0c0 ðB7Þ

to simplify future notation. We then expand some of the exponentials in A in terms of spherical harmonics using Eq. (C2)
and then factor into separate angular parts to get

Aa0b0c0 ¼ ð4πÞ2
X

mambmc

X∞
la¼0

Xla
mla¼−la

X
lb;mlb

Z
dΩre−ik·rilaþlbY�

lamla
ðr̂ÞY�

lbmlb
ðr̂ÞY�

a0ma
ðn̂ÞY�

b0mb
ðn̂ÞjlaðqrÞjlbðprÞ

×
Z

dΩqYa0ma
ðq̂ÞYlamla

ðq̂ÞY�
c0mc

ðq̂Þ
Z

dΩpYb0mb
ðp̂ÞYlbmlb

ðp̂ÞYc0mc
ðp̂Þ; ðB8Þ

which we can simplify using the Gaunt integral, Eq. (C5), to get

Aa0b0c0 ¼ ð4πÞ2
X

mambmclalbmlamlb

Z
dΩre−ik·rð−1ÞmcilaþlbY�

lamla
ðr̂ÞY�

lbmlb
ðr̂ÞY�

a0ma
ðn̂ÞY�

b0mb
ðn̂Þ

× Gma;mla;−mc
a0lac0

Gmb;mlb;mc
b0lbc0

jlaðqrÞjlbðprÞ: ðB9Þ

Now we decompose the final exponential to get

Aa0b0c0 ¼ ð4πÞ3
X

mambmclalbmlamlb

X∞
lr¼0

Xlr
mr¼−lr

ð−1ÞmcilaþlbjlaðqrÞjlbðprÞGma;mla;−mc
a0lac0

Gmb;mlb;mc
b0lbc0

Y�
a0ma

ðn̂ÞY�
b0mb

ðn̂Þ

× i−lrjlrðkrÞY�
lrmr

ðk̂Þ
Z

dΩrYlrmr
ðr̂ÞY�

lamla
ðr̂ÞY�

lbmlb
ðr̂Þ; ðB10Þ

which simplifies to

Aa0b0c0 ¼ ð4πÞ3
X
lalblr

ilaþlb−lrjla
ðqrÞjlbðprÞjlrðkrÞ

X
mambmr

Y�
a0ma

ðn̂ÞY�
b0mb

ðn̂ÞY�
lrmr

ðk̂Þ

×
X

mcmlamlb

ð−1ÞmcþmlaþmlbGma;mla;−mc
a0lac0

Gmb;mlb;mc
b0lbc0

Gmr;−mla;−mlb
lrlalb

: ðB11Þ

Now we look specifically at the sum over the product of Gaunt integrals. Using Eq. (C7)
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X
mcmlamlb

ð−1ÞmcþmlaþmlbGma;mla;−mc
a0lac0

Gmb;mlb;mc
b0lbc0

Gmr;−mla;−mlb
lrlalb

¼ ð2la þ 1Þð2lb þ 1Þð2c0 þ 1Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2lr þ 1Þð2a0 þ 1Þð2b0 þ 1Þp
ð4πÞ3=2

�
a0 la c0

0 0 0

��
b0 lb c0

0 0 0

��
lr la lb

0 0 0

�

×
X

mcmlamlb

ð−1Þmcþmlaþmlb

�
a0 la c0

ma mla −mc

��
b0 lb c0

mb mlb mc

��
lr la lb

mr −mla −mlb

�

¼ ð2la þ 1Þð2lb þ 1Þð2c0 þ 1Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2lr þ 1Þð2a0 þ 1Þð2b0 þ 1Þp
ð4πÞ3=2

�
a0 la c0

0 0 0

��
b0 lb c0

0 0 0

��
lr la lb

0 0 0

�

× ð−1Þlaþlbþc0
�

a0 b0 lr

lb la c0

��
a0 b0 lr

ma mb mr

�
: ðB12Þ

This gives us

Aa0b0c0 ¼ ð4πÞ3
X
lalblr

ilaþlb−lrjlaðqrÞjlbðprÞjlr
ðkrÞ ð2la þ 1Þð2lb þ 1Þð2c0 þ 1Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2lr þ 1Þð2a0 þ 1Þð2b0 þ 1Þp

ð4πÞ3=2

×

�
a0 la c0

0 0 0

��
b0 lb c0

0 0 0

��
lr la lb

0 0 0

�
ð−1Þlaþlbþc0

�
a0 b0 lr

lb la c0

�

×
X

mambmr

Y�
a0ma

ðn̂ÞY�
b0mb

ðn̂ÞY�
lrmr

ðk̂Þ
�

a0 b0 lr

ma mb mr

�
: ðB13Þ

Now we look at the product of spherical harmonics in A, which we rewrite with Eq. (C6), and the new 3j symbol from the
Gaunt integral sum

X
mambmr

Y�
a0ma

ðn̂ÞY�
b0mb

ðn̂ÞY�
lrmr

ðk̂Þ
�

a0 b0 lr

ma mb mr

�

¼
X

mambmr

ð−1ÞmaþmbYa0−ma
ðn̂ÞYb0−mb

ðn̂ÞY�
lrmr

ðk̂Þ
�

a0 b0 lr

ma mb mr

�

¼
X

mambmr

X
lkmk

G−ma−mb−mk
a0b0lk

Ylkmk
ðn̂ÞY�

lrmr
ðk̂Þ

�
a0 b0 lr

ma mb mr

�

¼
X

mrlkmk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2a0 þ 1Þð2b0 þ 1Þð2lk þ 1Þ

4π

r �
a0 b0 lk

0 0 0

�
Ylkmk

ðn̂ÞY�
lrmr

ðk̂Þð−1Þa0þb0þlk

×
X
mamb

�
a0 b0 lk

ma mb mk

��
a0 b0 lr

ma mb mr

�

¼
X
mr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2a0 þ 1Þð2b0 þ 1Þð2lk þ 1Þ

4π

r �
a0 b0 lk

0 0 0

�
Ylkmk

ðn̂ÞY�
lrmr

ðk̂Þð−1Þa0þb0þlk
δlrlkδmkmr

2lr þ 1

¼ ð−1Þa0þb0þlr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2a0 þ 1Þð2b0 þ 1Þð2lr þ 1Þp
ð4πÞ3=2

�
a0 b0 lr

0 0 0

�X
mr

4π

2lr þ 1
Ylrmr

ðn̂ÞY�
lrmr

ðk̂Þ

¼ ð−1Þa0þb0þlr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2a0 þ 1Þð2b0 þ 1Þð2lr þ 1Þp
ð4πÞ3=2

�
a0 b0 lr

0 0 0

�
LlrðμÞ: ðB14Þ

We now combine everything to get the final form of A
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Aa0b0c0 ¼
X
lalblr

ilaþlb−lrjlaðqrÞjlbðprÞjlrðkrÞð−1Þlaþlbþc0þa0þb0þlr

× ð2la þ 1Þð2lb þ 1Þð2c0 þ 1Þð2lr þ 1Þð2a0 þ 1Þð2b0 þ 1Þ

×

�
a0 la c0

0 0 0

��
b0 lb c0

0 0 0

��
lr la lb

0 0 0

��
a0 b0 lr

0 0 0

��
a0 b0 lr

lb la c0

�
LlrðμÞ; ðB15Þ

which allows us to write out the final expression for I

Ia0b0c0 ¼
X
lalblr

ilaþlb−lrjlaðqrÞjlb
ðprÞjlrðkrÞð−1Þlaþlbþc0þa0þb0þlrð2la þ 1Þð2lb þ 1Þð2lr þ 1Þ

×

�
a0 la c0

0 0 0

��
b0 lb c0

0 0 0

��
lr la lb

0 0 0

��
a0 b0 lr

0 0 0

��
a0 b0 lr

lb la c0

�
LlrðμÞ; ðB16Þ

which we can now plug back into the original integral to arrive at

In1n2
a0b0c0 ¼ ð2πÞ3ð−1Þa0þb0þc0

X
lalblr

ilaþlb−lrð2la þ 1Þð2lb þ 1Þð2lr þ 1Þ

×

�
a0 la c0

0 0 0

��
b0 lb c0

0 0 0

��
lr la lb

0 0 0

��
a0 b0 lr

0 0 0

��
a0 b0 lr

lb la c0

�
LlrðμÞRla;lb;lr

n1;n2 ; ðB17Þ

where

Rla;lb;lr
n1;n2 ¼

Z
dr
2π2

r2ξla
n1−2ξ

lb
n2−2jlr

ðkrÞ: ðB18Þ

Here we have set ð−1Þlaþlbþc0þa0þb0þlr ¼ ð−1Þa0þb0þc0 because the conditions on a Wigner-3j symbol with all m ¼ 0

require that the sum of l’s is even. For the same reason the term ilaþlb−lr is always real.
While this formulation is correct, we find that it needs an exceedingly large number of FFTs and is relatively unstable

numerically. We instead decide to write the above equation in such a way as to minimize the number of total integrals

In1n2
a0b0c ¼ ð2πÞ3ð−1Þa0þb0þc0

X
lr

LlrðμÞð2lr þ 1Þ
�
a0 b0 lr

0 0 0

�
Rn1n2

a0b0c0lr
; ðB19Þ

where

Rn1n2
a0b0c0lr

¼
Z

dr
2π2

r2jlrðkrÞ
X
lalb

ilaþlb−lrð2la þ 1Þð2lb þ 1Þ

×

�
a0 la c0

0 0 0

��
b0 lb c0

0 0 0

��
lr la lb

0 0 0

��
a0 b0 lr

lb la c0

�
ξlan1−2ξ

lb
n2−2: ðB20Þ

This newer form requires many fewer FFTs, around half as many, and so is greatly preferred. This is still not fully
optimized, however, as the multipole form requires even fewer FFTs; see Sec. IVA for the fully optimized form.

APPENDIX C: MATHEMATICAL IDENTITIES

We make use of the following identities, primarily in Appendix B. Most of these expressions come directly from either
[40] Appendix C or [47] Appendix A. The dirac delta expands into plane waves as

δDðqÞ ¼
Z
r
eiq·r: ðC1Þ

To decompose an exponential into spherical harmonics we use
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e�ik·r ¼ 4π
X∞
l¼0

Xl
m¼−l

ð�iÞljlðkrÞYlmðk̂ÞY�
lmðr̂Þ: ðC2Þ

To decompose a Legendre polynomial into spherical
harmonics we use

Llðq̂ · k̂Þ ¼
4π

2lþ 1

Xl
m¼−l

Ylmðq̂ÞY�
lmðk̂Þ: ðC3Þ

The spherical harmonic convention we use is

Y�
lmðk̂Þ ¼ ð−1ÞmYl−mðk̂Þ: ðC4Þ

The Gaunt integral is defined as

Gm1m2m3

l1l2l3
¼

Z
dΩYl1m1

ðk̂ÞYl2m2
ðk̂ÞYl3m3

ðk̂Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2l1 þ 1Þð2l2 þ 1Þð2l3 þ 1Þ

4π

r

×

�
l1 l2 l3
0 0 0

��
l1 l2 l3
m1 m2 m3

�
: ðC5Þ

To combine the product of two spherical harmonics into a
single spherical harmonic we use

Yl1m1
ðk̂ÞYl2m2

ðk̂Þ

¼
Xl1þl2

L¼jl1−l2j
ð−1Þm1þm2Gm1;m2;−m1−m2

l1l2L
YLm1þm2

ðk̂Þ: ðC6Þ

We use the definition of the Wigner-6j symbol from DLMF
[ [62], Eq. (35.5.23)]

ð−1Þl1þl2þl3

�
l1 l2 l3

l1 l2 l3

��
l1 l2 l3

m1 m2 m3

�

¼
X

m0
1
m0

2
m0

3

ð−1Þm0
1
þm0

2
þm0

3

�
l1 l2 l3
m1 m0

2 −m0
3

�

×

�
l1 l2 l3

−m0
1 m2 m0

3

��
l1 l2 l3

m0
1 −m0

2 m3

�
; ðC7Þ

and the orthogonality of the Wigner-3j symbols

X
m1m2

ð2lþ 1Þ
�

l1 l2 l

m1 m2 m

��
l1 l2 l0

m1 m2 m0

�
¼ δll0δmm0 :

ðC8Þ

APPENDIX D: FFTLOG BIASING
PARAMETER SELECTION

In this appendix we discuss our expanded selection
function for the optimal biasing parameter for the FFTLog

algorithm. The general single Bessel function SBT can be
written as

gnlðrÞ ¼
Z

∞

0

k2dk
2π2

knjlðkrÞfðkÞ: ðD1Þ

A crucial part of the FFTLog algorithm is to introduce a
power law biasing, ðkrÞq, with biasing parameter q that
reduces the aliasing effect. Unfortunately there is no
general criterion for selecting this parameter for any input
function. Reference [45] attempts this problem and finds
that for the transformation to be well-defined formally

maxðsmax þ 3þ n;−lþ 0.5Þ < q < minð3þ smin þ n; 2Þ;
ðD2Þ

where smax is the slope of the input function fðkÞ evaluated
at the upper range of input parameter kmax. smin is defined
similarly as the slope of fðkÞ at kmin. These slopes are
defined numerically but for all considered input functions
are generally quite stable. Reference [45] also found the
optimal q value to be

qbest ¼ n −
smin þ smax

2
; ðD3Þ

rounded to be inside the range of formal validity.
Unfortunately this selection criterion is only optimal for

the input functions considered in that work, the linear
power spectrum. In many other applications, including this
work, FFTLog transformations need to be performed on
more complicated input functions. For example the trans-
formations involving Pgg;s

13 ðk; μÞ have input functions such
as ξnlðrÞ=r, and for Pgg;s

22 ðk; μÞ we need to transform linear
combinations of products of ξ functions. These input
functions are more complicated and the qbest found in
previous work is not sufficient.
We first make a change by relaxing one of the constraints

on being formally convergent, allowing q values greater
than 2. This does not pose much of a problem since even if
the integral is not formally convergent it is still well defined
due to analytic continuation. The rest of our corrections use
the original formula as a base and then add empirically
determined corrections based on general properties of the
input function. These empiric corrections are derived by
finding where the derivative of the transformation is close
to zero with respect to q. We note that these corrections
occur after qbest has been rounded to the bounds in
Eq. (D2), neglecting the upper bounds of 2.
The first correction is for an input function that has

different signs at each end of the input values, so if
sgnðfðkminÞÞ ≠ sgnðfðkmaxÞÞ, then if fðkminÞ < 0
q ¼ qbest þ 0.5, and otherwise q ¼ qbest − 0.5.
The next correction is for monotonically decreasing

input functions, defined as smax < 0 and smin < −10−4.
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The smin bound is not exactly 0 to handle some cases
where the function is too flat to need this correction. The
value of this correction depends on what the value of smin is,
if smin > −0.3, then q ¼ qbest − 1.1, and otherwise
q ¼ qbest − 0.4.
An additional correction that we found is for rapidly

decreasing functions, defined as smax < −6.5, and this
imposes the correction q ¼ qbest − 1.
We found that for input functions with large slopes of

different signs, defined as smin > 3.5 and smax < −3.5, the
optimal value is q ¼ qbest þ 3.

The final correction that we use is for functions that are
flat for small values of the input parameter but have a large
negative slope for large values of the input parameter. This
is defined as 0 < smin < 0.5 and smax < −3.5. For this case
we find the optimal choice to be q ¼ qbest − 1.2.
We note that these conditions are not exclusive, and if an

input function satisfies multiple conditions, then both
corrections should apply. For example if a function has
both a large smax and a large smin, so satisfies both the rapid
decrease and both slope large conditions, then the optimal
value would be q ¼ qbest þ 2.
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