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We develop estimators of agreement and disagreement between correlated cosmological data sets. These
account for data correlations when computing the significance of both tensions and excess confirmation
while remaining statistically optimal. We discuss and thoroughly characterize different approaches
commenting on the ones that have the best behavior in practical applications. We complement the
calculation of their statistical distribution within the Gaussian model with one estimator that takes non-
Gaussianities fully into account. To illustrate the use of our techniques, we apply these estimators to
supernovae measurements of the distance-redshift relation, absolutely calibrated by the local distance
ladder. The suite of best estimators that we discuss finds results that are in excellent agreement between
estimators and find no indications of significant internal inconsistencies in this data set above the 1%
probability threshold. This shows the robustness of local determinations of the Hubble constant to features
in the distance-redshift relation.
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I. INTRODUCTION

The remarkable ability of the ΛCDM model to explain a
wide range of observations, such as the spectrum of the
fluctuations in the cosmic microwave background, observa-
tions of gravitational lensing and the clustering of galaxies,
has made it widely accepted as the standard cosmologi-
cal model.
However, despite its successes, as the precision of

different experiments has increased, so too has the stat-
istical significance of discrepancies between their infer-
ences of the ΛCDM model parameters (for a recent review
see [1]). Such discrepancies deserve close attention since
they may hint at the existence of new physical phenomena
or to the presence of residual systematic effects that are not
yet understood.
In parallel with increased experimental precision, cos-

mological data sets have become increasingly complex to
the point that understanding whether different probes agree
or not requires the use of dedicated statistical tools [2–27].
In this paper, we develop concordance and discordance

estimators (CDEs) for data sets that are correlated. This
allows us to study both internal consistency of a data set
and the mutual consistency of different correlated data sets.
In the former case splitting a data set in different parts
naturally leads to correlated data pieces. The latter case,
even though present cosmological measurements are only
weakly correlated, will become increasingly important in

the future as correlations will become more relevant,
reflecting the fact that different experiments will be
measuring different properties of the same underlying sky.
We focus on extending the CDEs introduced for uncor-

related data sets [20] to correlated data sets. In particular,
we discuss estimators quantifying parameter shifts between
two correlated data sets and goodness-of-fit loss when two
data sets are joined together. We analyze these estimators
under the Gaussian linear model (GLM), assuming
Gaussianity of the data and model parameters. We com-
ment on mitigation against non-Gaussianities that is built in
some of them in practical applications.
To complement and check these results we also discuss a

purely Markov chain Monte Carlo (MCMC) approach,
which uses the full distribution of parameters, as inferred
from MCMC samples, to compute the probability of a
parameter shift. This technique fully takes into account
parameter non-Gaussianities and any nonlinear aspect of
the model.
When considering correlated data sets we follow two

different strategies. In the first approach we consider the
two disjoint data sets and build estimators working on their
separate parameter inference though properly including
their correlation. In the second one, we always consider the
joint data set but fit the two parts of the data set with
different cosmological parameters. This approach was also
employed in [28–35]. We call the first strategy the data split
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one while we refer to the second one as the parameter split
strategy. The data and parameter split techniques are
equivalent when data sets are uncorrelated but different
when they are correlated.
Overall we find that the parameter split methodology is

more convenient in practice. All estimators that we con-
sider, in this case, can be easily obtained from the posterior
distribution while the same is not true for the data split
estimators. Moreover the different parameter split estima-
tors should agree if non-Gaussianities are negligible,
providing essential cross-checks of the reported results.
As a demonstration of our methodology we apply these

estimators to the Pantheon type Ia supernova (SN) sample
[36] calibrated with measurements of the Hubble constant
from [37]. We choose to split the SN data into two subsets
at the redshift values of z ¼ 0.3 and z ¼ 0.7, loosely
corresponding, respectively, to the time of dark energy–
dark matter equality and the time at which cosmic accel-
eration begins.
We find that the ΛCDM model provides a good fit to

these data with the exception of the z > 0.7 SN measure-
ments for which the agreement seems to be too good at the
94% confidence level. We also find excellent agreement
between the results of different parameter split estimators,
regardless of mild non-Gaussianities in the SN posterior
that are effectively mitigated. As reported by different
estimators the first SN split at z ¼ 0.3 is in good agreement
with the ΛCDM model while the second split, at z ¼ 0.7,
results in parameters that are too close to each other at about
97% probability. Furthermore, we do not find significant
indications of differences in the estimates of the Hubble
constant between different SN redshift splits indicating that
its direct measurement is robust against split in the SN
catalog and to features in the SN distance-redshift relation.
This paper is organized as follows. In Sec. II we briefly

review the Gaussian linear model. In Sec. III we describe
the SN data set that we employ in this work as an
illustration of our statistical techniques. Section IV includes
a quantification of the importance of SN data correlations
and their impact on cosmological parameters. The proper-
ties and differences of the two approaches that we follow,
data splits and parameter split, are discussed in Sec. V,
before a detailed discussion of the two methodologies
separately in Sec. VI and Sec. VII, respectively. We
summarize our conclusions in Sec. VIII.
Details of our techniques are presented in a series of

Appendices. In Appendix A we discuss the canonical
correlation analysis for quantifying the impact of correla-
tions. In Appendix B we provide a worked pedagogical
example that clarifies the differences between data splits
and parameter split. In Appendices C and D we derive the
exact distributions of the goodness-of-fit loss statistic in the
cases of data and parameter splits, respectively. In
Appendix E, we generalize our discussion of splitting
the data into an arbitrary number of subsets.

II. THE GAUSSIAN LINEAR MODEL

In this section we gather some basic definitions that we
will later use throughout the paper. For an in-depth
discussion of the Gaussian linear model (GLM) we refer
the reader to [20].
We denote the multivariate Gaussian distribution in N

dimensions with mean θ̄ and covariance C as N Nðθ; θ̄; CÞ.
For a given data set, D, described by a model M that
depends on a set of parameters θ, the posterior probability
distribution of the parameters is given by

PðθjD;MÞ ¼ LðθÞΠðθÞ
E

; ð1Þ

where the likelihood is the probability of the data at any
given choice of parameters LðθÞ ¼ PðDjθ;MÞ and any
prior knowledge is encoded in ΠðθÞ. The normalization of
the posterior, E ≡ PðDjMÞ, is the evidence that provides
the probability distribution of the data given the model M.
In this section, we assume that the prior distribution is

Gaussian in the model parameters, ΠðθÞ ¼ N Nðθ; θΠ; CΠÞ,
with mean θΠ and covariance CΠ. As discussed in [20] this
is a good choice to use in practice as it allows us to treat
Gaussian priors on nuisance parameters exactly and models
the most relevant features of informative flat priors: the
scale of the prior and its central value.
We further assume that the likelihood is a Gaussian

distribution in data space, LðθÞ ¼ N dðx;m;ΣÞ and we
denote by d the number of data points x and Σ their
covariance matrix. The mean of the distribution is given by
the model prediction, mðθÞ.
The GLM assumes that one can linearly expand the

model prediction, mðθÞ, around a given parameter point.
Since we are working with Gaussian priors, for simplicity,
in the following we assume that the linear model expansion
point is the prior center θΠ and we can write

mðθÞ ≈mΠ þMðθ − θΠÞ; ð2Þ

where mΠ ≡mðθΠÞ and M≡ ð∂m=∂θÞjθΠ is the Jacobian
of the transformation between parameter and data space.
Given the model prediction mΠ, the residual of a

randomly chosen data point x, henceforth X ≡ x −mΠ,
can be projected onto a component along the linear model,
PX, and another component orthogonal to it, X − PX ¼
ðI − PÞX. The projector can be thought of as a two-step
process. The first step is to construct the linear combina-
tions of data, namely M̃X, that give the parameter esti-
mates: θ − θΠ ¼ M̃X, where M̃ ¼ CMTΣ−1, with

C ¼ hðθ − θΠÞðθ − θΠÞTi ¼ ðMTΣ−1MÞ−1; ð3Þ

as the parameter covariance or inverse Fisher matrix.
Then, as a second step, given the parameter estimates
we transform back into data space using the Jacobian,
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Mðθ − θΠÞ ¼ MM̃X ≡ PX. Thus P≡MM̃ is the full
projector:

P ¼ MCMTΣ−1; ð4Þ

and ðI − PÞ is its complement.
In the GLM the maximum likelihood (ML) is given by

lnLmax ¼ −
1

2
XTðI − PÞTΣ−1ðI − PÞX

−
d
2
lnð2πÞ − 1

2
lnðjΣjÞ; ð5Þ

where we used j · j to denote the determinant of a matrix.
Notice that the first line of Eq. (5) contains all the pieces
that depend on the data while the second one contains
normalization constants that are often neglected. The
parameters corresponding to the maximum likelihood
model are given by

θML ¼ M̃ðx −mΠ þMθΠÞ: ð6Þ

Over realizations of data, the maximum likelihood param-
eters are distributed as N Nðθ; θΠ; CÞ. These expressions
refer to the true maximum likelihood of a model and they
should be obtained without reference to the prior; θΠ
appears here due to the assumption that the prior mean
coincides with the GLM expansion point.
The maximum posterior (MAP) parameters combine the

ML parameters with the prior:

θp ¼ CpðC−1Π θΠ þ C−1θMLÞ; ð7Þ

where C−1p ¼ C−1Π þ C−1. Under the GLM the maximum
posterior parameters are distributed as N ðθ; θΠ; CpÞ.
Within the GLM the probability of the data, i.e., the

evidence, is Gaussian distributed for the Gaussian
priors that we consider and is given by E ¼ N dðx;mðθΠÞ;
ΣþMCΠMTÞ.
We define all the statistics, Q, that we discuss in this

paper to follow the convention that if PðQ > QobsÞ
approaches zero then the observed value lies in the tail
of the distribution that we would associate with a tension; if
it approaches one the observed value would be in the tail
associated with excess confirmation.

III. SN DATA SET AND MODEL

As an example case we study the internal consistency of
the Pantheon type Ia supernovae (SN) sample [36] to
redshift splits under the ΛCDM model.
The Pantheon collaboration provides measurements of

the SN magnitude, corrected for stretch, color, etc., relative
to a fiducial absolute magnitude m −Mfid, with its
covariance ΣSN. Mfid ¼ −19.34 is predetermined by a fit
under the assumption of a Hubble constant ofHfid

0 ¼ 70 for

definiteness (see e.g., [38]).1 Here and throughout H0 is
quoted in units of km s−1Mpc−1, whereas c ¼ 1 in general
formulas. The likelihood is then analytically marginalized
over the true absolute magnitude M when considering the
distance modulus m −M. Hence the reference Pantheon
SN likelihood is not Gaussian in m −M. Some of the
methods that we discuss rely on Gaussianity of the like-
lihood in data space and in addition we wish to explore
compatibility of H0 determinations between subsets of the
data. To achieve this we introduce the SN absolute
magnitude M as an additional model parameter. We take
the SN-based measurements of the Hubble constant in [37],
of HSN

0 ¼ 74.03� 1.42, to infer a measurement of M ¼
M̂� σM as

M̂ ¼ 5log10
HSN

0

Hfid
0

þMfid;

σM ¼ 5

ln 10

σHSN
0

HSN
0

; ð8Þ

that we use as a prior on the additional model parameterM.
The SN data likelihood, as provided by the Pantheon
collaboration, remains a Gaussian distribution,

LSN¼N
�
m−Mfid;5 log

dL
10 pc

þM−Mfid;ΣSN

�
; ð9Þ

but the relationship to the luminosity distance dL comes
through the likelihood for the absolute magnitude data,

LM ¼ N ðM; M̂; σ2MÞ; ð10Þ

such that

L ¼ LSN × LM: ð11Þ

This obviates the need to marginalizeM when considering
cosmological constraints. Note that by inferring LM from
the determination of H0 from [37] rather than directly
calibratingM in the process of Pantheon data reduction, we
force the Pantheon data set as a whole to return the same
mean value forH0 but allow for nontrivial consistency tests
with subsets of the data.
As a function of SN redshift, the flat ΛCDM model for

dL is

dLðzÞ ¼
1þ z
H0

Z
z

0

dz0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωmð1þ z0Þ3 þ 1 −Ωm

p : ð12Þ

1Note that https://github.com/dscolnic/Pantheon providesm −
Mfid whereas https://github.com/cmbant/CosmoMC provides m
from which Mfid can be extracted.
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We place flat priors on the range of the two cosmological
parameters H0 ∈ ½40; 100� and Ωm ∈ ½0; 1�. These control
respectively the amplitude and shape of dLðzÞ.
The Pantheon SN sample covers the redshift range z ∈

½0.01; 2.26� with 1048 SN distance measurements. Given
this many data points it is important to fix the data splits
with a solid a priori criterium to avoid look-elsewhere type
corrections to statistical significance that are hard to
quantify.
We therefore choose two relevant physical times in the

SN redshift range with which to cut the SN sample in two:
(i) zcut ¼ 0.3 approximately the time of dark matter/

dark energy equality;
(ii) zcut ¼ 0.7 approximately the time at which cosmic

acceleration begins.
These two data splits are very different and complementary
in ways that allow us to explore the most common
situations that one might face in practical applications.
The first split has almost equal weight in both parts with
630 SN below z ¼ 0.3 and 418 data points above. The
second split is heavily weighted toward the first part of the
data set, with 924 SN below z ¼ 0.7, compared with 124
SN above z ¼ 0.7.
When analyzing the splits separately, the absolute

magnitude measurement would be applied to each half
separately. When joining the two data splits, we need to
take into account this double counting of data. This is
equivalent to introducing two absolute magnitude mea-
surements that are fully correlated between the splits. As
we shall see, this provides an extreme, albeit trivial,
example of fully correlated data points between data sets
and their impact.
In all the following, cosmological predictions for the

ΛCDM model are obtained with the CAMB [39] code. The
parameter posterior distributions are obtained with Markov
chain Monte Carlo (MCMC) sampling with the CosmoMC

[40] code and their analysis largely relies on the GetDist

code [41].

IV. IMPACT OF CORRELATIONS

The stronger the correlation between two data sets the
more crucial it is to use statistical tools which take these
correlations into account.
We can see in Fig. 1 the impact that data correlations

have on the joint SN posterior. In both panels we show the
full results taking into account all correlated modes, while
we also show the results when we neglect the correlation
between the data sets of the SN split, while keeping the
correlation information within each subset of the split. As
we can clearly notice, the posterior is influenced in two
different ways: the peak of the distribution shifts; also, the
variance changes and looks more constraining when we
neglect correlations, because we are not considering the
part of the information in the two data sets that is redundant.

In multiple dimensions the correlation strength can be
quantified by means of the canonical correlation analysis
(CCA) [42]. CCA allows us to understand the change in
parameter variances as we summarize here and fully discuss
in Appendix A.
The two data splits that we consider have an almost

completely correlated data mode due to the common cali-
bration while the second correlated mode has a correlation
coefficient of approximately ρ12 ¼ 0.5 for both splits.

(a)

(b)

FIG. 1. The joint marginalized posterior of the full Pantheon SN
data set compared to the results obtained neglecting the correlation
between the z > zcut and z < zcut SNmeasurements for the two SN
splits that we consider, in panels (a) and (b) respectively. The filled
contour corresponds to the 68% CL region while the continuous
contour shows the 95% CL region.
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The maximum error that we would make on the
determination of the parameter variance, with respect to
the full joint estimate, if we were to neglect correlations is
discussed in Appendix A and is bounded by

1 − jρ12j ≤
�

σ2J
σ2no corr

�
≤ 1þ jρ12j; ð13Þ

where σ2no corr is the wrong estimate of the variance of one
parameter obtained neglecting correlations, σ2J is the correct
estimate of the variance, accounting for all data correla-
tions, and ρ12 is the maximum correlation coefficient.
In Fig. 1 we can clearly see that neglecting the dupli-

cation of the SN amplitude leads, when joining the two SN
splits, to a false

ffiffiffi
2

p
improvement in the determination of

the Hubble constant. This is because the two determina-
tions from the splits are nearly fully correlated because of
the absolute magnitude calibration that they share. The
second correlated mode is then responsible for the residual
underestimate of the error in the determination of Ωm at
about the 20% level and reflects correlations in the
measurement of SN magnitudes which resemble that
parameter.
We can understand the shift in the posterior in Fig. 1 as a

difference in the SN maximum posterior due to data
correlations. Underlying this difference is the impact of
correlations on the likelihood at a given parameter point. As
discussed in [20] the value of the likelihood at MAP, θ̂p,
can be used as a goodness-of-fit measure to test the
consistency of a data set with the model at hand. The
MAP measure for goodness of fit is then given by

QMAP ≡ −2 lnLðθ̂pÞ þ 2

�
lnLðθ̂pÞ

�
D
þ hQMAPiD; ð14Þ

where the average is over data realizations. For Gaussian
priors QMAP is distributed as a sum of Gamma distributed
variables which can be (conservatively) approximated by a
chi-square distribution of d − Neff degrees of freedom,
QMAP ∼ χ2ðd − NeffÞ, where

Neff ¼ N − tr½C−1Π Cp� ð15Þ

is the number of effective parameters that are being
constrained by the data over the prior, with N being the
total number of model parameters. Notice that there might
be cases where the data covariance matrix is singular. In
these cases one needs to compute the number of data points
as the rank of the covariance, d ¼ rankðΣÞ.
The results of the application of this goodness-of-fit

statistics to the SN data are summarized in Table I. As we
can see the full SN catalog is a reasonably good fit. Notice
that the joint data set contains two fully correlated
measurements of M̂ so that the data covariance is singular
and the number of data points is computed as the rank of the

data covariance. If we were to neglect correlations both the
position of the maximum posterior and the likelihood value
at MAP would change. In the case of the zcut ¼ 0.3 split
these changes are at about 2Δ lnL ¼ 0.2, which corre-
sponds to about half a sigma shift, which we see in the
posterior of Fig. 1(a). We also find that the corresponding
results for the zcut ¼ 0.7 split are smaller. Neglecting
correlations, in both cases, has also the effect of overesti-
mating the number of degrees of freedom of the QMAP
distribution. These would be dSN þ 2 given that the full
correlation between the M̂ measurements is neglected and
the covariance matrix becomes nonsingular. In this case
then, the goodness-of-fit test is mostly insensitive to the
presence of correlations between the two SN splits, given
the small change in the likelihood and the large number of
data points.
We conclude this section by discussing the implications

of the goodness-of-fit values shown in Table I. In the zcut ¼
0.3 case, as with the joint data set, both splits contain
enough SN measurements to measure the two relevant
cosmological parameters. The fit to the data is reasonably
good and does not indicate the presence of tension or
confirmation of high statistical significance. When consid-
ering the split of the data at zcut ¼ 0.7, the vast majority of
the data points falls in the low-redshift subset. This means
that the low-redshift part measures both parameters better
than the prior while the high redshift one starts being
influenced by the prior, as reflected in Neff . The first part of
the data provides a reasonably good fit, while the second
one leans toward the fit being too good at a probability level
that, however, does not exceed 95%.

V. DATA SPLITS AND PARAMETER SPLITS

We can split a correlated data set by taking partitions of
the joint data set, that we denote as DJ, in two pieces that
we indicate withD1 andD2. Hereafter we denote quantities
that refer to the joint data set with J and quantities referring

TABLE I. The results of the application of the QMAP goodness-
of-fit statistics to the SN data sets that we consider. The first
column specifies the data set that is considered, the second one
the value of likelihood at maximum posterior. The third column
shows the number of effective parameters, as in Eq. (15), high-
lighting that one parameter is constrained by the measurement of
the absolute magnitude of SN. The fourth column reports the
number of data points used, highlighting the extra measurement
of the SN absolute calibration. The fifth column shows the
probability to exceed the QMAP goodness-of-fit statistic.

Data −2 lnLMAP Neff d PðQMAP > Qobs
MAPÞ

z < 0.3 633.63 1.95þ 1 630þ 1 43.0%
z > 0.3 388.63 1.96þ 1 418þ 1 82.9%
z < 0.7 926.92 1.99þ 1 924þ 1 44.8%
z > 0.7 99.64 1.49þ 1 124þ 1 93.6%
Joint 1026.86 1.99þ 1 1048þ 1 65.8%
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to the first and second data sets with the subscript 1 and 2
respectively. In Appendix E we discuss the natural gener-
alization to an arbitrary number of splits. We indicate the
joint DJ ¼ D1 ∪ D2 data covariance as

ΣJ ≡
� Σ1 Σ12

Σ21 Σ2

�
; ð16Þ

which is in general not block diagonal. Since the full
covariance has to be symmetric then Σ1 ¼ ΣT

1 , Σ2 ¼ ΣT
2 and

Σ21 ¼ ΣT
12. Notice that Σ1, Σ2 and ΣJ have all to be

symmetric and positive definite.
Within the GLM this data separation projects onto

parameter space through the single and joint Jacobian
matrices that are related by MT

J ¼ ð∂mT
1=∂θ; ∂mT

2=∂θÞ≡
ðMT

1 ;M
T
2 Þ. The GLM estimate of the ML parameters in this

case is given by

θML
aS ¼ CaSMT

aΣ−1
a ðxa −mΠa þMaθΠÞ;

θML
J ¼ CJMT

JΣ−1
J ðxJ −mΠJ þMJθΠÞ; ð17Þ

with a ∈ f1; 2g. Hereafter we denote quantities that are
obtained within the single analysis of the split data sets with
S. The maximum posterior parameters are obtained by
adding on top of these estimates the prior, as in Eq. (7). As
we can see the inference of the parameters for the separate
data splits depends only on the given data set, while their
joint inference is influenced by the complementary set,
through the correlation between the two. For this reason it
is not possible, in presence of data correlations, to recon-
struct the joint ML parameters as a linear combination of
parameter quantities that live in the single parameter space.
We can still, however, compute the covariance between

different data split parameters both at the ML and MAP
level as

covðθML
1S ; θML

2S Þ ¼ C1SMT
1Σ−1

1 Σ12Σ−1
2 M2C2S;

covðθp1S; θp2SÞ ¼ Cp1SC−1Π Cp2S

þ Cp1SMT
1Σ−1

1 Σ12Σ−1
2 M2Cp2S: ð18Þ

Aswe can see these depend on both parameter space and data
space quantities to take into account that the single parameter
covariances do not include correlation contributions.
As an alternative strategy we can think of the split as

originating in parameter space, describing the two parts of
the joint data set with different sets of parameters and
always fitting the joint likelihood. We denote with the
subscriptC quantities that refer to this strategy of parameter
duplication and, for example, we work with a 2N parameter
vector that is defined by θC ≡ ðθ1C; θ2CÞT. Similarly, we
can define the duplicated prior parameter vector by
θΠC ¼ ðθΠ; θΠÞT . One subtlety is that our null hypothesis
is still that the data is drawn from the prior distribution of a

single parameter. We shall see that this difference between
the split analysis and statistical properties of the data causes
minor issues when counting these parameters if they are
partially, but not fully constrained, by the prior.
In the GLM the block structure of the covariance in

Eq. (16) then projects on the two parameter copies with the
Jacobian given by

MC ¼
� ∂m1=∂θ1 O

O ∂m2=∂θ2
�

¼
�
M1 O

O M2

�
: ð19Þ

The maximum likelihood estimate of the copy parameters
is given by Eq. (6) and explicitly reads

θML
C ¼

�
θML
1C

θML
2C

�

¼ CCMT
CΣ−1

J ðxJ −mΠC þMCθΠCÞ; ð20Þ

where we have used the definition of the parameter
copies covariance C−1C ¼ MT

CΣ−1
J MC and we have

defined the duplicate prior center model prediction mΠC ¼
ðmΠ; mΠÞT . The parameter copy ML is then Gaussian
distributed, over the space of data draws, with θML

C ∼
N ðθC; θΠC; CCÞ. The maximum posterior parameters are
obtainedby adding copies of theGaussian priors on topof the
ML result. We write explicitly the block structure of the
parameter copies posterior covariance as

CpC ≡
�

Cp1C Cp12C
Cp21C Cp2C

�
; ð21Þ

which allows us to write the posterior estimate for the first
parameter copy as

θp1C ¼ θML
1C − Cp1CC−1Π ðθML

1C − θΠÞ
− Cp12CC−1Π ðθML

2C − θΠÞ; ð22Þ

and similarly for the second parameter copy.
As we can see the GLM posterior distribution for one of

the parameter copies is related to the parameters of the other
copy in two ways: first indirectly in the ML estimate and
then directly at the MAP level. In particular, at the ML
level, the parameters of one copy are related to the
parameters of the other because of the shared data in
Eq. (20). This is a natural consequence of the parameter
duplication technique: since we always fit the joint data set,
split parameters are influenced by data in both splits
through their correlation.
In the posterior, there is a direct coupling between the

ML and posterior estimators of the copies. In Eq. (22) this
coupling is mediated by Cp12C in the last term. In the limit
where the data is uncorrelated this term would vanish and,
therefore, the sets would not be able to communicate with
each other; we would, therefore, retrieve the expressions in
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[20], which would also be the same as the corresponding
expressions under the data split methodology. With corre-
lated copyparameters, themaximizationof the jointposterior
depends on theMLvalues of each.Contrast thiswith the case
of the separate parameters of the data split. Even though the
ML values are still correlated according to Eq. (18), maxi-
mization of the posterior for each parameter is performed
without reference or knowledge of its complement.
The joint parameter results can be viewed as a subspace

of the parameter copies where all the copies have the same
value. We define the projection matrix on this subspace as

DT
C ¼ ðIN×N; IN×NÞ: ð23Þ

When expressed as DC, it is known as the design matrix,
which takes a single set of N parameters and produces two
separate parameters, i.e., the 2N copy parameters, to be
estimated by the data. Notice that the relation between the
joint and copy Jacobian is given byMT

J ¼ DT
CM

T
C. The joint

parameter covariance is a linear combination of the copy
parameter covariance given by C−1J ¼ DT

CC
−1
C DC. The linear

combination of the copy parameter estimates that forms the
joint parameter estimate is

θML
J ¼ CJDT

CC
−1
C θML

C : ð24Þ
Likewise DCCJDT

CC
−1
C is the parameter projector that

projects the copy parameters onto the space where they
are the same ðθML

1C ; θML
2C ÞT → ðθML

J ; θML
J ÞT .

The physical meaning of the parameter estimates between
the data split and parameter duplication approaches in
principle differs in the presence of data correlations. In
Appendix B we present a simple example which illustrates
these differences. Here we would like to emphasize that the
data split strategy provides us with two distributions
Pðθ1SjD1Þ andPðθ2SjD2Þ that are interpreted as the posterior
for the parameters of one data set with no knowledge of the
other. On the other hand, the second strategy provides the
joint parameter distribution Pðθ1C; θ2CjDJÞ for both data
sets. When marginalized over one of the parameter copies
this gives Pðθ1CjDJÞ which is the distribution of the
parameters of the first data set, given that the full data set
has been measured.
In our example, we duplicate all the SN cosmological

parameters but we do not duplicate the parameter describ-
ing the absolute magnitude. This would be fully correlated,
since the corresponding measurements in the joint data set
are fully correlated, closely matching the example case
discussed in Appendix B. As a consequence duplicating the
SN calibration parameter and keeping track of its correla-
tions gives the same results as not duplicating it and we
omit its duplication for simplicity. We have checked that all
the results that we discuss are unchanged.
We find that the difference between the two ways of

estimating parameters from the split SN data is minor. In
Fig. 2 we show the GLM prediction of the parameter
posterior in the two split senses that we have discussed.

(a) (b)

FIG. 2. The GLM joint marginalized posterior parameter distribution for SN data splits and parameter splits. Different panels show
different SN redshift cuts. The filled contour corresponds to the 68% CL region while the continuous contour shows the 95% CL region.
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In the zcut ¼ 0.3 case we observe very little difference
between the two parameter estimates. This shows that, even
though data correlations are relevant, for this data split, the
two techniques do not strongly differ. The zcut ¼ 0.7 case,
on the other hand, shows somewhat more differences. In
this case the high z part of the SN catalog is significantly
weaker than the low z part and correlated data modes
become more relevant making the two techniques more
different. As a result we see a shift in theMAP estimate and a
small decrease in their covariance. In this case, in fact, the
weaker split leverages the correlation with the strongest one
to achieve slightly smaller error bars and parameter estimates
that are closer to the ones of the strongest split. We refer the
reader to Appendix B for an in-depth discussion of these
effects, explained through a simple example.
Next we consider the extent to which the GLM model

works overall to describe the redshift splits that we consider.
To this end, notice that the joint parameter distribution cannot
be obtainedwith standard parameter estimation techniques in
the data split case, for which we use only the GLM, while it
can be straightforwardly obtained in the parameter split case.
We find that in the zcut ¼ 0.3 case the GLM works remark-
ably well, as shown in Fig. 3 where we compare the GLM
posterior to theMCMC posterior. Both ends of the split have
comparable constraining power and contain enough SN
measurements to constrain both amplitude and shape param-
eters. The high redshift end of the split has fewer SN

(a)

(b)

FIG. 3. The comparison of the GLM and MCMC joint
marginalized posterior parameter distribution for SN parameter
splits. Different panels show different SN redshift cuts. The filled
contour corresponds to the 68% CL region while the continuous
contour shows the 95% CL region.

FIG. 4. The comparison of the MCMC joint marginalized
posterior parameter distribution for the full SN data set and
the low redshift end of the zcut ¼ 0.7 split. The filled contour
corresponds to the 68% CL region while the continuous contour
shows the 95% CL region.
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measurements and hence shows hints of a slight non-

Gaussian decay of the probability tail of Ωð2Þ
m .

The zcut ¼ 0.7 split on the other hand is different. The
high redshift part of the data set contains few SN and the
amplitude/shape degeneracy is far less constrained. As we

can see in Fig. 3, especially for the joint Ωð2Þ
m and Hð2Þ

0

distribution the GLM contours are clearly different from the
MCMC ones. In particular we see high nonlinearities in the
model (i.e., a markedly “banana” shaped degeneracy) that,
when marginalized over, result in significant skewness of
the 1D posteriors. The zcut ¼ 0.7 case will then serve as a
good example of how some tension estimators have built in
strategies to mitigate these types of non-Gaussianities.
Finally we remark that, in contrast, the posterior of the

low redshift end and the joint SN posterior, shown in Fig. 4,
is very close to Gaussian. Both redshift splits, in fact,
contain a large number of SN that is sufficient to shrink the
measured errors so that the model does not explore its
nonlinear part. For these two posteriors we expect the GLM
to work well in the zcut ¼ 0.7 case too.

VI. DATA SPLIT CDES

In this section we discuss CDEs in case of data splits and
show their application to the SN example. Specifically, in
Sec. VI A we present parameter shift statistics and in
Sec. VI B we discuss goodness-of-fit loss.

A. Parameter shifts

Given two data sets we can compute the difference
between the parameters obtained by considering the two
data sets alone: ΔθS ≡ θp1S − θp2S. Within the GLM this is
Gaussian distributed and it can be shown that its expect-
ation value over data realizations is zero. To form the
optimal quadratic form to detect shifts in parameters,

QS
DM ≡ ΔθTS ½CðΔθSÞ�−1ΔθS; ð25Þ

we need to compute the parameter difference covariance
CðΔθSÞ. For a discussion of optimal quadratic forms see
Appendix D in [20]. Within the GLM the shift covariance
can be obtained starting from the covariance in data space
and results in

CðΔθSÞ ¼ Cp1S þ Cp2S − Cp1SC−1Π Cp2S − Cp2SC−1Π Cp1S

− Cp1SMT
1Σ−1

1 Σ12Σ−1
2 M2Cp2S

− Cp2SMT
2Σ−1

2 Σ21Σ−1
1 M1Cp1S: ð26Þ

As we can see this expression agrees with [20] in the limit
of uncorrelated data sets. It cannot be, however, expressed
in terms of parameter space quantities only when data
correlations are present. In this case the parameter shift
covariance depends on both the parameter and data
covariance that are connected through the model

Jacobian to account for the fact that data correlations are
omitted from the single parameter estimates.
In addition to this, we can also write parameter shifts in

update form, by comparing the parameters of one posterior
(for simplicity 1 here) to the joint parameter determination:
ΔθUS ≡ θp1S − θpJ . This is, again, Gaussian distributed with
zero mean and covariance:

CðΔθUS Þ ¼ Cp1S þ CpJ − Cp1SC−1Π CpJ − CpJC−1Π Cp1S

− Cp1SMT
1Σ−1

1 ðΣ1;Σ21ÞTΣ−1
J MJCpJ

− CpJMT
JΣ−1

J ðΣ1;Σ12ÞΣ−1
1 M1Cp1S: ð27Þ

This agrees with [20] in the limit of uncorrelated data sets,
where we recover CðΔθUS Þ ¼ Cp1S − CpJ, but becomes
significantly more complicated in general due to the
presence of data correlations. We denote with

QS
UDM ≡ ðΔθUS ÞT ½CðΔθUS Þ�−1ΔθUS ð28Þ

the optimal data split parameter shift statistics in update
form. Under the GLM, both QS

DM and QS
UDM are chi-

squared distributed with the number of degrees of freedom
equivalent to the rank of their respective covariance matrix.
In case of uncorrelated data sets the statistical signifi-

cance of parameter shifts in update form is the same as the
statistical significance of the difference between θp1 − θML

2

since these two quantities are related by a linear trans-
formation. However, in the presence of data correlations
this is not the case since the single parameters do not
contain the information on the data correlation that is
contained in the joint parameter determination. In other
words, it is not possible to write the update parameter shift
as a linear combination of the shift in the two single
parameters. Hence, we would expect to see some
differences between the two estimates, related to the
presence of correlated data and parameter modes.
From the previous discussion it appears clear that using

the optimal, inverse covariance weighted, CDEs for data
split parameter shifts is challenging in the presence of data
correlations. Their covariances cannot be written in param-
eter space and depend on both the posterior and data
covariance. These can be related to each other by projection
operations involving derivatives of the observables that are
cumbersome to compute accurately. These considerations
limit the applicability of these methods in practice.
The SN case is, however, simple enough that we can

successfully apply these estimators within the GLM. In the
reminder of this section we present the challenges in
applying them to the SN case and we comment on the
results.
The SN data Jacobian, MJ, is estimated numerically by

linear finite differences computed around the best fit of the
joint SN data set. The finite difference parameter step is
computed such that it would correspond to a SN chi-square
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difference of one, ensuring that the derivatives are esti-
mated on the scale at which they are relevant and are not
contaminated by numerical noise. We assume that the
model is fully linear so that the joint Jacobian determines
the single data split Jacobian.
All the other quantities that are needed to compute QS

DM
and QS

UDM are estimated from the GLM. A numerically
challenging aspect of computing QS

DM and QS
UDM is

identifying directions that can contribute to parameter
shifts and those that do not. The latter parameter combi-
nations can be either prior constrained or fully correlated,
as can be seen from Eqs. (26) and (27). In practice, due to
numerical noise, the parameter shift covariances are never
exactly zero along these directions.
In the uncorrelated case this problem is solved, at least

for parameter shifts in update form, by computing the
quadratic form using the Karhunen-Loeve (KL) decom-
position of the covariances involved, as discussed in [20].
In this case we select the directions that are used to compute
the two parameter shift estimators based on the KL
decomposition of the shift covariance matrices and the
parameter covariance of the most constraining of the two
data sets. Once the KL decomposition is performed the
spectrum of the KL eigenvalues can be examined to
understand if there is a clear separation of modes with
KL eigenvalues very close to zero and directions that are
significantly different from zero. This strategy also avoids
problems with parameters having different units since the
KL modes are invariant under changes of parameter basis.
This also results in a wide separation between directions
that can and cannot contribute to a shift making it easier to
identify and remove the latter. Once the directions that
cannot contribute any shift are isolated and removed the
parameter shifts and their covariance are both projected on
the other directions andQS

DM andQS
UDM are computed. The

number of degrees of freedom of the two tests is given by
the number of KL modes that are retained. In the SN
example, this number is 2, since the absolute magnitude
constraint does not differ between the sets.
In Table II we show the results of the application of the

data split parameter shift statistics. Notice that with the data
split strategy some quantities entering in the calculation of
the results cannot be obtained fromMCMC sampling so we
estimate the results with the GLM only.
When we consider parameter differences in update form

we always pick the low redshift SN cut as the base
parameters for the update since, among the two possibil-
ities, it contains a larger number of SNmeasurements and is
hence more Gaussian.
As we can see the statistical significance of the reported

results differs for the two estimators, as expected because of
non-negligible data correlations. The zcut ¼ 0.3 split, in
particular is found to be in agreement in both cases, with
slightly different statistical significance. The second SN
split, at zcut ¼ 0.7, on the other hand, is found to have

parameters that are too close, with respect to their covari-
ance, at 94.5% probability in normal form while in agree-
ment in update form. Since both results are computed
within the GLM, and the prior is only weakly informative,
the difference between the two estimates is given by
different weighting of correlated data modes and reflects
the fact that, in the presence of data correlations, QS

DM and
QS

UDM are not expected to give the same results.

B. Goodness-of-fit loss

In addition to shifts in parameters we can use, as a CDE,
the statistics of the ratio of the joint and single likelihoods
at maximum posterior, QDMAP [20]. In the case where we
consider data split we refer to this estimator as

QS
DMAP ≡ 2 lnL1ðθSp1Þ þ 2 lnL2ðθSp2Þ − 2 lnLJðθJpÞ: ð29Þ

This quantifies goodness-of-fit loss as it corresponds to the
degradation of the performances of the model when fitting
two data sets jointly vs fitting the joint data. When two data
sets are considered separately the model can invest all its
parameters in improving the fit to data. On the other hand,
when the two data sets are joined, the parameters have to
compromise between the two and the joint fit will be worse.
However note that in the correlated case the two data sets
are not independent so that the joint likelihood is not the
product of the two independent likelihoods regardless of
the parameters. Consequently QS

DMAP is not necessarily
positive definite, complicating its interpretation as a good-
ness-of-fit loss.
Even computing the statistics of QS

DMAP for correlated
data sets, within the GLM, proves extremely hard in case of

TABLE II. Results of the application of the data split parameter
shift estimator in normal, QS

DM, and update form, QS
UDM, to the

SN split that we consider. The first column shows the SN split
that is being considered while the second column reports the
value of the QS

DM and QS
UDM parameter shifts statistics. The third

column shows the number of degrees of freedom of the two
statistics and the fourth column the probability to exceed the
measured value of QS

DM and QS
UDM. All quantities used to

compute the results in this table are obtained with the GLM.

(a) Data split GLM difference in means

Redshift cut QS
DM d.o.f. PðQS

DM > QS
DM obsÞ

zcut ¼ 0.3 4.94 2 8.5%
zcut ¼ 0.7 0.11 2 94.5%

(b) Data split GLM update difference in means

Redshift cut QS
UDM d.o.f. PðQS

UDM > QS
UDM obsÞ

zcut ¼ 0.3 3.52 2 17.2%
zcut ¼ 0.7 0.53 2 76.8%
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data set splits. In Appendix C we report its statistics and
further elaborate on the technical difficulties in practically
computing it. Overall the algebraic expressions involved in
its calculation are defined, as it happens for data split
parameter shifts, in terms of quantities living in both
parameter and data space.
Despite their complicated nature, in Appendix C we

provide the full expressions that are necessary in order to
compute the exact distribution of the GoF loss statistic with
the data split technique. We have, furthermore, made use of
these expressions to show that the distribution would not
be, necessarily, well approximated with a simple chi-square
distribution.

VII. PARAMETER SPLIT CDES

In this section we follow the strategy of quantifying
agreement and disagreement by duplicating model param-
eters. We first go through the analytic aspects of calculating
the CDEs and then report the results of applying them to the
SN example that we consider in this work. In Sec. VII Awe
present parameter shift statistics, in Sec. VII B we discuss
exact Monte Carlo parameter shift statistics, while in
Sec. VII C we consider goodness-of-fit loss.

A. Parameter shifts

We first consider the difference between the duplicate
parameter posteriors, denoted by ΔθC ≡ θp1C − θp2C, in the
case of parameter splits. To form the optimal estimator of
the significance of the shifts, we construct the quadratic
form:

QC
DM ≡ ðΔθCÞT ½CðΔθCÞ�−1ΔθC ð30Þ

using their covariance to weight shifts in different param-
eter space directions. In this case the covariance reads

CðΔθCÞ ¼ Cp1C þ Cp2C − Cp12C − Cp21C: ð31Þ

Notice that, in the uncorrelated limit CpijC ¼ CpiCC−1Π CpjC
for i; j ∈ ½1; 2�. Furthermore, Eq. (31) implies that in the
case of parameter duplication we can express the covari-
ance of the parameter shifts using just the results from the
MCMC chains. This is not true in the case of data splits,
however, where the expression of the covariance includes
terms related to the data covariance which account for the
correlations.
We then calculate the covariance of parameter shifts in

update form using one of the two parameter copies, namely
θp1C, and the parameters inferred from the joint data set, θpJ .
Therefore, defining ΔθUC ¼ θp1C − θpJ , the covariance of
parameter shift in update form is written as

CðΔθUCÞ ¼ Cp1C − CpJ; ð32Þ

which is invariant in form to the one without correlations,
which is discussed in [20].
We denote with

QC
UDM ≡ ðΔθUCÞT ½CðΔθUCÞ�−1ΔθUC ð33Þ

the optimal parameter-split parameter shift statistic in
update form. Notice that, since Eq. (32) is invariant in
form with respect to the uncorrelated case considered in
[20], we can compute QC

UDM by means of the KL decom-
position to filter out modes that are not improved by the
data over the prior and hence subject to sampling noise.
Under the GLM, both QC

DM and QC
UDM are chi-squared

distributed with number of degrees of freedom equal to the
rank of their covariances.
The statistical significance of the two QC

DM and QC
UDM

estimators is the same for the maximum likelihood param-
eters while it might differ at the maximum posterior level in
case of partially informative priors. This difference stems
from the fact that the update form of parameter shifts
contains only one copy of the prior in the joint, whereas in
the single parameter shift the prior is applied once to each
data set. Therefore, θpJ cannot be formed from a linear
combination of θpiC. We can instead define a joint parameter
estimate that is so constructed

θ̃pJ ¼ C̃pJDT
CC

−1
pCðθp1C; θp2CÞT ð34Þ

with covariance C̃−1pJ ¼ C−1pJ þ C−1Π ¼ DT
CC

−1
pCDC, so that

θp1C − θ̃pJ ¼ C̃pJDT
CC

−1
pCðO; θp1C − θp2CÞT; ð35Þ

where the vector O has length Np. This clearly shows that
the statistical significance of θp1C − θ̃pJ is the same as θp1C −
θp2C since the two are related by a linear, invertible trans-
formation. We can then write the update parameter differ-
ence as

ΔθUC ¼ ðθp1C − θ̃pJ Þ þ ðθ̃pJ − θpJ Þ; ð36Þ

which, in the uncorrelated limit reduces to θp1C − θML
2 . This

agrees with the discussion in [20] of their Eq. (47). More
generally, the additional difference can be computed from
CpJ and CΠ and can cause ΔθUC to be larger than the
difference implied by θp1C − θp2C since the Gaussian priors
in each copy tend to bring the posteriors closer together.
Note that for flat, range bound, priors as in our SN example
the two copies do not lead to a stronger joint prior so
that θ̃pJ ¼ θpJ .
Furthermore the difference between QC

DM and QC
UDM

becomes relevant only if there is a non-negligible shift
along partially prior constrained directions since the two
estimators agree in the fully data and prior constrained
limits.
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It is clear at this point that making use of the parameter
split methodology provides some advantages compared to
the data splitting method. Equations (31) and (32) for the
covariances for the parameter split statistics should be
compared with Eqs. (26) and (27) for data split statistics.
Crucially the former can be simply calculated from
parameter covariances whereas the latter require manipu-
lations of the data covariance. We can also therefore check
the GLM results using parameter covariances taken from
the MCMC chain when evaluating Eqs. (30) and (33).
We now discuss the results obtained from applying the

parameter shift estimators to the SN data considered in this
work. We note here that when we consider parameter
differences in update form we always use the low-redshift
data part to compare with the joint data set since, compared
with the other data subset, it contains a larger number of
SNe and is therefore more Gaussian.
The summary of our results is presented in Table III. We

show in the Table the results obtained by doing a full GLM
calculation of all covariances and parameter values and the
results obtained using the parameter mean and covariances

from the MCMC sampling. As we can see in Table III from
degree of freedom counting, the number of effective data
constrained parameters in this case is the same as in the
data-split applications in Sec. VI (summarized in Table II),
as expected.
We can further see that, in the zcut ¼ 0.3 case, the

parameter shift estimates in both standard form and update
form agree very well within the GLM since the prior is only
very weakly informative. The difference in mean result also
qualitatively agrees with the result of the data split
calculation in Sec. VI.
The results obtained from the MCMC are slightly

different from the GLM one because the parameter centers
and covariances are computed from the samples and are
influenced by slight non-Gaussianities in the distribution
while the GLM parameters are obtained within the lin-
ear model.
In the zcut ¼ 0.7 case the two GLM results agree, as they

should given the weak priors, but point toward parameters
that are too close to each other in units of their covariances.
Even though the high redshift part of this split is partially
prior constrained in the tails of the posterior, the means and
covariances are not substantially influenced by the prior.
As we can further see, the MCMC results, in the zcut ¼

0.7 case, are significantly different reflecting the fact that
non-Gaussianities are more relevant in this case. In par-
ticular theQC

DM MCMC result is sensibly lower in statistical
significance. Of the various estimators for the parameter
means and covariances entering into Q’s, this is the only
one that utilizes those of the high redshift part directly,
rather than evaluated at a position that is influenced by the
stronger low redshift data. In Fig. 3, we see that the slowly

decaying tails ofHð2Þ
0 ;Ωð2Þ

m increase the MCMC covariance,
separate the means, and miss the fact that the posterior
peaks are anomalously close given their local curvatures. In
update form, the impact of the long tails is mitigated since it
focuses on the peak region that is consistent with both data
sets. We shall see in Sec. VII B, this means that the QC

UDM
MCMC results are more accurate than the purely GLM
ones even in such a non-Gaussian case.
We also notice that the overall results in this case are

qualitatively different from the data split ones that are less
statistically significant. This might happen because one part
of the split is much weaker than the other and the parameter
split estimates in this case are more heavily influenced by
the strongest data set, as discussed in Sec. V. When the data
split estimates and parameter split estimates differ they
might point toward a problem in the covariance matrix
rather than the parameter mean. This effect is compatible
with our goodness-of-fit results, in Sec. V, which showed
that the high redshift part of the zcut ¼ 0.7 split leans
toward a fit which is too good, at about the same statistical
significance.
While our general rule is to compute the update

parameter difference by updating the stronger with the

TABLE III. Results of the application of the parameter split
parameter shift estimator in normal, QC

DM, and update form,
QC

UDM, to the SN split that we consider. The first column shows
the SN split that is being considered while the second column
reports the value of theQC

DM andQC
UDM parameter shifts statistics.

The third column shows the number of degrees of freedom of the
two statistics and the fourth column the probability to exceed the
measured value of QC

DM and QC
UDM. All quantities used to

compute the results in (a) and (b) are obtained from the GLM
while in (c) and (d) they are obtained from the means and
covariances estimated by an MCMC.

(a) Parameter split GLM difference in means

Redshift cut QC
DM d.o.f. PðQC

DM > QC
DM obsÞ

zcut ¼ 0.3 4.51 2 10.5%
zcut ¼ 0.7 0.03 2 99.0%

(b) Parameter split GLM update difference in means

Redshift cut QC
UDM d.o.f. PðQC

UDM > QC
UDM obsÞ

zcut ¼ 0.3 4.52 2 10.4%
zcut ¼ 0.7 0.03 2 99.0%

(c) Parameter split MCMC difference in means

Redshift cut QC
DM d.o.f. PðQC

DM > QC
DM obsÞ

zcut ¼ 0.3 4.63 2 9.9%
zcut ¼ 0.7 0.37 2 83.2%

(d) Parameter split MCMC update difference in means

Redshift cut QC
UDM d.o.f. PðQC

UDM > QC
UDM obsÞ

zcut ¼ 0.3 4.75 2 9.3%
zcut ¼ 0.7 0.06 2 96.9%
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weaker data set, for the zcut ¼ 0.3 case their strengths are
nearly equal. We have checked that reversing the ordering
to update the high redshift data with the low redshift data
does not change the statistical significance appreciably in
this case as expected.
The last aspect that we can quantify is the error in the

assessment of statistical significance that we could have
made if we were to neglect the correlation between the two
data sets.
For the zcut ¼ 0.3 split both QDM and QUDM would

largely misestimate statistical significance resulting in a
probability to exceed of 23% and 15% respectively. Notice
that the update form mitigates the error since all correla-
tions are still accounted for in the joint estimate. In the
zcut ¼ 0.7 case, on the other hand, the two estimators
neglecting correlations would estimate a probability to
exceed of 99% and 56% which is again largely wrong.

B. Monte Carlo exact parameter shifts

Having an MCMC parameter estimation in the case of
parameter duplication presents us with the additional pos-
sibility of computing parameter shifts as a Monte Carlo
integral, as we discuss in this section.
We first consider the joint posterior probability density

function of the two parameter copies Pðθp1C; θp2CÞ. We can
then calculate the distribution of their difference, denoted
by ΔθC ≡ θp1C − θp2C, as the N-dimensional convolution
integral:

PðΔθCÞ ¼
Z
Vp

Pðθp1C; θp1C − ΔθCÞdθp1C; ð37Þ

over the whole parameter space volume Vp. Note that this
equation is general and describes the probability to observe
a parameter shift ΔθC without assuming the parameters to
be independent. In the limit of uncorrelated data sets the
joint probability distribution in the above expression
reduces to Pðθp1C; θp2CÞ ¼ P1ðθp1CÞP2ðθp2CÞ.
To compute the statistical significance of a shift in

parameters we then evaluate the integral:

S ¼
Z
PðΔθCÞ>Pð0Þ

PðΔθCÞdΔθC; ð38Þ

where the volume of integration is defined as the region of
parameter space where the probability to get a shift ΔθC is
above the isocontour of no shift, ΔθC ¼ 0.
To form the MCMC chain of parameter differences in the

case of correlated data sets we can take, sample by sample,
the difference between the first and second copy of the
parameters, without changing the weights of the samples.
The result would be the MCMC estimate of the convolution
integral in Eq. (37). Since the parameter duplication chain
is run to convergence in the full 2N dimensional space the
parameter difference chain is appropriately sampled.

Once we have the samples from the parameter difference
probability we can compute the integral in Eq. (38) with a
mixture of kernel density estimation (KDE) and MCMC
techniques.
The probability of a difference in parameter, for every

sample in the difference chain, is estimated through KDE
with a Gaussian smoothing kernel that uses the scaled
parameter difference covariance. The smoothing kernel is
explicitly given by

KðΔθ1C;Δθ2CÞ ¼ N ðΔθ1C;Δθ2C;ΛCðΔθCÞΛÞ; ð39Þ

where Λ ¼ diagð ffiffiffi
λ

p Þ is a scaling matrix with λ as the
smoothing scaling parameter.
We fix this parameter using Silverman’s rule of thumb

[43] to

ffiffiffi
λ

p
¼

�
4

nsðN þ 2Þ
� 1

Nþ4

; ð40Þ

where ns is the number of samples in the chain and N is the
number of parameters.
For a given MCMC sample j the KDE probability of a

shift is given by

PðΔθjCÞ ¼
1Pns

i¼1 wi

Xns
i¼1

wiKðΔθjC;ΔθiCÞ; ð41Þ

where wi denotes the weights of the samples and given that
the smoothing kernel is normalized. Equation (41) is also
computed for the zero shift so that the MCMC estimate of
the integral in Eq. (38) is given by the number of samples
that have a KDE probability of shift above the KDE
probability of zero over the total number of samples.
This approach has several advantages. First, the combi-

nation of MCMC and KDE makes the estimate weakly
sensitive to the choice of the smoothing kernel. The amount
of over/under smoothing that the kernel might be doing is
balanced by the fact that that would also happen for the zero
shift estimate and would drop in the difference. In other
words we never just use directly the probability of a zero
shift, as obtained from Eq. (41), which would largely
depend on the smoothing kernel in general, but rather
compute howmany samples from the distribution are above
that probability. The second advantage is that this param-
eter shift estimate is now completely accounting for all
possible non-Gaussianities in the parameter posterior.
The challenge in using this estimate is that, for sta-

tistically significant results, the estimate is likely to be
noisy due to the fact that the MCMC chain would have very
few samples in the tail of the distribution.
This sampling error can, however, be estimated in two

ways. The first is given by a shot noise estimate, by taking
the square root of the number of MCMC samples in the
smallest probability tail to account for both tensions and
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confirmation results. The second is estimated as the variance
of the result across multiple MCMC chains of the same
distribution. In this case we have nchains chains and we
compute the shift probability for each of them and then
estimate the error as the ratio of the variance across chains,
weighted by the number of chains, σ2S ¼ varðSÞchains=nchains,
since the fiducial result uses all of them and given that
different chains are independent. The two error estimates are
usually in good agreement for well converged chains.
In Table IV we show the results of the MCMC

calculation applied to the considered SN splits. Since the
SN parameter space is only two dimensional we can also
show, in Fig. 5, the posterior distribution of the difference
in parameters and use that to check the reliability of these
estimates.
As we can see both results reported in Table IV match

very well the posterior distribution even though the
significance of the shift is not directly computed from that
posterior estimate. We highlight that this graphical test,
which is impossible in higher dimensions, still depends on

the KDE smoothing that, in this case, is set to be the
optimal one as described in [41].
As we can further see, the zcut ¼ 0.3 results match the

GLM result for QC
DM and QC

UDM in Table III. This is
expected since we have shown that the parameter posterior,
in this case, is very close to Gaussian, as also highlighted by
the difference posterior in Fig. 5.
In the case of the zcut ¼ 0.7 split the MCMC result

agrees, within sampling errors, with the parameter update
result. This case is, in fact, the most non-Gaussian that we
consider, as can also be seen in Fig. 5, so QC

DM is expected
to misestimate statistical significance.
We can also see from Table IV that the estimated

sampling errors in the zcut ¼ 0.7 case are higher than the
ones of the zcut ¼ 0.3 case. Both chains were run to
comparable convergence but the former result is higher
in statistical significance. This means that the chain con-
tains less sample in the tail, hence increasing the error
estimate. A smaller error could be achieved by running the
second chain longer, at the expense of possibly significant
computational resources.
These results also show that mitigation of non-

Gaussianities by parameter update statistics computed from
theMCMCsamples, as in Table III(d) isworking as expected
and the two results are compatible within sampling errors.
In any case, when non-Gaussianities are suspected to be

relevant, and there is reason to believe that their mitigation
from the parameter shift in update form is not enough, the
results can be checked with the MCMC techniques that we
have just shown. We, however, highlight that reaching an
acceptable noise level in the MCMC estimate, for sta-
tistically significant results, requires very long chains to
accurately sample the tails of the distribution.

(a) (b)

FIG. 5. The joint posterior of parameter split parameter differences for the two SN split that we consider. The filled contour
corresponds to the 68% CL region while the continuous contour shows the 95% CL region. The dashed lines represent the position of
zero shift while the dashed contour shows the probability level that intersects zero, as reported in Table IV.

TABLE IV. Results of the application of Monte Carlo exact
parameter shift statistics, with the parameter split methodology, to
the SN split that we consider. The first column shows the redshift
of the data spit that we consider. The second column shows the
result of Eq. (38), measuring the significance of tension or
confirmation using exact MCMC techniques. The reported
uncertainty is an estimate of the sampling error on a given
quantity.

Redshift cut S

zcut ¼ 0.3 9.9� 0.4%
zcut ¼ 0.7 96.4� 0.9%
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C. Goodness-of-fit loss

The last CDE that we discuss is goodness-of-fit loss with
the parameter split approach. In contrast to the data split
case, when considering parameter splits QC

DMAP becomes
easy to compute, as we discuss below.
At maximum likelihood level the statistics of goodness-

of-fit loss is chi-squared distributed as a consequence of the
fact that the parameter copies decompose the joint param-
eter estimate, as we show in Appendix D.
At the posterior level the goodness-of-fit loss statistics is

defined as

QC
DMAP ≡ 2 lnLJðθpCÞ − 2 lnLJðθpJ Þ: ð42Þ

In Appendix D we discuss in detail its exact distribution as
a linear combination of chi-squared variables. In practice
the distribution of QC

DMAP can be approximated by that of a
single chi-squared distribution, matching the mean of the
exact distribution, with degrees of freedom:

hQC
DMAPi ¼ NC

eff − NJ
eff

− tr½C−1ΠCCpCðI2N − C−1ΠCCpCÞJ2N �; ð43Þ

where we have defined J2N ≡DCDT
C − I2N .

As we can see, the statistics of QC
DMAP can be easily

computed from the posterior MCMC samples. In the
uncorrelated case it also reduces to the QDMAP statistics
discussed in [20]. Compared to the uncorrelated case, we
notice that in the correlated case there is an extra term that is
present in the mean of the exact QC

DMAP distribution, as
shown in Eq. (43), in addition to the difference in the
number of effective parameters. Notice that this term
vanishes for fully data or prior constrained directions. Its
appearance is associated with the mismatch of assuming the
data is drawn from a single parameter and prior but
analyzed with split parameters and independent priors.
The results of the goodness-of-fit loss estimator for our

SN analysis are shown in Table V.
As we can see, for both SN split, results are in very good

agreement with both the results for parameter shifts in
update form in the previous sections and the MCMC exact
calculations.
In Appendix D we show that the exact distribution, in the

SN case, is indeed very well approximated with a chi-
square distribution and that results are largely unaltered.
We conclude the section discussing the misestimate of

statistical significance that would be made if correlations
between data sets were neglected. In both cases this would
lead to large differences in the results with a probability to
exceed the value ofQC

DMAP at the 80% and 25% level for the
zcut ¼ 0.3 and zcut ¼ 0.7 splits respectively. In this example
the correlation would be playing a crucial role in identify-
ing a statistically significant discrepancy that would not be
identified if correlations were not properly accounted for.

VIII. CONCLUSIONS

We have introduced, thoroughly discussed, and illus-
trated with supernovae data, a set of estimators of agree-
ment and disagreement between cosmological data sets in
the presence of non-negligible data correlations.
In particular we have explored two different approaches.

The first corresponds to considering separately different
correlated data sets and building estimators based on the
separate inference of both, while keeping track of data
correlations in assessing agreement or disagreement. We
called this a data split approach. A complementary
approach, which we refer to as parameter split, consists
in splitting the parameter space, duplicating all relevant
parameters, always analyzing the joint data set.
Both strategies are equivalent in the limit of vanishing

data correlations but differ otherwise, as we have thor-
oughly explored. Namely, we have studied and character-
ized the distribution of parameter shifts estimators and
goodness-of-fit loss estimators with both strategies, dis-
cussing differences, their strengths and weaknesses.
We have found that in practical applications the param-

eter split strategy is easier to implement since it allows us to
compute the statistical significance of both tensions and
excess confirmation from the output of standard parameter
estimation pipelines.
The parameter split strategy also provides a suite of

estimators that have complementary properties. This
includes a parameter shift estimator in update form that
is mitigated against possible non-Gaussianities of the
parameter distributions, while maintaining the ease of
application of a Gaussian estimator. This can be comple-
mented, as we have shown, by a fully MCMC estimator
that quantifies parameter shifts regardless of the
Gaussianity of the parameter distribution, at the expense
of computational power due to the necessity of sampling
well the tail of different distributions. Goodness-of-fit loss
with parameter duplicates further provides a check that the
reported results are reliable in a completely different way.
In cases where the parameter posterior is Gaussian and

contains parameter space directions that are either fully
constrained by the data or the prior the three estimators are
expected to give the same assessment of statistical

TABLE V. Results of the goodness-of-fit loss statistic, using
parameter duplication, to the SN split considered in this work.
The first column shows the redshift of the data spit that we
consider. In the second column we present the results for QC

DMAP.
The third column shows the number of degrees of freedom of the
QC

DMAP statistic, while the fourth column shows the probability to
exceed the measured value of QC

DMAP.

Redshift cut QC
DMAP d.o.f. PðQC

DMAP > QC
DMAP obsÞ

zcut ¼ 0.3 4.55 1.94 90.24%
zcut ¼ 0.7 0.03 1.58 3.7%
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significance, providing an essential cross-check of the
validity of these assumptions. When this is true, the
different estimators are also optimal having minimum
variance among all the possible estimators that one can
define.
We have found that combining these estimators in the

following recipe works well to assess the compatibility of
two different correlated data-sets. First parameter shifts in
update form, Eq. (33), can be used to single out the
parameter space directions that contribute the most to
the result and aid its physical interpretation. This first
estimate of statistical significance can be checked with the
MCMC estimator of Eq. (38) to provide a safeguard against
significant non-Gaussianities in the posterior. In case of a
Gaussian posterior the results can be confirmed with the
estimator of goodness-of-fit loss, Eq. (42).
We have applied, following our discussion, all estimators

to the Pantheon SN data set split at two cosmologically
relevant redshifts, zcut ¼ 0.3 and zcut ¼ 0.7, roughly cor-
responding to the times of DE-DM equality and the redshift
at which cosmic acceleration begins.
We have shown that different data split estimators are not

expected to recover the same results in the presence of data
correlations, even when the Gaussian approximation for the
parameter posterior works well. On the other hand we have
found that the parameter split estimators all recover results
that are in good agreement, as it is expected, when model
parameters are either fully constrained by the data or the
prior, as in the SN cases that we consider.
The parameter split estimators report that the two ends of

the SN catalog, split at zcut ¼ 0.3, agree well and show no
statistically significant indication of tensions nor excess
confirmation. On the other hand the two parts of the high
redshift split, at zcut ¼ 0.7, report excess confirmation at
about 96% probability. As we have discussed, this could be
related either to the covariance of the low-high redshift SN
being misestimated, or errors reported too conservatively.
The latter explanation seems consistent with goodness-of-
fit results indicating that the high redshift end of the zcut ¼
0.7 SN split seems too good of a fit to the ΛCDMmodel, at
about the 94% confidence level.
The SN constraints on the shape of the distance-redshift

relation are one of the reasons why late times resolutions of
the Hubble constant tensions are not viable [44–46] and it is
hence important to understand the source of the excess
goodness of fit in the high redshift part of the Hubble
diagram that we report finding.
As the accuracy and complexity of different cosmologi-

cal measurements grows and in preparation for the analysis
of the current and future surveys it is important to solve
remaining outstanding issues. In particular the impact of
non-Gaussianities on the behavior of different estimators
needs to be understood and fully taken into account. In
addition our work opens the possibility of performing
extensive tests of internal consistency of a single data set by

splitting it into different parts that would naturally be
correlated. This raises the issue of look-elsewhere correc-
tions for multiple tests being performed on the same data
that needs to be fully quantified. Nonetheless, this work
provides important building blocks in this construction by
providing estimators of agreement and disagreement
between correlated cosmological data sets and quantifiable
tests of non-Gaussianity in parameter posteriors.
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APPENDIX A: CANONICAL CORRELATIONS

The strength of the correlation between two data sets
corresponds to the magnitude of the cross covariance Σ12

block in suitable units of Σ1 and Σ2, which in general have
dimensions d1 × d2, d1 × d1 and d2 × d2 respectively. In
one dimension (d1 ¼ d2 ¼ 1) this would be quantified by
the Pearson correlation coefficient:

ρ12 ¼
σ212
σ1σ2

; ðA1Þ

where we used the notation Σ1 ¼ σ21, Σ2 ¼ σ22, Σ12 ¼ σ212
for one-dimensional quantities. The quantity ρ12 is bounded
to be in ½−1; 1� with zero meaning absence of correlation,
while 1 and −1 indicate complete correlation and anti-
correlation respectively.
In multiple dimensions the equivalent procedure is often

referred to as canonical correlation analysis (CCA) [42] that
we now discuss.
The idea is to look for the optimal linear combination of

the two data vectors that maximize the correlation between
them. If we take two vectors in the space of data, x1 and x2,
we can build the quantity

ρ12 ¼
xT1Σ12x2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xT1Σ1x1
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xT2Σ2x2
p ; ðA2Þ

which we seek to maximize with respect to x1 and x2.
It can be shown that x1, x2 and ρ12 are the solutions of the

two eigenvalue problems:
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Σ−1
1 Σ12Σ−1

2 Σ21x1 ¼ ρ212x1;

Σ−1
2 Σ21Σ−1

1 Σ12x2 ¼ ρ212x2: ðA3Þ

We refer to the solutions of Eq. (A3) as the CCAmodes and
−1 < ρ12 < 1 as their correlation coefficient. Notice that
the sign of ρ12 is arbitrary and corresponds to a convention
for the relative sign of x1 and x2. If given data modes
ðx1; x2Þ are positively correlated, then ð−x1; x2Þ are neg-
atively correlated. When considered this way, as a pair of
data vectors spanning the joint space, the CCA modes are
equivalent to the Karhunen-Loeve (KL) modes of ΣJ and
diagðΣ1;Σ2Þ, which clarifies their implications for param-
eter estimation. These KL modes, eK , are solutions to the
generalized eigenvalue problem,

� Σ1 Σ12

Σ12 Σ2

�
eK ¼ λK

�Σ1 0

0 Σ2

�
eK; ðA4Þ

where K indexes the modes. The KL modes form a
complete and statistically independent basis for the joint
data in that their amplitudes have no covariance for both ΣJ
and diag(Σ1, Σ2). The KL eigenvalue therefore is the ratio
between the variances of these mode amplitudes with and
without the Σ12 correlations. Unlike an ordinary eigenvec-
tor decomposition, these modes are not orthogonal in the
Euclidean sense, but rather orthogonal under the metrics
provided by the covariance matrices.
The relationship to the CCA modes is that for each one

of the minðd1; d2Þ unique jρ12j eigenvalues with CCA
solutions x1 and x2 there are two KL modes with eK ¼
ðx1; x2Þ and ð−x1; x2Þ, and λK ¼ 1� jρ12j. The remaining
jd1 − d2j modes are uncorrelated, with λK ¼ 1, and have
support only across the larger of the two data sets.
The impact of correlations on parameters is bounded by

the largest correlation or the pair of modes for which
λK ¼ 1�maxðjρ12jÞ. This maximal effect occurs if the
parameter of interest is exactly one of these two KL mode
amplitudes, where the parameter variance would be mis-
estimated by this factor, with the sign distinguishing an
under and over estimate respectively. Notice that since the
maximum possible correlation is itself bounded by jρ12j ≤
1 then 0 ≤ λK ≤ 2, meaning that the ratio of errors is
likewise strictly bounded between 0 and

ffiffiffi
2

p
. Neglecting

correlations can make parameter errors at most infinitely
overestimated or underestimated by

ffiffiffi
2

p
. The former occurs

when such correlations allow a zero noise measurement of a
parameter. The latter occurs when correlations make the
information in the two data sets completely redundant. We
illustrate these ideas with a simple example in Appendix B.
For a more general parameter of interest which is not

exactly a KL mode itself, we can compute the impact of
correlations by summing the parameter information in each
mode independently. Given the sensitivity per KL mode to
a parameter vector θ as

cK ≡ ∂m
∂θ eK ¼ MTeK; ðA5Þ

the Fisher matrix is

F ij ≡
X
K

1

λK
cKi c

K
j ; ðA6Þ

whereas falsely neglecting the correlations would give

F̃ ij ≡
X
K

cKi c
K
j ; ðA7Þ

where the index K runs over the KL modes. Note that if the
KL modes with low correlation dominate the information
on a given parameter, the impact of correlations on
parameter variances decreases from the extreme of
1�maxðjρ12jÞ. The Fisher estimate of the parameter
covariance is then C ¼ F−1.
In the remainder of this section we comment on the

correlated data modes of the two SN splits that we consider.
In Fig. 6 we show the spectra of the correlation

coefficients for the two splits. As we can see the spectra
are similar and contain about ten correlated data modes,
while the remaining ones are nearly uncorrelated. In both
cases, the first mode is completely correlated with
jρ12j ¼ 1, and corresponds to the redundant measurement
of the SN absolute calibration that is present in both splits.
The second mode has a correlation coefficient of jρ12j ¼
0.52 for the zcut ¼ 0.3 split and jρ12j ¼ 0.51 for the zcut ¼
0.7 one and corresponds to the first genuine SN data
correlation. In the same figure we also show the spectrum

(a) (b)

FIG. 6. The spectrum of the absolute value of the canonical
correlation coefficients for the two SN data split considered. The
continuous and dashed lines show the results for the unbinned
and binned SN data respectively.
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of canonical correlations for the redshift-binned SN mea-
surements. As we can see there are fewer modes, corre-
sponding to fewer data points, but the correlation
coefficients are qualitatively unaltered showing that the
correlations that we see are not due to noise in the
covariance matrix but rather come from shared systematic
correlations.
In this regard, the CCA analysis shows that correlations

must be kept since there are several linear combinations of
the data whose errors would be severely misestimated
otherwise. On the other hand this does not necessarily mean
that cosmological parameters will be equally affected and
we now want to quantify the impact that these data
correlations have on the determination of cosmological
parameters.
In the ΛCDM model SN magnitudes at different red-

shifts depend on cosmology through two parameters, Ωm
and H0. The effect of variations of these parameters on the
SN magnitude is shown in Fig. 7. As we can see these
describe variations in the amplitude and shape ofm −Mfid
as a function of redshift. In addition to these parameters we
have another parameter that describes the absolute magni-
tude of the SN with its corresponding data constraint which
is required to make inferences from the distance modu-
lus m −M.
The inferred errors on the parameters Ωm;H0;M are

therefore correlated regardless of whether the SN magni-
tude measurements are themselves correlated. In particular,

the absolute magnitude calibration is degenerate with H0

and both of these parameters are mildly degenerate with
Ωm, as can also be seen in Fig. 1.
To make the impact of correlations on parameters

clear, and mostly unaltered by marginalization, we now
perform a principal component (PC) analysis on the SN
covariance. Note that we compute the principal compo-
nents of the covariance after transforming H0 to h≡
H0=ð100 km s−1Mpc−1Þ to have a dimensionless set of
parameters with comparable scalings.
The parameter coordinates of the SN principal compo-

nents are reported in Table VI. As we can see the first PC is
mostly influenced by changes in Ωm. The second PC is not
cosmologically interesting but is a highly constrained
direction where changes to both M and cosmological
parameters make all SN brighter or dimmer. The third
PC corresponds to the direction along the M −H0 degen-
eracy where measurements of M determine H0.
We can now employ Eq. (A6) to consider the cumulative

impact of the KL modes in the PC parameter space, after
ordering them by absolute value of correlation coefficient
and such that odd modes are correlated and even modes are
anticorrelated. Since we are using the PCs, the entries of the
Fisher matrix provide a good representation of the inverse
PC variance.
In Fig. 8 we can see the Fisher matrix entries as

we sum different KL modes, for the two cases where we
keep and neglect the data correlations. Both curves are
shown in units of the full Fisher matrix including
correlations.
As we can see, for the first PC and for both redshift

splits, the dominant contribution to the difference between
the two results comes from the third KL mode. The third
mode is correlated with a correlation coefficient of about
ρ12 ¼ 0.5 and this corresponds, as in Eq. (A6), to an
underestimate of the variance by a factor of 1.5. This
fractional underestimate is diluted somewhat by the sum of
higher KL modes which have smaller ρ12, especially for the
zcut ¼ 0.7 case where the lower redshift side can measure
shape changes fromΩm on its own. The net result is that the
variance of PC1 is underestimated by a factor of 1.4 for
zcut ¼ 0.3 and 1.2 for zcut ¼ 0.7. This is also consistent with
the underestimate of the variance of Ωm shown in Fig. 1
when we neglect correlations between the two data set
splits.

FIG. 7. The Jacobian of the SN magnitude with respect to
different cosmological parameters. Parameters are scaled to have
unit variance so that the Jacobian is directly in magnitude units.
Different lines correspond to different parameter variations as
shown in the legend.

TABLE VI. The cosmological parameter combinations defin-
ing the principal components (PC) of the SN covariance.

Principal component ΔΩm Δh ΔM

PC 1 0.99 −0.13 0.06
PC 2 −0.14 −0.94 0.32
PC 3 −0.02 0.33 0.94
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The dominant contribution to the difference in results for
the second PC comes from the fourth mode which is
anticorrelated with a correlation coefficient of about ρ12 ¼
−0.5 corresponding to an overestimate of the PC variance
of about 1.5. This well constrained mode hardly influences
cosmological results, which marginalize over M.
The third PC gets most of its contribution from the first

correlated mode. This is due to the shared absolute
magnitude calibration which gives ρ12 ¼ 1 and hence a
factor of 2 underestimate. Since the third PC involves the
H0 −M degeneracy, it also explains the underestimate of
the variance of H0 shown in Fig. 1.
We can now look at the most relevant correlated data

modes that are shown in Fig. 9. These are obtained from the
full SN data set, so that the discreteness of the data is
evident, but exhibits far smoother trends in redshift than the
scale of the individual redshifts themselves. The data split,
in fact, highlights coherent effects across the redshift
sample.
Comparing Figs. 9 and 7 we can see that the third KL

mode is qualitatively very similar to the effect of changing
Ωm, possibly with a small amplitude component, and so it is
not surprising that the data correlation corresponding to this
mode reflects almost entirely on the parameter variance.
The fourth mode differs from the third one by a sign flip in
the high redshift part and looks less like a smooth change in
m −Mfid, especially for zcut ¼ 0.7.
Overall we see that the CCA decomposition provides a

powerful tool for quantifying and understanding the impact
of data correlations on parameter estimation. When the
high ranked modes resemble the desired parameters them-
selves, this impact is maximal.

(a) (b)

FIG. 9. The third and fourth most correlated modes for the two SN splits that we consider. Different colors represent different modes,
as shown in the legend. The vertical line shows the redshift where we split the SN data.

(a) (b)

FIG. 8. The amplitude of the Fisher matrix elements corre-
sponding to the three parameter principal components in units of
their full data set values. The parameter combinations defining
the three principal components are shown in Table VI. All curves
are obtained by summing the first i KL modes ordered by
absolute value of correlation coefficient and such that odd modes
are correlated and even modes are anticorrelated. The two colors
correspond to the cases where we include or exclude the
correlation between SN at z > zcut and z < zcut, as shown in
the legend.
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APPENDIX B: PEDAGOGICAL EXAMPLE OF
DATA VS PARAMETER SPLITS

In this Appendix we illustrate the difference between
splitting data and splitting parameters in the case of
correlated data sets with a pedagogical example that can
be fully treated analytically.
Take a d dimensional data vector xi split as ðx1…xd1Þ

and ðxd1þ1…xd1þd2Þ with d1 and d2 elements respectively.
Let hxii ¼ 0 and define a data covariance matrix to have all
uncorrelated elements but for the last (xd1) and first (xd1þ1)
data points of the two sets which have a correlation
coefficient R:

Σ ¼

0
BBB@

I O O O

O 1 R O

O R 1 O

O O O I

1
CCCA; ðB1Þ

where, hereafter, I and O denote the identity and zero
matrices of appropriate dimensions respectively. In the
language of CCA, there is only one pair of correlated
modes proportional to ðO; 1;�1;OÞ with ρ12 ¼ �R.
We use a simple model with a parameter that controls the

mean of the data sets. The joint model Jacobian is
then MT

J ¼ ðI; 1; 1; IÞ while the parameter split Jacobian
is given by

MT
C ¼

�
I 1 0 O

O 0 1 I

�
: ðB2Þ

Following Eq. (6), the maximum likelihood parameter split
estimates of the parameters are therefore

θ1C ¼ 1

α

�
d2

Xd1
i¼1

xi þ
� Xd1þd2

i¼d1þ2

xi − ðd2 − 1Þxd1þ1

�
R

− ðd2 − 1Þ
Xd1−1
i¼1

xiR2

�
;

θ2C ¼ 1

α

�
d1

Xd1þd2

i¼d1þ1

xi þ
�Xd1−1

i¼1

xi − ðd1 − 1Þxd1
�
R

− ðd1 − 1Þ
Xd1þd2

i¼d1þ2

xiR2

�
; ðB3Þ

where we have defined α≡ d1d2 − ðd1 − 1Þðd2 − 1ÞR2.
The parameter covariance matrix is then given by
Eq. (3):

CC ¼ 1

α

�
d2 − ðd2 − 1ÞR2 R

R d1 − ðd1 − 1ÞR2

�
: ðB4Þ

These results can now be compared to the data split
estimators of the parameters:

θ1S ¼
1

d1

Xd1
i¼1

xi;

θ2S ¼
1

d2

Xd1þd2

i¼d1þ1

xi; ðB5Þ

with covariance matrix given by

CS ¼
1

d1d2

�
d2 R

R d1

�
: ðB6Þ

As we can see, all results coincide in the uncorrelated limit,
R → 0, while generally differing when data correlations are
present. In particular, in case of the parameter copies,
Eq. (B3), each parameter estimate depends on the full data
set, even the uncorrelated pieces of the complementary set,
where the weights are proportional to the correlation
coefficient R. This is because those uncorrelated data still
inform the mean of the correlated data point. This example
illustrates the fundamental difference between the two
statistics: the data of set 2 influence the parameters of
set 1 and vice versa for parameter splits but not for data
splits.
Similarly we can compute the parameter estimate for the

joint data set:

θJ ¼
1

αJ

�
ð1þ RÞ

Xd1þd2

i¼1

xi − Rðxd1 þ xd1þ1Þ
�
;

αJ ¼ ð1þ RÞðd1 þ d2 − 2Þ þ 2 ðB7Þ

with covariance

CJ ¼
1þ R
αJ

; ðB8Þ

and explicitly verify that we can decompose the joint
parameter determination as a linear combination of the two
parameter copies, as in Eq. (24) while the same does not
apply for the data split parameter determinations.
It is now instructive to consider the two extreme cases of

fully correlated and anticorrelated data sets, corresponding
respectively to R ¼ 1 and R ¼ −1. In both cases the data
covariance, Eq. (B1), becomes singular, with one data
combination fixed with zero variance. In the R ¼ 1 case the
difference between xd1 and xd1þ1 has zero variance and
hence xd1 ¼ xd1þ1. In the R ¼ −1 case the sum of xd1 and
xd1þ1 is fixed, so that xd1 ¼ −xd1þ1.
The different parameter estimators, discussed above,

then respond differently in these two cases, depending
on how the correlated mode projects on the parameters of
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the model. The data split parameters remain unaltered and
do not respond in a particular way to the extreme
correlation, since the presence of that correlation is ignored
in the parameter fit in the first place.
From Eq. (B3), the parameter split parameters for R ¼ 1

become equal:

θ1C ¼ θ2C ¼ θJ ¼
1

α

�Xd1
i¼1

xi þ
Xd1þd2

i¼d1þ2

xi

�
; ðB9Þ

with α ¼ d1 þ d2 − 1, the number of independent data
points. It follows that the difference of the two copy
parameters is fixed to zero while their sum has variance
2=α. In this case the fully correlated data acts as a bridge so
that the best parameter estimator of each is always the joint
estimator that uses all of the data optimally.
In the opposite case, when R ¼ −1, the two copy

parameters are given by

θ1C ¼ −θ2C ¼ 1

α

�Xd1
i¼1

xi −
Xd1þd2

i¼d1þ2

xi

�
ðB10Þ

while the joint parameter estimate is θJ ¼ 0. This reflects
the fact that a shift in θJ reflects a shift in the mean of all
points whereas a noise fluctuation can only shift the
difference between the correlated points, not their sum.
The sum of the two copy parameters is then fixed to zero
while their difference has variance 2=α. The former
represents a parameter that can be measured free of noise
in the joint case when including correlations and is a simple
example of saturating the λK ¼ 0 KL bound discussed in
the previous section below Eq. (A4).
As we can see, in these two extreme cases, if the two data

sets share some linear combination of their data that can be
measured free of noise, then information is fully shared
between the parameter splits in a manner that depends on
the projection of this linear combination onto parameter
space. The case of partial correlation is analogous but in
that case the two parameters are likewise no longer fully
correlated.
To further clarify the difference between the statistics for

finite R, let us take the simplest example where d1 ¼ 1 and
d ¼ d2 þ 1. The estimator of parameter split parameter
difference is then

ΔθC≡θ1C−θ2C¼ x1−
1þðd−2ÞR

d−1
x2þ

R−1

d−1

Xd
i¼3

xi;

varðΔθCÞ¼
ð1−RÞðdþðd−2ÞRÞ

d−1
; ðB11Þ

while the data split estimator is

ΔθS ≡ θ1S − θ2S ¼ x1 −
1

d − 1

Xd
i¼2

xi;

varðΔθSÞ ¼
d − 2R
d − 1

: ðB12Þ

Even though ΔθC → 0 as R → 1, its variance does as well
since the fluctuations in the uncorrelated data drop out of
the difference. Thus for finite R, ΔθC may be significantly
anomalous even though its magnitude is much less than
ΔθS. Nonetheless, for a given data realization, the two
would report different statistical significance in general.
To understand the difference in significance let us

illustrate this with a simple example. Suppose the anoma-
lous aspect of the data were an extreme fluctuation in the
value of x1 itself. For a typical realization of x2, this would
appear as an anomalous, but different, value for ΔθC and
ΔθS. However the realization of x2 contains fluctuations
from both the correlated noise and the uncorrelated noise. A
rare fluctuation in the uncorrelated piece will separate the
significance of the two statistics. For example if the
uncorrelated piece separated x2 from x1 more than expected
given R, it would affect the parameter split estimator more
than the data split. As R → 1, the former depends mainly
on x1 − x2, which is controlled by the uncorrelated piece of
the noise rather than the anomalous value of x1 itself. In this
sense, it is more important for the parameter split statistics
that correlations are modeled accurately than it is for the
data split statistics.
In this simplified case it is also easy to write the

correlation between the two parameter shift estimates:

corrðΔθC;ΔθSÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − RÞðdþ Rðd − 2ÞÞ

d − 2R

r
; ðB13Þ

which shows that in the R ¼ 0 case the two estimators are
completely correlated and become gradually uncorrelated
as R increases. As discussed above, the correlation of a
single data point reduces the parameter split difference
whereas the data split difference still fluctuates because of
all of the uncorrelated data, thereby decorrelating the two
estimators.

APPENDIX C: EXACT DISTRIBUTION
OF GOODNESS-OF-FIT LOSS STATISTIC

WITH DATA SPLIT

In this section we discuss in detail the exact distribution
of the QS

DML and QS
DMAP estimators, with the data split

methodology.
We first consider the ratio of maximum likelihoods of the

joint data set and the two subsets. By direct calculation it
can be shown that, up to constant offsets that is irrelevant to
the calculation of statistical significance this ratio can be
written as the quadratic form in the data:
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QS
DML ¼ XT

J

�
ðIJ − PJÞTΣ−1

J ðIJ − PJÞ −
� ðI1 − P1ÞTΣ−1

1 ðI1 − P1Þ O

O ðI2 − P2ÞTΣ−1
2 ðI2 − P2Þ

��
XJ

≡ XT
JA

S
DMLXJ; ðC1Þ

where XJ is the full data vector, distributed according to the
evidence of the joint data set, and AS

DML is the matrix that
defines QS

DML. The indices 1 and 2 denote the two subsets
of the data after we split the joint set.
Through explicit computation, the form of the joint

projector is given by

PJ ≡
�
p11 p12

p21 p22

�

with

p11 ¼ M1CJðMT
1 −MT

2Σ−1
2 Σ21ÞK−1

1 ;

p12 ¼ M1CJðMT
2 −MT

1Σ−1
1 Σ12ÞK−1

2 ;

p21 ¼ M2CJðMT
1 −MT

2Σ−1
2 Σ21ÞK−1

1 ;

p22 ¼ M2CJðMT
2 −MT

1Σ−1
1 Σ12ÞK−1

2 ;

where we have defined

K1 ≡ Σ1 − Σ12Σ−1
2 Σ21;

K2 ≡ Σ2 − Σ21Σ−1
1 Σ12:

In order to calculate the distribution of Eq. (C1) we follow
the procedure discussed in Appendix A of [20] and
compute the eigenvalues, λ, of AS

DMLSJ, where SJ is the
covariance for the joint distribution of the data which, for
Gaussian priors, is SJ ¼ ΣJ þMJCΠMT

J . This allows to
decompose QS

DML in the following way:

QS
DML ¼

X
i

λiU2
i ; ðC2Þ

where each U i ∼N JðxJ;O; IÞ so that QS
DML is a weighted

sum of chi-squared variables.
By direct calculation we have

AS
DML ≡ AS

DMLSJ ≡
�
A B

C D

�
; ðC3Þ

where

A ¼ ½Σ−1
1 M1C1 − K−1

1 ðM1 − Σ12Σ−1
2 M2ÞCJ�MT

1 ;

B ¼ −K−1
1 ðM1 − Σ12Σ−1

2 M2ÞCJMT
2

− ðI1 − Σ−1
1 M1C1MT

1 ÞΣ−1
1 Σ12;

C ¼ −K−1
2 ðM2 − Σ21Σ−1

1 M1ÞCJMT
1

− ðI2 − Σ−1
2 M2C2MT

2 ÞΣ−1
2 Σ21;

D ¼ ½Σ−1
2 M2C2 − K−1

2 ðM2 − Σ21Σ−1
1 M1ÞCJ�MT

2 :

An analytic solution to the above eigenvalue problem is not
easily obtained, but can be obtained numerically to evaluate
the exact distribution of QS

DML. We highlight that, similarly
to what happens for data split parameter shifts, the
calculation of the statistics involves quantities that are
defined both at the parameter space and data space level.
Note that the expressions we derived above reduce to the

corresponding ones in [20] in the limit of uncorrelated
data sets.
Furthermorewe can notice that the quadratic form defined

by QS
DML is not necessarily positive definite. This is a

consequence of the fact that the projector on the joint
parameter space is not a subspace of the span of the single
data set projector. This severely limits the possibility of
approximatingQS

DML with a chi-squared distribution, which
is positive definite, especially for events in the confirmation
tail that would be very close to QS

DML ¼ 0.
In addition, the fact that QS

DML is not chi-squared
distributed means that correlated data fluctuations are
not optimally weighted.
We then consider the ratio of likelihoods at maximum

posterior (DMAP) in the data split case. To do so we add
the extra terms that transform ML into MAP so that the
matrix that controls QS

DMAP is given by

AS
DMAP ¼ AS

DML þ Σ−1
J MJCJC−1Π CpJMT

J

−
�
M̃T

1C
−1
Π Cp1MT

1 B̃

B̃ð1 ↔ 2Þ M̃T
2C

−1
Π Cp2MT

2

�
; ðC4Þ

where, for compactness, we have defined B̃ ≡
M̃T

1C
−1
Π Cp1C−11 Cp1ðC−1Π M̃1Σ12 þMT

2 Þ.
These results, for both QS

DML and QS
DMAP, can be used to

compute the respective exact distributions. The trace of
these distributions coincides with the results obtained in the
uncorrelated case, but we notice that it is problematic to
approximate them with simpler distributions because both
of them are not positive definite.
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The fact that both QS
DML and QS

DMAP are not positive
definite means that there are aspects of the data where the
joint likelihood is better than the product of the separate
likelihoods. This can never happen for uncorrelated data
sets and is a consequence of the presence of correlated data
modes. In particular, the data modes that are fit by the
model separately are the ones that would contribute to the
positive definiteness of the above statistics, since they can
zero out different data fluctuations, whereas the correlated
data modes that are left out can contribute negatively.
Fitting the data jointly, however, always takes correlated
modes into account, so that the contribution to the chi-
square from them is considered.
We close this Appendix by discussing the application of

these exact statistics to our SN example. In Fig. 10 we show
the eigenvalues of the matrix in Eq. (C3) for QS

DML and the
eigenvalues of the matrix in Eq. (C4) for QS

SMAP. This
clearly shows that both estimators are not positive definite
which means that an approximation of the exact distribu-
tion with a χ2 distribution would not be appropriate. We can
also see that the number of nonzero components largely
exceeds the number of parameters as a consequence of the
fact that for this data split estimator data and parameter
modes are mixed. Notice also that both distributions are
similar since the prior is not informative.

APPENDIX D: EXACT DISTRIBUTION OF
GOODNESS-OF-FIT LOSS STATISTIC WITH

PARAMETER SPLIT

In this section we discuss in detail the exact distribution
of the QC

DML and QC
DMAP estimators, as presented in

Sec. VII C, and how they can be approximated.

We first consider the statistics of ML ratios (DML). We
focus on the distribution of the DML statistic between the
joint chain and the one with the duplicated parameter space.
To do so, we begin by considering the ML parameter split
determination, θML

C ¼ ðθML
1C ; θML

2C ÞT , and the joint ML
parameters, θML

J . We then use them to define the difference
in joint log likelihood at the ML point as

QC
DML ≡ −2 lnLJðθML

J Þ þ 2 lnLJðθML
C Þ: ðD1Þ

Note that in the limit of uncorrelated data this reduces to
QC

DML ¼ −2 lnLJðθML
J Þ þ 2 lnL1ðθML

1 Þ þ 2 lnL2ðθML
2 Þ

which is similar to the expressions used in [20].
In the GLM, it can be shown that, up to constants which

are not important for our purpose, we get the following
quadratic form in data space:

QC
DML ¼ XT ½ðI − PJÞTΣ−1

J ðI − PJÞ
−ðI − PCÞTΣ−1

J ðI − PCÞ�X
≡ XTAC

DMLX; ðD2Þ

where we have used the joint projector PJ ¼ MJCJMT
JΣ−1

J
and the projector under parameter duplication written as
PC ¼ MCCCMT

CΣ−1
J . Now, we can rewrite the joint pro-

jector in the following way:

PJ ¼ MCDCðDT
CC

−1
C DCÞ−1DT

CM
T
CΣ−1

J ; ðD3Þ

while the projector in the case of parameter duplication can
be expressed as

PC ¼ MCðMT
CΣ−1

J MCÞ−1MT
CΣ−1

J : ðD4Þ

Then, using the above expressions it is straightforward to
show that the joint set of parameters is a subset of the
duplicate set, since PJPC ¼ PCPJ ¼ PJ. Therefore, we
can use theorem (5.2.5) in [47] to show that, at the ML
level,

QC
DML ∼ χ2ðrankðI − PJÞ − rankðI − PCÞÞ

¼ χ2ðNC − NJÞ; ðD5Þ

where NC and NJ are the number of parameter duplicates
and the number of joint parameters respectively. Note that,
in the limit of uncorrelated data sets NC ¼ N1 þ N2, where
N1 and N2 are the number of relevant parameters for the
first and second data sets respectively.
In contrast with the case of data split the exact statistics

of the parameter split DML estimator is a chi-square, which
also means that QC

DML is optimal.
The exact statistics of QC

DML can also be obtained by
explicitly computing the eigenvalues ofAC

DMLSJ ¼ PT
C − PT

J ,
where SJ ¼ΣJþMJCΠMT

J . Notice thatMJCΠMT
J represents

(a) (b)

FIG. 10. Spectrum of the exact distribution ofQS
DML in panel (a)

and QS
DMAP in panel (b). Different lines correspond to different

SN split, as shown in the legend. Modes that have eigenvalues
below 0.05 are not shown.
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a prior that is fully correlated between the split parameters,
whereas our parameter split analysis assumes separate priors
that are uncorrelated. This is necessary since otherwise the
split parameters would be expected to vary according to CΠ
leading to a counterfactually large expected improvement
from fitting them separately. Conversely, the split parameter
technique cannot employ fully correlated priors because no
matter how weak such a prior is, it would force the split
parameter posterior means to the same values (see
Appendix B).
We can now turn to the distribution of QDMAP, with

parameter copies. This can be written as

QC
DMAP ≡ −2 lnLJðθpJ Þ þ 2 lnLJðθpCÞ

¼ QC
DML þ XT

J ½M̃T
JC

−1
Π CpJC−1J CpJC−1Π M̃J

−M̃T
CC

−1
ΠCCpCC

−1
C CpCC−1ΠCM̃C�XJ

≡ XT
JA

C
DMAPXJ; ðD6Þ

where we have used that for Gaussian priors the likelihood
at the point of maximum posterior is given by
−2 lnLðθpJÞ ¼XT ½ðI−PJÞTΣ−1

J ðI−PJÞþ M̃T
JC

−1
Π CpJC−1J ×

CpJC−1Π M̃J�X for the joint, and similarly for the parameter
copy case. In the above, the copy prior covariance is
defined as CΠC ¼ diagðCΠ; CΠÞ.
To calculate the exact distribution of QC

DMAP, we follow
the same procedure as in the case of data splits in
Appendix C. Therefore, we start with the computation of
the matrix AC

DMAPSJ whose spectrum completely specifies
the distribution of QC

DMAP as a sum of independent Gamma
distributed variables. It can be shown that this matrix
reduces to

AC
DMAPSJ ¼ PT

C − PT
J þ M̃T

JC
−1
Π CpJMT

J

− M̃T
CC

−1
ΠCCpCC

−1
C CpCðC−1ΠCCC þDCDT

CÞMT
C:

ðD7Þ

It can then be also shown that the nonzero eigenvalues of
Eq. (D7) are also the eigenvalues of the matrix:

AC
DMAP ¼ I2N þDCC−1Π CpJDT

C − C−1pCDCCpJDT
C

− C−1ΠCCpCDCDT
C þ C−1ΠCCpCC

−1
ΠCCpCJ2N; ðD8Þ

where we have defined, for convenience, the exchange
matrix J2N ≡DCDT

C − I2N that exchanges the off diagonal
blocks with the diagonal ones. Note that the above
expression is written in terms of quantities that can be
obtained from MCMC samples of the posterior of both the
parameter copy and joint chains.
Either one can use Eq. (D8) to compute the exact

distribution or one can approximate it by a chi-squared
distribution matching the mean of the exact distribution as a
first order Patnaiks’ approximation [48]. The mean of the

exact distribution and the number of degrees of freedom of
the chi-squared approximation is given by

tr½AC
DMAP� ¼ N þ tr½C−1Π CpJ� − tr½C−1ΠCCpC�

− tr½C−1ΠCCpCðI2N − C−1ΠCCpCÞJ2N �
¼ NC

eff − NJ
eff þ tr½C−1Π ðCp1C þ Cp2C − CΠÞ

× C−1Π ðCp12C þ Cp21CÞ�: ðD9Þ

We can furthermore calculate the variance of the distribu-
tion as it is proportional to the trace of the matrix
ðAC

DMAPÞ2. This, however, does not significantly simplify
and in practical applications it is significantly easier to
compute the variance numerically.
All the results in this Appendix agree, in the uncorrelated

limit, with the results in [20].
We now compute the two exact distributions for our SN

example considering only QC
DMAP as QC

DML is chi-square
distributed. The eigenvalues of both the QC

DMAP matrix, as
in Eq. (D8), are shown in Fig. 11.
As we can see, since the prior is not informative for the

zcut ¼ 0.3 case, the eigenvalues result in a chi-squared
distribution with 2 degrees of freedom. On the other hand,
the presence of a mildly informative prior for the zcut ¼ 0.7
case makes one zero eigenvalue for DML different from
zero and slightly negative. We, however notice that, since
the distribution for QC

DMAP is exact for directions that are
either fully data and fully prior constrained, contrarily to
what happens in the data split case, negative eigenvalues
that arise from our mild inconsistency in accounting for the
priors on split parameters are usually a small correction.
It is possible to use in practice these eigenvalues to check

whether there is a difference in the statistical significance of
the QC

DMAP exact and approximate distribution. We find

FIG. 11. Spectrum of the exact distribution ofQC
DMAP. Different

lines correspond to different SN split, as shown in the legend.
Modes that have eigenvalues below 0.05 are not shown.
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that, in this case, the misestimate of statistical significance
is subpercent.

APPENDIX E: ARBITRARILY SPLIT
PARAMETERS

In this Appendix we generalize the discussion of the
parameter split estimators to the case where we consider
parameters that are multiply split or not split at all.
Quantities associated with the split and unsplit part of the

parameter space will be denoted by the subscripts “C” and
“U” respectively. We denote the unsplit posterior param-
eters with θpU and the n posterior parameter copies with
θpSC ¼ ðθp1C; θp2C;…; θpnCÞT . Therefore, the full posterior
parameter vector can be written as θpC ¼ ðθpSC; θpUÞT . In
what follows, the total number of copy parameters will be
nNC, where NC is the number of split parameters, and the
number of unsplit parameters will be NU; therefore, Np ¼
nNC þ NU is the total number of parameters in the final
parameter vector.
Note also that the joint analysis deals with the original

NJ ¼ NC þ NU parameters in total. The joint parameter
vector will be denoted as θpJ ¼ ðθpCJ; θpUJÞT , where the two
parts θCJ and θUJ correspond to the parameter subspaces
that are split and unsplit in the parameter split methodology,
respectively.
The design matrixDC relates the joint quantities with the

copy ones. Constructing this appropriately is then enough
to generalize our analysis as described in the previous
sections. Let DSC be the nNC × NC dimensional design
matrix related to the part of parameter space that is being
copied n times; thus,DT

SC ¼ ðIC;…; ICÞ with n instances of
the identity matrix IC of dimensions NC × NC. Let also IU
be the NU × NU identity matrix related to the NU unsplit
parameters. Then, the design matrix takes the form

DC ¼
�
DSC O

O IU

�
; ðE1Þ

where O is the vector with the appropriate number of zeros
in each case. Thus, the full design matrix has dimensions
of ðnNC þ NUÞ × ðNC þ NUÞ.
We first consider parameter shifts of the form θpiC − θpjC

between the ith and jth copies, where i; j ¼ 1; 2;…n run
over all the n parameter copies. Then, we can express the
general form of the covariance between the two parameter
differences θpiC − θpjC and θpkC − θplC, with k; l ¼ 1; 2;…; n,
as

hðθpiC − θpjCÞðθpkC − θplCÞTi ¼ CpikC þ CpjlC − CpilC − CpjkC:

ðE2Þ

These matrices then construct the covariance that is
associated with the split copy part of the parameter space.
Since there is no shift in the unsplit parameters, the

parameter differences and covariances associated with
the unsplit part of the parameter space is zero.
We now turn to the discussion of update parameter

differences. In this case, we consider differences between
the posterior parameters from a joint analysis, namely θpJ ,
and the copy parameter vector ðθpiC; θpUÞT which includes
the unsplit copy parameters as well as the ith copy
parameter set. We thus form the parameter differences in
update form as

ΔθUC ≡ ðθpiC; θpUÞT − θpJ

¼ ðθpiC − θpCJ; θ
p
U − θpUJÞT: ðE3Þ

Note that θpUJ are generally different from θpU, and that the
unsplit parameters can be correlated with the split param-
eters. We can then explicitly calculate the parts of the
covariance between such update parameter differences.
We begin by considering the covariance of the split

parameter differences, which results in

hðθpiC − θpCJÞðθpjC − θpCJÞTi ¼ CpijC − CpCJ; ðE4Þ

where CpCJ ¼ hðθpCJÞðθpCJÞTi − hðθpCJÞihðθpCJÞTi is the
covariance of the parameters in the split part of the joint
set. We have used the fact that hðθpiCÞðθpCJÞTi−
hðθpiCÞihðθpCJÞTi ¼ CpCJ.
Similarly to the above, we can calculate the covariance of

the unsplit parameter differences as

hðθpU − θpUJÞðθpU − θpUJÞTi ¼ CpU − CpUJ; ðE5Þ

where the covariance matrices CpU and CpUJ correspond to
the unsplit part of the copy and joint parameter sets
respectively in the same manner as for the split parameters
above. Finally, we can calculate the covariance between
split and unsplit parameter differences, which yields

hðθpiC − θpCJÞðθpU − θpUJÞTi ¼ CpiU − CpCUJ: ðE6Þ

In the above we have defined the covariance CpiU between
the copy i and unsplit copy parameters and CpCUJ between
the split and unsplit joint parameters, again as above.
We can now comment on the relation between the QC

DM
andQC

UDM estimators and their statistical significance. As in
the case of two parameter copies without unsplit param-
eters, which is discussed in Sec. VII A, their significance is
the same for the maximum likelihood parameters, since

�
θML
iC

θML
U

�
− θML

J ¼ CJDT
CC

−1
C

�
DSCθ

ML
iC − θML

SC

O

�
;

where θML
SC ¼ ðθML

1C ; θML
2C ;…; θML

nC ÞT and the zero vector O
has length NU.
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At the maximum posterior level the two statistics can
differ, however, since the update parameter shifts contain
only one copy of the prior in the joint but the prior is
applied once to each set in the split analysis. As we did in
Sec. VII A here we can also define the joint parameter
estimate θ̃pJ ¼ ðθ̃pCJ; θpUJÞT that counts the prior n times and
has covariance C̃−1pJ ¼ C−1J þDT

CC
−1
ΠCDC ¼DT

CC
−1
pCDC. Then,

the update parameter shifts would be defined as

�
θpiC
θpU

�
− θ̃pJ ¼ C̃pJDT

CC
−1
pC

�
DSCθ

p
iC − θpSC
O

�
; ðE7Þ

where O is the zero vector of length NU. Therefore,
the statistical significance of the update differences
ðθpiC; θpUÞT − θ̃pJ is the same as that of the parameter shifts
θpC −DSCθ

p
iC since they are related by a linear and invertible

transformation. We can then always use θ̃pJ to rewrite the
update parameter difference as

�
θpiC
θpU

�
− θpJ ¼

��
θpiC
θpU

�
− θ̃pJ

�
þ ðθ̃pJ − θpJ Þ: ðE8Þ

To complete the generalization in the case of n parameter
copies with unsplit parameters, we now discuss how the

statistics of goodness-of-fit loss both at the ML level,
through QC

DML ≡ XT
JA

C
DMLXJ, and at the level of MAP,

throughQC
DMAP ≡ XT

JA
C
DMAPXJ, can be computed. To do so

we can directly follow the discussion in Appendix D to
construct the matrices AC

DMLSJ and AC
DMAPSJ, respectively

for ML and MAP, where we define the covariance matrix
SJ ≡ ΣJ þMJCΠMT

J for Gaussian priors.
Doing so it can be shown that the expressions for both

ML and MAP goodness-of-fit loss statistics remain invari-
ant compared to the results in Appendix D, provided that
one uses the design matrix in Eq. (E1). Therefore, it is still
true that the joint projector is a subset of the copy one, and
thus QC

DML is chi-squared distributed with rankðI − PJÞ −
rankðI − PCÞ degrees of freedom.
Furthermore, QDMAP can be approximated by a chi-

square distribution by matching moments of the approxi-
mate and exact distributions; the mean will then be given
by the equivalent of Eq. (D9) if we define NC

eff ¼ nNCþ
NU − tr½C−1ΠCCpC�.
At last we highlight that, with the MCMC chain of

multiple parameter copies we can easily construct the
distribution of parameter differences and proceed with
the statistical significance calculation as in Sec. VII B to
compute the overall statistical significance of multiple
parameter shifts.
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