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Generation of magnetic fields during inflation is a promising mechanism for the origin of the observed
large scale magnetic fields in the universe. Among several attempts, a popular model is one where the
inflaton and the electromagnetic field are coupled through a coupling function f leading to a term in the
Lagrangian density of the form, f2FμνFμν. A number of potential difficulties with such models have been
raised in the literature. In our earlier work, we have suggested viable models of inflationary magnetogenesis
which avoid these problems and at the same time can lead to either nonhelical or helical magnetic fields of
astrophysical interest. Our models require a low energy scale for inflation and reheating (reheating
temperature, TR < 104 GeV) and generate a blue spectrum of electromagnetic (EM) field which peaks
around the horizon scale of reheating. We show here that the anisotropic stress associated with these EM
fields naturally source the production of a stochastic background of Gravitational waves (GW) with
frequencies in the range of tens of nano Hertz to milli Hertz. These two extremes of the range can be probed
respectively by pulsar timing arrays (PTA) experiments and the upcoming Laser Interferometric Space
Array (LISA). The peak value of the GW spectrum energy represented by dΩGW=d ln k is 10−6 for the
models which lead to nonhelical primordial fields and 2 × 10−6 for the helical case for TR ¼ 100 GeV. In
this case the spectrum peaks at a frequency 30 μHz for nonhelical case and at 40 μHz for helical case.
These values are obtained when the ratio of EM energy density to the cosmological density at reheating
ϵ ∼ 1 and decrease approximately as ϵ2 for smaller values. The amplitude is similar for a lower value of TR,
but the frequency at which the GW spectrum peaks decreases as TR. The gravitational waves generated are
unpolarized if the EM fields are nonhelical but are circularly polarized for helical primordial fields. If
detected in the future these gravitational waves will provide a unique probe of such models of inflationary
magnetogenesis.
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I. INTRODUCTION

The discovery of gravitational waves by LIGO and
VIRGO detectors from binary black hole and neutron star
black hole binary mergers [1–5] opened a new era in
astronomy. Gravitational waves (GW) can even probe
sources which are not detectable through electromagnetic
radiation like black hole mergers. Primordial GW can be
used to probe various epochs in the early Universe. One of
these epochs is the inflationary era during which the
universe underwent a rapid accelerated expansion. The
inflationary framework provides a solution to several
problems in standard cosmology like horizon and flatness
problems [6]. It also gives a natural explanation for the
origin of initial density fluctuations [7,8] which are later
amplified via gravity to form large-scale structures in the

universe. Tensor perturbations (gravitational waves) are
also produced in a manner similar to that of scalar
density perturbations during inflation [9,10]. These
tensor perturbations travel freely after generation as
their interaction with the rest of the fluid is very weak.
Since, the energy scale at which inflation took place is not
known, the present observations only put an upper
bound on this scale of inflation from the nondetection of
tensor perturbations in the cosmic microwave background
radiation [11].
There are various other epochs in the early universe

where the production of GW could have taken place. These
include the production of GW from braneworlds [12,13],
topological defects [14], phase transitions [15–33], reheat-
ing [34–36], and primordial turbulence [37–40].
Gravitational waves may be represented by the transverse
traceless (TT) part of the metric perturbations. They are
sourced by the corresponding TT part of the energy
momentum tensor. Indeed any process which generates
an anisotropic stress can produce GW. This can happen, for
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example, if magnetic fields are generated during phase
transition or during inflation.
In this paper, we focus on the production of the

gravitational waves from the primordial magnetic fields
which are generated during inflation. Magnetic fields have
been observed over a wide range of scales in the universe
[41–45]. These fields are assumed to be generated by the
amplification of seed fields via flux freezing evolution
followed by a turbulent dynamo mechanism [46]. A
number of scenarios of generation of seed magnetic fields
have been suggested in literature such as generation during
inflation [47–68], phase transitions [69–72], recombina-
tion, reionization and structure formation [73–77]. The
importance of inflationary scenarios of magnetic field
generation as against other mechanisms lies in the fact
that the former gives a natural way of generating fields
coherent on large length scales. A popular model for such
generation is one where one couples a time dependent
function to the usual electromagnetic (EM) action. In
particular Ratra [48] model takes the Lagarangian density
of the form f2FμνFμν where f is a function of inflaton field
and Fμν the electromagnetic field tensor. Although this
model generates magnetic fields of sufficient strength to
satisfy a number of observational constraints, it suffers
from the backreaction and strong coupling problems [78].
Another potential difficulty for such magnetogenesis sce-
narios arises due to charged particle production by the
Schwinger mechanism which arrests the growth of mag-
netic field [79].
In a recent study by Sharma et al. [80], we have

suggested a scenario in which these problems can be
circumvented at the cost of having a low scale inflation.
In this model, the coupling function f increases during
inflation starting from an initial value of unity and becomes
very large at the end of inflation. Such an evolution of f is
free from the above mentioned problems. However, the
coupling between the charges and EM field becomes very
small at the end. To get back the standard EM theory we
introduced a transition in the evolution of f immediately
after the end of inflation during which time it decreases
back to unity at reheating and after that f becomes constant.
During this postinflationary era both electric and magnetic
energy density increase. By demanding that EM energy
density should remain below the background energy
density, we obtained a bound on reheating and inflationary
scales. Our models can generate both nonhelical and helical
magnetic fields and satisfy known observational con-
straints. They predict a blue spectrum for the magnetic
field energy density peaked at small length scales, typically
a fraction of the Hubble radius at reheating [80,81]. The
generated field energy density can also be a significant
fraction of the energy density of the Universe at those
epochs.
The anisotropic stress associated with such primordial

EM fields lead to a stochastic gravitational wave

background. The process is to a certain degree similar to
that which obtains during a first order phase transitions in
the early Universe. Prior to reheating, the electric energy
density was nonzero and its amplitude is typically greater
than the magnetic energy density. Hence, prior to reheating,
both electric and magnetic fields contribute to the aniso-
tropic stress and result in GW production with a dominant
contribution from the electric field. Electric fields are
however damped out after reheating due to the very large
conductivity of the universe. Thus after reheating only the
generated magnetic fields contribute to the generation of
stochastic GW. This interplay between electric and mag-
netic field both contributing to stochastic GW leads to a
characteristic feature in the GW energy spectrum. We
calculate here the strength of the stochastic GW back-
ground generated for several of our inflationary magneto-
genesis models. The predicted signals are compared with
the sensitivity of the future space based gravitational waves
detector like the Laser Interferometer Space Antenna
(LISA) or for some reheating scales limits obtained from
Pulsar Timing Arrays (PTA).
The paper is organized as follows. In Sec. II we set up the

general formalism for describing the evolution of the
stochastic GW energy spectrum in terms of the tensor
perturbation of the metric. We also introduce the different
bases for representing the GW energy spectrum depending
upon the nature of the source of these tensor perturbations.
In Sec. III, we study the inflation generated electromagnetic
fields as the source of these perturbations and derive
expressions for the resulting anisotropic stress needed to
calculate the GWenergy spectrum. The predicted stochastic
GW spectrum due to nonhelical electromagnetic fields is
calculated in Sec. IVA. The helical case is considered in
Sec. IV B. We also compare these predictions with
expected limits from LISA and PTA experiments.
Detection of the generated GW spectrum with LISA is
discussed in Sec. V. Some of the details of the calculations
are left to several appendices. The last section contains a
discussion of our results and conclusions.

II. STOCHASTIC GRAVITATIONAL WAVES:
STANDARD FORMALISM

Gravitational waves may be represented by the trans-
verse-traceless part of the space-time metric perturbation.
These are sourced by the TT part of the energy momentum
tensor. In the context of this paper, such TT component of
the energy-momentum tensor is provided by the EM field.
In this section we set up the general formalism to describe
the evolution of stochastic GW energy spectrum in the
expanding universe so that in subsequent sections, we can
calculate the gravitational waves produced by the inflation
generated EM field in our scenario. For this, we follow
Caprini et al. [22] and Caprini et al. [82]. We consider a
homogeneous, isotropic and a spatially flat background
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expanding universe. The metric for such a universe with
tensor perturbation is,

ds2 ¼ a2ðηÞð−dη2 þ ðδij þ 2hijÞdxidxjÞ:

Here η is the conformal time, xi represents the
comoving coordinates for the space dimensions, aðηÞ is
the scale (or expansion) factor and hij represents the tensor
perturbations of the metric, in the transverse and trace-
less gauge. The energy density of the stochastic GW in
terms of these tensor perturbations can be expressed
as [29],

ρGW ¼ 1

16πG

hh0ijh0iji
a2

: ð1Þ

Here hij ¼ δimδjnhmn, prime ( 0) denotes the derivative with
respect to conformal time and hi represents ensemble

average. We define the Fourier transformation of the tensor
perturbations as

hijðk⃗; ηÞ ¼
Z

d3xhijðx⃗; ηÞe−ik⃗·x⃗;

with the corresponding inverse transform defined as,

hijðx⃗; ηÞ ¼
Z

d3k
ð2πÞ3 hijðk⃗; ηÞe

ik⃗·x⃗;

where we use the symbol hij for both the real space and
Fourier space components. The Fourier components
hijðk⃗; ηÞ satisfy,

kihij ¼ 0 and hii ¼ 0:

In Fourier space, ρGW can be expressed as

ρGW ≡
Z

d ln k
dρGW
d ln k

¼ 1

16πGa2

Z
d3k
ð2πÞ3

Z
d3q
ð2πÞ3 hh

0
ijðk⃗; ηÞh0�ijðq⃗; ηÞieiðk⃗−q⃗Þ·x⃗: ð2Þ

We will refer to dρGW=d ln k as the GW energy spectrum.
To estimate the energy density in GW, we need to know
how hij evolves with time. The evolution of hij is governed
by the Einstein equation, using which, we get the following
linearized equation of motion for hij in presence of a
source,

h00ij þ
2a0

a
h0ij þ k2hij ¼ 8πGa2T̄ij: ð3Þ

Here a2T̄ij is the transverse traceless part of the energy-
momentum tensor of the source. In our work, we consider
both nonhelical as well as helical EM field as the source of
gravitational waves. The convenient basis for expressing
the solution to the GW equation depends on whether the
GW is linearly or circularly polarized depending on
whether we consider nonhelical or helical EM fields
respectively as the source.
The basis set suitable to represent the linear polarization

of the gravitational waves are [29],

eTij ¼
1ffiffiffi
2

p ðê1 × ê1 − ê2 × ê2Þij

e×ij ¼
1ffiffiffi
2

p ðê1 × ê2 þ ê2 × ê1Þij:

Here ðê1; ê2; ê3 or k̂Þ are a set of mutually orthonormal
basis vectors of our coordinate system, “×” represents a
tensor product and we assume that gravitational waves
propagates in the ê3 or k̂ direction in this coordinate system.

These basis vectors satisfy the following properties to
ensure the transverse traceless nature of the tensor pertur-
bations,

k̂ieðT;×Þij ¼ 0; δijeTij ¼ 0;

eðT;×Þij eð×;TÞij ¼ 0; eðT;×Þij eðT;×Þij ¼ 1:

The GW tensor perturbation in terms of this basis is,

hijðk⃗; ηÞ ¼ hTðk⃗; ηÞeTij þ h×ðk⃗; ηÞe×ij ð4Þ

Further, the suitable basis for representing the circular
polarization of the gravitational waves are [82],

e�ij ¼ −
1

2
ðê1 � iê2Þi × ðê1 � iê2Þj:

Here e�ij satisfy the following properties,

k̂ie�ij ¼ 0; δije�ij ¼ 0; e�ije
∓ij ¼ 1:

Tensor perturbations in terms of these circularly polarized
basis vectors are given by,

hijðk⃗; ηÞ ¼ hþðk⃗; ηÞeþij þ h−ðk⃗; ηÞe−ij: ð5Þ

The GW amplitude in these two polarization modes can
be represented by hℵ where ℵ ¼ þ;− or ℵ ¼ þ;× depend-
ing on whether it is linearly or circularly polarized. The
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GW equation for the amplitude in appropriate basis
becomes

h00ℵ þ
2a0

a
h0ℵ þ k2hℵ ¼ 8πGa2ðρþ pÞΠℵ: ð6Þ

where Πℵ is defined as Πℵ ≡ ½1=ðρþ pÞ�T̄TT
ℵ .

A. The GW energy spectrum

In the next section, we will see that for statistically
homogeneous and isotropic EM fields, hΠijðk⃗; ηÞΠijðk⃗0; ηÞi

is proportional to δðk⃗ − k⃗0Þ and some function of k and η.
Using this fact, the above relation implies that tensor
perturbation hij also satisfies the following property,

hh0ijðk⃗; ηÞh0ijðk⃗0; ηÞi ∝ δðk⃗ − k⃗0Þ × Fðk; ηÞ ð7Þ

for some function Fðk; ηÞ. From this property and using the
expansions given in Eq. (4) and in Eq. (5), we express

hh0ijðk⃗; ηÞh0ij�ðk⃗0; ηÞi as,

hh0ijðk⃗;ηÞh0ij�ðk⃗0;ηÞi¼ð2πÞ3δðk⃗− k⃗0Þ
�����dhTðk;ηÞdη

����2þ����dh×ðk;ηÞdη

����2�¼ð2πÞ3δðk⃗− k⃗0Þ
�����dhþðk;ηÞdη

����2þ����dh−ðk;ηÞdη

����2�: ð8Þ

After substituting Eq. (8) in Eq. (2), we get

dρGW
d ln k

¼ k3

4ð2πÞ3Ga2
X
ℵ

����� dhℵðk; ηÞdη

����2�: ð9Þ

Further, after normalizing the gravitational energy den-
sity with background energy density at present (ρc0), we get

dΩGW

dlnk

����
0

¼dΩGW

dlnk

����
η

a4ðηÞ¼ k3a2

4ð2πÞ3Gρc0
X
ℵ

�����dhℵðk;ηÞdη

����2�;
ð10Þ

where, in the above expression we have, as before, defined
as, dΩGW=d ln k ¼ ð1=ρc0ÞdρGW=d ln k.
Our analysis involves an early matter dominated era

between the end of inflation and before reheating followed
by radiation dominated era post reheating. In Secs. II B and
II C, we solve the GW evolution equation in these eras. We
consider the following evolution of scale factor during
these era,

a ¼
(

a2eqHeq

4ηR
ðηþ ηRÞ2; ηe ≤ η ≤ ηR

a2eqHeqη; η ≥ ηR:
ð11Þ

Here ηe and ηR are the conformal time at the end of inflation
and the epoch of reheating, respectively. The scale factor
and Hubble parameter at the epoch of radiation-matter
equality are denoted, respectively by, aeq and Heq. The
above form of the scale factor evolution in Eq. (11) ensures
the continuity of a and H across ηR. We need to solve for
the evolution of the hij sourced by the EM fields generated
in the pre-reheating stage (η ≤ ηR) and the post reheating
stage (η ≥ ηR).

B. Evolution of hij for η ≤ ηR
During the epoch ηe ≤ η ≤ ηR, we define dimensionless

variable w≡ kðηþ ηRÞ and use the relation (11). In terms
of this variables, Eq. (6) reduces to,

d2hℵ

dw2
þ 4

w
dhℵ

dw
þ hℵ ¼ 12

w2
Πℵ: ð12Þ

The homogeneous solutions of this equation are ðj1ðwÞ=wÞ
and ðy1ðwÞ=wÞ (Here j1ðwÞ and y1ðwÞ are first order
spherical Bessel functions of first and second kind, respec-
tively). The complete solution of this equation is,

hℵðk⃗;wÞ¼c1
j1ðwÞ
w

þc2
y1ðwÞ
w

þ−j1ðwÞ
w

Z
w

wi

dw1ð12Πℵðk⃗;w1ÞÞw2
1

y1ðw1Þ
w1

þy1ðwÞ
w

Z
w

wi

dw1ð12Πℵðk⃗;w1ÞÞw2
1

j1ðw1Þ
w1

ð13Þ

Here c1 and c2 are constants which are determined by the
matching of hℵ and its derivative at the epoch just before
and just after the end of inflation. In our model of
inflationary magnetogenesis, the spectral magnetic field
energy density is proportional to the fourth power of the
Hubble parameter for a scale invariant magnetic field

spectrum during inflation. Since the energy scale of
inflation in our model is very low, the energy density of
the magnetic field as well as the gravitational waves
generated in the process is small during inflation. The
corresponding contribution to the homogeneous part of the
above solution is small compared to the contribution from
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the source term. Therefore in the above solution, the main
contribution to the GW energy density come from the
terms with the source, which itself is generated during
ηe ≤ η ≤ ηR.

C. Evolution of hij for η ≥ ηR
In the radiation dominated era, in terms of the dimen-

sionless variable x≡ kη, Eq. (6) reduces to,

d2hℵ

dx2
þ 2

x
dhℵ

dx
þ hℵ ¼ 4

x2
Πℵ: ð14Þ

The homogeneous solution of this equation are zeroth order
spherical Bessel function j0ðxÞ ¼ sinðxÞ=x and y0ðxÞ ¼
− cosðxÞ=x. The complete solution of this equation is,

hℵðk⃗; xÞ ¼ d1j0ðxÞ þ d2y0ðxÞ − 4j0ðxÞ
Z

x

xR

dx1Πℵðk⃗; x1Þy0ðx1Þ þ 4y0ðxÞ
Z

x

xR

dx1Πℵðk⃗; x1Þj0ðx1Þ: ð15Þ

In the above expression, xR is the value of variable x at
reheating (η ¼ ηR), while d1 and d2 are constants which are
determined by matching hij and its derivative at η ¼ ηR.
Since we will be calculating the GWs spectrum due to the
nonhelical as well as helical EM field, we first estimate the
energy momentum tensor for such field.

III. ENERGY MOMENTUM TENSOR OF
THE SOURCE

To calculate the GW energy spectrum we need to
calculate the anisotropic stress tensor of the source. The

energy momentum tensor of the electromagnetic field is
given by,

Tμν ¼
1

4π

�
gαβFμαFνβ −

gμν
4

FαβFαβ

�
:

Anisotropic stress tensor is given by the transverse
traceless projection of the spatial part of the energy
momentum tensor. Spatial part of the energy momentum
tensor is,

Tijðx⃗; ηÞ ¼
1

4π

�
Biðx⃗; ηÞBjðx⃗; ηÞ þ Eiðx⃗; ηÞEjðx⃗; ηÞ −

1

2
gijBmBm −

1

2
gijEmEm

�
ð16Þ

where

Ei ¼
1

a
Fi0 ¼ −

1

a
A0
i and Bi ¼

1

2a
ϵ�ijkδ

jlδkmFlm ¼ 1

a
ϵ�ijkδ

jlδkm∂lAm

are the covariant components of the electric and magnetic field with respect to the comoving observer with four velocity
uμ ≡ ð1=a; 0; 0; 0Þ [83]. Here Ai the is spatial part of the EM 4-potential and ϵ�ijk is 3-d fully antisymmetric symbol with

ϵ�123 ¼ 1. We are interested in the evolution of hTTT
ij ðk⃗; ηÞT̄�ijðk⃗0; η0Þi to calculate ρGW. This is given by

hT̄ijðk⃗; ηÞT̄�klðk⃗0; η0Þi ¼
�

1

4πa4ðηÞ
��

1

4πa4ðη0Þ
��Z

d3q
ð2πÞ3

Z
d3q0

ð2πÞ3 P
mn
ij Pkl

abðhB̃mðq⃗; ηÞB̃�
nðq⃗ − k⃗; ηÞ

× B̃�aðq⃗0; η0ÞB̃bðq⃗0 − k⃗0; η0Þi þ hẼmðq⃗; ηÞẼ�
nðq⃗ − k⃗; ηÞẼ�aðq⃗0; η0ÞẼbðq⃗0 − k⃗0; η0ÞiÞ

�
: ð17Þ

Here Pmn
ij ¼ Pm

i P
n
j − 1=2PijPmn and tilde over the quan-

tities represents their comoving values (B̃bðq⃗; ηÞ≡
Bbðq⃗; ηÞ=aðηÞ and B̃bðq⃗; ηÞ≡ Bbðq⃗; ηÞ=a3ðηÞ). We have
neglected the contribution of the cross terms of electric
and magnetic field because those terms are always sub-
dominant for our case of interest. From Eq. (17) it is

clear that calculations of hT̄ijðk⃗; ηÞT̄�klðk⃗0; η0Þi involves

ðhB̃mðq⃗; ηÞB̃�
nðq⃗ − k⃗; ηÞB̃�aðr⃗; η0ÞB̃bðr⃗ − k⃗0; η0Þi. Since the

nature of the magnetic field generated in our model is
Gaussian, we can express these four point correlation
functions in terms of the two point correlation functions.
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hB̃mðq⃗; ηÞB̃�
nðq⃗ − k⃗; ηÞB̃�aðr⃗; η0ÞB̃bðr⃗ − k⃗0; η0Þi ¼ hB̃mðq⃗; ηÞB̃�

nðq⃗ − k⃗; ηÞihB̃�aðr⃗; η0ÞB̃bðr⃗ − k⃗0; η0Þi
þ hB̃mðq⃗; ηÞB̃�aðr⃗; η0ÞihB̃�

nðq⃗ − k⃗; ηÞB̃bðr⃗ − k⃗0; η0Þi
þ hB̃mðq⃗; ηÞB̃bðr⃗ − k⃗0; η0ÞihB̃�

nðq⃗ − k⃗; ηÞB̃�aðr⃗; η0Þi ð18Þ

In Eq. (18), we require unequal time correlation of the
magnetic fields. For this we followed the analysis in [20,84]
and represent the unequal time correlation of the source in
terms of the product of the equal time correlation,

hB̃iðk⃗; ηÞB̃jðk⃗0; ηÞi and a two time correlation function
CBðk; η; η0Þ, which depends on these different times as
follows,

hB̃ið⃗k; ηÞB̃jðk⃗0; η0Þi ¼ hB̃ið⃗k; ηÞB̃jðk⃗0; ηÞiCBðk; η; η0Þ:
ð19Þ

It is evident from the above relation that for equal
time correlation CBðk; η; ηÞ ¼ 1. To proceed further, we
need to know the equal time correlation function of the
electric and magnetic field. We divide the further study in
two parts depending upon the nature of the gene-
rated EM field; nonhelical and helical nature. Similar
analysis has also been done in a previous study [82].
For the sake of completeness, we reproduce those results
further in this section. The only difference in our analysis
with respect to the previous studies is that we have
explicitly written the unequal time correlation part in the
final expressions.

A. Nonhelical EM fields

For nonhelical magnetic and electric fields, we represent
the two point correlation function in terms of the power
spectrum as follows [22],

hB̃iðk; ηÞB̃�
jðk0; ηÞi ¼ ð2πÞ3δðk⃗ − k⃗0Þðδij − k̂ik̂jÞPSBðk; ηÞ

hẼiðk; ηÞẼ�
jðk0; ηÞi ¼ ð2πÞ3δðk⃗ − k⃗0Þðδij − k̂ik̂jÞPSEðk; ηÞ:

ð20Þ

In the above expression, we have assumed that the
distribution of the generated electric and magnetic field
is homogeneous and isotropic. The delta function, δðk⃗ − k⃗0Þ
in the above expression and the dependence of power
spectrum PSB only on the magnitude of the k⃗ arise because
of the this homogeneous and isotropic nature of the
electromagnetic field distribution. The projection tensor
(δij − k̂ik̂j) in the above expression ensures the divergence
less nature of the magnetic field. We also have this
projection tensor in the electric field correlation function
as during the EM field generation, charge particles density
is negligible. Hence, the electric field can be assumed to
have zero divergence.
Equations (17), (18), (19), and (20) imply

hT̄ijðk⃗; ηÞT̄�ijðk⃗0; η0Þi ¼ 1

a4ðηÞa4ðη0Þ ðfBðk; η; η
0Þ þ fEðk; η; η0ÞÞð2πÞ3δðk⃗ − k⃗0Þ: ð21Þ

Here,

fB;Eðk; η; η0Þ ¼
1

4ð2πÞ5
Z

d3q½PSB;SEðq; ηÞPSB;SEðjk⃗ − q⃗j; ηÞð1þ γ2 þ β2 þ γ2β2Þ�CB;Eðq; η; η0ÞCB;Eðjk⃗ − q⃗j; η; η0Þ: ð22Þ

In the above expression γ ¼ k̂ · q̂ and β ¼ bk · dk − q.
To get the individual mode contribution, we express T̄ijðk⃗; ηÞ in terms of the linear polarization basis.

T̄ijðk⃗; ηÞ ¼ T̄Tðk⃗; ηÞeTij þ T̄×ðk⃗; ηÞe×ij
Using this we get,

hT̄ijðk⃗; ηÞT̄�ijðk⃗0; η0Þi ¼ ðjT̄T j2ðk; η; η0Þ þ jT̄×j2ðk; η; η0ÞÞð2πÞ3δðk⃗ − k⃗0Þ: ð23Þ
In this case, the source is such that the contribution to both the modes (T and ×) are equal. From Eq. (21) and Eq. (23),
we get,

jT̄T j2ðk; η; η0Þ ¼ jT̄×j2ðk; η; η0Þ ¼ 1

2

1

a4ðηÞa4ðη0Þ ðfBðk; η; η
0Þ þ fEðk; η; η0ÞÞ:
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B. Helical EM fields

We follow a similar procedure for the case of helical field. The only difference that will arise is that there is an additional
antisymmetric contribution to the 2-point correlation function. For helical EM field, we have Caprini et al. [82],

hB̃iðk; ηÞB̃�
jðk0; ηÞi ¼ ð2πÞ3δðk⃗ − k⃗0Þððδij − k̂ik̂jÞPSBðk; ηÞ þ iϵijmk̂mPABðk; ηÞÞ

hẼiðk; ηÞẼ�
jðk0; ηÞi ¼ ð2πÞ3δðk⃗ − k⃗0Þððδij − k̂ik̂jÞPSEðk; ηÞ þ iϵijmk̂mPAEðk; ηÞÞ ð24Þ

The term containing PAB; PAE are the antisymmetric parts of two point correlation tensor. Equations (24), (18), and (17)
imply

hT̄ijðk⃗; ηÞT̄�ijðk⃗0; η0Þi ¼ 1

a4ðηÞa4ðη0Þ ðgBðk; η; η
0Þ þ gEðk; η; η0ÞÞð2πÞ3δðk⃗ − k⃗0Þ; ð25Þ

where,

gB;Eðk; η; η0Þ ¼
1

4ð2πÞ5
Z

d3q½PSB;SEðq; ηÞPSB;SEðjk⃗ − q⃗j; ηÞð1þ γ2 þ β2 þ γ2β2Þ

þ 4γβPAB;AEðq; ηÞPAB;AEðjk⃗ − q⃗j; ηÞ�CB;Eðq; η; η0ÞCB;Eðjk⃗ − q⃗j; η; η0Þ: ð26Þ

Here γ ¼ k̂ · q̂ and β ¼ k̂ · dk − q.
To write down the individual mode contribution for this case, we expressΠijðk⃗Þ in terms of the circular polarization basis.

T̄ijðk⃗; ηÞ ¼ T̄þðk; ηÞeþij þ T̄−ðk; ηÞe−ij
hT̄ijðk⃗; ηÞT̄�ijðk⃗0; η0Þi ¼ ðjT̄þj2ðk; η; η0Þ þ jT̄−j2ðk; η; η0ÞÞð2πÞ3δðk⃗ − k⃗0Þ

In this case, the individual mode (þ;−) not only involves the terms arising from the terms containing PSPS and PAPA but
also the cross term containing PSPA. These terms contribute to individual mode as follows,

jT̄−j2ðk; η; η0Þ ¼ 1

2

1

a4ðηÞa4ðη0Þ ðgBðk; η; η
0Þ þ gEðk; η; η0Þ þ hBðk; η; η0Þ þ hEðk; η; η0ÞÞ

and T̄þj2ðk; η; η0Þ ¼ 1

2

1

a4ðηÞa4ðη0Þ ðgBðk; η; η
0Þ þ gEðk; η; η0Þ − hBðk; η; η0Þ − hEðk; η; η0ÞÞ:

Here

hB;Eðk; η; η0Þ ¼
1

4ð2πÞ5
Z

d3q½PSB;SEðq; ηÞPAB;AEðjk⃗ − q⃗j; ηÞ4ð1þ γ2Þβ�CB;Eðq; η; η0ÞCB;Eðjk⃗ − q⃗j; η; η0Þ

IV. GRAVITATIONAL WAVE SPECTRUM
EXPECTED IN OUR MODEL

In our model, to address the strong coupling and back-
reaction problems of inflationary magnetogenesis, we have
taken a particular evolution of the coupling function, f
which evolves with time both during as well as in the era
after inflation till reheating. This function increases during
inflation and transits to a decaying phase post inflation. We
have assumed that the era between the end of inflation and
the beginning of reheating is matter dominated. After this
matter dominated era, reheating takes place and standard
radiation dominance starts. During inflation the magnetic

field spectrum is scale invariant but the strength is very low
compared to the background energy density because of the
low scale of inflation. In the post inflation era when
coupling function, f decreases, the scale invariant contri-
bution to the magnetic spectrum decreases but contribution
from the next order gets amplified on the superhorizon
scales. This postinflationary era ends when the EM energy
density is ϵ times the background energy density and after
this reheating takes place and EM energy density evolves
like radiation. The magnetic field spectrum generated in our
model is a blue spectrum, dρ̃Bðk; ηÞ=d ln k ∝ k4, where ρ̃B
is the comoving magnetic energy density.
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The main contribution to the GW energy spectrum takes
place during the end phase of the postinflationary matter
dominated era. During this era both electric and magnetic
fields contribute to the production of GW. However after
reheating, electric fields get shorted out because of the large
conductivity of the universe and only magnetic field
contributes to the production of GW. We have considered

scenarios of magnetogenesis where nonhelical fields are
generated [80] as well as a scenario [81] where the EM field
generated is almost fully helical. In subsequent sections, we
therefore consider GW energy spectrum generated due to
both nonhelical and helical EM fields.
Using Eq. (10), GW energy spectrum can be

expressed as,

dΩGW

d ln k

����
0

¼ k3a2

4ð2πÞ3Gρc
X
ℵ

����� dhℵðηÞdη

����2� ¼ ΩRk3x2

12π2
X
ℵ

����� dhℵðxÞdx

����2�; ð27Þ

where we can calculate jdhℵðxÞ=dxj2 using Eq. (15). In the limit x ≫ 1, we get

���� dhℵðk; xÞdx

����2 ¼ 1

2x2
ðjd1j2 þ jd2j2Þ þ

8

x2

Z
xνd

xR

Z
xνd

xR

dx1dx2
x1x2

cosðx2 − x1ÞjΠℵj2ðk; x1; x2Þ: ð28Þ

The calculation of the above expression is given in
Appendix A. The expression for jΠℵj2 is as given in
Eq. (29). In the above expression, for the second term
the limits of the integration are from the epoch of reheating
to the neutrino decoupling epoch (xνd ¼ kηνd) and only
magnetic field contributes for this case as electric field gets
shorted out by the large conductivity of the universe after
reheating. After neutrino decoupling epoch, anisotropic
stress of the magnetic field is balanced by the anisotropic
stress of the neutrinos [85] and there is no further
production of GW take place. The expressions for jd1j2
and jd2j2 contains the jΠℵj2ðk; η; η0Þ and also the different
time correlation function CB;Eðk; η; η0Þ. To evaluate
jΠℵj2ðk; η; η0Þ, we need to know two point correlation of
electric and magnetic fields which takes different
forms for nonhelical and helical EM field as discussed
in the Sec. III. Therefore, we perform further analysis in
two parts depending upon the nonhelical and helical nature
of the EM field.

A. Gravitational waves energy spectrum for nonhelical
magnetic field

To evaluate the GW energy spectrum, we need to
evaluate jΠℵj2ðk; η; η0Þ. Using Πij ¼ 1=ðρþ pÞTTT

ij , we
express jΠℵj2 in terms of jT̄ℵj2 which we have calculated
in the Sec. III and we get,

jΠℵj2ðk; η; η0Þ ¼ 1

ðρþ pÞðηÞ
1

ðρþ pÞðη0Þ jT̄
ℵj2ðk; η; η0Þ:

ð29Þ

In the matter dominated era before reheating, (ρþ pÞ ∝
a−3, whereas, in the radiation dominated era post rehea-
ting, we have, (ρþ pÞ ∝ a−4. Using this, the above
relation reduces to the following expression for nonhelical
field,

jΠℵj2ðk; η; η0Þ ¼

8><>:
aR
aðηÞ

aR
aðη0Þ

�
1

ρ̃þp̃

�
2 1
2
ðfBðk; η; η0Þ þ fEðk; η; η0ÞÞ; η; η0 ≤ ηR�

1
ρ̃þp̃

�
2 fBðk;η;η0Þ

2
; η; η0 ≥ ηR

ð30Þ

In the above expression tilde over quantities represents their
comoving values. As is evident from Eq. (22), to calculate
fB and fE, we need to know the electric and magnetic field
power spectrum in the matter dominated era after inflation
and their evolution after reheating. These power spectra can
be expressed in the form of spectral energy density of
magnetic and electric fields as follows,

PSB;SEðk; ηÞ ¼
ð2πÞ3
k3

dρ̃B;Eðk; ηÞ
d ln k

: ð31Þ

During the matter dominated era the electric and magnetic
spectral energy density increase at a rate decided by
how the coupling function decreases. In our model dis-
cussed in Sharma et al. [80], the coupling function f ∝ a−β
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(β ¼ 2N=Nr where N and Nr are the number of e-folds during inflation and after the end of inflation to reheating,
respectively) and the comoving spectral electric and magnetic field energy density evolve as,

dρ̃Bðk; ηÞ
d ln k

¼

8><>:
D1

�
k

kpðηÞ
�
4
�
ηþηR
2ηR

�
8βþ2

; k ≤ kpðηÞ; η ≤ ηR

D1

�
k

kpðηÞ
�
4
�
ηkþηR
2ηR

�
8βþ2

; k ≥ kpðηÞ; η ≤ ηR

ð32Þ

dρ̃Eðk; ηÞ
d ln k

¼

8><>:
D2

�
k

kpðηÞ
�
2
�
ηþηR
2ηR

�
8β
; k ≤ kpðηÞ; η ≤ ηR

D2

�
k

kpðηÞ
�
2
�
ηkþηR
2ηR

�
8β
; k ≥ kpðηÞ; η ≤ ηR

ð33Þ

Here kpðηÞ is the mode where electric and magnetic
spectral energy density peak. For the model discussed
in [80], kpðηÞ ¼ βkHðηÞ1 where kHðηÞ is the mode corre-
sponding to the horizon size at conformal time η. ηR is the
epoch of reheating, and, D1 and D2 are, respectively, the
amplitudes of spectral magnetic and electric energy den-
sities at k0 ¼ kpðηRÞ which is the comoving horizon scale
at the epoch of reheating, denoted by the conformal time,
η ¼ ηR. Values of D1 and D2 depend on the fraction of
electromagnetic energy density to background energy
density at reheating and D2 is 4 times the value of D1

in our model of inflationary magnetogenesis. The above
expression for the case k ≤ kp has been derived in the
Ref. [80]. For the modes which enter during the matter
dominated era (k ≥ k0), we approximate their spectral
energy density by the value at η ¼ ηk when the mode
enters the horizon. The contribution of these modes will not
make much difference to the GW spectrum.
For this case, we know the exact time evolution of the

EM field during the matter dominance era (see Ref. [80] for
details). Thus we express the two point correlation function
at different times in terms of the power spectrum of the
electromagnetic fields with the help of the following
correlation function,

CBðk; η; η0Þ ¼
�
η0 þ ηR
ηþ ηR

�
4βþ1

and CEðk; η; η0Þ ¼
�
η0 þ ηR
ηþ ηR

�
4β

for η; η0 < ηR:

After reheating, electric field does not contributes to GW
spectrum as it gets shorted out due to the large conductivity
of the universe. The spectrum of the magnetic field energy
density at reheating is a blue spectrum which peaks at k ¼
k0 at reheating. After reheating the universe enters to the
radiation dominated era from the matter dominated era.
Larger and larger scale superhorizon modes begin to enter

the horizon. Nonlinear processing of the magnetic field
energy density becomes important when the Alfven cross-
ing time becomes equal to the Hubble time i.e., kVAðkÞ ¼
aH [87,88]. Here VA ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðdρ̃BðkÞ=d ln kÞ=ðρ̃þ p̃Þp

is the
Alfven velocity for the mode k. For simplicity, we assume
that nonlinear processing starts just after reheating. After
the onset of nonlinear evolution of the magnetic field, the
detailed analysis of their evolution requires numerical
simulation [89–91]. Further, the calculation of the GW
spectrum also requires numerical simulation which has
been recently done in Ref. [92] for the magnetohydrody-
namic turbulance in the early universe. Here we use the
analytical results for the evolution of magnetic field energy
density discussed in [87,88],

dρ̃Bðk;ηÞ
d lnk

¼

8><>:
D1

�
k

kNLðηÞ
�
4
�

η
ηR

�
−4
3; k≤kNLðηÞ

D1

�
k

kNLðηÞ
�
−2
3

�
η
ηR

�
−4
3; kν≥k≥kNLðηÞ

ð34Þ

where,

kNLðηÞ ¼ k0

�
η

ηR

�
−1
3

: ð35Þ

Here kν is the wave number above which viscosity
dominate and the spectrum becomes exponentially
damped. We will refer to the branch of the magnetic
spectrum, which develops due to the MHD turbulent
cascade of energy to smaller and smaller scales, and with
dρ̃B=d ln k ∝ k−2=3 as the Kolmogorov branch. For the
estimation of GW energy spectrum, we also need to know
the unequal time correlation function of the magnetic
field energy densities. To find the unequal time correlation
requires numerical simulation. It has been approximated
in Ref. [84] by the following expression, which we
adopt,

CBðk;η1;η2Þ¼
(
exp

h
−ðη1−η2Þ2
2τ2Eðk;ηmaxÞ

i
; kν≥k≥kNLðηmaxÞ

1; k≤kNLðηmaxÞ:
ð36Þ

1In Refs. [81,86], we have taken β ≈ 1 for the wave number
where the magnetic and electric spectrum peak. However, for the
calculation of the GW spectrum, we have taken the actual value
of β.
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Here ηmax ¼ Max½η1; η2� and

τEðk; ηÞ ¼
1

k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
ðρ̃þp̃Þ hdρ̃BðkÞd ln k i

q ð37Þ

is the eddy turnover time for the mode k, assuming that
these eddies have developed a velocity comparable to the
Alfvén velocity. In the above expression�

dρ̃BðkÞ
d ln k

	
¼

Z
∞

0

d ln k
dρ̃BðkÞ
d ln k

:

After substituting the expression of dρ̃BðkÞ=d ln k from
Eq. (34) in Eq. (37), we get

τ2Eðk; ηÞ ≈
2

3k2
ρ̃þ p̃
D1

�
η

ηR

�
4=3

: ð38Þ

Using the information of EM energy densities and corre-
lation function in Eq. (36) applicable to this case, we
evaluate the expression given in Eq. (28). To calculate GW
energy spectra, we need to solve the integrals in Eq. (28)
and substitute its value in Eq. (27). The exact estimation of
these integrals cannot be done analytically and we will
present numerical calculations below. However, one can get
analytical estimate for the modes with k < kH, which we
can compare with corresponding numerical results. Before
this, and to compare partially with the numerical results, we
now consider an analytical estimate.

1. Analytical estimates

For k < kH the expression for dΩGW=d ln kj0 is given by,
dΩGW

d ln k

����
0

¼ 7ΩR

5

�
k
k0

�
3
�

D2

ρ̃þ p̃

�
2
�

64β2

ð1 − 4βÞ2ð8β þ 1Þ2
�

þ cΩR

�
D1

ρ̃þ p̃

�
2
�
k
k0

�
3

: ð39Þ

where,

k0 ¼ 1.72 × 109β

�
gR

106.75

�
1=6 TR

100 GeV
Mpc−1 ð40Þ

and the corresponding frequency

ν0 ¼
k0
2π

¼ 2.7 × 10−6β

�
gR

106.75

�
1=6 TR

100 GeV
Hz ð41Þ

[See Appendix B for details]. Here gR is the relativistic
degree of freedom at the epoch of reheating. In the above
expression, the first part represents the analytical estimate
of the contribution from EM field anisotropic stresses
before reheating and the second part represents that from
the magnetic field anisotropic stresses after reheating. This
is compared with the results from numerical integration for
the low wave numbers. Although the approximation used in
deriving analytical estimate fails for ν > νH, we extrapolate
the analytical estimates until the modes ν < ν0 and show
the comparison with the numerical result in Fig. 1. An
estimate of the GW background amplitude can be obtained
using (39) for the mode k ¼ k0. Adopting TR ¼ 100 GeV,
ΩR ¼ 9.24 × 10−5, c ¼ 0.31 and β ¼ 6.37 (if the ratio of
EM energy density to the background energy density (ϵ) is
one at reheating) gives,

dΩGW

d ln k

����
0ðk¼kHÞ

≈ 1.7 × 10−8

and
dΩGW

d ln k

����
0ðk¼k0Þ

≈ 4.3 × 10−6: ð42Þ

This amplitude decreases roughly as D2
1 ∝ ϵ2, and so is

approximately 10−4 times smaller for ϵ ¼ 10−2. This is an
approximate estimate as β also changes slowly with ϵ. Note

FIG. 1. In this figure we plot the GWenergy spectrum obtained from the numerical calculation along with the analytical estimate given
in Eq. (39). In the left panel, we show the analytical estimate for the electric field anisotropies contribution to the GW spectrum and in
the right panel show the analytical estimate for the magnetic fields anisotropic stresses contribution after reheating. The first and second
vertical gridlines correspond to the frequencies νH (frequency corresponding to wave number kH) and ν0 (frequency corresponding to
wave number k0) respectively. We plotted the analytical estimates for the modes ν ≤ ν0. Although the approximation used in deriving
analytical estimate fails for ν > νH, we extrapolate the analytical estimates until the modes ν < ν0.

SHARMA, SUBRAMANIAN, and SESHADRI PHYS. REV. D 101, 103526 (2020)

103526-10



that our analytical estimate for the GW energy spectrum
differs by a factor of 2 for k ¼ kH and 5 for k ¼ k0 by the
numerical estimate. Our primary aim to give the analytical
estimate is to know the spectral nature which matches well
with the numerical estimate within the region where the
approximation made in analytical estimate is valid as
shown in Fig. 1.

2. Numerical results for GW spectrum

We calculate the GW spectrum for different reheating
temperatures TR and different fractions (ϵ) of the EM field
energy density to the background energy density at the time
of reheating. Our model of magnetic field generation during
inflation, requires reheating to be below an energy scale of
5000 GeV to satisfy the constraints from the γ-ray obser-
vations [80] which changes to the value 500 GeV in case of
helical nature of EM field [81]. At the same time, it should be
above 5 MeV to account for big bang nucleosynthesis [93].
We therefore give results for some representative values of
TR which lie in this range. Each wave number k is also be
converted into the frequency ν of the GW using ν ¼ kc=2π.
In Fig. 2, we have shown the different contribution to the

GW energy spectrum for ϵ ¼ 1 and ϵ ¼ 10−2 assuming
TR ¼ 100 GeV. The blue and dashed blue curve shown the
contribution from the electric and magnetic fields spectrum
before reheating, respectively. The red curve shows the
contribution from the magnetic field spectrum after reheat-
ing. As is evident from this figure, the main contribution to
the GW energy spectrum comes from the magnetic field
anisotropic stresses after reheating for ϵ ¼ 1. However, for
ϵ ¼ 10−2, the contribution from electric field anisotropic
stresses dominate around the peak of the total GW
spectrum elsewhere it is dominated by the contribution
from magnetic field anisotropic stresses after reheating.
This leads to an extra bump type feature around the peak in
the resultant GW energy spectrum for ϵ ¼ 10−2.

In the upper panel of Fig. 3, we plot GW energy
spectrum for the reheating scale TR ¼ 100 GeV and TR ¼
1000 GeV and also for ϵ ¼ 1 and ϵ ¼ 10−2. The peak of
the GW spectrum lies approximately around the peak of the
EM field spectrum at reheating. Note that the electric and
magnetic field spectra peak at the frequency corresponding
to a wave number which is β times of the horizon wave
number at reheating and this ∝ 1=TR. This relation,
however, is approximate since β also depends mildly on
the value of TR. Therefore the frequency at which GW
spectrum has its peak, has a roughly linear behavior with
the reheating temperature, TR. It is also weakly dependent
on ϵ corresponding to the same TR due to change in the
value of β for different ϵ. The peak value of the GW
spectrum is dΩGW=d lnðkÞ ≈ 9.6 × 10−7 at the frequency
30 μHz for TR ¼ 100 GeV and 4.1 × 10−7 at the frequency
1 mHz for TR ¼ 1000 GeV assuming ϵ ¼ 1 for both the
cases. For ϵ ¼ 10−2, the peak value of the GW spectrum
changes to 2.0 × 10−11 for TR ¼ 100 GeV and to 1.5 ×
10−12 for TR ¼ 1000 GeV, respectively. The approximate
dependence ΩGW ∝ ϵ2 for a given TR is because the
amplitude of tensor metric perturbations depend on the
amplitude of the anisotropic stress of the EM field (which is
∝ ϵ) and ΩGW depends quadratically on these metric
perturbations. For the modes k ≤ kH (the mode where
GW energy spectrum peaks), our analytical estimate in
Eq. (39) suggests that the spectrum is proportional to k3. As
is evident from Fig. 2, for the modes k > kpeak, the GW
energy spectrum is proportional to k−5=3 for ϵ ¼ 1 and
k−8=3 for ϵ ¼ 10−2. The slope k−8=3 for the case ϵ ¼ 10−2

matches with the result obtained from the numerical
simulation in Pol et al. [92]. The frequency at which the
GWenergy spectrum peaks, νpeak ≈ 2ν0 [ν0 is the frequency
corresponding to the wave number k0 ¼ kpðηRÞ] for any TR

and ϵ.

FIG. 2. In this figure we plot the different contribution to the GW energy spectrum generated from the EM field anisotropic stresses
(nonhelical case). In the left and right panel, we assume ϵ ¼ 1 and ϵ ¼ 10−2, respectively. The blue and the dashed blue lines,
respectively, represent the contribution to the GW energy spectrum from electric and magnetic fields anisotropic stresses before
reheating. The red curve represent the contribution from the magnetic field anisotropic stresses after reheating and the black curve
represent the sum of all these contributions.
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We show the predicted GW spectrum for the lower
reheating scale at TR ¼ 150 MeV in the lower panel of
Fig. 3. For the modes k ≤ kpeak, the spectrum is propor-
tional to k3 similar to other reheating scales. For this case,
the GW spectrum has the peak value 3.1 × 10−6 at the
frequency 1.6 × 10−8 Hz. Present limits on the GW spec-
trum at nanohertz frequencies are obtained from Parkes
pulasar timing array (PPTA) [94]. This is shown as a black
dot in the lower panel of the figure. Since PPTA does not
detect any GW with this sensitivity, from Fig. 3 we
conclude that for TR ¼ 150 MeV, ϵ < 10−1. This limit
will become even stronger for those scenarios in which
reheating is below 150 MeV and as the pulsar timing array
limits improve in the future.

B. Gravitational waves energy spectrum for
helical EM fields

If we generalize the Ratra model of inflationary mag-
netogenesis and add a parity breaking term ðf2FμνF̃μνÞ to
the Lagrangian density, the generated magnetic field is
almost fully helical. Here F̃μν is the dual tensor of the EM
tensor. In the standard electromagnetism with f constant,
this term is a total divergence term and does not contribute
to the evolution of the electromagnetic field. However
when f is time dependent and conformal invariance of the
EM theory is broken, this term contributes to the evolution
of the EM field. It introduces a mixing between the two
vector potential modes in the linear polarization basis. In
terms of the helicity basis (or circular polarization basis),

FIG. 3. In this figure we plot the GWenergy spectrum generated from the EM field anisotropic stresses (nonhelical case). In the upper
panel, we plot GWenergy spectrum for the reheating scale TR ¼ 100 GeV and TR ¼ 1000 GeV and also for the different fraction (ϵ) of
EM field energy density to the background energy density at reheating. In the lower panel, we plot the GW spectrum for the reheating
scale at TR ¼ 150 MeV. The black dot point in the lower panel of the figure represent the limit on the GW energy spectrum at the
nanohertz scale obtained from the Parkes pulsar timing array (PPTA) [94].
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left and right circular polarization modes decouple and
satisfy different evolution equations. It turns out that the
amplitude of one of the heilcal mode is larger than the other
at the end of generation era and the net generated magnetic
field is of helical nature. In our model [81], the generated
magnetic field is almost fully helical. This results in the

generated stochastic GW to be predominantly circularly
polarized. The calculations of the GW background which is
generated by such a field is on similar lines as for the
nonhelical case. Hence, we only give the results of the GW,
magnetic and electric energy spectrum.
For this case jΠℵj2ðk; η; η0Þ is given by,

jΠ−j2ðk; η; η0Þ ¼
8<:

aR
aðηÞ

aR
aðη0Þ

�
1

ρ̃þp̃

�
2 1
2
ðgBðk; η; η0Þ þ gEðk; η; η0Þ þ hBðk; η; η0Þ þ hEðk; η; η0ÞÞ; η; η0 ≤ ηR�

1
ρ̃þp̃

�
2 1
2
ðgBðk; η; η0Þ þ hBðk; η; η0Þ; η; η0 ≥ ηR

ð43Þ

jΠþj2ðk; η; η0Þ ¼
8<:

aR
aðηÞ

aR
aðη0Þ

�
1

ρ̃þp̃

�
2 1
2
ðgBðk; η; η0Þ þ gEðk; η; η0Þ − hBðk; η; η0Þ − hEðk; η; η0ÞÞ; η; η0 ≤ ηR�

1
ρ̃þp̃

�
2 1
2
ðgBðk; η; η0Þ − hBðk; η; η0Þ; η; η0 ≥ ηR

ð44Þ

The above expressions imply that jΠ−j2 is larger than jΠþj2 by an amount hBðk; η; η0Þ þ hEðk; η; η0Þ. Adding Eq. (43) and
Eq. (44), we get

jΠ−j2ðk; η; η0Þ þ jΠþj2ðk; η; η0Þ ¼
8<:

aR
aðηÞ

aR
aðη0Þ

�
1

ρ̃þp̃

�
2 1
2
ðgBðk; η; η0Þ þ gEðk; η; η0ÞÞ; η; η0 ≤ ηR�

1
ρ̃þp̃

�
2 1
2
ðgBðk; η; η0Þ; η; η0 ≥ ηR

ð45Þ

In the above expression tilde over quantities represents their
comoving values. To estimate gB and gE, we need to know
the electric and magnetic energy density in the matter
dominated era after inflation and their evolution after
reheating. The comoving spectral electric and magnetic
field energy density in the matter dominated era before
reheating (η ≤ ηR) for this case are [Sharma et al. [81] ],

dρ̃Bðk;ηÞ
d lnk

¼
8<:D1h

�
k

kpðηÞ
�
4
�
ηþηR
2ηR

�
8βþ2

; k≤kpðηÞ

D1h

�
k

kpðηÞ
�
4
�
ηkþηR
2ηR

�
8βþ2

; k≥kpðηÞ
ð46Þ

dρ̃Eðk; ηÞ
d ln k

¼
8<:D2h

�
k

kpðηÞ
�
2
�
ηþηR
2ηR

�
8β
; k ≤ kpðηÞ

D2h

�
k

kpðηÞ
�
4
�
ηkþηR
2ηR

�
8β
; k ≥ kpðηÞ

ð47Þ

Here D1h and D2h are the amplitudes of spectral magnetic
and electric energy densities at k0 ¼ kpðηRÞ respectively.
The values of D1h and D2h depend on the fraction of
electromagnetic energy density to background energy
density at reheating. We again consider GW production
in two scenario on the basis of evolution of the magnetic
field energy density after reheating.
After reheating, nonlinear processing (as in nonhelical

case) of magnetic field spectrum takes place. However, the
magnetic field energy density decays at a rate slower as
compared to the case of nonhelical magnetic field because
of the helicity conservation [87,88,95]. The evolution of the
magnetic field for η ≥ ηR is given by,

dρ̃BðkÞ
d ln k

¼
8<:D1h

�
k

kNLðηÞ
�
4
�

η
ηR

�
−2=3

; k ≤ kNLðηÞ

D1h

�
k

kNLðηÞ
�
−2=3

�
η
ηR

�
−2=3

; kν ≥ k ≥ kNLðηÞ
ð48Þ

Here,

kNLðηÞ ¼ k0

�
η

ηR

�
−2=3

ð49Þ

By substituting Eqs. (46), (47), and (48) in Eq. (45),
we estimate

P
ℵ jΠℵj2 which we further substitute in

Eq. (28) to calculate
P

ℵ jdhℵ=dxj2. After substitutingP
ℵ jdhℵ=dxj2 in Eq. (27) we calculate GW energy density

spectrum for this case and the results are shown in Fig. 4.
The peak value of the GW spectrum is 1.8 × 10−6 at the
frequency 40 μHz for TR ¼ 100 GeV and 9.5 × 10−7 at the
frequency 0.25 mHz for TR ¼ 300 GeV assuming ϵ ¼ 1
for both the cases. The peak values of the GW spectrum in
this case is approximately twice the value in the case of
nonhelical magnetic field. This is due to the fact that there
is extra contribution to the GW spectrum which comes
from the antisymmetric term in the two point correlation of
the electric and magnetic field spectrum compare to the
nonhelical case.
For the helical nature of the EM field, the generated GW

spectrum is circularly polarized. Equation (43) and Eq. (44)
suggest that the negatively polarized (-) mode dominates
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over the positively polarized (+) mode by an amount
hEðk; η; η0Þ þ hBðk; η; η0Þ. However the spectrum is unpo-
larized for the case when EM field is of nonhelical nature
since the contribution of both the modes is equal as can be
seen from Eq. (30). The sign of the GW polarization that
dominates (þ or −), depends on the relative sign of the
parity breaking term (FμνF̃μν) to the standard term (FμνFμν)
in the EM field Lagrangian. In our analysis, we have taken
both the terms with the same sign.

V. DETECTION OF THE GENERATED
GW SPECTRUM WITH THE LISA

We now discuss the prospects of detection of the GW
spectrum generated in our model with the LISA. For this,

we calculate the signal to noise ratio (SNR) using the
following definition [96],

SNR≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T
Z

νmax

νmin

dν

�
dΩGW

d ln ν



dΩn

d ln ν

�
2

s
: ð50Þ

In the above expression, dΩn=d ln ν ¼ ð4π2=3H2
0Þν3SnðνÞ

where SnðνÞ is the strain sensitivity of the LISA detector
and T is the mission duration. The integration limits,
νmin and νmax, denote the minimal and maximal frequencies
accessible at the LISA detector respectively. It is conven-
ient to express the SNR as,

FIG. 5. In this figure, we plot SNRðνÞ defined in Eq. (52) vs frequency for nonhelical and helical nature of the EM field. In the left
panel, we plot SNRðνÞ for the reheating scale TR ¼ 100 GeV and TR ¼ 1000 GeV and also for the different fraction (ϵ) of EM field
energy density to the background energy density for nonhelical nature of EM field. In the right panel, we plot SNRðνÞ for the reheating
scale TR ¼ 100 GeV and TR ¼ 300 GeV and also for the different fraction (ϵ) of EM field energy density to the background energy
density for helical nature of EM field. The lower and upper black horizontal lines represents SNRðνÞ ¼ 1 and SNRðνÞ ¼ 10,
respectively. For these plots, we take T ¼ 3 years.

FIG. 4. In this figure we plot the GW energy spectrum generated from the EM field anisotropic stresses (helical case).
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SNR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ

νmax

νmin

d ln ν

� ffiffiffiffiffiffi
νT

p dΩGW

d ln ν

. dΩn

d ln ν

�
2

s

≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ

νmax

νmin

d ln νðSNRðνÞÞ2
s

; ð51Þ

where

SNRðνÞ ¼
ffiffiffiffiffiffi
νT

p �
dΩGW

d ln ν

. dΩn

d ln ν

�
: ð52Þ

Thus the square of the SNR(ν) provides the contribution
to the value of square of the SNR per logarithmic frequency
interval. To calculate the SNR for different reheating
temperature TR, we used the strain sensitivity SnðfÞ of a
single channel of the LISA detector given in Eq. (2.4) in
Caprini et al. [96].
In Fig. 5, we plot SNR(ν) with frequnecy (ν). This figure

shows the sensitivity of the LISA detector for our generated
GW spectrum in different frequency bands. In the Fig. 5,
the lower and upper black horizontal lines represents
SNRðνÞ ¼ 1 and SNRðνÞ ¼ 10, respectively. As evident
from Fig. 5, the generated GW spectrum lies in the
sensitivity range of LISA for our magnetic field generation
models, in which ϵ is above a threshold value which
depends on TR. For ϵ ¼ 10−2, the GW spectrum generated
in our model can be detected with an SNR ¼ 10 for TR ¼
1000 GeV in nonhelical case and SNR ¼ 3 for TR ¼
300 GeV for helical case. In these estimates, we take
T ¼ 3 years. The value of SNR is even higher for large
value of ϵ. Although, we show explicitly the GW spectrum
only for TR ¼ 100 GeV and TR ¼ 1000 GeV for non-
helical case and TR ¼ 100 GeV and TR ¼ 300 GeV for
helical case, the nature of the spectrum is qualitatively
similar for other values of TR.

VI. DISCUSSION AND CONCLUSION

Origin of large scale magnetic fields in the universe is a
subject of intense study. An intriguing possibility is its
generation during inflation with the model suggested by
Turner and Widrow [47] and Ratra [48] being a popular
scenario. However this model potentially suffers from what
are known as the strong coupling and backreaction prob-
lems. In our earlier studies (Sharma et al. [80], Sharma
et al. [81]), we suggested a model to address these issues.
We showed that for a certain range of inflationary and
reheating scales, it is possible to generate magnetic fields
with the strengths of astrophysical interest while at the
same time addressing all the difficulties raised regarding
the models of Refs. [47,48]. Our models required a low
energy scale of inflation and reheating, with TR <
5000 GeV for magnetogenesis scenarios which generate
nonhelical fields and TR < 500 GeV for helical models
[80,81]. They also predicted a blue spectrum peaked

around the horizon scale of reheating with EM fields a
significant fraction of the cosmological energy density at
that epoch. These EM fields have nonzero anisotropic
stresses which can source the production of a stochastic
background of GW.
Here, we have therefore calculated the spectrum of the

resulting stochastic GW background. Our aim was also to
probe and constrain such models of inflationary magneto-
gensis by examining whether the predicted GW spectrum
can be detected by upcoming space mission LISA or PTA
experiments. We obtained the GW spectrum for both
magnetogenesis models where the generated EM fields
are nonhelical or models which resulted in helical magnetic
fields. Our results show that the strength of the generated
GW in both nonhelical and helical cases are of similar
order. However, in the case of helical EM fields, the
generated GW spectrum is circularly polarized while it
is unpolarized when the generated EM fields are nonhelical.
All the scenarios in which reheating is above the 100 GeV
scale produce a GW energy spectrum which lie in the
sensitivity range of LISA provided that the fraction of EM
field energy density to the background energy density (ϵ) is
above a threshold value of order 10−2. For ϵ ¼ 10−2, the
GW spectrum can be detected with an SNR ¼ 10 for TR ¼
1000 GeV in nonhelical case and SNR ¼ 3 for TR ¼
300 GeV for helical case. For these estimates of SNR,
we assumed T ¼ 3 years. The large value of ϵ gives larger
value of SNR. For lower reheating temperature
TR ¼ 150 MeV, the peak frequency shifts to 20 nano
Hertz, where PTA experiments are more relevant. The
current limits from PPTA constrain ϵ < 10−1 in this case.
An analytical estimate of the GW spectrum for low wave

numbers and nonhelical fields is given by Eq. (39). The
results of numerical integration are given in Fig. 3 when the
source of GW are nonhelical primordial EM fields and in
Fig. 4 for helical primordial fields, for some representa-
tive values of TR ¼ 100 GeV, TR ¼ 300 GeV, TR ¼
1000 GeV and TR ¼ 150 MeV. Similar results can be
obtained for other values of TR. We also estimated these
GW spectra for different fraction (ϵ) of EM field energy to
the background energy density at reheating for each
temperature scale.
The generated GW spectrum rises with wave number k

as dΩGW=d lnðkÞ ∝ k3, at low wave numbers. It remains
almost k3 until the wave number k ¼ kpeak for the fraction
of EM energy density to the background energy density at
reheating, ϵ ¼ 1. However, for ϵ ¼ 10−2, it changes to a
spectrum ∝ k. The GW spectrum then falls for the
modes k > kpeak as dΩGW=d lnðkÞ ∝ k−5=3 for ϵ ¼ 1 and
dΩGW=d lnðkÞ ∝ k−8=3 for ϵ ¼ 10−2. This change in the
slope of the spectrum for different ϵ could arise due to the
fact that the turbulence correlation time is longer for a
smaller ϵ. For ϵ ¼ 1, the peak value of the generated GW
spectrum, dΩGW=d ln k ∼ 4.1 × 10−7 for the nonhelical
case at TR ¼ 1000 GeV and dΩGW=d ln k ∼ 9.5 × 10−7
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for the helical case at TR ¼ 300 GeV. The amplitude at the
peak value decreases approximately as ϵ2. Note that each
wave number k can be converted into the frequency ν of the
GW using ν ¼ kc=2π. The corresponding frequencies for
these TR is in mHz range where LISA is sensitive to detect a
GW signal. The amplitude is similar for a lower value of
TR, but the frequency at which the GW spectrum peaks
decreases as νpeak ∝ TR approximately.
Stochastic GW at these frequencies can also result from

first order phase transitions at the corresponding temper-
atures. They are similar to the GW spectrum obtained here
in some aspects but interestingly different in others. First,
even the source spectra are not identical. The spectrum of
the magnetic field generated during a phase transition is the
same as ours for k > k0 but for k < k0, the spectrum is ∝ k5

(in our notation) instead of k4. The other difference in the
source spectrum is that in the case of phase transitions, all
the modes are within the horizon unlike in our case where
the magnetic field spectrum also has power in superhorizon
modes. The GW spectrum obtained in the high frequency
regime (ν > νpeak) sourced by magnetic field generated in
phase transition is then similar to ours and also to the
spectrum obtained in Niksa et al. [84]. It also agrees with
the spectrum obtained in Pol et al. [92] via numerical
simulation for ϵ ≈ 10−2. In the low frequencies regime
(ν < νpeak) for ϵ ¼ 1, we have obtained a spectrum ∝ ν3

similar to the spectrum in phase transition scenario and also
obtained by analytical estimate in Gogoberidze et al. [97].
However, in our case, this slope changes from k3 to k
around the peak as ϵ reduces from 1 to 10−2, mainly due to
a longer correlation for these modes.
The inflationary models considered in this work can also

be distinguished from the signals arising in such first order
phase transitions due to the following. As evident from the
right panel of Fig. 2, there is a bump like feature around
νpeak in the resultant GW energy spectrum for the more
realistic case of ϵ ¼ 10−2. This happens due to the fact that
the contribution from the electric field anisotropic stresses
before reheating dominates over the contribution from the
magnetic field anisotropic stresses around the peak value of
the spectrum and the total spectrum gets an additional
contribution around the peak value. The GW spectrum
generated during phase transition is also proportional to k3

for the modes below the peak value and has another branch
for the modes above the peak value developed due to
Kolomogorov branch of the decaying magnetohydrody-
namic turbulence. However, in the phase transition gen-
erated spectrum, there is no bump in these two branches
around the peak value like in our case [92]. This feature is
unique to our model of inflationary magnetogenesis.
Another distinguishing feature of our model is the pos-
sibility of obtaining an almost fully circularly polarized
stochastic GW background. A possible detection of GW by
LISA or by PTA, with the features predicted here will
provide an important probe of several models of infla-
tionary magnetogenesis.
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APPENDIX A: CALCULATION TO
ESTIMATE d1 AND d2

To calculate d1 and d2 given in Eq. (15), we match hℵ

and its derivative at the epoch of reheating (η ¼ ηR). The
matching relations are,

hℵðwRÞ ¼ hℵðxRÞ
dhℵðwÞ
dw

����
w¼wR

¼ dhℵðxÞ
dx

����
x¼xR

ðA1Þ

Here, wR ¼ 2kηR and xR ¼ kηR which implies wR ¼ 2xR.
Using Eq. (13) and Eq. (15), the above two condi-
tions imply,

d1 ¼
1

32x3R

��Z
2xR

wi

12Πℵðw1Þðsinw1 − w1 cosw1Þ
w1

dw1

�
ð−8x2R cos xR þ 4xR sin xR

þ cos xR þ cos 3xRÞ þ ð8x2R sin xR þ 4xR cos xR − sin xR − sin 3xRÞ

×

�Z
2xR

wi

12Πℵðw1Þðw1 sinw1 þ cosw1Þ
w1

dw1

��
ðA2Þ
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d2 ¼
1

32x3R

��Z
2xR

wi

12Πℵðw1Þðsinw1 − w1 cosw1Þ
w1

dw1

�
ð8x2R sin xR þ 4xR cos xR

− sin xR þ sin 3xRÞ þ ð8x2R cos xR − 4xR sin xR − cos xR þ cos 3xRÞ

×

�Z
2xR

wi

12Πℵðw1Þðw1 sinw1 þ cosw1Þ
w1

dw1

��
: ðA3Þ

Since we are interested in the production of GW from the EM field anisotropic stress, we neglect the homogeneous part in
the hℵ expression for matter dominance given in Eq. (13) while calculating the above expressions. Using Eq. (15), we get
the following expression for dhℵ=dx,

dhℵðk⃗; xÞ
dx

¼ d1

�
cos x
x

−
sin x
x2

�
þ d2

�
sin x
x

−
cos x
x2

�
− 4

�
cos x
x

−
sin x
x2

�Z
x

xR

dx1Πℵðk⃗; x1Þ

× y0ðx1Þ þ 4

�
sin x
x

−
cos x
x2

�Z
x

xR

dx1Πℵðk⃗; x1Þj0ðx1Þ ðA4Þ

To estimate the GW spectrum, we need to calculate jdhℵ=dxj2. After multiplying the above expression with its complex
conjugate and taking the limit x ≫ 1 (since we are interested in the modes which are deep inside the Hubble radius at the
present epoch), we get,���� dhℵdx

����2ðk; xÞ ¼ jd1j2
�
sin x
x

�
2

þ jd2j2
�
cos x
x

�
2

þ ðd1d�2 þ d�1d2Þ
sin x cos x

x2

þ 8

x2

Z
x

xR

dx1

Z
x

xR

dx2jΠℵj2ðk; x1; x2Þ
cosðx2 − x1Þ þ cosð2x − x1 − x2Þ

x1x2
ðA5Þ

In the above expression, we only keep the terms proportional to ð1=xÞ2 and neglect the terms which have
higher power of 1=x as those terms are subdominant in the limit x ≫ 1. After reheating, the source term contributes
until the epoch of neutrino decoupling. This is because anisotropic stress due to neutrinos comes into picture after neutrino
decoupling and they balance the magnetic field anisotropic stress. Hence, there is no contribution to the GWenergy density
after neutrino decoupling. Further, averaging the above expression over a timescale greater than the time period of
oscillation, we get,���� dhℵdx

����2ðk; xÞ ¼ 1

2x2
ðjd1j2 þ jd2j2Þ þ

8

x2

Z
xνd

xR

Z
xνd

xR

dx1dx2jΠℵj2ðk; x1; x2Þ
cosðx2 − x1Þ

x1x2
ðA6Þ

APPENDIX B: CALCULATION FOR THE ESTIMATE OF GW ENERGY SPECTRUM

Here, we provide the calculation for analytical estimate of the GW energy spectrum for the modes k < kH given in
Eq. (39). To evaluate GW energy spectrum, we estimate jdhℵ=dxj2ðk; xÞ given in Eq. (A6),

���� dhℵdx

����2ðk; xÞ ¼ 1

2x2
ðjd1j2 þ jd2j2Þ þ

8

x2

Z
xνd

xR

Z
xνd

xR

dx1dx2jΠℵj2ðk; x1; x2Þ
cosðx2 − x1Þ

x1x2
ðB1Þ

In the above expression, the first part in the rhs denotes the contribution before reheating and the second part denotes the
contribution after reheating. In the postinflationary matter dominated era both electric and magnetic field anisotropic
stresses contribute in the production of GW. After reheating, only magnetic field anisotropic stresses contribute as electric
fields get shorted out due to the large conductivity of the relativistic plasma.

1. Calculation for the contribution before reheating

For k < kH ¼ k0=β, xR ¼ kηR < 1. In this limit, the expression for d1 and d2 given in Eq. (A2) and Eq. (A3) respectively,
reduces to,

GRAVITATIONAL WAVE GENERATION IN A VIABLE … PHYS. REV. D 101, 103526 (2020)

103526-17



d1 ¼
3

8x3R

�
2

Z
2xR

wi

w2
1

3
Πℵðw1Þdw1 þ

32x3R
3

Z
2xR

wi

1

w1

Πℵðw1Þdw1

�
d2 ¼

3

8x3R

�
−
32x6R
45

Z
2xR

wi

1

w1

Πℵðw1Þdw1 þ 6xR

Z
2xR

wi

w2
1

3
Πℵðw1Þdw1

�
: ðB2Þ

Further the expression for jd1j2 and jd2j2 is given by,

jd1j2 ¼
9

64x6R

�Z
2xR

wi

Z
2xR

wi

�
4w2

1w
2
2

9
þ 1024x6R

9w1w2

þ
64x3Rðw

2
1

w2
þ w2

2

w1
Þ

9

�
jΠℵj2ðk; w1; w2Þdw1dw2

�
jd2j2 ¼

9

64x6R

�
36x2R

Z
2xR

wi

Z
2xR

wi

w2
1w

2
2

9
jΠℵj2ðk; w1; w2Þdw1dw2

�
:

In the expression of jd2j2, we neglect the contribution from the first term in the expression of d2 since this term is much
smaller than the second term in the limit xR < 1. After substituting jΠℵj2 from Eq. (30), we get

jd1j2 ¼
9

8x2R

�
1

ρ̃þ p̃

�
2
�Z

2xR

wi

Z
2xR

wi

�
4w2

1w
2
2

9
þ 1024x6R

9w1w2

þ
64x3Rðw

2
1

w2
þ w2

2

w1
Þ

9

��
1

w2
1w

2
2

�
× ðfBðk; w1; w2Þ þ fEðk; w1; w2ÞÞdw1dw2

�
: ðB3Þ

To evaluate the above expression, we first calculate fBðk; w1; w2Þ þ fEðk; w1; w2Þ. Substituting Eq. (31) in Eq. (22), we get,

fBðk; w1; w2Þ þ fEðk; w1; w2Þ ¼ π2
Z

∞

0

dq
q

Z
1

−1
dγ

�
dρ̃Bðq; w1Þ

d ln q
dρ̃Bðjk⃗ − q⃗j; w1Þ

d ln jk⃗ − q⃗j
CBðq; w1; w2Þ

× CBðjk⃗ − q⃗j; w1; w2Þ þ
dρ̃Eðq; w1Þ

d ln q
dρ̃Eðjk⃗ − q⃗j; w1Þ

d ln jk⃗ − q⃗j
CEðq; w1; w2Þ

× CEðjk⃗ − q⃗j; w1; w2Þ
�
ð1þ γ2 þ β2 þ γ2β2Þ: ðB4Þ

It is evident from Eq. (32) and Eq. (33) that the magnetic and electric spectral energy densities decay rapidly for k ≥ kpðηÞ.
Keeping this in mind, we neglect the contribution of magnetic and electric power spectra for k ≥ kpðηÞ. Further, we take the
upper limit of the q integration to be k0 instead of kpðηÞ because within one Hubble expansion time electric and magnetic
field spectral energy densities increase by a very large value. The most of the contribution in the above integral is near the
epoch of reheating. Hence, taking k0 instead kp will not change our result much. Using Eq. (32) and Eq. (33), the above
expression reduces to,

fBðk; w1; w2Þ þ fEðk; w1; w2Þ ¼ π2
Z

k0

0

dq
q

Z
1

−1
dγ

"
D2

1

�
q
k0

�
4 ðk2 þ q2 − 2kqγÞ1=2

k40

�
w1w2

ð2xRÞ2
�

8βþ2

þD2
2

�
q
k0

�
2 ðk2 þ q2 − 2kqγÞ−1=2

k20

�
w1w2

ð2xRÞ2
�

8β
#
ð1þ γ2 þ β2 þ γ2β2Þ: ðB5Þ

To solve the above expression, we first calculate the γ integral as,

Z
1

−1
dγðk2 þ q2 − 2kqγÞ1=2ð1þ γ2 þ β2 þ γ2β2Þ ¼

8<:
8ð5k4þ72k2q2þ147q4Þ

315q3 ; k ≤ q

16ð105k6þ6k2q4þq6Þ
315k5

; k ≥ q

Z
1

−1
dγðk2 þ q2 − 2kqγÞ−1=2ð1þ γ2 þ β2 þ γ2β2Þ ¼

8<:
8ðk2þ49q2Þ

105q3 ; k ≤ q

16ð35k4−72k2q2−3q4Þ
105k5

; k ≥ q

SHARMA, SUBRAMANIAN, and SESHADRI PHYS. REV. D 101, 103526 (2020)

103526-18



Further, we divide the q integral into two parts,
R k0
0 dq ¼ R

k
0 dqþ R k0

k dq and evaluate each of the part separately.
We get,

Z
k0

0

dq
q

Z
1

−1
dγ

�
q
k0

�
4 ðk2 þ q2 − 2kqγÞ1=2

k40
ð1þ γ2 þ β2 þ γ2β2Þ ¼ 8

1575k80
ð25k4k0 þ 120k2k30 þ 147k50 − 21k5ÞZ

k0

0

dq
q

Z
1

−1
dγ

�
q
k0

�
2 ðk2 þ q2 − 2kqγÞ−1=2

k20
ð1þ γ2 þ β2 þ γ2β2Þ ¼ 4ð98k20 − 2k2 − 35kk0Þ

105k50
ðB6Þ

After taking only the contribution from the dominating terms, we get,

fBðk; w1; w2Þ þ fEðk; w1; w2Þ ¼ π2
�
D2

1

56

75k30

�
w1w2

ð2xRÞ2
�

8βþ2

þD2
2

56

15k30

�
w1w2

ð2xRÞ2
�

8β
�
: ðB7Þ

Since during the postinflationary matter dominated era, the electric spectral energy density dominates over the magnetic
spectral energy density, D1 < D2, the quantity ðw1w2=ð2xRÞ2Þ is always less than unity. Therefore we neglect the first term
in comparison to the second term in the above expression. This implies,

fBðk; w1; w2Þ þ fEðk; w1; w2Þ ¼ π2
�
D2

2

56

15k30

�
w1w2

ð2xRÞ2
�

8β
�
: ðB8Þ

After substituting the above expression in Eq. (B3) and using new variables for integration defined as z1 ¼ w1=ð2xRÞ and
z2 ¼ w2=ð2xRÞ, we get

jd1j2 ¼
9π2D2

2

2

56

15k30

�
1

ρ̃þ p̃

�
2
Z

1

zi

Z
1

zi

�
4

9
þ 16

9z31z
3
2

þ 8

9

�
1

z31
þ 1

z32

��
ðz1z2Þ8βdz1dz2: ðB9Þ

After calculating the above integral we get,

jd1j2 ¼
9π2D2

2

2

56

15k30

�
1

ρ̃þ p̃

�
2 64β2

ð1 − 4βÞ2ð8β þ 1Þ2 : ðB10Þ

Similarly we can calculate the expression for jd2j2,

jd2j2 ¼
9π2D2

2

2

56

15k30

�
1

ρ̃þ p̃

�
2 4x2R
ð8β þ 1Þ2 : ðB11Þ

From the above expression of jd1j2 and jd2j2, we see that jd1j2 is larger than jd2j2 for xR < 1. Therefore we neglect the
contribution from jd2j2 in our further calculation. After substituting jd1j2 in Eq. (B1), we get

���� dhℵdx

����2ðk; xÞ ¼ 42π2

5x2

�
1

k0

�
3
�

D2

ρ̃þ p̃

�
2
�

64β2

ð1 − 4βÞ2ð8β þ 1Þ2
�
: ðB12Þ

Further substituting the above expression in Eq. (27), we obtain the following expression for the GW energy spectrum,

dΩGW

d ln k

����
0

¼ 7ΩR

5

�
k
k0

�
3
�

D2

ρ̃þ p̃

�
2
�

64β2

ð1 − 4βÞ2ð8β þ 1Þ2
�
: ðB13Þ
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2. Calculation for the contribution after reheating

To evaluate GW energy spectrum after reheating, we estimate jdhℵ=dxj2ðk; xÞ given in Eq. (B1),���� dhℵdx

����2
x>xR

ðk; xÞ ¼ 8

x2

Z
xνd

xR

Z
xνd

xR

dx1dx2jΠℵj2ðk; x1; x2Þ
cosðx2 − x1Þ

x1x2
: ðB14Þ

After substituting jΠℵj2 from Eq. (30), we get���� dhℵdx

����2
x>xR

ðk; xÞ ¼ 4

x2

�
1

ρ̃þ p̃

�
2
Z

xνd

xR

Z
xνd

xR

dx1dx2fBðk; w1; w2Þ
cosðx2 − x1Þ

x1x2
: ðB15Þ

To evaluate the above expression, we first calculate fBðk; w1; w2Þ. Substituting Eq. (31) in Eq. (22), we get,

fBðk;x1;x2Þ¼π2
Z

∞

0

dq
q

Z
1

−1
dγ

dρ̃Bðq;x1Þ
d lnq

1

ðjk⃗− q⃗jÞ3
dρ̃Bðjk⃗− q⃗j;x1Þ

d ln jk⃗− q⃗j
CBðq;x1;x2ÞCBðjk⃗− q⃗j;x1;x2Þð1þγ2þβ2þγ2β2Þ:

ðB16Þ

Using Eqs. (B15), (B16) and (27), we get

dΩGW

d ln k

����
0

¼ 2ΩR

3ðρ̃þ p̃Þ2 k
3

Z
xνd

xR

Z
xνd

xR

dx1dx2
cosðx2 − x1Þ

x1x2

Z
∞

0

dq
q

Z
1

−1
dγ

dρ̃Bðq; x1Þ
d ln q

1

ðjk⃗ − q⃗jÞ3
dρ̃Bðjk⃗ − q⃗j; x1Þ
d ln jk⃗ − q⃗j

× CBðq; x1; x2ÞCBðjk⃗ − q⃗j; x1; x2Þð1þ γ2 þ β2 þ γ2β2Þ: ðB17Þ

The magnetic energy spectrum peaks at k ¼ kNL, the main contribution to the integral comes when q ∼ kNL and
jk⃗ − q⃗j ∼ kNL. For the case k ≪ kNL, jk⃗ − q⃗j ∼ q and CB changes from 1 to a small value within one Hubble time. Therefore
the dominant contribution comes within one Hubble time from reheating.

dΩGW

d ln k

����
0

≈
2ΩR

3ðρ̃þ p̃Þ2 k
3

Z
2xR

xR

Z
2xR

xR

dx1dx2
cosðx2 − x1Þ

x1x2

�
D2

1

k3NL

�
x1
xR

�
−4=3

�
x1
xR

�
−4=3

�
CBðkNL; x1; x2Þ2

×
Z

1

−1
dγð1þ γ2 þ γ2 þ γ4Þ

¼ 56

15

2ΩR

3

�
D1

ρ̃þ p̃

�
2
�
k
k0

�
3
Z

2xR

xR

Z
2xR

xR

dx1dx2
cosðx2 − x1Þ

x1x2

�
x1
xR

�
−4=3

�
x1
xR

�
−4=3

CBðkNL; x1; x2Þ2:

In terms of the variable z1 ¼ x1=xR and z2 ¼ x2=xR, the above expression reduces to,

dΩGW

d ln k

����
0

≈
56

15

2ΩR

3

�
D1

ρ̃þ p̃

�
2
�
k
k0

�
3
Z

2

1

Z
2

1

dz1dz2
cosðx2Rðz2 − z1ÞÞ

z1z2
ðz1Þ−8=3ðz1ÞCBðkNL; z1; z2Þ2:

The modes k < kH are outside the Hubble horizon at reheating. For these modes, xR < 1 so we can approximate
cosðx2Rðz2 − z1ÞÞ ∼ 1 for these modes. Using this, the GW spectrum for the modes k < kH, we get,

dΩGW

d ln k

����
0

≈
56

15

2ΩR

3

�
D1

ρ̃þ p̃

�
2
�
k
k0

�
3
Z

2

1

Z
2

1

dz1dz2
z1z2

z−8=31 z1CBðkNL; z1; z2Þ2

¼ cΩR

�
D1

ρ̃þ p̃

�
2
�
k
k0

�
3

ðB18Þ

where,

c ¼ 56

15

2

3

Z
2

1

Z
2

1

dz1dz2
z1z2

ðz1Þ−8=3z1CBðkNL; z1; z2Þ2
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which has different value for different kNL and ϵ since
unequal time correlation function, CB depends
upon kNL and ϵ. For TR ¼ 100 GeV and ϵ ¼ 1,
c ¼ 0.18. As is evident from the above expression,

GW energy spectrum is proportional to k3 and to
the fraction of magnetic field energy density to
the background energy density for the modes
k < kH.
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