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In this article, we use the dynamical system approach to study the linear dynamics of a Randall-Sundrum
braneworld model with a tachyon scalar field confined to the brane. We recognize that the form of the
tachyon potential plays a significant role in the evolution of the Universe. For the case of an inverse square
potential we find that one of our new variables, λ, is constant. We obtain critical points of the system in this
situation and investigate their stability using the linear perturbation method. Then we turn to a Gaussian
potential in which λ is not constant. Using the idea of instantaneous critical points we study the behavior of
the Universe and its possible fates. One of the interesting results of this article is that our Universe will
probably experience another phase transition from acceleration to deceleration in the future.
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I. INTRODUCTION

Nowadays the big bang theory is the predominant
cosmological model according to which our Universe
began to expand from a singularity with an extreme
temperature and density. It left behind a very rapidly
accelerated expansion era called inflation, a radiation
dominated phase, and a matter dominated era one after
another till it reached the current dark energy (DE)
dominated phase in which it is experiencing another
accelerating expansion. There are many candidates for
driving the evolution of the Universe especially in its
accelerated expanding phases that have been interviewed
and investigated in the literature in detail [1–19]. Among
them, the idea of a tachyon scalar field, ϕ, is of particular
interest, because it can be considered as an inflaton field to
produce an inflationary era and also can play the role of
the dark matter and the DE of the Universe [20–27]. The
tachyon field that has its roots in string theory possesses
special properties. The tachyonic potential, VðϕÞ, is always
positive with a maximum at ϕ ¼ 0 and has a zero value
when ϕ → ∞. Also, the derivative of the potential with
respect to ϕ, Vϕ, is always negative.
Besides, string theory has another substantial application

in the field of cosmology, and it is the idea of higher
dimensional gravity and brane cosmology. Although
Kaluza and Klein first brought up the concept of an extra
dimension in their famous theory, it was developed after
the appearance of the string theory in the attempts of
Arkani-Hamed et al. [28], and more importantly in the
works of Randall and Sundrum (RS), who proposed two

useful five-dimensional (5D) cosmological models [29,30].
In their second model (RSII), which is the case of interest
in this article, our Universe is assumed to be a four-
dimensional (4D) brane in an infinite 5D spacetime, called
bulk. The standard model of particle physics is restricted to
the brane and just gravitons can propagate into the bulk.
The application of the brane scenario in explaining the
evolution of the Universe has been demonstrated in the
literature [31–40].
Regardless of many articles in which in the context of

either a common 4D scenario or a brane cosmology and in
the presence of various candidates for driving accelerating
expansion, the behavior of the Universe has been studied in
an inflationary era or a DE dominated regime separately,
another useful mathematical method that recently has been
widely used in cosmological research is the dynamical
system approach in which one can investigate the whole
history of the Universe, all at once [41–48]. In this method
we can find all the possible trajectories of the Universe
related to different initial conditions in an appropriate phase
space to study its long term behavior from the beginning
until now, and not just one trajectory such as the case in
Newtonian mechanics. What is important is to distinguish
the type of the trajectories and classify them, using stability
analysis.
In [49–51], the evolution of the Universe in the presence

of a tachyon scalar field as the DE component and/or the
inflaton field have been studied in the context of the
dynamical system approach. The dynamical system per-
spective of a self-interacting scalar field in a RSII brane-
world model and also in another interesting 5D braneworld
model called DGP has been investigated in [52,53],
respectively. Specifically, in a recent article we have studied
the details of a DGP braneworld cosmology with a tachyon
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field on the brane using this method in [54]. In all of these
articles there is at least one stable critical point that behaves
as a late time attractor, in addition to some other saddle or
unstable critical points that correspond to other cosmo-
logical periods.
Another interesting issue that may appear in dynamical

system analysis (considering some assumptions) is the
concept of instantaneous critical points. This happens
when a critical point depends upon one of the dynamical
variables. For a scalar field in both 4D and 5D scenarios, it
is the form of the potential that identify such critical points.
In [49], the authors have investigated the presence of
instantaneous critical points for various 4D scalar field
DE models. The same work has been done in [50], for only
a 4D tachyon scalar field DE scenario, but with different
types of potentials. In [54], we have also studied the
existence of instantaneous critical points in a tachyon
DGP cosmology with a Gaussian potential.
Here, we will analyze the stability of a RSII braneworld

model with a tachyon field on the brane. Especially, the
case of a Gaussian tachyonic potential will be studied. In
Sec. II, we will review the basic equations of the model.
Section III is the main part of this article. It consists of
defining a suitable set of new variables, deriving an
autonomous system of ordinary differential equations,
and investigating the stability of the model in the respective
phase space. We will divide our discussion into two parts.
In Sec. III A, an inverse square potential will be considered
and the critical points of the model will be obtained. In
Sec. III B, we will continue with a Gaussian potential, and
considering the concept of instantaneous critical points, we
will reach interesting results. Through the paper we use
natural units (8πG ¼ ℏ ¼ c ¼ Mp ¼ 1).

II. THE MODEL

The Friedmann equation on the brane in the Randall-
Sundrum scenario can be written as follows:

3H2 ¼ ρtot

�
1þ ρtot

2σ

�
: ð1Þ

HereH is the Hubble parameter, σ is the brane tension, and
ρtot ¼ ρm þ ρtac is the total energy density on the brane in
which ρm is the matter energy density and ρtac denotes the
energy density of the tachyon field. In the absence of any
interaction between the dark sectors of the Universe they
satisfy conservation equations separately as follows:

_ρm þ 3Hρm ¼ 0; ð2Þ

_ρtac þ 3Hðρtac þ PtacÞ ¼ 0: ð3Þ

The pressure of the tachyon field, Ptac, and its energy
density are given by

ρtac ¼
VðϕÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − _ϕ2

q ; ð4Þ

Ptac ¼ −VðϕÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − _ϕ2

q
; ð5Þ

in which the dot means derivative with respect to the
cosmic time. Replacing Eqs. (4) and (5) into Eq. (3), one
can obtain the equation of motion of the tachyon field as

ϕ̈

1 − _ϕ2
þ 3H _ϕþ Vϕ

V
¼ 0: ð6Þ

Also, the Raychaudhury equation that is very useful in the
following sections can be obtained as

_H ¼ −
�
1

2
þ ρtot

2σ

�
ðρm þ ρtac _ϕ

2Þ: ð7Þ

III. PHASE SPACE AND STABILITY ANALYSIS

As we mentioned in the Introduction, our objective is to
rewrite the defined system above as an autonomous system
of ordinary differential equations to analyze the stability of
our model in an appropriate phase space. So, we define the
following new set of dimensionless dynamical variables:

y¼
ffiffiffiffi
V

p
ffiffiffi
3

p
H
; z¼ ρtot

3H2
; d¼ _ϕ; λ¼ −

Vϕ

V3=2 : ð8Þ

Using the Friedmann equation and the new variables above,
one can obtain

ρtot
2σ

¼ 1 − z
z

ð9Þ

and find a constraint for z, as 0 ≤ z ≤ 1. The case z ¼ 1
corresponds to the low-energy limit (ρtot ≪ σ) and shows a
standard 4D Einstein-Hilbert theory coupled to a tachyon
field. On the other hand, the high-energy limit (ρtot ≫ σ)
relates to the situation z ¼ 0. We have to notice that z ¼ 0
is achieved when H → ∞ (and not ρtot ¼ 0), which
corresponds to the very early Universe, the beginning of
inflation, or even earlier. Also, from the definitions of the
new variables above when z ¼ 0 (H → ∞), we have
certainly y ¼ 0. Furthermore, the Friedmann constraint
can be obtained by rewriting Eq. (1), in terms of the
new variables as

z −
y2ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − d2

p ¼ ρm
3H2

: ð10Þ

The rhs of this equation isΩm, which satisfies the constraint
0 ≤ Ωm ≤ 1. Moreover, −1 ≤ d ≤ 1, because of the square
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root. Combining these constraints and the one of z, and
considering Eq. (10), we find out that −1 ≤ y ≤ 1. One can
consider the positive values of y as an expanding Universe
and the negative values as a contracting one.
Regarding the Friedmann constraint and other con-

straints on our new variables z, y, d, and also the one of
Ωm, we can identify our 3D phase space. Figure 1 illustrates
the respective phase volume. It is obvious that for z ¼ 0, we
always have y ¼ 0, while d can vary from −1 to 1. Also,
only for d ¼ 0 and z ¼ 1, y can take the values �1.
Furthermore, we can obtain the tachyon equation of state

(EoS) parameter and the total EoS parameter of the
Universe in terms of the new dimensionless variables as

wtac ¼ d2 − 1; ð11Þ

wtot ¼
−y2

z

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − d2

p
; ð12Þ

such that with attention to the constraints on the variables
y and z, we can constrain them as −1 ≤ wtac ≤ 0 and
wtot ≤ 0. In [55], the author has evaluated the condition of
acceleration for a few cosmological models such as a RSII
braneworld model. If we rewrite this condition in terms of
our phase space variables we obtain

wtot < −
2

3
þ z
3ð2 − zÞ ð13Þ

that guarantees an accelerated expansion. This condition
for z ¼ 1 reduces to wtot < −1=3, that is in agreement with
the case of a standard 4D scenario. In addition to Eqs. (11)
and (12), and with attention to Eq. (7), we can reach another
useful relation which will be utilized in the following
calculations as

_H
H2

¼ 3

2

�
z − 2

z

�
ðz − y2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − d2

p
Þ: ð14Þ

Now, using Eqs. (10) and (14), we calculate a set of
evolutionary equations for the model under consideration
by differentiating the new variables in Eq. (8) with respect
to ln a. We find that

y0 ¼ −
ffiffiffi
3

p

2
y2dλþ 3

2
y

�
2 − z
z

�
ðz − y2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − d2

p
Þ; ð15Þ

z0 ¼ 3ð1 − zÞðz − y2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − d2

p
Þ; ð16Þ

d0 ¼ −ð3d −
ffiffiffi
3

p
yλÞð1 − d2Þ; ð17Þ

λ0 ¼ −
ffiffiffi
3

p
dyλ2ðΓ − 3=2Þ; ð18Þ

in which prime means derivative with respect to ln a (a is
the scale factor), Γ ¼ VVϕϕ=V2

ϕ, and Vϕϕ represents the
second derivative of the potential with respect to the
tachyon field. These equations form a four-dimensional
autonomous system of ordinary differential equations and
demonstrate the evolution of our phase space variables d, y,
z, and λ, and so indirectly the behavior of the RSII model in
the presence of a tachyon scalar field on the brane. But,
because z appears in the denominator of the second term in
the rhs of Eq. (15), and since as we mentioned earlier it
must satisfy the constraint 0 ≤ z ≤ 1, Eq. (15) will be
undefined at z ¼ 0, and as a result we may miss possible
critical points with z ¼ 0. So, we rewrite the system of
equations above as

ỹ ¼ −
ffiffiffi
3

p

2
y2zdλþ 3

2
yð2 − zÞðz − y2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − d2

p
Þ; ð19Þ

z̃ ¼ 3zð1 − zÞðz − y2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − d2

p
Þ; ð20Þ

d̃ ¼ −zð3d −
ffiffiffi
3

p
yλÞð1 − d2Þ; ð21Þ

λ̃ ¼ −
ffiffiffi
3

p
dyzλ2ðΓ − 3=2Þ; ð22Þ

in which ṽ ¼ zv0 (v ¼ y; z; d; λ).
The next step in the dynamical system approach is to find

the critical points of the model and study their stability
characteristics with attention to respective eigenvalues.
Henceforth, it is more convenient to divide our discussion
into two different situations. At the first stage, we inves-
tigate the case of a constant λ, calculate related critical
points of the model, and study the evolution of the Universe
for various values of the parameter λ. Then, we carry on
with a varying λ situation. In this case, we assume that λ
evolves slowly enough such that one can consider the
previous critical points as the instantaneous critical points

FIG. 1. The phase volume of our model.
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for the present case. Using the idea of moving critical
points, we find interesting results and analyze them.

A. The constant λ

1. Critical points

When the tachyonic potential has an inverse square
behavior, VðϕÞ ¼ V0ϕ

−2, λ will be a nonzero constant
parameter. One can easily check this by integrating the
definition of λ in Eq. (8). The case λ ¼ 0 relates to a
constant potential that does not satisfy the general proper-
ties of a tachyonic potential. A constant λ, yields λ̃ ¼ 0, so
we can obtain the fixed points of the system by setting
ỹ ¼ z̃ ¼ d̃ ¼ 0, simultaneously. The results are as follows:

(i) P1ðy ¼ 0; z ¼ 1; d ¼ 0Þ: This critical point corre-
sponds to a matter dominated Universe, because
regarding the Friedmann constraint one can obtain
Ωm ¼ 1, and also with attention to Eq. (12),
wtot ¼ 0. The same result could be achieved when
we utilize the definitions of our new variables in
Eq. (8).

(ii) P�
2 ðy ¼ 0; z ¼ 1; d ¼ �1Þ: Although wtot ¼ 0, but

with attention to Eq. (8), the critical points P�
2

relate to matter scaling solutions in which the energy
density of the tachyon field mimics the matter
energy density and can be characterized by
wtac ¼ wm. In P�

2 , wtac ¼ 0, that is equal to the
EoS parameter of the matter content in our model,
wm ¼ 0. Also, obviously it is the kinetic part of
the tachyon field that contributes in these solutions.

(iii) P�
3 ðy ¼ �y�; z ¼ 1; d ¼ �d� ¼ � λy�ffiffi

3
p Þ�

y� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λ4þ36
p

−λ2
6

q �
: These critical points require

more attention, because of the appearance of λ. It is a
bit difficult but possible to prove that y2� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − d2�

p
.

Therefore, the Friedmann constraint for P�
3 leads to

Ωm ¼ 0, which means they are tachyon field domi-
nated solutions. Whether the kinetic term or the
potential term is dominant, directly depends on the
value of λ, so that when λ → 0, we have y� → 1 and
d� → 0, and as a result a tachyonic potential
dominated solution, and for λ → ∞, we find y� →ffiffiffi
3

p
=λ → 0 and d� → 1, and consequently a kinetic

dominated solution. Also, when we calculate the
total EoS parameter for these critical points we reach
wtot ¼ −1þ λ2y2�=3, which with attention to the
general limits of wtot in our model, yields a new
useful constraint as 0 ≤ λ2y2� ≤ 3. One can check
that λ ¼ 0 leads to λ2y2� ¼ 0; along with the increas-
ing of λ, λ2y2� grows as well, and in the limit λ → ∞,
λ2y2� ¼ 3. Although these critical points are
always tachyon dominated, they demonstrate an
accelerated expansion only for a specific range of

the parameter λ. As it is clear from Eq. (13), the
condition of acceleration for P�

3 is wtot < −1=3 that

in turn using Eq. (12) yields λ <
ffiffiffiffiffiffiffiffiffi
2

ffiffiffi
3

pp
.

Obviously, all these five critical points are associated with
the standard 4D limit because of z ¼ 1. Although we
cannot see the effect of an extra dimension in these fixed
points directly, we can find its role indirectly. For instance,
in a pure 4D scenario, both the matter dominated and the
matter scaling solutions are repellers, while in our model
they behave as saddle points.
In addition, there are other critical points with z ¼ 0 that

relate to the high-energy regime and show the role of the
extra dimension in our model clearly. As we mentioned
earlier in all of them y ¼ 0, because in the early Universe
H → ∞. Also, wtot is undefined in all of them, so we
discuss their physical interpretations using other cosmo-
logical parameters and the definitions of phase space
variables themselves. They are as follows:

(i) P4ðy ¼ 0; z ¼ 0; d ¼ 0Þ: Substituting this critical
point into the Friedmann constraint we obtain
Ωm ¼ 0. Also, d ¼ 0 reveals that the kinetic term
of the tachyon field does not contribute to this
solution. Moreover, as we discussed above y ¼ 0,
because of H → ∞, and therefore the tachyonic
potential is nonzero. So, one can consider P4 as an
inflationary solution, in which the tachyon field
plays the role of inflaton field. This result is in
agreement with wtac ¼ −1 for this critical point.

(ii) P�
5 ðy ¼ 0; z ¼ 0; d ¼ �1Þ: Although with attention

to Eq. (10), these values certainly do not yield
Ωm ¼ 0, but we can consider it because of
H → ∞. It can also be deduced assuming that in
the very early Universe the contribution of the matter
content is negligible. Thus, we can consider P�

5 as
tachyon field dominated solutions. Depending on the
value of V, they might be kinetic dominated sol-
utions. One can check that at these points, wtac ¼ 0.

(iii) L1ðy ¼ 0; z ¼ 0; d ¼ dÞ: As it is clear, L1 is a
critical line. It leads to Ωm ¼ 0, so it can be
considered as a tachyon scalar field dominated
solution for which −1 ≤ wtac ≤ 0. Obviously, P4

and P�
5 belong to L1.

In fact, all the points of our phase volume in the plane
z ¼ 0, which is the line ðy ¼ 0; z ¼ 0; dÞ, are critical
points. Though the contributions of the kinetic and the
potential parts of the tachyon field differ for these points, all
of them are scalar field dominated solutions.

2. Stability around the critical points

To investigate the behavior of the system near the critical
points obtained above we consider small linear perturba-
tions δy, δz, and δd around them. Then, using Eqs. (15),
(16), and (17), it is easy to obtain the differential equations
for these perturbations as
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d
d ln a

0
B@

δy

δz

δd

1
CA ¼

0
BB@

∂Y
∂y

∂Y
∂z

∂Y
∂d

∂Z
∂y

∂Z
∂z

∂Z
∂d

∂D
∂y

∂D
∂z

∂D
∂d

1
CCA
0
B@

δy

δz

δd

1
CA; ð23Þ

in which Y, Z, and D are the rhs of Eqs. (15), (16), and
(17), respectively. The above 3 × 3 matrix is called the
Jacobian matrix that has to be evaluated at the critical
points. It possesses three eigenvalues μ1, μ2, and μ3 that
appear in the general solutions for the evolution of δy, δz,
and δd as follows:

δy ¼ c1aμ1 þ c2aμ2 þ c3aμ3 ; ð24Þ

δz ¼ c4aμ1 þ c5aμ2 þ c6aμ3 ; ð25Þ

δd ¼ c7aμ1 þ c8aμ2 þ c9aμ3 ; ð26Þ

where ci¼1…9, are integration constants. The nature of the
critical points depends on the sign of these eigenvalues so
that if all of them have negative (positive) values, we have a
stable (an unstable) critical point, and if two of them have
opposite signs, we have a saddle critical point. In addition,
if at least one eigenvalue is zero (and the nonzero
eigenvalues have the same signs), we cannot investigate
the stability properties of respective critical points using a
linear perturbation method. In such a case, one has to adopt
other approaches in stability analysis such as the center
manifold theory. Since in this article we find a few such
critical points, and since other stability approaches are
beyond the scope of this article, we resort to the numerical
results to recognize their stability status. In the following,
after calculating the elements of the Jacobian matrix for our
model, we find its eigenvalues for each of the critical points
in Sec. III A 1 as follows:

(i) P1: The eigenvalues for this critical point are
μ1 ¼ 3=2, μ2 ¼ −3, and μ3 ¼ −3. Obviously, they
are real and have opposite signs, so P1 demonstrates
a saddle point.

(ii) P�
2 : The eigenvalues related to these critical points

are μ1 ¼ 6, μ2 ¼ −3, and μ3 ¼ 3=2. Clearly, P�
2

behave as saddle points in our 3D phase space.
(iii) P�

3 : The case for these critical points is a bit
complicated, because the related eigenvalues depend
on λ. They are μ1 ¼ −λ2y2�, μ2 ¼ −3þ λ2y2�, and
μ3 ¼ −3þ λ2y2�=2. Using the constraint on λ2y2� that
we obtained earlier, we can conclude that P�

3 are
stable critical points and behave as attractors.

When we try to obtain the eigenvalues related to all the
critical points in the plane z ¼ 0, i.e., P4, P�

5 , and L1, we
reach μ1 ¼ 0, μ2 ¼ 0, and μ3 ¼ 0. So, as we discussed
above, the linear perturbation theory cannot identify their
stability characteristics. Instead, we resort to the numerical
approach. All the trajectories in our phase space depend
upon the value of λ, except the trajectories in two special

planes y ¼ 0 and d ¼ 0, and fortunately we can recognize
the stability status of all the critical points of the subset
ð0; 0; dÞ, using just the trajectories in the plane y ¼ 0.
Figure 2 illustrates the evolution of trajectories in this plane.
As it is clear, all the points on L1 are saddle critical points,
such as P4, and only two critical points P�

5 are repellers.
Finally, as we mentioned earlier, in a constant λ scenario,

λ0 ¼ 0, which in turn as well as using Eq. (18), yields
Γ ¼ 3=2. This result is just as the one in [56], for a
quintessence scalar field in the RSII model. But how about
if we do not consider an inverse square potential?

B. The varying λ

For any other form of tachyonic potentials except the
inverse square, λ is not a constant and evolves as other
phase space variables. So, Γ does not equal 3=2 anymore,
and it may vary depending on the form of the potential. In
the following we assume that λ evolves sufficiently slow so
that we can consider it as a constant in any infinitesimal
period of time during the evolution of theUniverse.With this
assumption all the critical points we obtained in Sec. III A 2
can be considered as instantaneous critical points for the
present case. Among them, P�

3 have dynamics because of
λ dependence. The concept of instantaneous and moving
critical points helps us to understand how the Universe tends
to evolve at each instant.
Moreover, the type of the tachyon potential plays an

important role in the evolution of our Universe. For
instance, in [57], the authors have studied an inverse power
law potential, VðϕÞ ¼ V0ϕ

−n with n > 0, in a tachyon
braneworld cosmology and found a critical power nc. They
have demonstrated that for 0 < n < nc, the asymptotic
behavior of the Universe is quasi–de Sitter while for
n > nc, it is a dust Universe. For a standard cosmology,

FIG. 2. The trajectories in the plane y ¼ 0 of the phase space.
The dashed black line shows the critical subset L1.

DYNAMICAL SYSTEM ANALYSIS OF RANDALL-SUNDRUM … PHYS. REV. D 101, 103525 (2020)

103525-5



nc ¼ 2, as the authors have indicated in [58]. The same
results have been obtained in [50] in the context of a
dynamical system approach. Also, one can find different
behaviors of the Universe for some other types of potentials
in [50]. For example, for an exponential potential
VðϕÞ ¼ V0e−μϕ, the Universe will eventually enter a non-
accelerating regime.
Here, we choose a Gaussian potential, VðϕÞ ¼

V0 expð−αϕ2Þ, which satisfies all the tachyonic potential
characteristics and in addition has a special property. It has
an extremum at ϕ ¼ 0, which relates to λ ¼ 0, the case we
have ignored until now. When we evaluate the critical
points of the model for the case λ ¼ 0, we find two
additional critical points and also a critical line on top of
the critical points we found earlier, as follows:

(i) P�
6 ðy ¼ �1; z ¼ 1; d ¼ 0Þ: Using the Friedmann

constraint we conclude that at these critical points
Ωm ¼ 0. On the other hand, d ¼ _ϕ ¼ 0. So, we find
that P�

6 are potential dominated or more exactly DE
dominated solutions. It can be confirmed using
Eqs. (11) and (12), because they lead to wtac ¼
−1 and wtot ¼ −1, that the latter shows an accel-
erated expansion. One can check that P�

3 , at the limit
λ → 0, approach P�

6 .
(ii) L2ðy ¼ y; z ¼ y2; d ¼ 0Þ: As it is clear, L2 is an-

other critical line. Substituting L2 into Eqs. (10),
(11), and (12), we again obtain Ωm ¼ 0, wtac ¼ −1,
and wtot ¼ −1. Therefore, similar to P�

6 , L2 is a DE
dominated solution which corresponds to an accel-
erating Universe as well. What is important here is
that the extra dimension demonstrates its effect
directly in this solution, such as P4, P�

5 , and L1.
One can see that P�

6 are the end points of the critical
line L2 in the phase space.

When we evaluate the related eigenvalues for P�
6 and L2,

we reach (μ1 ¼ 0, μ2 ¼ −3, μ3 ¼ −3) and (μ1 ¼ 0,
μ2 ¼ −3y2, μ3 ¼ −3y2), respectively. Again, we resort to
the numerical approach to distinguish the stability of P�

6

and L2. Figure 3, which has been plotted for the special
case λ ¼ 0, illustrates that all the possible trajectories of our
Universe start from the repellers P�

5 , and finally come to the
critical line z ¼ y2 in the plane d ¼ 0. Therefore, L2 and, of
course, P�

6 are attractor solutions.
To understand the evolution of the Universe in our model

completely, we need to know the asymptotic behavior of
the parameter λ. In fact, its evolution for the case λ → 0
differs from the one of λ → ∞. To find its asymptotic
behavior we must refer to Eq. (18). Using the definition of
the Gaussian potential we calculate Γ ¼ 1 − 1=ð2αϕ2Þ. So,
Γ − 1 and actually Γ − 3=2 in Eq. (18) are negative. Also,
λ2 is always positive. Now, if we consider an expanding
Universe for which y > 0, and assuming d > 0, we find
that λ0 > 0, and therefore λ approaches infinity asymptoti-
cally. On the other hand, we can consider the case λ ¼ 0, as

our starting point, because it relates to the top of the
Gaussian potential. It can be considered as the preinfla-
tionary era or the beginning of inflation.
Moreover, we can numerically demonstrate that consid-

ering a Gaussian potential is consistent with the assumption
of a slowly varying λ in the model under consideration.
Figure 4, illustrates the behavior of λ versus ln a. It is
obvious that for a long range of ln a, λ changes very slowly.
In Fig. 5, we have plotted some of the possible

trajectories of our Universe for a few values of λ. In all
of the figures, the trajectories start from the unstable critical
points P�

5 , but their final points are not unique. As it is
obvious, for λ ¼ 0, the Universe tends to reach the stable

FIG. 3. The trajectories in the phase space of our model for the
case λ ¼ 0. The dashed black line and the dash-dotted red curve
show the critical lines L1 and L2, respectively.

FIG. 4. The behavior of λ in terms of ln a. We have used the
initial conditions: yð0Þ¼0.9, dð0Þ ¼ 0.1, zð0Þ ¼ 0.8, Hð0Þ¼70,
and λð0Þ ¼ 0.1. Also, we have set α ¼ 1.
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critical line L2 or the stable critical points P�
6 . But as λ

starts to increase, L2 and P�
6 do not exist anymore. At these

states, the trajectories tend to come to the attractors P�
3 ,

which coincide with P�
6 , at the limit λ → 0, and demon-

strate a scalar field dominated solution. As we discussed in
Sec. III A 1, P�

3 are potential dominated solutions for λ → 0

and kinetic dominated solutions for λ → ∞, with
wtot ¼ −1þ λ2y2�. Also, their positions in the phase volume
depend on the value of λ. So, along with increasing λ, P�

3

move in the plane z ¼ 1 until at the limit λ → ∞ they
approach P�

2 while they are still attractors. If the Universe

evolves fast enough so that it comes to P�
3 before λ ¼ffiffiffiffiffiffiffiffiffi

2
ffiffiffi
3

pp
or wtot ¼ −1=3, it certainly experiences a DE

dominated era, but as soon as wtot crosses the line −1=3
or similarly λ becomes greater than

ffiffiffiffiffiffiffiffiffi
2

ffiffiffi
3

pp
, another phase

transition happens. The Universe enters a decelerating
expansion era and stays at this phase forever. Presently,
we know from observations such as the type Ia supernova
[59], the cosmic microwave background radiation [60], and
so on, that we are in an accelerating expansion phase at the

moment. Thus, according to our findings in this article, we
must wait for this phase transition in the future.
But, with attention to the model under consideration,

there is another possible behavior for our Universe. If it
does not evolve fast enough, it never experiences a DE
dominated era, because it reaches P�

3 when λ is greater thanffiffiffiffiffiffiffiffiffi
2

ffiffiffi
3

pp
. Apparently, this is not the case that is happening

for our Universe, but it is one of the solutions of our model
that may become important in future research.

IV. CONCLUSION

In this article, we have investigated a tachyonic RSII
braneworld model in the context of the dynamical system
approach. After introducing the model under consideration,
we rewrote the main equations in terms of four new
dimensionless variables y, z, d, and λ, which we introduced
to set an autonomous system of ordinary differential
equations. Then, we divided our discussion into two
different situations: λ ¼ const and λ ¼ λðϕÞ. In the first
situation that was related to an inverse square potential, we

FIG. 5. The trajectories in the phase space of our model for the cases λ ¼ 0, λ ¼ 1, λ ¼ 3, and λ ¼ 10. The dashed black line and the
dash-dotted red curve show the critical lines L1 and L2, respectively.
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obtained eight critical points P1, P�
2 , P

�
3 , P4, P�

5 , and one
critical subset L1 and calculated their eigenvalues. Then,
we dealt with their cosmological interpretations and sta-
bility characteristics, both analytically and numerically.
In the second situation, we assumed a varying λ, and

specifically we utilized a Gaussian tachyonic potential. We
found two additional critical points P�

6 and another critical
line L2 for the maximum of the potential or in other words
for the case λ ¼ 0. We understood that they all are DE
dominated attractors. But since λ was considered to vary
from zero to infinity, we saw that the fate of the Universe
changes instantly. We found that the trajectories want to
reach P�

6 or L2, for λ ¼ 0, and since then along with

increasing λ, they tend to come to P�
3 , which themselves

depend on λ and therefore move in the plane z ¼ 1.
Also, we found that the speed of the evolution of the

Universe has an important effect on its fate, so that if the

trajectories get to the P�
3 before λ reaches the value

ffiffiffiffiffiffiffiffiffi
2

ffiffiffi
3

pp
,

the Universe experiences a DE dominated era and then
enters a decelerating expansion phase. Otherwise, it never
experiences an accelerating phase of expansion at all which
apparently is inconsistent with observations.
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