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We build upon previous investigation of the one-dimensional conformal symmetry of the Friedman-
Lemaitre-Robertson-Walker (FLRW) cosmology of a free scalar field and make it explicit through a
reformulation of the theory at the classical level in terms of a manifestly SL(2, R)-invariant action
principle. The new tool is a canonical transformation of the cosmological phase space to write it in terms of
a spinor, i.e., a pair of complex variables that transform under the fundamental representation of
SU(1, 1) ~ SL(2,R). The resulting FLRW Hamiltonian constraint is simply quadratic in the spinor and
FLRW cosmology is written as a Schrodinger-like action principle. Conformal transformations can then be
written as proper-time dependent SL(2, R) transformations. We conclude with possible generalizations of
FLRW to arbitrary quadratic Hamiltonian and discuss the interpretation of the spinor as a gravitationally-
dressed matter field or matter-dressed geometry observable.
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I. INTRODUCTION

This short paper explores the hidden conformal symmetry
of the Friedman-Lemaitre-Robertson-Walker (FLRW) cos-
mology of a free scalar field uncovered in [1]. We aim at
writing the FLRW cosmological action in the simplest way
possible that makes this conformal invariance explicit.

Cosmology is a—if not the—natural arena of application
of general relativity and of quantum gravity investigation,
both due to its symmetries simplifying the theoretical
analysis and to its physical relevance as a description of
the evolution of the universe with measurable predictions.
Here we study FLRW cosmology, with general relativity
coupled to a homogeneous and isotropic free scalar field,
and focus on the background dynamics without inhomo-
geneities or other matter fields. This provides the simplest
possible gravitational theory, which can serve as a toy
model for illustrating the symmetries of general relativity
and a test bed for quantum gravity methods. It can
nevertheless hold surprises and its hidden conformal
invariance was recently put forward in [1]. This conformal
symmetry came out of earlier work introducing the CVH
algebra of cosmological observables, named after its three
generators [2—4]: the Poisson brackets of the geometry
dilatation generator (or complexifier) C, of the spatial
volume » and of the Hamiltonian constraint H form a
closed 8[(2,R) Lie algebra, which can be carried to the
quantum level and fixes the operator ordering of the
Wheeler-de Witt equation. It was then understood that this
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CVH algebra plays a more fundamental role, as the Noether
charges for a one-dimensional conformal invariance of
FLRW cosmology under SL(2,R) transformations acting
as Mobius transformations in proper time [1]. Moreover it
allows one to map the FLRW cosmology of the free scalar
field onto de Alfaro, Fubini and Forlan’s conformal
quantum mechanics [5]. As such, it becomes essential to
preserve it during quantization or to provide a possible
anomaly with a physical meaning. Moreover, preserving
this 3[(2, R) structure or not provides a strong criteria to
classify possible regularizations of FLRW cosmology and
modified gravity theories [3,4]. This structure holds inde-
pendently of the value or sign of the cosmological constant
[6]. Finally, it was shown that the CVH algebra can be
embedded into a larger 80(3,2) algebra of observables
representing the whole phase space of homogeneous
geometry and scalar field, and that this 80(3, 2) Lie algebra
can be constructed from a 8u(1, 1) ~ 81(2, R) spinor which
can be used as canonical variable for the quantization [7].
The present work presents a last chapter to this story before
embarking in the wider project of applying this conformal
symmetry to the dynamics of inhomogeneities and extend-
ing it to midi-superspace models and full general relativity.
Concrete applications of the conformal symmetry to the
thermodynamics of FLRW cosmology will also be pre-
sented later on. Therefore, this work aims at writing
explicitly the spinor, representing the whole phase space
of FLRW cosmology coupled to a scalar field, and thereby
making the conformal invariance appear limpidly.

The first section deals with the classical reformulation
of FLRW cosmology in terms of a spinor and a quadratic
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Hamiltonian. Starting from the reduced Einstein-Hilbert
action for general relativity coupled to an isotropic and
homogeneous scalar field, we review its Hamiltonian
formulation in terms of a four-dimensional phase space
parametrized by the spatial volume wv, its conjugate
momentum (extrinsic curvature) b, the scalar field ¢ and
its conjugate momentum r,. We introduce the canonical
transformation from those two pairs of canonical variables,
(v, b) representing the geometry and (¢, 7,;) representing the
scalar matter, to a pair of complex variables (w, W, w, W)
mixing the geometry and scalar field. First, we show that the
Hamiltonian constraint H is simply quadratic in the complex
variables, being the product of the imaginary parts of w and
W. This allows to write FLRW cosmology as a Schrodinger
action principle for the complex vector (w, W), whose
equation of motion is a Schrodinger equation straightforward
to integrate. This is the simplest reformulation of the FLRW
background dynamics. Second, we show that w and W live in
the fundamental representation of the SU(1, 1) group action
generated by the CVH algebra of observables formed by the
Hamiltonian constraint H, the spatial volume » and the
integrated extrinsic curvature C = vb. This leads us to refer
to (w, W) as the cosmological spinor. More generally, the
space of all quadratic polynomials in the spinor form the
80(3, 2) algebra of cosmological observables noticed in [7],
which can serve a basis for the quantization of the theory.

The second section deals with the symmetry of the theory.
Written in term of the spinor (w, W) and a quadratic
Hamiltonian constraint dictating the evolution in proper
time, the theory has a manifest SL(2, R) ~ SU(1, 1) sym-
metry. We prove that combining the SL(2, R) action with
Mobius transformations in proper time leads to the symmetry
of FLRW cosmology under one-dimensional conformal
transformations presented in [1]. Finally, we show how to
extend this action to conformal transformations associated
to arbitrary Diff(S,) transformations of the proper time.
These are not direct symmetries of the theory but the resulting
action variation is a very interesting Schwarzian action, as
explained in [6].

II. FLRW COSMOLOGY AS AN
EVOLVING SPINOR

We consider a massless scalar field ¢ minimally coupled
to gravity. The flat Friedman-Lemaitre-Robertson-Walker
(FLRW) minisuperspace model is defined by studying
four-dimensional homogeneous isotropic metrics foliated
by three-dimensional flat slices,

ds? = —=N(1)2d7 + a(1)26;,dx'dx/, (1)

in terms of the lapse function N(¢) and the scalar factor a(z).
We similarly assume that the scalar field ¢ is homogeneous
and only depends on the time 7. The reduced FLRW
cosmological action, with vanishing cosmological constant
A =0, is given by the integration of the Einstein-Hilbert

action over a fiducial three-dimensional cell of volume V,
and reads:

3 ad?

3 .
S[a,N,qﬁ]:Vg/dt[—%T—i-;—Ngﬁz )

with the Newton gravitational constant G. The canonical
analysis of this action defines the conjugate momenta to the
scale factor and scalar field:

_ 3V,aa _aV,
Te= TGN TN

¢, (3)

and writes the action as a fully constrained system,

Sla,N.,p| = / dtlaz, + ¢ry — NH). (4)

The lapse N plays the role of a Lagrange multiplier and the
Hamiltonian constraint H is a balance equation between the
energy of the matter field and the energy of the geometry:

1 713,5 47G n}
=3 (?‘TZ)' ®)

Itis convenient to introduce a volume variable, absorbing the
volume of the fiducial cell. The canonical transformation
reads:

1l n, 1 a

=a’V,, b=———F=——.
vEaTe 3V,a> 472G Na

(6)

Then the phase space of FLRW cosmology is given by
canonical variables,

(oo} =1, {pm}=1 (7)

The Hamiltonian constraint becomes:

1 (7
H = 2 <—¢ - szb2>
v
1

=5 (my — kbv)(7y + KbV) =0, (8)

where the Planck length x = /122G (up to a numerical

factor) encodes the coupling between matter and geometry.
The FLRW action then reads

S|, 4. b, v, N| :/dt[5v+qbzr4,—NH], (9)

where we can switch kinetic term for the geometry to —vb
by a total derivative. We can also write it in terms of proper
time 7 defined by dz = Ndt, absorbing the lapse into the time
coordinate:
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S[gh. 7. b, 0. N] = / defod,b + 7ydip— M) (10)

where we shall never forget about the implicit role of the
lapse imposing that the overall energy vanishes, H = 0.

A. Canonical map to a spinor phase space

The previous work [7] identified a 80(3,2) algebra of
observables extending the 8[(2, R) Lie algebra formed by
the three cosmological observables, the dilatation generator
C = vb, the 3D volume v and the Hamiltonian constraint H
(called CVH for short). The cosmological evolution formu-
lated as a SL(2, R) flow at the classical level, and then the
quantization in terms of 8[(2,R) and 80(3,2) representa-
tions, both hinted to a parametrization of the cosmological
phase space in terms of canonical complex vectors living in
the fundamental representation of SU(1, 1)~ SL(2,R).
However the precise expression of those complex variables
were not explicitly given. Here we remedy this shortcoming
and introduce the pair of dimensionless complex variables,
defined assuming that the volume remains positive v > 0:

1 v (my
W:%e_?/’[ ﬂ?—'—l 7(%— U>:|, (11)

1, M (T
W—ﬁeﬁq{,/%—i\/%(%—f—bvﬂ, (12)

where A is an arbitrary dimensionless parameter defining the
elementary unit of volume as Ax> in terms of the cubed Planck
length. Decomposing these variables in real and imaginary
parts, w = x 4+ iy and W = X 4 iY, the spatial volume is the
product of the real parts:

v

while the Hamiltonian constraint is the product of the
imaginary parts:

VY = =25y — ko) (g + xbr) = ~iH. (14
v

The key point is that these new complex variables realize a
canonical transformation of the four-dimensional phase
space (¢, 7y, b, v) and satisfy canonical Poisson brackets,

{w, W} ={W,w} = —i,
{wwt ={W, W} ={wW}={w.W}=0, (15

Indeed a lengthy though straightforward calculation for the
kinetic term yields:

Wdw — Wdiv + wdW — wdW = —2i[z,d¢ + vdb],  (16)

so that the FLRW action can be simply rewritten as:

S = / dr B (Wd,w — Wd,w + wd, W — wd, W)

1 B _
—m(w—w)(W—W)], (17)

on in terms of the real and imaginary parts:

1
S = /dr[(Yde—XdT)H—yd,X—xd,Y) +TyY )
K

The big advantage of this reformulation is that the intro-
duction of the variables (w, W) € C2, which subtly mix the
geometry with the scalar matter field, allows to write the
theory with a simple quadratic Hamiltonian. As we will see
later, this allows to think of the classical FLRW cosmology as
a Schrodinger action principle and to integrate the equation
of motion as a mere exponentiation of a matrix Hamiltonian.

Finally, we will refer to the variables (w, W) as a spinor
since they live in the fundamental representation of the
SU(1, 1) transformation generated by the CVH observables,
as shown below.

B. Cosmological evolution and CVH algebra

The quadratic Hamiltonian H gives the evolution in
proper time, d.O = {O,H} for any observable O. This
gives the equation of motion for the spinor:

1 ) .
= (v = @) (W = W) = dw =d,iv = — (w— W),

4]k
(18)

and similarly for the second complex variable:

- i
W=t - (19)

The imaginary parts of w and W obviously are both
constants of motion:

{How—w} = {H.W—W}=0. (20)

These Dirac observables allow to integrate the evolution for
the spinor:

e~ ttH by =y 1 {w,H} =w+ %(W -w), (21)

and similarly for W. This linear evolution is easily
translated in terms of real and imaginary parts:
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y@ =

. (22)
x(r) = xo-— Y0

As shown in [1,2], the dynamics can also be neatly re-
packaged in terms of the CVH observables. These observ-
ables are here realized as quadratic polynomials in the spinor:

H = g=(w=w
vo= Ew4+w)(W+W), (23)
CcC =

Indeed, this set of observables directly gives the evolution
equations for the volume:

dv = {v,H}=«C,
d,c = {C.H}=-H. (24)
dH = 0.

Completed by the Poisson bracket { C, v} = v, these Poisson
brackets form a closed 31(2,R) Lie algebra, referred to
unimaginatively as the CVH algebra. More precisely, we can
write the observables C, v and H in terms of the usual
31(2,R) basis (j.. k. ky):

C =k, v:/llc3(kx+jz), sz—/llk(kx—jz),
(25)
Jo = s=—AH=3WW +wW),
ke = ss+MH=3wW+wW), (26)
ky, = 5(WW-wW),

These quadratic observables K= (Jz ky. ky) actually gen-

erate SU(1, 1) transformations on the variables w and W:

e ) o

{D.J,}=0.

{Jo i} = Fids,
{K..J.i} = FiK.,
{L,,L.}=+iJ,,

{D.K,} = L,.
{J.. K.} = FiK,,
{L..Ji} = FiLy,
{K,,K.} =+iJ,,

and similarly for W, with the Lorentzian signature scalar
product 7 - KC = n,j, — n.k, — n,k,, where the matrices ¢;
are the Lorentzian Pauli matrices,

(1 O) (O 1)

““\o -1) =7 \_1 o)
0 —i ,

G = . 62 6] = 2ig,,

i 0
6. 6y] = —2ig,, 6y, ¢.) = 2ig,. (28)

This justifies us to refer to (w, W) as a spinor. In particular, as
noticed in [2], the Hamiltonian constraint is the null generator
H = (k. — j.)/2Ak, whose action can be exponentiated in
terms of SU(1, 1) matrices:

o (W) _ g <W> , (29)
w w

which leads back to the trajectory for w derived earlier.

More generally, all quadratic polynomial in w and W
form a 80(3,2) Lie algebra of observables [7]. Indeed, the
ten quadratic combinations of w, W and their complex
conjugate can be combined into the ten generators of
80(3,2):

1 1
J, = 5(wW+wW), J_= E(W2 - w?),
_ 1 }
J,.=J_, K. :E(WW—WW),
1 _
K_=swW. K, =K.
Lz:%(v_vW—wV_V) L_:%(wz—l—Wz),
1 }
Ly=L.  D=g(wv+WW)

whose Poisson brackets are

{D’La} =-K,,
{JZ’L:E} = :FiL:t’

{KZ’L:E} = {szK:t} = {JZ’KZ} = {Jsz} =0,

(1,0} = =2i,,
{(J_.K,}={K_,J,} =2ik.,
{J_.L.}y={L_J,}=2iL,,
{K.,L.} =-D,

{K.,K_} ={L_,L_} =2iJ_,
{J..K.} =0,
{Jy.L } =0,
{K,,L_} =-2D,

{K;.L.}=0.
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These 80(3,2) generators can be translated into cosmo-
logical observables by expressing the spinors back in terms
of the volume and scalar field. The 80(3,2) algebra of
observables is much larger than the CVH algebra. Preserv-
ing the 80(3,2) structure becomes especially relevant
during the quantization process [7], but it is not directly
relevant to the present work. Nevertheless, among these
80(3,2) generators, we identify a Casimir of the CVH
algebra as:

{WW —wW,0} =0 for O="H,,C. (30)

Not only can it be understood as the square-root of the
quadratic Casimir (k? + k% — j2) of the 8I(2,R) Lie
algebra, but it also turns out to simply be the scalar field
momentum once translated back into cosmological quan-
tities using the definition (11)—(12) of the spinor:

%(WW—WW):%. (31)

C. Classical cosmology as a Schrodinger
action principle

In light of the algebraic structure described above, it
seems natural to organize the complex variables as a
4-dimensional complex vectors ® = (w,w, W, W). Then
the FLRW action (17) can be written as:

: 1
S[@] = / df[lq>*d,q>+q>*Heffc1> :

2 8k
. c 0
with Heff = (0 6>’ N ST (32)
We have introduced a slightly modified complex

conjugation:

0 S
O = (y@)' = @y, with y= < OZ> (33)

Sz

This is a Schrodinger action principle whose equation of
motion is a Schrodinger-like equation on the spinor ®:
i
d®=—H, . 34
T 41k eff ( )
Since the effective Hamiltonian H,/4/x is diagonal by
block, the evolution of the two variables w and W

decouples:
5 Wy w
\w) " ax’\w)

8w_i w
\w/)  ax’\w)

with the cosmological trajectory given by the exponentia-
tion of the Hamiltonian:

o)) e

and similarly for W(z). This exactly matches the FLRW
Hamiltonian derived from the CVH algebra as described
above as the (k, — j,) generator of the 3u(1, 1) ~ 8[(2, R)
Lie algebra.

Let us not forget that physical cosmological trajectories
must satisfy the Hamiltonian constraint, i.e., that the imagi-
nary part of w or of W vanishes. As one can see form the
equations above, the imaginary part, (w —w) and (W — W),
are conserved during the evolution. So it is enough to require
that one of them vanishes as initial condition.

III. CONFORMAL INVARIANCE

While the CVH 381(2, R) algebra for FLRW cosmology
was first used to fix quantization and regularization
ambiguities [2-4], it was only later understood as a
symmetry of the theory. in terms of conformal symmetry.
Indeed, in [1], it was shown that FLRW cosmology is
invariant under 1D conformal transformations realized as
Mobius transformations in proper time and the associated
Noether charges were identified as the initial conditions of
the CVH observables. However the SL(2,R) ~ SU(1,1)
transformations generated by exponentiating the Poisson
brackets with the CVH observables, as derived above in
(27), are not symmetry of the theory. The obvious differ-
ence with the 1D conformal transformation is that the
SL(2,R) transformations are time-independent while the
Mobius transformations are clearly time-dependent. We
revisit this here and clarify the action of conformal trans-
formations on the cosmological phase space. In particular,
we realize them as time-dependent SL(2,R) transforma-
tions on the spinors.

A. SL(2,R) transformations as symmetries

Starting with the FLRW action written in terms of the
real and imaginary parts of the spinor,

1
S = /dr [(Yd,x —Xd,y + yd, X —xd,Y) +TyY],
K

it is convenient to rewrite it in terms of real 2-vectors in
order to come back to a SL(2, R) action:

() () e

Indeed, the SU(1, 1) action on the spinor, G(w,w) and
G(W, W), with the complex matrix

a b
Gz(_ _> with |a|2—|b|2:1,
a b
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translates into the SL(2,R) action on the spinor’s real and
imaginary parts, M(x,,y) and M(X,Y) with the matrix

a p .
M—( > with ad—py =1,
y 0

whose real components a, f, y, 5 are given by Re(a) +
Re(b) and Im(a) £ Im(b).

In terms of the real 2-vectors y and ¥, the FLRW action
becomes:

1
S =— / dr {"Pedru/ + yed ¥ — l—“’PPl//:|
K

, 0 1 0 0
with € = < > and P = < > (37)
-1 0 0 1

with wed, ¥ = —(d,"¥)ey. The free theory, defined by
ignoring the Hamiltonian term and focusing on the kinetics
term ("Wed,y + ‘wed, V), is invariant under time indepen-
dent SL(2, R) transformation, y > My and ¥ > M. To
extend this to a SL(2, R) symmetry for the evolving theory,
we need to take into account the evolution dictated by the
Hamiltonian term "WPy. We thus consider the time
dependent SL(2, R) transformations:

M )
v (o where M(7) = O;'MO,,
¥ - M()Y,
0 1
(38)

1 -
with O, = et7f = < %K).

Using that SL(2,R) matrices preserves the symplectic
canonical form, ‘MeM = ¢, a simple calculation allows
to check that the Lagrangian is indeed invariant under such
modified SL(2,R) transformations.

If we write explicitly those transformations, these do not
match the 1D conformal transformations introduced in [1]. In
order to identify these two symmetries, we need to combine
the SL(2,R) transformation of the spinor with a Mobius
transformation of the proper time, as explained below.

B. Conformal map on the spinor

We combine the time dependent SL(2, R) transformation
of the spinor with a transformation of the proper time and
consider:

= 7 =0'"MO,y,
M:(a ﬁ)eSL(ZR), ‘l" o Y
y 5 ¥ s P =01M0,Y,
2+
with TH%:MDT:%:%K%—'H, (39)
]/m+5

This map consists in SL(2, R)-transformations on the
evolved spinor, Oz = MO,y. k factors were ignored in

previous work, but keeping track of them allows to respect
the physical dimension of 7 as a time and the transformation
parameters (a, f3,y,5) dimensionless. Real and imaginary
parts of the complex variables get rescaled in opposite
ways, plus an extra shift for the imaginary part:

x b %@ = (755 + 0 k().

i (40)
y = 3@) = (raz+0)y(r) +rx(2),

and the same transformation for the second spinor compo-

nent W = X + iY.

First, this indeed defines a group action, representing the
SL(2,R) product as 2 x 2 matrix multiplication. Second, a
direct computation allows to check that these transforma-
tions leave the action invariant:

- - - - - |
5= / dz [(Yd;ic—Xd;j) +3d:X ~5d:¥) + -3V | =S,
K

without any total derivative term. These conformal trans-
formations, realized as time dependent SL(2,R) trans-
formations, therefore define a symmetry of the theory.
These fit with the 1D conformal symmetry transformations
introduced in [1] and provide their explicit action on the
spinorial phase space.

C. From SL(2,R) to Diff(S;) conformal
transformations

It is possible to extend the transformation law of the
cosmological spinor under SL(2,R) Mobius transforma-
tions in proper time to arbitrary mappings of the proper
time. By mimicking the transformations given above, we
propose that the real and imaginary parts of the complex
variables transform under a map 7 > 7 = f(7) as:

x = ¥%) = hx(7),
=h

, (41
y = 3(7) = h7Py(r) + 22k(dh7)x(2) “

where & = d_f is the Jacobian of the transformation of the
proper time. These define a group action representing
Diff(S;). Moreover, a straightforward calculation allows
to compute the resulting variation of the action:

S-8§= 2/1;</df [h—ldzh —~ %h‘z(d,h)z Xx
e / dz Sch[f]Xx, (42)

without any total derivative term. This variation involves
the Schwarzian derivative Sch(f]. We recognize the volume
factor v = 2AxxX. This allows to recover the same
conformal transformations as introduced in [1,6]. When
the Schwarzian vanishes, we recover the invariance of
FLRW cosmology under the SL(2,R) group of Mobius
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transformations. In the general case, the (Ax) factor in the
transformation law (41) for the imaginary part of the spinor
makes it clear that this extra-term is directly related to the
Hamiltonian of the theory H = yY/Ax. Moreover, on top of
deriving a Schwarzian action, one could wonder if exten-
sions of the Diff(S;) transformations (41) could create ex-
terms in the action variation (42) which would still be
quadratic in the spinor. Generating such extra effective
quadratic terms to the Hamiltonian constraint would
explore the whole 80(3,2) algebra of FLRW observables
[7] and might lead to some physically interesting correc-
tions to FLRW cosmology.

IV. OUTLOOK

To summarize the work presented here, we introduced a
spinorial reformulation of the FLRW cosmology coupling a
scalar field to homogeneous and isotropic general relativity.
Starting from the four-dimensional phase space parame-
trized by the canonical variables, the spatial volume and
extrinsic curvature (v, b) for the geometry sector and the
scalar field and momentum (¢, z,,) for the matter sector, we
defined a canonical transformation to a pair of complex
variables (w, W) € C2. The Hamiltonian constraint, gen-
erating the cosmological evolution in proper time, becomes
simply the product of the imaginary parts Sm(w)Im(W),
while the volume becomes the product of the real parts
Re(w)Re(W). The FLRW action then reads (up to a total
derivative):

SFLRW = /dT |:l(WdTW - WdTW) + ;—KSm(W)Sm(W) s
where « is the Planck length (up to a numerical factor) and 1
is an arbitrary real parameter entering the mapping between
(v.b.¢.m,) and (w, W). Here the lapse N implicitly enters
the definition of the proper time from the time coordinate
dr = Ndt and enforces that the Hamiltonian vanishes on-
shell, ie., Sm(w)Im(W) =0. The case Sm(w) =0
corresponds the expanding phase of FLRW cosmology
(with 7, = +xbv), while Jm(W) = 0 corresponds to the
contracting phase (with 7, = —kxbv).

This especially simple action with a quadratic Hamiltonian
is perfectly suited for the quantization for the theory.
However, the quantization is not the goal we have pursued
here. Instead, we have focused on the symmetries of the
theory. The spinorial action is obviously invariant under
SU(1,1) ~SL(2,R) transformations on w and W. We
showed how this SL(2,R) action combines with Mobius
transformations in proper time into a 1D conformal sym-
metry1 of FLRW cosmology. This symmetry should allow to

'As shown in [1], the three Noether charges associated to those
conformal transformations are the Hamiltonian constraint H, the
volume » and the integrated intrinsic curvature C = vb, which
form the CVH algebra introduced in [2].

quantize FLRW cosmology as a one-dimensional conformal
theory, as suggested in [1]. Finally, we showed how to extend
these SL(2,R) conformal transformations into conformal
transformations associated to arbitrary diffeomorphisms of
the proper time, 7+ 7 = f(z). These are not symmetries
per se of the theory, but the resulting variation of the action
gives an enticing Schwarzian action for f.

This formalism has natural possible extensions:

(i) One could consider more general quadratic Hamil-
tonians. For instance, a term in Re(w)Re(W) x v
introduces a cosmological constant, and terms such as
Re(w)? « ve™ or Re(W)? « vet ® introduce in-
flationary potentials for cosmology. Interestingly all
quadratic Hamiltonian can be seen as part of a 80(3, 2)
Lie algebra of observables and the corresponding
evolution can be integrated as a SO(3,2) flow [7].
Moreover, this 80(3,2) structure can be preserved
under quantization and FLRW quantum cosmology
defined as a SO(3,2) irreducible representation.

(i) More generally, a quadratic Hamiltonian is usually
the starting point for perturbation theory, thus the
natural next step would be to introduce higher order
terms, defining nontrivial interaction terms for the
geometry and matter field. As the quadratic Ham-
iltonian can be written as a Schrodinger action
principle, higher order terms would lead to a non-
linear Schrodinger equations,2 whose cosmological
interpretation should be investigated.

(iii) One could also wonder if regularizations or quantum
gravity corrections of FLRW cosmology (e.g., see
[10]), such as the polymer regularization (also know
as loop quantum cosmology) [11-13] or string cos-
mology [14], also admit a spinorial representation
with a polynomial Hamiltonian constraint. For in-
stance, there exists a version of polymerized FLRW
cosmology, which regularizes the initial singularity
into a big bounce and preserves the 8[(2, R) structure
of the CVH algebra [3], that should be writable in
similar terms with spinor variables mixing geometry
and matter fields. The spinorial formulation also
suggests a natural method to regularize the initial
singularity: we can combine the contracting and
expanding cosmological phases by slightly modifying
the Hamiltonian constraint H = Jm(w)Im (W),
for example by introducing an energy shift Sm(w)
Sm(W) - Im(w)Im(W) + e or anonpolynomial
extension Fm(w)Im(W)— (Im(w)Im(W)+1/
Sm(w)Im(W)). It would be interesting to under-
stand what such F[Sm(w)3m(W)] Hamiltonian
constraints imply physically depending on the proper-
ties of the chosen function F.

Let us point out the relation of FLRW cosmology to cubic and
quintic nonlinear Schrédinger equations put forward in [8,9].
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It would of course be better to understand if any of those
extensions or modifications to FLRW cosmology can be
derived as the homogeneous sector or the coarse-graining
of a covariant modified gravity theory or quantum gravity
model.

Finally, an interesting feature of our approach is the use
of variables mixing the matter and the geometry. Indeed, in
light of the equivalence between geometry and matter
proposed by the FEinstein equations, it seems natural to
introduce dressed variables, which include some geometry
degrees of freedom in the matter field variables and vice-
versa. This is exactly the role of the spinor which we define:
combine matter and geometry in order to simplify the
expression of the Hamiltonian constraint for the coupled
system. In order to go further, we would need to extend
this approach to inhomogeneities, if not to full general
relativity. Beyond mini- and midi- superspace models, one
possible path would be to build an inhomogeneous
cosmology as a network (or lattice) of interacting FLRW
cells (e.g., as attempted in [15]), each cell with their own

(generalized) spinor variable and their own (extended)
CVH algebra. Their degrees of freedom attached to each
cell could represent the homogeneous geometry of the
space(-time) region after coarse-grained and/or gauge-
fixing or the algebra of surface charges living on the cell
boundary (e.g., as in [16]). At the continuum level, one
might look for a link with the spinorial representation of
Jackiw-Teitelboim gravity [17] in light of the relation
between our approach and Schwarzian mechanics [6], on
the one hand, and between Schwarzian mechanics and
Jackiw-Teitelboim gravity on the other hand [18,19]. And
more generally, it would be enlightening if to understand if
there is a link with the use of spinors in general relativity,
for instance for the positive energy theorem [20-23].
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