
 

Effect of nonlinear electrodynamics on the weak field deflection angle
by a black hole

Wajiha Javed,1,* Ali Hamza,1,† and Ali Övgün 2,3,‡

1Division of Science and Technology, University of Education, 54770 Township-Lahore, Pakistan
2Instituto de Física, Pontificia Universidad Católica de Valparaíso, Casilla 4950, Valparaíso, Chile

3Physics Department, Arts and Sciences Faculty, Eastern Mediterranean University,
99628 Famagusta, North Cyprus via Mersin 10, Turkey

(Received 8 February 2020; accepted 1 May 2020; published 15 May 2020)

In this work we investigate the weak deflection angle of light from an exact black hole within nonlinear
electrodynamics. First, we calculate the Gaussian optical curvature using the optical spacetime geometry.
With the help of modern geometrical methods popularized by Gibbons and Werner, we examine the
deflection angle of light from an exact black hole. To do this, we determine the optical Gaussian curvature
and apply the Gauss-Bonnet theorem to the optical metric and calculate the leading terms of the deflection
angle in the weak-limit approximation. Furthermore, we also study the plasma medium’s effect on weak
gravitational lensing by an exact black hole. Hence, we determine the effect of nonlinear electrodynamics
on the deflection angle in a weak gravitational field.
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I. INTRODUCTION

In 1783, accepting the corpuscular theory of light
suggested by Newton which hypothesized that light is
comprised of small discrete particles, John Michell pro-
posed the presence of dark stars. Michell posted a letter to
the Philosophical affair of the Royal Society of London [1]
wherein he logically said that these small, discrete particles
of light emitted by a star are slowed by the star’s
gravitational field, and he believed that it may be within
reach to determine a star’s mass be measuring its bright-
ness. However, the gravitational pull of a star may be so
strong that even light could not escape from it; this type of
star was called a dark or invisible star. Michell evaluated
that this might be the situation for a star with a mass 500
times greater than that of the Sun. Michell likewise declared
that we may identify dark stars by studying binary star
systems, yet here only one star would need to be observed.
Michell’s thought was ignored for over 100 years, since it
was accepted that gravity could not be associated with light.
Moreover, in 1915, Einstein’s theory of general relativity

(GR) predicted that a gravitational lens [a concentration of
matter (for example, a group of galaxies) located between
the light source and the observer] could deflect the light
from the source as the light travelled to the viewer. This
effect is called gravitational lensing, a theory later proven
by experiment in 1919 [2,3]. The topic of gravitational

lensing received considerable theoretical attention and a
number of observational phenomena related with the
deflection of light rays by gravity were identified. The
theory of gravitational lensing mostly involves geometrical
optics in vacuum and uses the idea of the deflection angle.
The essential assumption is the approximation of a weak
photon deflection angle. General relativity explained that a
light beam moving close to a circular body of massM with
a huge impact parameter b is deflected by a small angle,

Θ ¼ 2RS

b
¼ 4M

b
; G ¼ c ¼ 1: ð1Þ

This interpretation is solid if b≽RS, where RS ¼ 2M is the
Schwarzschild radius of the gravitating body. The deflec-
tion angle (1) is typically called the “Einstein angle.” In
most astrophysical circumstances associated with gravita-
tional lensing, the weak-deflection approximation is valid.
Just like the deflection angles, the directions of photons in
vacuum do not rely on the light’s frequency, and thus
gravitational lensing in vacuum is neutral.
It was JohnWheeler who coined the term black hole (BH)

and introduced the concept of wormholes [4]. Since the
experimental investigation of the deviation of light in 1919,
various observations of the gravitational lensing have been
made for BHs as well as other astrophysical objects [5–10].
Gravitational lensing is a helpful instrument of astro-

physics [11] and astronomy. In gravitational lensing
light beams from distant stars and galaxies are deflected
by an object, such as a planet, BH, or dark matter [12,13].
The discovery of dark matter filaments [14] with the help of
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weak deflection is an extremely relevant topic since it is
very helpful in studying the structure of the Universe [15].
From a hypothetical viewpoint, new techniques have been
proposed to compute deflection angles. In 2008, Gibbons
and Werner (GW) devised another plan to calculate the
deflection angle of photons [16]. Gibbons and Werner
imagined that both the light source and the observer lie in
an asymptotically Minkowski region. Then, they applied
the Gauss-Bonnet theorem (GBT) to a optical space, which
is characterized by the optical metric [16]. In the GBT, we
can utilize a space DR bounded by the light ray and a
circular boundary curve CR that is situated at a focal point
where the photon beam meets the light source and the
observer. It is expected that both the light source and
observer are at a coordinate length R from the focal point.
In the weak-field approximation the GBT is given in terms
of the optical metric as [16]Z Z

DR

KdSþ
I
∂DR

κdtþ Σiθi ¼ 2πXðDRÞ;

where K denotes the optical Gaussian curvature and dS
denotes an areal component. Subsequently, by utilizing
the Euler characteristic XðDRÞ ¼ 1 and the jump angles
Σiθi ¼ π, the deflection angle is calculated by assuming
that the system obeys the straight-line approximation,

α ¼ −
Z

π

0

Z
∞

b
r sinϕ

KdS;

where the deflection angle is denoted by Θ. A short time
later, Werner expanded this strategy for stationary BHs
[17]. Next, Ishihara et al. [18] demonstrated that it is
possible to calculate the deflection angle for finite distances
(large impact parameter) as GW just calculated the deflec-
tion angle of the BH’s spacetime for an observer in an
asymptotically flat region in the weak-field limit using the
optical geometry. Recently, Crisnejo and Gallo examined
the deflection of light within a plasma medium [19].
Abdujabbarov et al. studied the gravitational lensing of
BHs in the presence of plasma [20] and also observed
the effect of plasma on the shadow of wormholes and BHs
[21–24]. Turimov et al. [25] also checked the behavior of
gravitational lensing in the presence of plasma. Moreover,
Chakrabarty et al. [26] and Atamurotov et al. [27] also
studied a plasma medium’s effect on gravitational lensing
and the shadow of a black hole. Moreover, Hensh et al. [28]
calculated the gravitational lensing of Kehagias-Sfetsos
compact objects in the presence of a plasma medium.
The GBT was later used to study weak gravitational

lensing by BHs, cosmic strings, and wormholes [29–62].
The primary point of this paper is to explore the impact

of the NLE on the deflection angle of an exact BH and
utilize the GBT, wherein the deviation of light becomes a
global effect. Since we just center the nonsingular field

outer of a light beams, we mostly examine the gravitational
singularities within general relativity. Here, the density
clearly becomes infinite at the origin of the BH, which
mimics the conditions during the big bang. In the theory of
GR, spacetime singularities give rise to various issues, both
scientific and physical [63,64]. By utilizing the NLE, it is
possible to resolve these singularities by calculating a
regular BH solution [65–70]. Recently, Kruglov suggested
another model of NLE with two parameters β and γ,
where the particular scope of magnetic field, the unitary
conditions, and causality are fulfilled [71]. Furthermore,
Aliev et al. demonstrated the impact of a magnetic field on
a BH spacetime [72,73].
The rest of this paper is organized as follows. In Sec. II,

we briefly describe an exact BH and compute its optical
metric and the Gaussian optical curvature. In Sec. III, the
deflection angle of light utilizing the GBT is computed for
an exact BH. In Sec. IV, we graph the behavior of the
deflection angle in nonplasma medium. In Sec. V, we
examine the effect of a plasma medium on gravitational
lensing. In Sec. VI, we graph the behavior of the deflection
angle in the presence of a plasma medium. Finally, in
Sec. VII we discuss our conclusions.

II. EXACT OPTICAL METRIC WITH
NONLINEAR ELECTRODYNAMICS

The action that describes nonlinear electrodynamics
(NLE) minimally coupled to gravity is characterized as
follows [74]:

S ¼ 1

16π

Z ffiffiffiffiffiffi
−g

p ðRþ KðψÞÞd4x; ð2Þ

where

ψ ¼ FμνFμν; Fμν ¼ ∇μAν −∇νAμ:

Here, R is the Ricci scalar, Aμ is the Maxwell field, g is the
determinant of the metric, andKðψÞ is defined as a function
of ψ . The field equations are calculated as follows:

Gμν ¼ −2K;ψ Fμλfλν þ
1

2
gμνK; K;ψ ≡ dK

dψ
; ð3Þ

and

∇μðK;ψ FμνÞ ¼ 0: ð4Þ
We work in the framework of a static and spherically
symmetric spacetime, which can generally be written as

ds2 ¼ −UðrÞdt2 þ dr2

UðrÞ þ r2dΩ2
2;

where dΩ2
2¼dθ2þsin2θdϕ2. As the spacetime is static and

spherically symmetric, the nonvanishing Aμ is written as
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A0 ¼ ϕðrÞ;

and ψ is

ψ ¼ −2 _ϕ2

by using the approximation Aμ → Aμ þ∇μX . So, we get
the Einstein equations and the derived Maxwell equation
for the spherically symmetric spacetime,

−
_U _f
f

−
2Uf̈
f

þ 1

f2
−
U _f2

f2
¼ 2K;ψ

_ϕ2 þ 1

2
K; ð5Þ

−
_U _f
f

þ 1

f2
−
U _f2

f2
¼ 2K;ψ

_ϕ2 þ 1

2
K; ð6Þ

_U _f
f

þUf̈
f

þ 1

2
Ü ¼ −

1

2
K; ð7Þ

ðf2K;ψ
_ϕÞ_¼ 0: ð8Þ

A dot denotes a derivative with respect to r. From the
above equations, we derive the values G0

0 ¼ ρ, G1
1 ¼ pr,

andG2
2 ¼ pθ. Here, Eq. (8) is the equation of motion for the

Maxwell field.
Presently, the measurement of the static and spherically

symmetric spacetime with the nonlinear electrodynamics
field is defined as [74]

ds2 ¼ −UðrÞdt2 þ dr2

UðrÞ þ r2dΩ2
2; ð9Þ

where

UðrÞ ¼ 1 −
2M
r

þQ2

r2
−
r2α2

3
þ 2Qα;

dΩ2
2 ¼ dθ2 þ sin2θdϕ2;

where M is the black hole mass, Q is the charge, and α is
the coupling constant. Now, we insert the value of U into
Eq. (9) to obtain

ds2 ¼ −
�
1 −

2M
r

þQ2

r2
−
r2α2

3
þ 2Qα

�
dt2

þ
�
1 −

2M
r

þQ2

r2
−
r2α2

3
þ 2Qα

�−1
dr2

þ r2dθ2 þ r2sin2θdϕ2: ð10Þ

By accepting that the light source and observer lie in the in
equatorial plane similarly direction of the null photon is in a
similar plane having ðθ ¼ π

2
Þ. Now, for null geodesics we

put ds2 ¼ 0 and we get the following optical metric:

dt2 ¼ dr2�
1 − 2M

r þ Q2

r2 −
r2α2
3

þ 2Qα
�
2

þ r2dϕ2

1 − 2M
r þ Q2

r2 −
r2α2
3

þ 2Qα
: ð11Þ

Now, the optical metric is written in terms of the new
coordinates r⋆ as

dt2 ¼ ḡabdxadxb ¼ dr⋆2 þ f2ðr⋆Þdϕ2; ð12Þ

where

r⋆ ¼ r

1 − 2M
r þ Q2

r2 −
r2α2
3

þ 2Qα
;

fðr⋆Þ ¼ rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1 − 2M

r þ Q2

r2 −
r2α2
3

þ 2Qα
�r : ð13Þ

Here we see that ða; bÞ is converted into ðr;ϕÞ and its
determinant is det ḡab ¼ 1

fðr⋆Þ2. Now, by using Eq. (12) the

nonzero Christoffel symbols are defined as

Γr⋆
ϕϕ ¼ −fðr⋆Þf0ðr⋆Þ and Γϕ

r⋆ϕ ¼ f0ðr⋆Þ
fðr⋆Þ ;

and the only nonvanishing Riemann tensor for the
optical curvature is given as Rr⋆ϕr⋆ϕ ¼ −kf2ðr⋆Þ, where
Rr⋆ϕr⋆ϕ ¼ gr⋆r⋆Rr⋆

ϕr⋆ϕ. Now, the Gaussian optical curvature
is written as

K ¼ Rr⋆ϕr⋆ϕ
gr⋆ϕ

¼ −
f00ðr⋆Þ
fðr⋆Þ ¼ −1

fðr⋆Þ
d2fðr⋆Þ
dr⋆2

: ð14Þ

With the help of the previous equation, the intrinsic
Gaussian optical curvature denoted by K can be written
in terms of r as

K ¼ −1
fðr⋆Þ

�
dr
dr⋆

d
dr

�
dr
dr⋆

�
df
dr

þ d2f
dr2

�
dr
dr⋆

�
2
�
: ð15Þ

Finally, we calculate the relevant Gaussian optical curva-
ture for an exact BH by putting Eq. (13) into Eq. (15),

K¼−2M
r3

�
1−

3M
2r

�
þ3Q2

r4

�
1þ2Q2

3r2

�
−
4MQα

r3
−
6MQ2

r5

−
2Q2α

r2

�
α−

3Q
r2

�
þα2

�
2M
r

−
1

3
−
2Qα

3

�
; ð16Þ

which can be written as

K ¼ −2M
r3

þ 3Q2

r4
−
4MQα

r3
þOðM−2Þ: ð17Þ
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III. DEFLECTION ANGLE OF AN EXACT BLACK
HOLE WITHIN NONLINEAR

ELECTRODYNAMICS

Now, with the help of Gauss-Bonnet theorem we derive
the deflection angle of an exact black hole in the presence
of nonlinear electrodynamics. We apply the Gauss-Bonnet
theorem to the region DR, stated as [16]Z Z

DR

KdSþ
I
∂DR

kdtþ
X
i

ϵi ¼ 2πXðDRÞ; ð18Þ

where the Gaussian curvature is denoted by K and the
geodesic curvature is denoted by k, where k ¼ ḡð∇_γ _γ; ̈γÞ in
such a way that ḡð_γ; _γÞ ¼ 1, where ̈γ is the representation
for the unit acceleration vector and ϵi is the corresponding
exterior angle at the ith vertex. As R → ∞, both jump
angles become π=2 and we obtain θO þ θS → π. The
Euler characteristic is XðDRÞ ¼ 1, as DR is nonsingular.
Therefore, we getZ Z

DR

KdSþ
I
∂DR

kdtþ ϵi ¼ 2πXðDRÞ; ð19Þ

where ϵi ¼ π proves that γḡ and the total jump angle is a
geodesic, since the Euler characteristic number denoted by
X is 1. As R → ∞, the only interesting part to be calculated
is kðCRÞ ¼ j∇ _CR

_CRj. Since the geodesic curvature’s radial
component is given by [16]

ð∇ _CR
_CRÞr ¼ _Cϕ

R∂ϕ
_Cr
R þ Γr⋆

ϕϕð _Cϕ
RÞ2; ð20Þ

for largeR,CR≔rðϕÞ¼R¼const. Hence, Eq. (20) becomes
ð _Cϕ

RÞ2¼ 1
f2ðr⋆Þ. Remembering that Γr⋆

ϕϕ¼−fðr⋆Þf0ðr⋆Þ, this
becomes

ð∇ _Cr
R

_Cr
RÞr →

þ1

R
: ð21Þ

Hence, we see that the topological defect is not involved in
the geodesic curvature. So, kðCRÞ → R−1, but with the help
of the optical metric (12) we can write it as dt ¼ Rdϕ.
Hence, we obtain

kðCRÞdt ¼
1

R
Rdϕ: ð22Þ

Combining all of the above results, we haveZZ
DR

Kdsþ
I
∂DR

kdt ¼R→∞
ZZ

S∞

KdSþ
Z

πþΘ

0

dϕ: ð23Þ

A light ray in the weak-deflection limit at zeroth order is
defined as rðtÞ ¼ b= sinϕ. So, with the help of Eqs. (17) and
(24), the deflection angle is defined as [16]

Θ ¼ −
Z

π

0

Z
∞

b= sinϕ
K

ffiffiffiffiffiffiffiffiffi
det ḡ

p
dr⋆dϕ; ð24Þ

where

ffiffiffiffiffiffiffiffiffi
det ḡ

p
¼ r

�
1 −

3M
r

þ 3Q2

2r2
þ 3Qα

�
dr: ð25Þ

After putting the leading-order terms of the Gaussian curva-
ture (17) into Eq. (24), the deflection angle is defined as

Θ ≈
4M
b

−
3πQ2

4b2
þ 20MQα

b
: ð26Þ

IV. GRAPHICAL ANALYSIS FOR
A NONPLASMA MEDIUM

In this section we perform a graphical analysis of the
deflection angle. We also talk about the physical impor-
tance of the above-mentioned plots and observe the effect
of the coupling constant α, impact parameter b, and BH
charge Q on the deflection angle.

A. Deflection angle Θ with respect
to coupling constant α

Figures 1(a) and 1(b) show the behavior of Θ with
respect to α by varying Q with b ¼ 5M and varying b with
Q ¼ 5M, respectively.
(1) In Fig. 1(a), we observe that Θ gradually decreases

for large values of Q.
(2) In Fig. 1(b), we observe that Θ gradually increases

for large values of b.

B. Deflection angle Θ with respect
to impact parameter b

Figures 2(a) and 2(b) show the behavior of Θ with
respect to b for fixed α and varying Q.
(1) In Figs. 2(a) and 2(b), we observe that Θ gradually

decreases for both small and large values of Q.
Figures 2(c) and 2(d) show the behavior ofΘwith respect

to b for fixed BH charge and varying coupling constant.
(1) In Figs. 2(c) and 2(d), we observe that Θ also

gradually decreases for both large and small values
of the coupling constant.

C. Deflection angle Θ with respect to BH charge Q

Figures 3(a) and 3(b) show the behavior of Θ with
respect toQ by varying bwith α ¼ 5=M and varying αwith
b ¼ 5M, respectively.
(1) InFig. 3(a), we observe thatΘ increases exponentially

for large values of the impact parameter, and the
deflection angle rapidly increases for 1M < b < 5M.

(2) In Fig. 3(b), we observe that Θ gradually decreases
for large values of the coupling constant.
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(a)

(c) (d)

(b)

FIG. 2. Relation between Θ and b.

(a) (b)

FIG. 1. Relation between Θ and α.
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V. EFFECT OF PLASMA ON
GRAVITATIONAL LENSING

Here we examine the impact of a plasma medium on the
gravitational lensing of an exact BH. Let us consider an
exact BH imbued with a plasma described by the refractive
index n [19]

n2ðr;ωðrÞÞ ¼ 1 −
ω2
eðrÞ

ω2
∞ðrÞ

: ð27Þ

The refractive index for this case reads

nðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ω2
e

ω2
∞

�
1 −

2M
r

þQ2

r2
−
r2α2

3
þ 2Qα

�s
; ð28Þ

where the metric function is defined by

ds2 ¼ −UðrÞdt2 þ 1

UðrÞ dr
2 þ r2dΩ2

2 ð29Þ

and

UðrÞ ¼ 1 −
2M
r

þQ2

r2
−
r2α2

3
þ 2Qα:

By accepting that both the light source and observer lies in
the tropical plane similarly direction of the null photon is in
a similar plane having ðθ ¼ π

2
Þ. Now, for null geodesics we

put ds2 ¼ 0 and we get the following optical metric [19]:

dt2 ¼ goptlm dx
ldxm ¼ n2

�
dr2

U2ðrÞ þ
r2dϕ2

UðrÞ
�
; ð30Þ

with determinant goptlm ,

ffiffiffiffiffiffiffi
gopt

p
¼ r

�
1 −

ω2
e

ω2
∞

�
þM

�
3 −

ω2
e

ω2
∞

�
−
Q2

2r

�
3 −

ω2
e

ω2
∞

�

−Qαr

�
3 −

ω2
e

ω2
∞

�
: ð31Þ

With the help of Eq. (30), we can define the nonzero
Christoffel symbols as

Γ0
00¼

�
1þω2

eA
ω2
∞

��
−A0A−1

�
1−

ω2
eA

ω2
∞

�
−
A0ω2

e

2ω2
∞

�
;

Γ1
10¼

�
1þω2

eA
ω2
∞

��
r−1ð1−ω2

eA
ω2
∞
−
A0A−1

2

�
1−

ω2
eA

ω2
∞

�
−
A0ω2

e

2ω2
∞

�
;

and

Γ0
11 ¼

�
1þ Aω2

e

ω2
∞

��
−rA

�
1 −

Aω2
e

ω2
∞

�

þ r2A0

2

�
1 −

Aω2
e

ω2
∞

�
þ r2A

2

A0ω2
e

ω2
∞

�
:

The Gaussian curvature in terms of the curvature tensor can
be determined as

K ¼ RrϕrϕðgoptÞ
detðgoptÞ ; ð32Þ

and with the help of Eq. (32) the Gaussian curvature is
written as

K ¼ M
r3

�
−2 −

ω2
e

ω2
∞
þ 2ω4

e

ω4
∞

�
þ 2MQ2

r5

�
1 −

17ω2
e

ω2
∞

þ 5ω4
e

ω4
∞

�

−
4MQα

r3

�
1þ ω2

e

ω2
∞
− 3

ω4
e

ω4
∞

�
þOðM−2Þ: ð33Þ

(a)
(b)

FIG. 3. Relation between Θ and Q.
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With the help of the Gauss-Bonnet theorem we calculate
the deflection angle in order to relate it with a nonplasma
medium. To calculate the angle in the weak-field region, we
use the straight-line approximation and that r ¼ b

sinϕ at
zeroth order,

Θ ¼ −lim
R→0

Z
π

0

Z
R

b
sinϕ

KdS: ð34Þ

With the help of Eq. (23), the deflection angle of light in a
plasma medium is defined as

Θ ¼ 4M
b

−
2Mω2

e

bω2
∞

−
6Mω4

e

bω4
∞

−
3Q2π

4b2
þ 3Q2πω4

e

4b2ω4
∞

þ 4MQα

b
þ 2MQαω2

e

bω2
∞

: ð35Þ

VI. GRAPHICAL ANALYSIS
FOR A PLASMA MEDIUM

In this section we perform a graphical analysis of the
deflection angle in the presence of a plasma medium. Here,
we takeM ¼ 1, ωe

ω∞
¼ 10−1, and vary the impact parameter,

coupling constant, and BH charge to obtain these graphs.

A. Deflection angle with respect to coupling constant

Figures 4(a) and 4(b) show the behavior of Θ with
respect to α by varying Q with b ¼ 5M and varying b with
Q ¼ 5M, respectively.
(1) In Fig. 4(a), we observe that Θ gradually decreases

for small values of the BH charge Q and graph
exhibits a positive slope.

(2) In Fig. 4(b), we observe that Θ exponentially
increases for large values of b.

(a) (b)

FIG. 4. Relation between Θ and α.

(a)
(b)

FIG. 5. Relation between Θ and b.
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B. Deflection angle Θ with respect
to impact parameter b

Figures 5(a) and 5(b) show the behavior of Θ with
respect to b by varyingQwith α ¼ 5=M and varying αwith
Q ¼ 10M, respectively.
(1) In Fig. 5(a), we observe that Θ gradually decreases

for small values of Q and then goes to positive
infinity.

(2) In Fig. 5(b), we observe that Θ gradually decreases
for large values of α and then goes to positive
infinity.

C. Deflection angle with respect to charge Q

Figures 6(a) and 6(b) show the behavior of the deflection
angle with respect to the BH charge for a fixed coupling
constant and varying impact parameter and a fixed impact
parameter and varying coupling constant, respectively.
(1) In Fig. 6(a), we observe that Θ gradually increases

for large values of the impact parameter and the
graph has a positive slope.

(2) In Fig. 6(b), we observe that Θ gradually increases
for large values of the coupling constant and the
graph has a positive slope.

VII. SUMMARY

In this work we have calculated the deflection angle for
an exact BH in the framework of NLE. To do this, we used
the Gauss-Bonnet theorem and determined the deflection
angle for an exact BH with NLE. We utilized the GBT and
found the deflection angle of photons by integrating over a
domain outside the impact parameter, that represent that
gravitational lensing is a global impact and is a useful asset
to analyze most of the singularities of BH. In this
calculation, we obtained the deflection angle of light by

an exact BH in the weak-field limit by utilizing the GBT.
Hence, the deflection angle (26) is expressed as

Θ ≈
4M
b

−
3πQ2

4b2
þ 20MQα

b
þOðM−2Þ:

By setting Q ¼ 0 in the above equation, our proposed
deflection angle reduces to the Schwarzschild deflection
angle up to first order. We also plotted the behavior of the
deflection angle for an exact BH in the background of NLE.
Furthermore, we computed the deflection angle of photons
by an exact BH with NLE in a plasma medium. The
deflection angle of photons in the presence of a plasma
medium is defined as

Θ ¼ 4M
b

−
2Mω2

e

bω2
∞

−
6Mω4

e

bω4
∞

−
3Q2π

4b2
þ 3Q2πω4

e

4b2ω4
∞

þ 4MQα

b
þ 2MQαω2

e

bω2
∞

:

By neglecting the plasma impact ðωe
ω∞

→ 0Þ, Eq. (35)
reduces to Eq. (26).
We observed the behavior of the deflection angle with

respect to the impact parameter b, coupling constant α, and
BH charge Q. The results of our deflection angle analysis
can be summarized as follows.
Deflection angle with respect to impact parameter:
(1) We observed that the deflection angle gradually

decreases for large values of Q.
(2) We also observed that the deflection angle gradually

decreases for large values of α, which shows the
stability of our proposed deflection angle.

Deflection angle with respect to coupling constant:
(1) We only observed stable behavior of the deflection

angle by an exact BH for 0M < Q ≤ 2M.

(a)
(b)

FIG. 6. Relation between Θ and Q.
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(2) The obtained deflection angle increases for increasing
impact parameter, which indicates stable behavior.

Deflection angle with respect to BH charge:
(1) We observed that the deflection angle exponentially

increases for large values of the impact parameter.
(2) We also observed that there is a direct relation

between the deflection angle and the coupling
constant.

To close, we observed that in the presence of a plasma
medium the deflection angle of a BH decreases as
compared to that for a BH in vacuum. Compared with
Refs. [20–28], we also confirmed the result that the

deflection angle decreases more in a plasma medium
compared to vacuum cases. The authors of Ref. [28]
showed that the radius of the shadow of a black hole
increases when the plasma parameter increases; thus, in the
future we will study the effect of a plasma medium on the
shadow of a nonelectrodynamic black hole.
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