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We examine the growth of structure in three different cosmological models with interacting dark matter
and vacuum energy. We consider the case of geodesic dark matter with zero sound speed, where the
relativistic growing mode in comoving-synchronous gauge coincides with the Newtonian growing mode at
first order in ΛCDM. We study corrections to the linearly growing mode in the presence of interactions and
the linear matter growth rate, f1, contrasting this with the velocity divergence, frsdσ8, observed through
redshift-space distortions. We then derive second-order density perturbations in these interacting models.
We identify the reduced bispectrum that corresponds to the nonlinear growth of structure and show how the
shape of the bispectrum is altered by energy transfer to or from the vacuum. Thus the bispectrum, or higher-
order correlators, might in future be used to identify dark matter interactions.
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I. INTRODUCTION

The current accelerated expansion of the universe, infer-
red from observations of type Ia supernovae (SNe Ia) [1–3],
anisotropies in the cosmic microwave background (CMB)
and observations of large-scale structures (LSS), among
others, is one of the most fascinating topics in modern
cosmology, attracting the attention of researchers in both
the theoretical and experimental area. The most common
explanation is the existence of an energy component that
has negative pressure known as “dark energy” [4], which
in its simplest form corresponds to a cosmological con-
stant in the Einstein equations of general relativity [5–7].
Observations show that around 95% of the energy in the
Universe today is in the form of dark energy and dark
matter, which plays a crucial role in the formation of
galaxies and clusters of galaxies.
Cosmology with a cosmological constant and cold dark

matter has become the standard model of the universe,
known as ΛCDM. This model has proved to be successful
when tested against a range of precise observations [8].
However, despite these successes, the problem remains
that the vacuum energy density observed today is much
lower than the theoretical value predicted by quantum
field theories [7]. Thus there is a need to find a mechanism
to understand the small value of the dark energy density
required by observations. If the origin of dark energy is
not a cosmological constant, then alternative models [9]
should be considered to explain the current accelerated
expansion of the universe. Often this is done by intro-
ducing additional fields whose dynamics modify the
dark energy equation of state and determine the present
density [10].

An alternative approach is to instead consider an
interacting vacuum energy whose present value is depen-
dent on energy-momentum transfer with existing matter
fields.1 Since the physics underlying the dark sector is still
unknown, it could be that vacuum energy and dark matter
interact directly and exchange energy. Unified dark matter
models, such as the generalized Chaplygin gas (gCg)
[19–22], can easily be decomposed into two interacting
components [23,24], one representing dark matter density,
ρdm, and the other the vacuum energy, ρV . The energy
exchange implied by this decomposition can be written for
the gCg model as Q ¼ 3αHρdmρV=ρ [25], where α is a
dimensionless parameter constant. For α < 0 there is more
matter today compared with ΛCDM if we start with the
same amount of primordial matter at high redshift. One
particular case is given by α ¼ −0.5, which corresponds to
a dark matter created at a constant rate due to a decaying
vacuum energy [26]. This particular model has been shown
to be competitive with the ΛCDM model when tested
against observational data including LSS, SNe Ia and
integrated Sachs-Wolfe (ISW) constraints [27,28]. On
the other hand a full analysis of CMBþ ISW constraints
on the decomposed gCg model gives the bounds −0.15 <
α < 0.26 [29], while a joint analysis of LSS, SNe Ia and the
position of the first peak of CMB has lead to −0.39 < α <
−0.04 (2σ) [30]. The results of analysis using Planck
data for the CMB anisotropy spectrum is consistent with
jαj ≤ 0.05 [31].

1This differs from interacting dark energy models which
introduce additional dark energy fields interacting with dark
matter [11–18].
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An interaction of the form Q ¼ −qVHρV [32,33] has
also been studied in light of observations, with q taking
different values in distinct redshift bins. The analyses
suggested that a nonzero interaction may be favoured by
cosmological data, including redshift-space distortions,
when compared with the ΛCDM model. Another inter-
action, proposed in [34–36], is Q ¼ ϵHρdm with a small
constant ϵ. Such a scenario is obtained in Ref. [37] from
thermodynamics arguments. The best fit found is ϵ ¼
−0.11 through a joint analysis involving measurements
of type Ia supernovae, gas mass fraction and CMB. The
authors of Ref. [38] found ϵ ∼ −10−2, and some authors
have argued [39–41] that there is evidence for ϵ < 0 at
more than 4σ including LSS data. An approach to construct
model-independent constraints on the dark matter-vacuum
interaction is presented in [42,43].
At the same time, it is widely believed that another

period of accelerated expansion called inflation occurred at
very high energies in the very early universe and primordial
perturbations were created from quantum fluctuations; this
creates the seed for large-scale structures that grow by
gravitational instability to result in the present distribution
of matter on cosmological scales. A non-Gaussian distri-
bution of primordial perturbations, that appears due to
nonlinear evolution in second-order perturbation theory,
has been proposed as a means to discriminate among
different inflationary scenarios. Gravitational instability is a
nonlinear process which itself leads to non-Gaussianity in
the matter distribution at late times, even if we start with a
completely Gaussian perturbation. Thus it is important to
understand the effects of nonlinear evolution, including
possible interactions between vacuum energy and dark
matter, in order to be able to distinguish possible nonlinear
effects of vacuum interactions from those of primordial
non-Gaussianity.
In this work we study both linear and nonlinear evolution

of matter perturbations [44–51] in the presence of an
interacting vacuum energy. We employ the fluid-flow
approach adopted in [48], including for the first time the
effects of energy transfer in gravitational clustering at
second order, as well as making a careful study of peculiar
velocities and hence redshift-space distortions in the
presence of interactions. At second order we identify the
effects of primordial non-Gaussianity and nonlinear growth
of structure, leading to distinct shapes for the reduced
bispectrum at second order.

II. FLUID-FLOW EQUATIONS

The Einstein field equations are given by

Rμν −
1

2
gμνR ¼ Tμν; ð1Þ

where Rμν represents the Ricci tensor, R the Ricci scalar,
and gμν represents the space-time metric. We will consider

pressureless dark matter, pdm ¼ 0, with energy density ρdm
and vacuum energy, ρV , with equation of state pV ¼ −ρV ,
such that the energy-momentum tensor of matter plus
vacuum is

Tμν ¼ TðdmÞμν þ TðVÞμν ¼ ρdmuμuν − ρVgμν; ð2Þ

where uμ is the matter four-velocity. The energy-
momentum conservation equations for each component
are given by

∇μTðVÞμν ¼ Qν; ð3Þ

∇μTðdmÞμν ¼ −Qν; ð4Þ

where the energy-momentum transfer from the dark matter
to the vacuum is Qμ ¼ −∇μρV ¼ ∇μpV .
Wewill assume2 that the energy transfer follows the four-

velocity of the dark matter, Qμ ¼ Quμ [25]. This has two
important consequences. Firstly, the vacuum is homo-
geneous on hypersurfaces orthogonal to the matter four-
velocity. This means that there are no pressure gradients in
a frame comoving with matter. Thus matter follows geo-
desics and the matter sound speed is zero. Secondly, the
matter four-velocity is a potential flow and thus irrotational.
We expect this to be a good description of matter at early
times and on large scales where the initial density field is
set by primordial scalar perturbations. This is sufficient for
our perturbative treatment of the initial growth of structure,
but at late times we would expect the nonlinear growth of
structures to develop vorticity and indeed to develop
rotationally supported dark matter halos. Thus we expect
the geodesic approximation to break down below some
length scale. Otherwise truly irrotational dark matter would
have distinctive observational consequences [52].
Since there are no pressure gradients orthogonal to the

matter four-velocity, we can write the equations of motion
in a comoving-synchronous gauge, just as in ΛCDM,
where we write the line element as

ds2 ¼ a2ðηÞ½−dη2 þ γijdxidxj�: ð5Þ

We will consider inhomogeneous perturbations about a
spatially flat Friedmann-Robertson-Walker background for
which γ̄ij ¼ δij and we use an overbar to denote the
spatially homogeneous background solution. The back-
ground expansion is given by the Friedmann constraint
equation

2Another possibility, for example, would be that the energy
flow follows the gradient of matter density, which implies that the
local vacuum energy is a function of the local matter density. In
that case the sound speed corresponds to the adiabatic sound
speed, as in unified dark matter models with barotropic equation
of state, and the energy transfer is already strongly constrained by
CMB observations [22].
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3H2 ¼ a2ðρ̄dm þ ρ̄VÞ; ð6Þ

where the conformal Hubble rate is H≡ a0=a and a prime
denotes a derivative with respect to conformal time.
Following [46,48], we define the deformation tensor by

the conformal time derivative of the spatial metric

ϑij ¼
1

2
γikγ0jk; ð7Þ

and the perturbed scalar expansion by

ϑ ¼ ϑii: ð8Þ

The i − j component of the Einstein equations (1) gives
the evolution equation [48]

ϑij
0 þ 2Hϑij þ ϑϑij þ

1

4
ðϑlmϑml − ϑ2Þδij þRi

j −
1

4
Rδij ¼ 0;

ð9Þ

where the Ricci tensor on the spatial hypersurfaces is given
by ð3ÞRi

j ¼ Ri
j=a

2 and the Ricci scalar ð3ÞR ¼ R=a2.
The 0-0 component of the Einstein equations gives the

perturbed energy constraint

ϑ2 − ϑijϑ
j
i þ 4HϑþR ¼ 2a2ρ̄dmδdm; ð10Þ

where we define the matter density contrast

δdmðη; x⃗Þ ¼
ρdmðη; x⃗Þ − ρ̄dmðηÞ

ρ̄dmðηÞ
: ð11Þ

Using the 0 − j component of the Einstein equations we
find the momentum constraint

ϑij;i ¼ ϑ;j; ð12Þ

where a semicolon denotes the covariant derivative with
respect to the 3-metric γij.
The perturbed Raychaudhuri equation for the expansion

is found taking the trace of the evolution equation (9)

ϑ0 þHϑþ ϑijϑ
j
i þ

1

2
a2ρ̄dmδdm ¼ 0: ð13Þ

Finally, projecting the equations (4) and (3) parallel to uμ
for matter without pressure and vacuum, we obtain the
energy continuity equations

ρ0V ¼ aQ; ð14Þ

ρ0dm þ ð3Hþ ϑÞρdm ¼ −aQ: ð15Þ

Note that since the vacuum energy is homogeneous on
comoving-orthogonal hypersurfaces we have ρV ¼ ρ̄VðηÞ

and thus Q ¼ Q̄ðηÞ. This does not imply that the vacuum
energy is unperturbed but rather that we have picked a
coordinate frame in which constant time hypersurfaces
coincide with uniform-vacuum hypersurfaces. In terms of
the density contrast (11), the continuity equation (15)
becomes

δ0dm −
aQ
ρdm

δdm þ ð1þ δdmÞϑ ¼ 0: ð16Þ

III. BACKGROUND SOLUTIONS

We briefly review the solutions for the homogeneous
background cosmology (6) with different interaction
models.
The background Raychaudhuri equation is

H0 ¼ 1

2
ð2 − 3ΩdmÞH2; ð17Þ

with the dimensionless density parameter defined by
ΩdmðaÞ ¼ a2ρ̄dm=3H2. The time dependence of the matter
density parameter is given by

Ω0
dm ¼ ½−3ð1 −ΩdmÞ þ g�HΩdm; ð18Þ

where we defined the dimensionless interaction parameter

g≡ −
aQ
Hρ̄dm

: ð19Þ

For Q ¼ 0 there is no interaction between matter and the
vacuum and the vacuum energy density is a constant in time
and space, equivalent to a cosmological constant. The
equation (15) (with ϑ ¼ 0 in the background) can be
integrated to give

ρ̄dmðaÞ ¼ ρdm0a−3; ð20Þ

where the subscript 0 refers to the present value, and
a0 ¼ 1. This is the ΛCDM model. The matter density
parameter and the Hubble parameter are, respectively,
given by

ΩdmðaÞ ¼
Ωdm0

Ωdm0 þ ð1 −Ωdm0Þa3
; ð21Þ

HðaÞ ¼ aH0

�
1 − Ωdm0 þ

Ωdm0

a3

�
1=2

; ð22Þ

where the density parameters obey the relation Ωdm þ
ΩV ¼ 1. For high-redshift (early times), as a ≪ 1, we have
a matter-dominated epoch with Ωdm ≈ 1. In the limit of
large times a de Sitter vacuum dominated epoch is
obtained.
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More generally, the cosmological evolution for Ωdm and
H depends of the form of the interaction parameter. In the
following, we consider three different models for the
possible forms of Q.
(i) Model with Q ¼ 3αHρ̄dmρ̄V=ρ̄.—This type of inter-

action corresponds to the decomposed generalized
Chaplygin gas model [23–25] where α is a constant
parameter. The dimensionless interaction parameter (19)
in this case is

g ¼ −3αð1 −ΩdmÞ: ð23Þ

The matter density parameter and the Hubble parameter,
given by

ΩdmðaÞ ¼
Ωdm0

Ωdm0 þ ð1 −Ωdm0Þa3ð1þαÞ ; ð24Þ

HðaÞ ¼ aH0

�
1 −Ωdm0 þ

Ωdm0

a3ð1þαÞ

� 1
2ð1þαÞ

; ð25Þ

are solutions of the equations (18) and (17). The standard
matter era is recovered for early times (a ≪ 1) with
Ωdm ≈ 1 and g ≈ 0. The ΛCDM model corresponds to
taking α ¼ 0 in the above expressions.
In the special case α ¼ −1=2 we have from (25) the

Hubble rate

HðaÞ ¼ H0

�
1 −Ωdm0 þ

Ωdm0

a3=2

�
; ð26Þ

and thus

H0

H
¼ −

3

2
HΩdm: ð27Þ

Comparing with Eq. (14) we see that ρ̄0V=ρ̄V ¼ H0=H and
thus the vacuum density decays linearly with the Hubble
rate, ρ̄V ¼ 2ΓH, and matter is produced at a constant rate,
_̄ρdm þ 3Hρ̄dm ¼ Γρ̄dm [26,27].
(ii)Model with Q ¼ qHρV .—In this case the dimension-

less interaction parameter (19) is3

g ¼ −
�
1 −Ωdm

Ωdm

�
q: ð28Þ

For constant q the energy continuity equation (14) gives

ρ̄VðaÞ ¼ 3H2
0ΩV0aq: ð29Þ

Substituting (29) into the Raychaudhuri equation (17) and
integrating, we obtain the solution

HðaÞ ¼ H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1 −Ωdm0Þa3þq þ 3Ωdm0 þ q

ð3þ qÞa

s
: ð30Þ

The matter density parameter, given by

ΩdmðaÞ ¼
3Ωdm0 þ q − qð1 −ΩdmÞa3þq

3Ωdm0 þ qþ 3ð1 −Ωdm0Þa3þq ; ð31Þ

is the solution of Eq. (18). The standard matter-dominated
era (Einstein-de Sitter cosmology) is recovered for early
times (a ≪ 1) with Ωdm ≈ 1 and g ≈ 0. Note that the matter
density parameter becomes negative for values q > 0 at
large times (a ≫ 1).
The ΛCDM model corresponds to the case q ¼ 0.
(iii) Model with Q ¼ ϵHρ̄dm.—In this model the

deviation from the standard evolution is given by a small
constant ϵ that characterizes the strength of interaction. The
dimensionless interaction parameter (19) is

g ¼ −ϵ; ð32Þ
and for constant ϵ Eq. (15) (with ϑ ¼ 0) can be integrated to
give

ρ̄dmðaÞ ¼ ρdm0a−ð3þϵÞ: ð33Þ

Note that the matter energy density never evolves as
ρ̄dmðaÞ ∝ a−3 except for the case ϵ ¼ 0, and consequently
this model never has a conventional matter-dominated era.
The amount of the vacuum energy at early times depends
on the strength of interaction. Substituting Eq. (33) into
(14) gives the evolution for the vacuum energy density

ρ̄VðaÞ ¼ Λ −
ϵ

3þ ϵ
ρ̄dmðaÞ: ð34Þ

Here Λ is a constant, and the vacuum energy approaches a
cosmological constant, ρ̄V → Λ, as a → ∞ for ϵ > −3. At
early times the vacuum density becomes negative for ϵ > 0.
The ΛCDM model is recovered with zero coupling, ϵ ¼ 0.
From the Friedmann equation (6) we obtain

HðaÞ ¼ a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρdm0

3þ ϵ
a−ð3þϵÞ þ Λ

3

r
: ð35Þ

The dark matter density parameter is then [35]

ΩdmðaÞ ¼
ð3þ ϵÞΩdm0a−ð3þϵÞ

ð3þ ϵÞ þ 3Ωdm0ða−ð3þϵÞ − 1Þ : ð36Þ

At high redshift, a ≪ 1 for ϵ > −3, the density parameter is
given by

Ωdm ≈ 1þ ϵ

3
: ð37Þ3Note that q here has the opposite sign to qV in Salvatelli et al.

[32].
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IV. GROWTH OF STRUCTURE

The metric and comoving matter density contrast can be
expanded up to second order using only scalar quantities as

γij ≈ ½1 − 2ψ ð1Þ − 2ψ ð2Þ�δij þ ∂i∂jχ
ð1Þ

−
1

3
∇2χð1Þ þ ∂i∂jχ

ð2Þ −
1

3
∇2χð2Þ; ð38Þ

δdm ≈ δð1Þdm þ 1

2
δð2Þdm: ð39Þ

If we assume that there are no primordial vector and tensor
perturbations then the vector and tensor modes can be set to
zero at first order. Vector and tensor metric perturbations
will then be generated at second and higher order, but they
do not affect the matter density at first or second order
which is the focus of our work.

A. First-order solutions

The first-order expansion of the Ricci tensor of the
spatial metric (38) is given by

Rð1Þi
j ¼ ð∂i∂j þ δij∇2ÞRc; ð40Þ

where

Rc ¼ ψ ð1Þ þ 1

6
∇2χð1Þ; ð41Þ

and thus the 3-Ricci scalar is

Rð1Þ ¼ 4∇2Rc: ð42Þ

The expressions (7) and (8) for the deformation tensor
and scalar expansion are given to first order by

ϑij
ð1Þ ¼ −ψ ð1Þ0δij þ

1

2

�
∂i∂j −

1

3
δij∇2

�
χ0ð1Þ; ð43Þ

ϑð1Þ ¼ −3ψ 0ð1Þ: ð44Þ

The momentum constraint (12) at the first order requires

R0
c ¼ 0: ð45Þ

So Rc is constant in time, to be determined by initial
conditions.
The continuity equation (16) and Raychaudhuri equation

(13) for the density contrast and perturbed expansion are
written up to first order as

δ0ð1Þdm þ gHδð1Þdm þ ϑð1Þ ¼ 0; ð46Þ

ϑ0ð1Þ þHϑð1Þ þ 1

2
a2ρ̄dmδ

ð1Þ
dm ¼ 0: ð47Þ

subject to the first-order energy constraint (10)

4Hϑð1Þ − 2a2ρ̄dmδ
ð1Þ
dm þRð1Þ ¼ 0: ð48Þ

Differentiating the continuity equation (46) with respect
to time and eliminating ϑð1Þ and ϑ0ð1Þ using the energy
constraint (48) and Raychaudhuri equation (47), we obtain
the evolution equation for the density contrast

δ00ð1Þdm þ ð1þ gÞHδ0ð1Þdm þ
�
ðgHÞ0 þ gH2 −

1

2
a2ρ̄dm

�
δð1Þdm ¼ 0:

ð49Þ

On the other hand, combining the first-order continuity
equation (46) with the constraint (48), we find a first
integral

2Hδ0ð1Þdm þ ½a2ρ̄dm þ 2gH2�δð1Þdm ¼ 2∇2Rc; ð50Þ

where we used Eq. (42) for the first-order Ricci scalar, and
we know from the momentum constraint (45) that Rc is a
constant.
The general solution for density contrast is a linear

combination of growing and decaying modes. The
decaying mode is the homogeneous solution to the first
integral (50), i.e., setting the Rc to zero. Neglecting this
decaying mode, we are left with the growing mode driven
by the nonzero Ricci curvature

δð1Þdmðη; x⃗Þ ¼ Cðx⃗ÞDþðηÞ; ð51Þ

where we have from (50)

Cðx⃗Þ ¼
�
f1i þ

3

2
Ωdm;i þ gi

�
−1 ∇2Rc

H2
i Dþi

; ð52Þ

and we define the linear growth rate as

f1 ¼
D0þ
HDþ

: ð53Þ

The growing mode is then

DþðηÞ ¼
�
Hi

H

�
2
�
f1i þ

3

2
Ωdm;i þ gi

�

×

�
f1 þ

3Ωdm

2
þ g

�
−1
Dþi: ð54Þ

Note that in this expression for the growing mode we have
left an arbitrary overall normalization constant, Dþi.
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If we set initial conditions at high redshift, ai ≪ 1,
during a standard matter-dominated era, where Ωdmi ¼ 1,
fi ¼ 1 and gi ¼ 0, then we have

Cðx⃗Þ ¼ 2

5

∇2Rc

H2
i Dþi

; ð55Þ

and the growing mode (54) reduces to

DþðηÞ ¼
5

2

�
Hi

H

�
2
�
f1 þ

3Ωdm

2
þ g

�
−1
Dþi: ð56Þ

From (51) the first-order solution is then

δð1Þdmðη; x⃗Þ ¼
�
f1 þ

3Ωdm

2
þ g

�
−1 ∇2Rc

H2
: ð57Þ

Substituting the growing mode solution (51) and (53) in
the continuity equation (46) we obtain the expansion scalar

ϑð1Þ ¼ −ðf1 þ gÞHδð1Þdm: ð58Þ

The metric perturbation ψ ð1Þ is given by integrating
Eq. (44). Using (46) and (57) we obtain

ψ ð1Þ ¼ Rc þ
1

3
∇2Rc

�
1

H2

�
f1 þ

3

2
Ωdm þ g

�
−1

þ
Z

g
H

�
f1 þ

3

2
Ωdm þ g

�
−1
dη

�
: ð59Þ

Equation (41) then gives

χð1Þ ¼ −2Rc

�
1

H2

�
f1 þ

3

2
Ωdm þ g

�
−1

þ
Z

g
H

�
f1 þ

3

2
Ωdm þ g

�
−1
dη

�
: ð60Þ

For completeness we note that the expression for the
deformation tensor ϑij

ð1Þ is then given by (43).
The expressions above are valid only if the matter flow

follows geodesics, as we have assumed throughout. For a
dimensionless parameter interaction g equal to zero the
results for the ΛCDM model are recovered [48].
Figure 1 shows the plot of the evolution of first-order

growing mode Dþ for the ΛCDM and all three interaction
models obtained by solving the differential equation (49)
with the same initial amplitude Dþi for all of the growing
modes at z ¼ 1000. When g > 0 we have energy flux from
vacuum to dark matter, since Q < 0, and dark matter is
created. In this case the first-order growing mode is
suppressed with respect to the ΛCDM model (black curve)
for a given value of the present day dark matter, Ωdm0. This
is because the dark matter density is lower at early times
when we fix the dark matter density today. When g < 0 we
have energy flow from dark matter to the vacuum, since
Q > 0, and dark matter is annihilated or decays. In this case
there is an enhancement in the first-order growing mode for
the same value of Ωdm0 [29].
In Fig. 2 we plot the evolution of the growth rate f1

defined in Eq. (53) for model (i) (left) and for models (ii)
and (iii) (right) with different values for the model
parameters α, q and ϵ.

B. Redshift-space distortions

Redshift-space distortions (RSD) arise from peculiar
velocities of galaxies, i.e., the perturbed expansion, ϑ,
given in (8). This induces an anisotropy in the apparent

0.0 0.5 1.0 1.5 2.0
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0.004

0.006

0.008

0.010

0.0 0.5 1.0 1.5 2.0
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0.007

0.008

0.009

FIG. 1. The first-order growing mode, Dþ, as a function of redshift z for fixed initial amplitude, Dþi. Left: for model (i): α ¼ 0.2
(yellow curve, top), α ¼ 0.1 (grey curve), α ¼ 0 (ΛCDM, black curve), α ¼ −0.1 (blue curve), and α ¼ −0.2 (green curve), where we
have usedΩdm0 ¼ 0.3. For α ¼ −0.5we usedΩdm ¼ 0.45 (dotted red curve) andΩdm0 ¼ 0.3 (solid red curve, bottom). Right: for model
(ii): q ¼ 0.2 (yellow curve, top), q ¼ 0.1 (gray curve), q ¼ 0 (ΛCDM, black curve), q ¼ −0.1 (blue curve) and q ¼ −0.2 (green, bottom
curve at z ¼ 0), with Ωdm0 ¼ 0.3. For model (iii) we have used ϵ ¼ −0.01 (red, bottom curve for z > 1).
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clustering of galaxies in redshift space, where we use the
observed redshift to determine the radial distance. This
observed anisotropy thus provides information about the
formation of large-scale structure [53].
In standard ΛCDM (where the dimensionless parameter

g ¼ 0) the variance of the expansion is usually character-
ized from Eq. (58) by [54]

hϑ2=H2i1=2 ¼ f1ðzÞσ8ðzÞ; ð61Þ
where f1ðzÞ is the linear growth rate and σ8ðzÞ ¼ hδ2mi1=2 is
the rms mass fluctuation in a sphere with comoving radius
8h−1Mpc, used to describe the amplitude of density
perturbations. If we use the growing mode normalized to
unity today, DNþðzÞ ¼ δdmðzÞ=δdmð0Þ, then we can write
σ8ðzÞ ¼ σ8ð0ÞDNþðzÞ where σ8ð0Þ gives the present rms
matter fluctuations.
More generally, for interacting models, the dimension-

less interaction parameter g contributes explicitly in equa-
tion (58) for redshift space distortions. If we assume that
galaxies still trace the motion of the underlying dark matter
(i.e., neglecting any velocity bias) then the variance of the
expansion (58) is given by

hϑ2=H2i1=2 ¼ frsdðzÞσ8ðzÞ; ð62Þ

where

frsdðzÞ ¼ f1ðzÞ þ gðzÞ: ð63Þ

Figure 3 shows the theoretical predictions for frsdσ8 as a
function of redshift z for the different interacting models,
where we fix σ8ð0Þ ¼ 0.83 [8]. We see that in contrast to
the linear growth rate, the RSD distortions are enhanced by
energy transfer from the vacuum to dark matter. The
peculiar velocity field responds to the local gravitational
potential and thus the total comoving density perturbation,
not just the density contrast.

The second-order differential equation for the density
contrast (49) can be written as a first-order differential
equation for the redshift-space distortion parameter

2H−1f0rsd þ ð2frsd þ 4 − 3Ωdm − 2gÞfrsd ¼ 3Ωdm: ð64Þ

In the conventional matter-dominated era at high redshift
with Ωdm ¼ 1 and the dimensionless parameter interaction
g ¼ 0, we have a solution corresponding to the standard
growing mode4 with frsd ¼ f1 ¼ 1 and the linear growing
mode is proportional to the scale factor, Dþ ∝ a. This
describes the early growing mode at high redshifts as g → 0
and Ωdm → 1 in models (i) and (ii), as well as ΛCDM.
More generally, when vacuum energy contributes to the

total density (Ωdm < 1) we can express the first-order
equation (64) for the RSD parameter as a function of
the density parameter, written in terms of ΩV ¼ 1 −Ωdm,

2ð3ΩV − gÞð1−ΩVÞ
d

dΩV
frsdþð2frsdþ 1þ 3ΩV − 2gÞfrsd

¼ 3ð1−ΩVÞ: ð65Þ
Note that g is a given function of the density parameter,ΩV ,
in each of our interaction models.
For Ωdm ¼ 1 to be a fixed point of Eq. (18) we require

g ¼ 0 when ΩV ¼ 0. If we then expand the dimensionless
interaction parameter (19) as a Taylor series about the
standard matter-dominated (Ωdm ¼ 1, ΩV ¼ 0) solution

g ¼ g1ΩV þ…; ð66Þ
we obtain an expression for the redshift-distortion param-
eter (63)

frsd ¼ frsd;0 þ frsd;1ΩV þ…: ð67Þ
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FIG. 2. Left: The first-order growth rate, f1 defined in Eq. (53), for ΛCDM model (black curve) and for model (i): α ¼ 0.2 (yellow
curve, top), α ¼ 0.1 (grey curve), α ¼ 0 (ΛCDM, black curve), α ¼ −0.1 (blue curve) and α ¼ −0.2 (green curve), where we have used
Ωdm0 ¼ 0.3. For α ¼ −0.5 we used Ωdm ¼ 0.45 (dotted red curve) and Ωdm0 ¼ 0.3 (solid red curve, bottom). Right: model (ii): q ¼ 0.2
(yellow curve, top), q ¼ 0.1 (gray curve), q ¼ 0 (ΛCDM, black curve), q ¼ −0.1 (blue curve) and q ¼ −0.2 (green curve, bottom). For
model (iii) we have used ϵ ¼ −0.01 with Ωdm0 ¼ 0.3 (red curve).

4Note we also have a solution frsd ¼ f1 ¼ −3=2 correspond-
ing to the standard decaying mode.
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From Eq. (65) we require

ð1þ 2frsd;0Þfrsd;0 ¼ 3;

ð3 − 2g1 þ 2frsd;1Þfrsd;0 þ ð1þ 2frsd;0Þfrsd
þ 2ð3 − g1Þfrsd ¼ −3: ð68Þ

For ΛCDM with g ¼ 0 we have from (68)

ð1þ 2frsd;0Þfrsd;0 ¼ 3;

ð3þ 2frsd;1Þfrsd;0 þ ð1þ 2frsd;0Þfrsd;1 þ 6frsd;1 ¼ −3:

ð69Þ
This gives either frsd;0¼−3=2 (decaying mode) or frsd;0¼1

(growing mode) and then frsd;1 ¼ −6=11, corresponding
to [55]5

f1 ¼ frsd ≈Ω6=11
dm : ð70Þ

More generally, we can give a similar approximation for
the RSD parameter in terms of Ωdm when g ≠ 0. In models
(i) or (ii) we write

frsd ≈Ωγ
dm: ð71Þ

For model (i) we have g ¼ −3αΩV and hence g1 ¼ −3α in
Eq. (68). Thus we have for the growing mode frsd;0 ¼ 1 and
frsd;1 ¼ −γ such that

γ ¼ 6þ 6α

11þ 6α
: ð72Þ

For model (ii) we have g ¼ −qΩVð1 −ΩVÞ−1 and hence
g1 ¼ −q in Eq. (68). Thus we have frsd;0 ¼ 1 and frsd;1 ¼
−γ where in this case

γ ¼ 6þ 2q
11þ 2q

: ð73Þ

Note that for a given value of Ωdm the RSD index γ is now
enhanced for α > 0 in Eq. (72) and q > 0 in (73),
corresponding to g < 0.
As shown in Fig. 4, the analytical formula (71) for the

RSD parameter can be used as a good approximation for
model (i), corresponding to the decomposed generalized
Chaplygin gas, just as it is used in ΛCDM. For this class of
model the expression (71) with the growth index (72)
works very well within an error less than 1.5% up to
redshift z ¼ 0 for jαj < 0.5. On the other hand, for model
(ii) shown in the right panel of Fig. 4, the expression (71)
with the growth index (73) is a good approximation with
errors below 3.5% for jqj < 0.2. In all the cases shown, the
approximations for frsd become extremely accurate when
applied for higher redshift where 1 −Ωdm ≪ 1.
Finally, for model (iii) g ¼ −ϵ and thus is not zero at

early times so Ωdm ≠ 1 at high redshift. Instead from
Eq. (36) we have Ωdm → 1þ ðϵ=3Þ. Nonetheless, from
Eq. (64), we see that there is still an early time solution for
the RSD parameter frsd → frsd;0 ¼ 1 asΩdm → 1þ ðϵ=3Þ.6
This corresponds to an early-time growing mode solution
Dþ ∝ a1þϵ with modifield growth rate f1 ¼ 1þ ϵ.
Expanding about this early-time solution we find an
analogous approximation for the RSD parameter (71)

frsd ≈
�

Ωdm

1þ ðϵ=3Þ
�

γ

; ð74Þ

where the index γ is given by
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FIG. 3. Magnitude of redshift space distortions for dark matter, frsdσ8 given in (63), versus redshift, z, normalized to σ8 ¼ 0.83 at
present. Left: model (i): α ¼ −0.2 (green curve, top), α ¼ −0.1 (blue curve), α ¼ 0 (ΛCDM, black curve), α ¼ 0.1 (gray curve) and
α ¼ 0.2 (yellow curve, bottom) all with Ωdm0 ¼ 0.3. Right: model (ii): q ¼ −0.2 (green curve, top), q ¼ −0.1 (blue curve), q ¼ 0
(ΛCDM, black curve), q ¼ 0.1 (grey curve) and q ¼ 0.2 (yellow curve, bottom). For model (iii) we have used ϵ ¼ −0.01 with
Ωdm0 ¼ 0.3 (red curve).

5Similar expressions for the growth rate f1 have been given for
running vacuum models in Ref. [56].

6We also find a decaying mode solution at early times
in this model corresponding to f1 ¼ −ð3 − ϵÞ=2 and frsd ¼
−ð3þ ϵÞ=2.
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γ ¼ 6þ 2ϵ

11þ 3ϵ
: ð75Þ

For ϵ ¼ 0 we recover the ΛCDM result (70).

C. Second-order perturbations

To investigate the emergence of nonlinear structure in the
presence of energy transfer we consider the second-order
terms in the continuity equation (16) and Raychaudhuri
equation (13) for the evolution of the density contrast and
perturbed expansion in comoving synchronous coordinates

δ0ð2Þdm þ gHδð2Þdm þ ϑð2Þ ¼ −2δð1Þdmϑ
ð1Þ; ð76Þ

ϑ0ð2Þ þHϑð2Þ þ 1

2
a2ρ̄dmδ

ð2Þ
dm ¼ −2ϑð1Þijϑð1Þ

j
i ; ð77Þ

subject to the constraint (10)

4Hϑð2Þ − 2a2ρ̄dmδ
ð2Þ
dm þRð2Þ ¼ 2ϑð1Þijϑð1Þ

j
i − 2ϑð1Þ2: ð78Þ

The left-hand sides of these equations have the same form
as the first-order equations (47), (48) and (46), but now
with source terms on the right-hand sides of the equations
that are quadratic in the first-order quantities.
Differentiating the continuity equation (76) with respect

to time and eliminating ϑ0ð2Þ and ϑð2Þ using the
Raychaudhuri equation (77) and constraint (76), we obtain
an evolution equation for the second-order density contrast

δ00ð2Þdm þ ð1þ gÞHδ0ð2Þdm þ
�
ðgHÞ0 þ gH2 −

1

2
a2ρ̄dm

�
δð2Þdm

¼ −2Hδð1Þdmϑ
ð1Þ − 2δ0ð1Þdm ϑð1Þ − 2δð1Þdmϑ

0ð1Þ þ 2ϑð1Þijϑð1Þ
j
i :

ð79Þ

The differential equation (79) for the second-order density

contrast has a particular solution, δð2Þdm;p, driven by the

second-order source terms on the right-hand side. However
the general solution also includes the decaying and growing
mode solutions to the homogeneous (source-free) equation,
i.e., with the right-hand side set to zero, with two arbitrary
constants of integration. Since the source-free equation is
the same as the first-order equation (49), the homogeneous
growing and decaying modes have the same time depend-
ence as the first-order solutions, but with second-order
coefficients, to be set by the initial conditions.
As we did for the first-order equations, we can combine

the constraint (78) and the continuity equation (76) to
obtain a first integral

4Hδ0ð2Þdm þ 2½a2ρdm þ 2gH2�δð2Þdm −Rð2Þ

¼ 2ϑð1Þ2 − 2ϑð1Þijϑð1Þ
j
i − 8Hδð1Þdmϑ

ð1Þ: ð80Þ

Here, and in (78), the second-order part of the comoving
curvature is given by [44,48]

1

2
Rð2Þ ¼ 2∇2

h
ψ ð2Þ þ 1

6
∇2χð2Þ

i
þ 6∂iψ ð1Þ∂iψ

ð1Þ

þ 16ψ ð1Þ∇2ψ ð1Þ þ 4ψ ð1Þ∂i∂jχ
ð1Þij

− 2∂i∂jψ
ð1Þχð1Þij þ χð1Þij∇2χð1Þij

− 2χð1Þjk∂l∂kχ
ð1Þl

j − ∂lχ
ð1Þlk∂jχ

ð1Þj
k

þ 3

4
∂kχ

ð1Þlj∂kχð1Þlj −
1

2
∂kχ

ð1Þlj∂lχ
ð1Þk

j : ð81Þ

Unlike the first-order case, the second-order comoving
scalar is no longer constant on all scales. However to
leading order in a spatial gradient expansion we have [49]

1

2
Rð2Þ ¼ 2∇2ψ ð2Þ þ 6∂iψ ð1Þ∂iψ

ð1Þ

þ 16ψ ð1Þ∇2ψ ð1Þ þOð∇4Þ; ð82Þ
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FIG. 4. Left: plot of the relative percentage difference between the analytical approximation (71) for frsd and the numerical solution in
model (i) for α ¼ −0.2 (green), α ¼ −0.1 (blue), α ¼ 0 (black), α ¼ 0.1 (grey) and α ¼ 0.2 (yellow) with Ωdm ¼ 0.3, α ¼ −0, 5 (dotted
red curve) and α ¼ −0.5 (solid red curve), withΩdm ¼ 0.45. Right: for model (ii) where q ¼ 0.2 (yellow, top), q ¼ 0.1 (gray), q ¼ −0.2
(green curve), q ¼ 0 (ΛCDM, black) and q ¼ −0.1 (blue curve, bottom). For the model (iii) we have plotted for ϵ ¼ −0.01 (red).
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and this does remain constant in the large-scale limit
[57,58].
As in the first-order case, we may neglect the decaying

mode for regular initial conditions, while the amplitude of
the homogeneous growing mode must be set from the
constraint equation (80). The homogeneous, linearly grow-

ing mode, δð2Þdm;h ∝ Dþ, is driven by the constant part of the

second-order curvature Rð2Þ
h ¼ constant while at second

order there is also the particular solution δð2Þdm;p, correspond-
ing to a solution to (80) sourced by the time-dependent part

of the comoving curvature, Rð2Þ
p ¼ Rð2Þ −Rð2Þ

h .
Note that the homogeneous, linearly growing mode,

δð2Þdm;h ¼ Oð∇2=H2Þ, will dominate on large scales where
the comoving curvature perturbation (82) is constant.

The particular, nonlinearly growing solution, δð2Þdm;p ¼
Oð∇4=H4Þ, will dominate on smaller scales and late times.

1. Particular solution

The time-dependent part of comoving Ricci scalar Rð2Þ
can be obtained by differentiating (78) with respect to time.
After some calculation, using the equations for the second-
order continuity equation (76) and Raychaudhuri equa-
tion (77) as well as the Einstein evolution equation (9) to
first order, we obtain

R0ð2Þ ¼ −2Rjð1Þ
i ∂i∂jχ

0ð1Þ; ð83Þ

where the first-order Ricci tensor on the comoving spatial

hypersurfaces, Rið1Þ
j ¼ ½∂i∂j þ δij∇2�Rc, is constant in

time. Integrating (83), and using the solution (60) for
χð1Þ, we find

Rð2Þ
p ¼ 4

�
1

H2

�
frsd þ

3

2
Ωdm

�
−1

þ
Z

g
aH2

�
frsd þ

3

2
Ωdm

�
−1
da

�
× ½∂i∂jRc∂j∂iRc þ ð∇2RcÞ2�: ð84Þ

Note that this time-dependent part of the Ricci scalar at
second order is fourth order in spatial derivatives, consis-
tent with our earlier conclusion that the Ricci scalar is
constant at leading order on large scales (82).
The constraint equation (80) for the particular solution to

Eq. (79) with the time-dependent part of the Ricci scalar,

Rð2Þ
p ,

4Hδ0ð2Þdm;p þ 2½a2ρ̄dm þ 2gH2�δð2Þdm;p

¼ Rð2Þ
p þ 2ϑð1Þ2 − 2ϑð1Þijϑð1Þ

j
i − 8Hδð1Þdmϑ

ð1Þ; ð85Þ

can thus be written as

4Hδ0ð2Þdm;p þ 2½a2ρ̄dm þ 2gH2�δð2Þdm;p ¼ Sða;ΣÞ ð∇
2RcÞ2
H2

;

ð86Þ

where we introduce the dimensionless shape coefficient

Σðx⃗Þ ¼ ϑijϑ
j
i

ϑ2
¼ ∂i∂jRc∂j∂iRc

ð∇2RcÞ2
; ð87Þ

and define the dimensionless source function

Sða;ΣÞ ¼ 2f2rsdð1 − ΣÞ þ 8frsd þ 4ðfrsd þ 3
2
ΩdmÞð1þ ΣÞ

ðfrsd þ 3
2
ΩdmÞ2

þ 4ð1þ ΣÞH2

Z
g

aH2
ðfrsd þ

3

2
ΩdmÞ−1da:

ð88Þ

The factorized form of the source term on the right-hand
side of (86) suggests the second-order growing mode
solution

δð2Þdm;pðη; x⃗Þ ¼ Pðx⃗ÞDð2Þ
þ ðη;ΣÞ: ð89Þ

Note that, unlike the first-order solution (51), this second-
order solution is no longer separable since the source
function Sða;ΣÞ in Eq. (86) is not in general separable. The
growing mode Dð2Þ

þ is separable only in special cases, e.g.,
for the case of planar symmetry, Σ ¼ 1, or matter-domi-
nated solutions where Ωdm, g and frsd are constant in time.
Nonetheless, without loss of generality we may define the
local second-order growth rate as

f2ðη;ΣÞ ¼
D0ð2Þ

þ
2HDð2Þ

þ
; ð90Þ

where Eq. (86) can then be written as

4Pðx⃗Þ
�
2f2 þ

3

2
Ωdm þ g

�
Dð2Þ

þ ¼ ð∇2RcÞ2
H4

Sðη;ΣÞ: ð91Þ

Using the first-order solution (57) we can formally write the
second-order particular solution as

δð2Þdm;p ¼
½2frsd þ 3Ωdm�2

8ð4f2 þ 2gþ 3ΩdmÞ
Sða;ΣÞðδð1ÞdmÞ2: ð92Þ

We see that a nonzero interaction, g ≠ 0, affects both the
growing curvature (84) contributing to the source term (88)
driving the growth of structure at second order, and the
second-order growing mode (89).
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2. Homogeneous solution

To find the homogeneous solution of the second-order
evolution equation for the density contrast (79), we solve
the second-order constraint equation (80) with a constant
source term, Rð2Þ, i.e.,

4Hδ0ð2Þdm;h þ 2½a2ρ̄dm þ 2gH2�δð2Þdm;h ¼ Rð2Þ
h : ð93Þ

The homogeneous solution is thus given by

δð2Þdm;hðη; x⃗Þ ¼ C2ðx⃗ÞDþðηÞ; ð94Þ

where Dþ is the linear growth factor (54) and C2ðx⃗Þ is
given by (52) replacing the first-order curvature, Rð1Þ ¼
4∇2Rc, by the second-order term, Rð2Þ

h . Thus we have

δð2Þdm;h ¼
Rð2Þ

h

4H2
ðf1 þ

3

2
Ωdm þ gÞ−1; ð95Þ

where subtracting the time-dependent contribution (84)
from full second-order curvature (81) gives [48]

Rð2Þ
h

¼ 4∇2½ψ ð2Þ þ 1

6
∇2χð2Þ� þ 32Rc∇2Rc þ 12∂iRc∂iRc

− 2½2∂i∇2χð1Þ∂iRc þ ∂i∂jχ
ð1Þ∂j∂iRc þ∇2χð1Þ∇2Rc�

þ 1

2
½∂i∂j∂kχð1Þ∂i∂j∂kχ

ð1Þ − ∂k∇2χð1Þ∂k∇2χð1Þ�:
ð96Þ

To set the initial conditions at second order, we will
introduce the primordial curvature perturbation on uniform-
density hypersurfaces, ζ. This gauge-invariant quantity
remains constant on superhorizon scales for adiabatic
perturbations [57] and hence can be predicted from
standard inflation models in order to set the initial con-
ditions for the subsequent radiation and matter eras. We
expand ζ at second order as

ζ ≈ ζð1Þ þ 1

2
ζð2Þ ¼ ζð1Þ þ 3

5
fNLðζð1ÞÞ2; ð97Þ

where we introduced the nonlinearity parameter fNL to
describe local-type primordial non-Gaussianity [59].
For scales well outside de horizon ðk ≪ HiÞ and,

therefore, at early times ðai ≪ 1Þ we have

e2ζ ¼ 1 − 2½ψ i þ
1

6
∇2χi�: ð98Þ

Thus we find

ζð1Þ ¼ −Rc; ð99Þ

ψ ð2Þ
i þ 1

6
∇χð2Þi ¼ −

�
2þ 6

5
fNL

�
R2

c: ð100Þ

Setting initial conditions on large scales and at early times,
the expression (96) reduces to the large-scale limit (82)

Rð2Þ
h

4
¼ 2

�
2−

6

5
fNL

�
Rc∇2Rc−

�
1þ 12

5
fNL

�
∂iRc∂iRc:

ð101Þ

Thus the homogenous solution for the second-order
density contrast (94) is given by

δð2Þdm;h ¼
4

H2
ðfrsd þ

3

2
ΩdmÞ−1

�
−
�
1

4
þ 3

5
fNL

�
∂iRc∂iRc

þ
�
1 −

3

5
fNL

�
Rc∇2Rc

�
: ð102Þ

3. Relativistic comoving density contrast

The full solution for the second-order density contrast in
synchronous comoving coordinates, obeying the initial
constraint on large scale at early times, is thus a sum of
the homogeneous solution (102) with the particular sol-
ution (92), which gives

δð2Þdm ¼ −
24

5½2frsd þ 3Ωdm�
��

fNL þ 5

12

� ∂iRc∂iRc

H2

þ
�
fNL −

5

3

�
Rc∇2Rc

H2

�

þ Sða;ΣÞ
2ð4f2 þ 3Ωdm þ 2gÞ

�∇2Rc

H2

�
2

: ð103Þ

In this expression the first term corresponds to the large-
scale/early-time part where the second-order perturbation
contains information about primordial non-Gaussianity and
the relativistic nonlinear initial constraints. The constant
fNL describes the level of primordial non-Gaussianity (97)
large scales at the end of inflation. In the absence of
primordial non-Gaussianity fNL ¼ 0. At smaller scales,
well inside the Hubble horizon, the terms in the second line
dominate and represent the growing non-Gaussianity due to
gravitational collapse.
In ΛCDM we have g ¼ 0 and hence frsd ¼ f1. At early

times we have matter-dominated evolution, Ωdm ¼ 1, and
the linear growth function is Dþ ∝ H2 ∝ a and hence the
first-order growth rate (53) obeys f1 ¼ 1. The function
Sða;ΣÞ in Eq. (88) becomes a constant SðΣÞ ¼
ð16=25Þð5þ 2ΣÞ, and the second-order growing mode

(91) reduces to Dð2Þ
þ ∝ ðDþÞ2 ∝ a2. Hence the second-

order growth rate (90) f2 ¼ 1 (independent of the shape,
Σ). The second-order solution for the synchronous
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comoving density contrast (103) in the early matter-
dominated (Einstein-de Sitter) era is then given by [46]

δð2Þdm ¼ −
24

25

��
fNL þ 5

12

� ∂iRc∂iRc

H2

þ
�
fNL −

5

3

�
Rc∇2Rc

H2

�
þ 8ð5þ 2ΣÞð∇2RcÞ2

175H4
:

ð104Þ

In models (i) and (ii) the dimensionless interaction
parameter g is proportional to Ωdm − 1 and at early times
we have g → 0 in the matter-dominated limit, Ωdm → 1.
Hence, as in ΛCDM, we recover the second-order Einstein-
de Sitter solution (104) at early times, with the more general
solution (103) with g ≠ 0 at late times when Ωdm ≠ 1.
In model (iii) the dimensionless interaction parameter

g ¼ −ϵ is nonzero at all times. Some vacuum energy is
present at early times, Ωdm ¼ 1þ ϵ=3, such that Dþ ∝
H−2 ∝ a1þϵ and hence a modified growth rate, f1 ¼ 1þ ϵ.
The second-order source term (88) remains a constant in
this early time limit

SðΣÞ ¼ 16ð5þ 2Σþ 3ϵÞ
ð1þ ϵÞð5þ ϵÞ2 ; ð105Þ

The solution for the second-order density contrast is then

separable and with the second-order growing mode Dð2Þ
þ ∝

ðDþÞ2 as in a conventional matter-dominated era, but with a
modified growth rate, (90), f2 ¼ 1þ ϵ. The solution (104)
for the second-order synchronous comoving density con-
trast is thus

δð2Þdmða;ΣÞ ¼ −
24

5ð5þ ϵÞ
��

fNL þ 5

12

� ∂iRc∂iRc

H2

þ
�
fNL −

5

3

�
Rc∇2Rc

H2

�

þ 8ð5þ 3ϵþ 2ΣÞ
ð7þ 3ϵÞð5þ ϵÞ2ð1þ ϵÞ

�∇2Rc

H2
Þ2: ð106Þ

This reduces to the standard matter-dominated (Einstein-de
Sitter) second-order solution (104) in the limit ϵ → 0.

4. Relativistic Eulerian density contrast

In the absence of an interaction between dark energy and
dark matter, the continuity equation (16) and Raychaudhuri
equation (13) in the synchronous comoving gauge are
formally identical to the corresponding equations for the
fluid dynamics in Newtonian gravity in Lagrangian coor-
dinates, i.e., comoving with the matter [48]. The general
solution to these second-order evolution equations is thus
identical to the Newtonian solution, but the relativistic
solution (103) has a characteristic initial condition (the

specific choice for the second-order homogeneous solu-
tion) set by the nonlinear initial relativistic constraints.
To compare our general solution (103) with the standard

second-order solution for the density contrast in Newtonian
theory, for example, we will also transform from the
comoving (Lagrangian) frame to a Eulerian frame where
the matter moves with respect to “fixed” spatial coordi-
nates. The perturbed scalar expansion (8) corresponds to
the divergence of the matter three-velocity in this frame,
ϑ≡∇2v. In relativistic perturbation theory this Eulerian
frame is usually referred to as the total-matter gauge
[57,60]. Although the first-order density perturbation is
invariant under a change of spatial gauge, at second order
the density contrast transforms to [48,60]

δð2ÞE ¼ δð2Þdm − 2∂iδdm

Z
∂ivdη: ð107Þ

Substituting in the first-order results for the density contrast
and velocity divergence, we find the Eulerian density

δð2ÞE ¼ δð2Þdm þ 8

ð2frsd þ 3ΩdmÞ2
�
1þ ð2frsd þ 3ΩdmÞH2

×
Z

g
aH2ð2frsd þ 3ΩdmÞ

da

� ∂iRc∂i∇2Rc

H4
; ð108Þ

where δð2Þdm is given by solution (103) in synchronous
comoving gauge and the second term is due to the spatial
gauge transformation.
In an early matter era, including the possibility of a

nonzero interaction g ¼ −ϵ such that Ωdm ¼ 1þ ðϵ=3Þ, we
can then obtain an analytic expression for the Eulerian
density contrast

δð2ÞE ¼ −
24

5ð5þ ϵÞ
��

fNL þ 5

12

� ∂iRc∂iRc

H2

þ
�
fNL −

5

3

�
Rc∇2Rc

H2

�

þ 8ð5þ 3ϵþ 2ΣÞ
ð7þ 3ϵÞð5þ ϵÞ2ð1þ ϵÞ

×

�∇2Rc

H2

�
2

þ 8

ð1þ ϵÞð5þ ϵÞ2
∂iRc∂i∇2Rc

H4
:

ð109Þ
We recover the early-time limit in the conventional matter-
dominated limit of ΛCDM or models (i) or (ii), where
g → 0 and Ωdm → 1 at early time, in the limit ϵ → 0.
Any separable second-order solution can be expressed in

Fourier space via the convolution

δð2Þ
Ek⃗

¼ 2

Z
d3k⃗1d3k⃗2
ð2πÞ3 δDðk⃗ − k⃗1 − k⃗2ÞF2ðk⃗1; k⃗2Þδð1Þk⃗1

δð1Þ
k⃗2
;

ð110Þ
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with kernel

F2ðk⃗1; k⃗2Þ ¼ Finðk⃗1; k⃗2Þ þ Fnlðk⃗1; k⃗2Þ; ð111Þ

where we separate two distinct contributions coming from
the linearly and nonlinearly growing terms.
The relativistic initial constraint including any primor-

dial non-Gaussianity gives rise to the linearly growing term
which dominates at early times (large scales) in ΛCDM or
models (i) or (ii)

Finðk⃗1; k⃗2Þ ¼
3ð2frsd þ 3ΩdmÞ

5
H2

��
fNL þ 5

12

�
k⃗1 · k⃗2
k21k

2
2

þ
�
fNL −

5

3

�
k21 þ k22
2k21k

2
2

�
: ð112Þ

For the early matter era with g ¼ −ϵ such that Ωdm ¼
1þ ðϵ=3Þ this becomes

Finðk⃗1; k⃗2Þ ¼
3ð5þ ϵÞ

5
H2

��
fNL þ 5

12

�
k⃗1 · k⃗2
k21k

2
2

þ
�
fNL −

5

3

�
k21 þ k22
2k21k

2
2

�
: ð113Þ

For ϵ ¼ 0 this reduces to the conventional Einstein de-Sitter
initial constraint [46–48].
The nonlinear growth of structure due to gravitational

instability and vacuum-dark matter interactions dominates
at late times (small scales). For general interacting-vacuum
cosmology the solution is not separable; however, for the
matter era solution (109) with g ¼ −ϵ such that Ωdm ¼
1þ ðϵ=3Þ we have

Fnlðk⃗1; k⃗2Þ ¼
5þ 3ϵ

ð7þ 3ϵÞð1þ ϵÞ þ
2

ð7þ 3ϵÞð1þ ϵÞ
ðk⃗1 · k⃗2Þ2
k21k

2
2

þ 1

1þ ϵ

k⃗1 · k⃗2ðk21 þ k22Þ
2k21k

2
2

: ð114Þ

In the absence of vacuum-dark matter interactions [ϵ ¼ 0 or
models (i) or (ii) at early times] this reduces to the standard
Newtonian kernel [61]

FNðk⃗1; k⃗2Þ ¼
5

7
þ 2

7

ðk⃗1 · k⃗2Þ2
k21k

2
2

þ k⃗1 · k⃗2ðk21 þ k22Þ
2k21k

2
2

: ð115Þ

V. CONCLUSIONS

In this paper we have studied the growth of density
perturbations in three simple models where dark matter
interacts with vacuum energy to give rise to late-time
acceleration. In two of these models, including a decom-
posed Chaplygin gas model, the interaction vanishes at

early times leading to a conventional matter-dominated
(Einstein-de Sitter) cosmology. In the third model we have
considered a constant dimensionless interaction rate rela-
tive to the matter density, leading to a modified matter era at
early times. In all three models the interaction vanishes at
late times and we recover a constant vacuum energy,
driving a de Sitter expansion in the asymptotic future.
The growth of inhomogeneous perturbations of interact-

ing dark matter is dependent upon the covariant energy-
momentum transfer four-vector, Qμ. We have considered a
simple interaction model where the energy-momentum
transfer follows the matter four-velocity, Qμ ∝ uμ. In this
case the vacuum energy is homogeneous on spatial hyper-
surfaces orthogonal to the comoving worldlines and there-
fore the sound speed remains zero even in the presence of a
nonzero matter-vacuum interaction. This means we get a
simple, scale-independent growth of linear density pertur-
bations, similar to standard cold dark matter; a nonzero
sound speed would lead to a finite Jeans length, sup-
pressing clustering on small scales.
We find the linearly growing mode for the first-order

comoving density contrast, which in a conventional matter-
dominated (EdS) era reduces to the usual linearly growing
mode, Dþ ∝ a with corresponding linear growth rate
f1 ≡ d ln δ=d ln a ¼ 1. Matter overdensities grow due to
gravitational collapse and this can be enhanced by nonzero
energy transfer from dark matter to the vacuum. For
example, in the case of a nonzero energy transfer from
dark matter to the vacuum even at early times, as in our
model (iii) where Q ¼ ϵHρ̄dm we have a modified early
time limit Ωdm → 1þ ðϵ=3Þ with a modified growing
mode, Dþ ∝ a1þϵ, and hence f1 ¼ 1þ ϵ. Nonzero energy
transfer from/to matter leads to an enhanced/suppressed
matter growth rate. This may appear counterintuitive, but
since the vacuum is homogeneous in the comoving frame
any energy transfer to the matter contributes only to the
background matter density and not to the comoving density
perturbation. Hence the growth rate of the local matter
density contrast, δdm ¼ δρdm=ρ̄dm, is suppressed.
Energy transfer between dark matter and the vacuum also

changes the usual relation between the growth rate and the
velocity divergence. For interacting dark matter the linear
growth rate for the matter overdensity, f1, differs from the
growth rate that would be inferred purely from redshift-space
distortions (i.e., the peculiar velocity field) which we denote
by frsd, defined in Eq. (62) and related to the linear growth
rate in Eq. (63). By contrast with the linear growth rate, the
RSD distortions are enhanced by energy transfer from the
vacuum to dark matter as the velocity field responds to
the local gravitational potential and thus the total comoving
density perturbation, not just the density contrast.
We give expressions for the RSD index,

γ ¼ d ln frsd
d lnΩdm

; ð116Þ
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for each model by expanding about the early matter-
dominated limit. The corresponding expressions for
frsd ∝ Ωγ

dm, give a percent level fit to the RSD parameter
in an interacting model corresponding to the decomposed
Chaplygin gas with−0.2 < α < 0.2; see Fig. 4. In principle
independent measurements of the RSD parameter and the
linear growth rate for the density contrast could reveal the
effective dark matter interaction. This assumes that galaxies
follow the dark matter velocity field, i.e., the role of
baryons is subdominant in determining the peculiar veloc-
ities of galaxy. It would be interesting to develop a more
realistic model of a baryonþ dark matter system in the
presence of vacuum-dark matter interactions.
We have also found solutions for the second-order growth

of the density contrast in interacting vacuum cosmologies for
the first time. We identify two components in the second-
order density field, Eq. (111), analogous to the usual second-
order solutions in noninteracting ΛCDM cosmology.
One component is a homogeneous solution, correspond-

ing to a linearly growing density perturbation whose
amplitude is second order in perturbations. This includes
any primordial non-Gaussianity, e.g., originating during a
period of inflation in the very early universe, as well as a
term due to the initial second-order constraint for the
comoving density contrast in general relativity [46–49],
usually set to zero in Newtonian studies of structure
formation [61]. This homogeneous solution dominates in
the squeezed limit or at early times, but it would also be
sensitive to the effect of early radiation damping on scales
below the matter-radiation equality scale ≈100 Mpc [62]

and our analytic results do not include the effect of
radiation.
The second component, which we term the particular

solution, is a modification of the usual Newtonian second-
order density perturbation. It leads to a growing matter
bispectrum which dominates on small scales and at late
times, until eventually the structure formation becomes
fully nonlinear. We identify the second-order kernel or
reduced bispectrum (114) and show how its shape is altered
by energy transfer to or from the vacuum. This opens up the
possibility of distinguishing interacting dark matter models
in future through the shape of the matter bispectrum on
weakly nonlinear scales (see [63] for related work in
modified gravity). A much more challenging task for future
work would be to identify dark matter-vacuum interactions
in the fully nonlinear regime. Nonetheless our second-order
results suggest that the bispectrum, or higher-order corre-
lations in the matter density field, could in future be used to
identify modifications of the standard ΛCDM scenario.
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