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It has been recently suggested [F. Bezrukov et al. J. Cosmol. Astropart. Phys. 06 (2017) 051;
F. Bezrukov et al. Phys. Rev. D 99, 083507 (2019)] that a cosmic scalar field can completely change the keV-
scale sterile neutrino production in the early Universe. Its effect may, for various parameter choices, either
suppress sterile neutrino production and make moderate active-sterile mixing cosmologically acceptable, or
increase the production and generate a considerable dark matter component out of sterile neutrino with
otherwise negligible mixing with SM. In this paper, we provide analytic estimates complementing and
improving of the numerical calculations performed by F. Bezrukov et al. [Phys. Rev. D 99, 083507 (2019) in
the case of the resonant amplification of the sterile neutrino production by the scalar field. We found the
substantially cooler velocity distribution of sterile neutrinos as compared to most production mechanisms,
opening a new window for warm dark matter, which is otherwise forbidden by structure formation
considerations. We also discuss phenomenological and theoretical issues related to the successful
implementation of this idea in fully realistic extensions of the Standard Model of particle physics.
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I. INTRODUCTION

The numerous dark matter phenomena getting gradually
accepted [1] ask for either modification of general relativity
or an extension of the Standard Model of particle physics
(SM). In the latter case, of a special interest are those
extensions, which are motivated by particle physics itself,
independently from cosmology. These extensions must
contain a new electrically neutral, stable at cosmological
time scales particles and provide a mechanism operating in
the early Universe to produce them in a sufficient amount.
That is to yield a relative contribution of the new species
(several in the case of multicomponent dark matter) ΩM ≃
0.27 to the present energy density of the Universe.
One of the well-motivated candidates to form one of the

dark matter components is a sterile neutrino—a singlet with
respect to a SM gauge group fermion, inducing neutrino
masses via mixing with the SM (or active) neutrinos. In this
way, neutrino oscillations get explained; see, e.g., [2,3].

The sterile-active mixing makes the sterile neutrino unsta-
ble. Consequently, the sterile neutrinos decay via weak
interactions into light SM particles, with the decay into
three active neutrinos being always open. However, since
the weak decay rate goes with the decaying particle mass
MX as ΓW ∝ M5

X, sufficiently light sterile neutrinos may be
long-lived enough to survive till the present, with the
lifetime exceeding the Universe age τU ≃ 1.4 × 1010 yr.
This is one of the necessary conditions of a dark matter
component. It selects the keV-mass scale as cosmologically
viable, provided the sterile-active mixing is enough for the
sterile neutrino contributing to an active neutrino mass; for
details, see, e.g., [4,5]. However, at present, this chain of
arguments is misleading actually, as we explain below.
Remarkably, the instability suggests a specific signature

of the sterile neutrino dark matter: it radiatively decays into
an active neutrino and photon. This two body decay implies
a peak feature in the Galactic photon spectrum at the energy
of half of the sterile neutrino mass (x rays for the keV mass
scale). Extensive searches for this peak (which the relative
width is of order 10−3 due to the Doppler shift of an object
bound by the Galaxy gravity force) revealed no signal so
far, and severely constrained the sterile neutrino model
parameter space. These searches place upper limits on the
active-sterile mixing at a given sterile neutrino mass, under
the assumption of all the dark matter being formed by the
sterile neutrino only. These bounds do not depend on a
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mechanism of the sterile neutrino production operating in
the early Universe, but if the sterile neutrino is only a
subdominant dark matter component, the limits are corre-
spondingly weaker.
The relic sterile neutrinos must be produced in the early

Universe at some stage of its expansion in the amount right
enough to form the entire dark matter component, or at least
its fraction. The production mechanisms, based on active-
sterile neutrino oscillations in the primordial plasma,
provide us with a sterile neutrino of momenta proportional
to the plasma temperature. Hence, the keV-scale neutrinos
form so-called warm dark matter [4], a dark matter variant
subjecting to specific constraints from the cosmic structure
formation [6] and from phase space density [7,8]. Together
with x-ray searches, the most recent one is [9]; these
constraints exclude the simplest mechanism of sterile
neutrino production via the oscillations in the primordial
plasma [10] and leave only small regions in the model
parameter space cosmologically viable in the situation
when the primordial plasma is asymmetric with respect
to the lepton charge [11]. While the latter case is still
allowed (e.g., within the νMSM setup), the sterile neutrino
there does not contribute enough to active neutrino masses,
and one may ask for other mechanisms, either extensions or
alternatives to those mentioned above. To our knowledge,
none of the suggested in literature mechanisms simulta-
neously explains the active neutrino masses via mixing and
produces the full dark matter component consistent with
cosmological and astrophysical bounds discussed above.
The sterile neutrinos of the keV-mass range are most

efficiently produced in the oscillations at a temperature of
about 100 MeV [10]. Therefore, to amplify or suppress the
production via oscillations one can, respectively, increase
or decrease the effective sterile-active mixing in the
primordial plasma at this epoch. As we pointed out in
Refs. [12,13], the latter effect can be achieved by coupling
the sterile neutrino to a scalar field with specific homo-
geneous evolution in the expanding Universe.1 With a
constant scalar field, this coupling can make the sterile
neutrino either massless or superheavy in the interesting
epoch, thus, naturally preventing the sterile neutrino
production [12]. Alternatively, a rapidly oscillating scalar
can resonantly amplify the neutrino oscillations [13] and
enhance the sterile neutrino production in comparison with
the standard case [10]. The periodically varying scalar field
can induce a parametric resonance phenomenon which
dramatically increases the amplitude of neutrino oscilla-
tions regardless of active-sterile mixing. This mechanism
has been studied numerically in Ref. [13], which showed
that the small (as compared to the standard case) sterile-
active mixing may be sufficient to produce enough dark

matter. This observation justifies a further search for the
peaklike signature in the x rays with the next-generation
telescopes, such as eRosita and ART-XC on the base of the
Spektr-RG platform [16,17].
Parametric resonance phenomenon in systems coupled to

the oscillating background is not novel in particle physics.
In one of the pioneering studies [18] devoted to neutron–
antineutron oscillations in a periodically varying magnetic
field, a strong enhancement of the probability amplitude
was explored. Later, amplification of spin-flavor neutrino
oscillations in electromagnetic fields of various configu-
rations was found in Ref. [19]. In Ref. [20], the method
for the investigation of the neutrino evolution equation
solution near the resonance point was suggested. A novel
approach to study neutrino oscillations in the presence of
general rapidly varying fields without assumptions about
the strength of the time-varying external field was devel-
oped in Ref. [21]. Instead of solving the evolution equa-
tion directly, the author has derived the new effective
Hamiltonian which described the evolution of the averaged
neutrino wave function. In contrast to Ref. [20], the
elaborated method was beyond the perturbation treatment
and applicable for arbitrary strength of the external field.
However, a new approach requires a large frequency of the
time-varying background compared to that of the system at
the absence of any external force. For this reason, it is
instructive to explore the resonance dynamics of neutrino
oscillations in the presence of an oscillating background in
different assumptions about external conditions. In this
sense, our analysis is complementary to one in Ref. [21]
and can be used to examine the parametric resonance
phenomenon at a different choice of model parameters.
In this paper, we develop the analytic approach to

describe the resonant dynamics, estimate the amount,
and calculate the spectrum of the produced dark matter
sterile neutrinos. This study represents a logical extension
of the previous analysis [13]. The analytic approach of the
present paper allows us to effectively study the dependence
of cosmological predictions on the model parameters. Also,
it allows us to extend the scope of our mechanism and
potentially find its application in other cosmological
phenomena. In particular, we generalize the framework
of Ref. [13] in the presence of thermal environment, which
allows us to examine resonance dynamics in the high
temperature regime. The current paper also discusses in a
greater detail the relation to other possible mechanisms of
sterile neutrino DM production and contains a detailed
discussion of the complications present in the construction
of a fully realistic particle physics models.
The paper is organized as follows. In Sec. II, we describe

the oscillating sterile-active neutrino system in the expand-
ing Universe as the Schroedinger equation with an external
field and find the resonance solution. In Sec. III, we suggest
an analytic approximation to the spectrum of resonantly
produced sterile neutrinos. Section IV contains the analytic

1The same framework has been recently invoked to suppress
the cosmological production of eV-scale sterile neutrinos; see
Refs. [14,15].
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estimate of the total amount of produced in this way sterile
neutrino dark matter. We apply here all the cosmological
and astrophysical constraints on the model parameters.
Section V is devoted to discussion of various issues to be
resolved in the way of implementation of the developed
mechanism of sterile neutrino production in the realistic
extensions of the SM (e.g., seesaw type I with Majorana
field or secluded scalar sector). We summarize our results
in the Conclusions, Sec. VI. Some lengthy analytic
estimates are presented in the Appendix for convenience.

II. NEUTRINO RESONANCE INDUCED BY
OSCILLATING BACKGROUND

Our model Lagrangian contains three essential parts,

L ¼ LN þ LϕN þ Lϕ: ð2:1Þ

The first one describes oscillations between active neutrino
ν and its right-handed sterile counterpart N (a fermion
singlet with respect to the SM gauge group) in vacuum. It
reads

LN ¼ iν̄ ∂̂ νþ iN̄ ∂̂ N þM
2
N̄cN þmDν̄aN þ H:c:; ð2:2Þ

where mD is the Dirac mass appeared after the electroweak
transition and equals

mD ¼ θM; ð2:3Þ
where θ is the mixing angle in vacuum (i.e., at present, in
the cosmological context) and M is the bare mass of sterile
neutrino. The Dirac term implies the second nonzero mass
eigenvalue of the ν − N system, the active neutrino mass of
order ma ∼m2

D=M ∼ θ2M. The second ingredient of our
model (2.1) is the real scalar field ϕ (the SM singlet as
well), which feebly couples to sterile neutrino via Yukawa
like interaction,

LϕN ¼ f
2
ϕN̄cN þ H:c: ð2:4Þ

The Yukawa term (2.4) gives rise to the time-dependent
contribution,

MN ¼ fϕðtÞ; ð2:5Þ
to the effective sterile neutrino mass,

Meff ≡M þMN: ð2:6Þ

It implies that the scalar field treated as an external force
here may control the neutrino oscillations in the early
Universe. The corresponding impact is determined by the
dynamic of the scalar sector. To simplify the analysis, we
will use the theory of free massive scalar field,

Lϕ ¼ 1

2
ð∂μϕÞ2 þ

1

2
m2

ϕϕ
2: ð2:7Þ

In this framework, at early times, the scalar field is frozen,
and the sterile neutrinos can be very heavy (2.5),

MN;i ¼ fϕi: ð2:8Þ

When the Universe expansion rate (i.e., the Hubble para-
meter) drops below Hosc ≃mϕ, the scalar field begins to
oscillate and that results in the variable sterile neutrino mass
contribution (2.5) oscillating with a frequency mϕ (2.5),

MN ¼ MA sinmϕt; ð2:9Þ

and decreasing amplitude,

MA ≡M

�
hT3

heT3
e

�
1=2

: ð2:10Þ

Hereafter, we assume the Universe at radiation domination
and parametrize the amplitude (2.10) so that at the temper-
ature T ¼ Te, it coincides in value with the bare mass MN .
In what follows, we study the dynamics of active-to-

sterile neutrino transitions in the presence of an oscillating
scalar field coupled to the sterile massive state. The sum of
(2.2) and (2.4) can be rewritten in a more contracted form
(2.5), (2.6),

LN þ LϕN ¼ iN̄ L∂̂N L þ 1

2
N̄ c

L

�
0 mD

mD Meff

�
N L þ H:c:;

N L ≡
�

ν

Nc

�
; ð2:11Þ

or in terms of Majorana fields N ≡ ðN L þN c
LÞ=

ffiffiffi
2

p
, it

reduces to

LN þ LϕN ¼ iN̄ ∂̂N þ N̄
�

0 mD

mD Meff

�
N : ð2:12Þ

A massive part of (2.12) can be diagonalized by the
following orthogonal transformation:

O ¼
�

cos θeff sin θeff
− sin θeff cos θeff

�
; ð2:13Þ

where effective time-dependent mixing θeff is defined
through

tan θeff ¼
2mD

Meff þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

eff þ 4m2
D

p : ð2:14Þ

Upon transformation,N ¼ OV (2.13) Lagrangian (2.12)
arrives at
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LN þ LϕN ¼ iV̄ ∂̂ V þ iV†
�

0 _θeff

−_θeff 0

�
V

þ V̄
�
m1 0

0 m2

�
V;

m1;2 ¼
Meff

2

 
1 ∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

m2
D

M2
eff

s !
; ð2:15Þ

and the squared mass difference of (2.15) reads

Δm2 ¼ M2
eff

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4m2

D

M2
eff

s
: ð2:16Þ

To describe the evolution of the two-level system (2.15)
in the presence of an oscillating background (2.6), (2.9),
we employ a matrix form of the Schrödinger equation.
Evolution of massive neutrino states in vacuum2 under the
most general assumptions is governed by (2.15),

i
∂
∂t
�
ν1

ν2

�
¼
 
−Δ0;eff=2 −i_θeff

i_θeff Δ0;eff=2

!�
ν1

ν2

�
; ð2:17Þ

where ν1, ν2 denote wave functions of massive states and
we also defined the effective rate of neutrino oscillations in
vacuum (2.16),

Δ0;eff ≡ Δm2

2p
: ð2:18Þ

Analysis of neutrino oscillations via (2.17) is rather
involved. Framework (2.17) can be simplified significantly
under several assumptions. First, if the effective angle
(2.14) changes slowly enough, the massive states ν can be
treated as stationary and possible conversions ν1 ↔ ν2 can
be neglected. The corresponding adiabacity condition reads

j_θeff j
Δ0;eff

≪ 1: ð2:19Þ

Assuming (2.19), the original framework (2.17) for massive
states can be rewritten in the flavor basis using the trans-
formation ðν1; ν2ÞT ¼ O−1ðψ1;ψ2ÞT (2.13) as follows:

i
∂
∂t
�
ψ1

ψ2

�
¼ H

�
ψ1

ψ2

�
; ð2:20Þ

where ψ1, ψ2 refer to the flavor basis and the effective
Hamiltonian reads

H ¼ Δ0;eff

2

�− cos 2θeff sin 2θeff
sin 2θeff cos 2θeff

�
: ð2:21Þ

Second, in addition to (2.19), one can require smallness
of effective mixing (2.14). Assuming

2mD

Meff
≪ 1; ð2:22Þ

we found simplified forms of oscillating parameters (2.16),
(2.14), (2.3),

Δm2 ≈M2
eff ;

sin2 θeff ≈
mD

Meff
: ð2:23Þ

Assuming (2.23) and exploiting the following notations:

Δ0;eff ≡ 2βðzþ sinmϕtÞ2; β≡M2
A

4p
; z≡ M

MA
;

ð2:24Þ

Eq. (2.20) reduces to

i
∂
∂t
�
ψ1

ψ2

�
¼ βðzþ sinmϕtÞ2

 −1 2θz
zþsinmϕt

2θz
zþsinmϕt

1

!�
ψ1

ψ2

�
:

ð2:25Þ

Additional assumptions (2.19), (2.22), whose validity is
exhaustively discussed in the Appendix, allow one to
reduce the rather complicated framework (2.17) to a
more straightforward dynamics governed by (2.25). To
solve the latter, we introduce the basis flavor states in

the absence of mixing: jψai ¼ ðψ ð0Þ
1

0
Þ and jψ si ¼ ð 0

ψ ð0Þ
2

Þ.
These states can be easily founded as solutions of the
diagonal part of the Schrodinger equation (2.25),

namely, ψ ð0Þ
1;2 ¼ e�iβ

R
t

0
ðzþsinmϕζÞ2dζ.

So, the state vector jψðtÞi≡ ðψ1

ψ2
Þ at any moment can be

presented in the following form:

jψðtÞi ¼ y1ðtÞjψai þ y2ðtÞjψ si; ð2:26Þ

where y1ðtÞ and y2ðtÞ are corresponding flavor amplitudes,

y1ðtÞ ¼ hψajψðtÞi;
y2ðtÞ ¼ hψ sjψðtÞi: ð2:27Þ

We are interested in the so-called appearance probability of
the sterile state, so we put jψð0Þi ¼ jψai. In this case, y1ðtÞ
and y2ðtÞ describe survival and transition amplitudes,
respectively.

2Implementation of plasma effects is rather straightforward;
see, for details, Sec. II C.
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Substituting (2.26) into (2.25) gives rise to the following
system of equations on flavor amplitudes (2.27):

8<
:

∂y1ðtÞ∂t ¼ −2iβzθðzþ sinmϕtÞe−2iβ
R

t

0
ðzþsinmϕζÞ2dζy2ðtÞ

∂y2ðtÞ∂t ¼ −2iβzθðzþ sinmϕtÞe2iβ
R

t

0
ðzþsinmϕζÞ2dζy1ðtÞ

;

ð2:28Þ

with initial conditions y1ð0Þ ¼ 1, y2ð0Þ ¼ 0.
In what follows, we work in the limit of small energy

transfer between the active and sterile states, that means

jy2ðtÞj ≪ 1: ð2:29Þ

In this approximation, the number density of active
neutrinos reduces insignificantly during all the oscillation
period y1ðtÞ ≃ 1. This assumption allows one to obtain the
solution of (2.28) in the following form:

y2ðt1Þ ≃ −2iβzθ
Z

t1

0

ðzþ sinmϕtÞe2iβ
R

t

0
ðzþsinmϕζÞ2dζdt:

ð2:30Þ

The outer integration in (2.30), over t, can be carried out
with a help of stationary phase method. This method is
valid only for significantly large ratios 2β=mϕ. We assume
that to apply this strategy one needs at least the equality,

mϕ ≤ β; ð2:31Þ

to be true. Further calculations can be simplified in the
regime of large scalar field amplitude, that requires
M ≪ MA or, given (2.24),

z ≪ 1: ð2:32Þ

A. Resonant solution

Denoting

hðtÞ≡ 2

Z
t

0

ðzþ sinmϕζÞ2dζ;

gðtÞ≡ zþ sinmϕt; ð2:33Þ

the condition h0ðtlÞ ¼ 0 brings the following stationary
points tl:

ðzþ sinmϕtlÞ ¼ 0; ð2:34Þ

or, adopting (2.32),

mϕtl ≈ −ð−1Þlzþ πl: ð2:35Þ

We start with the estimate of the contribution of the
second order stationary point tl ∈ ½0; t1� to (2.30). To
achieve that, one should accomplish the following integra-
tion (2.33):Z

tlþδ

tl−δ
gðtÞeiβhðtÞdt ≈ g0ðtlÞeiβhðtlÞ

×
Z

tlþδ

tl−δ
ðt − tlÞei16βðt−tlÞ3h000ðtlÞdt:

ð2:36Þ

For that, we make use of the asymptotic methods that yields
the following reference integrals:

Z
δ

0

teixt
3

dt ∼
1

3
Γ
�
2

3

�
x−2=3eiπ=3; x → þ∞

Z
0

−δ
teixt

3

dt ∼ −
1

3
Γ
�
2

3

�
x−2=3e−iπ=3; x → þ∞: ð2:37Þ

Using (2.37), the asymptotic expansion of (2.36) in the
limit 2β=mϕ → þ∞ reduces to

Z
tlþδ

tl−δ
gðtÞeiβhðtÞdt∼ ig0ðtlÞ

ffiffiffi
3

p

3
Γ
�
2

3

��
6

βjh000ðtlÞj
�

2=3
eiβhðtlÞ:

ð2:38Þ

Assuming the amplitude (2.38) and approximations,

h000ðtlÞ ¼ 4m2
ϕðcos 2mϕtl − z sinmϕtlÞ ≈ 4m2

ϕ

g0ðtlÞ ¼ mϕ cosmϕtl ≈ ð−1Þlmϕ; ð2:39Þ

wewrite down the contribution of lth stationary point to the
integral (2.30),

y2jl ¼ 2zθð−1Þl
ffiffiffi
3

p
Γ
�
2

3

��
β

12mϕ

�
1=3

× exp

�
i
2β

mϕ

�
πlð1þ 2z2Þ

2
þ 2zð1 − ð−1ÞlÞ

��
:

ð2:40Þ

To estimate the integral (2.30) over large periods of time,
one needs to sum up contributions (2.40) over the all
stationary points (2.35) encountered in the time interval
½0; t1�, namely,

P
y2jl. To attain this goal, we split

P
y2jl

into odd and even parts as follows:
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X
y2jl ¼

X
l¼2k

y2jl þ
X

l¼2kþ1

y2jl;

X
l¼2k

y2jl ¼ 2zθ
ffiffiffi
3

p
Γ
�
2

3

��
β

12mϕ

�
1=3 Xlmax=2

k¼0

exp

�
i
2β

mϕ
· πkð1þ 2z2Þ

�
;

X
l¼2kþ1

y2jl ¼ −2zθ
ffiffiffi
3

p
Γ
�
2

3

��
β

12mϕ

�
1=3 Xlmax=2

k¼0

exp

�
i
2β

mϕ

�
πð2kþ 1Þ

2
ð1þ 2z2Þ þ 4z

��
; ð2:41Þ

where lmax refers to the final time t1; see (2.35), as

lmax ≈
mϕt1
π

: ð2:42Þ

The sums in (2.41) are geometric progressions with the
common ratio expfi 2β

mϕ
πð1þ 2z2Þg. The growing mode in

the solution jP y2jlj refers to the following condition:
βð1þ 2z2Þ=mϕ ∈ N or (2.24), that is

M2
A þ 2M2

4pn
¼ nmϕ; n ∈ N: ð2:43Þ

The condition (2.43) guarantees a parametric resonance in
the two-level system when the mass of one state is
modulated by an oscillating background. The integer n
parametrizes the diversity of the parametric resonances in
such a system. This situation refers to the most prominent
conversions, νa → νs.
Eventually, assuming (2.42), (2.43), (2.24), we simply

reduce (2.41) to the leading order in z (2.32) as

jy2;linðtÞj ≈
���X y2jl

��� ≈ 0.65θmϕt
M
MA

× n1=3
( j sin 4 M

MA
nj; for even n

j cos 4 M
MA

nj; for odd n
: ð2:44Þ

In order to demonstrate the applicability of our theo-
retical approach, we confront the analytical approxi-
mation (2.44) with numerical solution of Eqs. (2.28) for
resonances with various values of n; see (2.43). Figure 1
shows that our estimate (red line) in the regime (2.29)
reproduces the numerical solution (blue line) very precisely
for n ¼ 10 and more modestly, in case n ¼ 1. However,
this nice accordance is broken if one examines the resonant
behavior at y2ðtÞ≲ 1. Given this reason, one needs to find a
proper solution of (2.28), which does not rely on (2.29).
To achieve this goal, we examine, for particular sets of
variables, one phenomenological dependency j sin y2;linðtÞj
(green dashed line) against the numerical solution (blue
line) in Fig. 1. The performed analysis reveals that the first
oscillation peak of the numerical solution is approximated
by this phenomenological model reasonably well. Thus, a

proper solution in the case of resonance (2.43), which does
not rely on (2.29), is given by (2.44),

y2;resðtÞ ≈
���� sin

�
ωres · t

2

�����; ð2:45Þ

where

ωres ≈ 1.3θmϕ
M
MA

n1=3
( j sin 4 M

MA
nj; for even n

j cos 4 M
MA

nj; for odd n
:

ð2:46Þ

Our phenomenological result (2.45) manifests a good
resemblance with that of the numerical approach for any
integer n; see (2.43). It justifies the application of stationary
phase method and reveals its efficiency to describe the
parametric resonance in the two-level system (2.28).

B. Width of resonance

The other important characteristics of a parametric
resonance is its width. To obtain a range of momenta for
which the flavor amplitudes deviate from their resonant
values moderately, we calculate (2.30) in some vicinity of a
n resonance (2.43) provided by

M2
A þ 2M2

4pn
¼ ðnþ αÞmϕ; ð2:47Þ

where α ≪ 1. Using the stationary phase method elabo-
rated in Sec. II A, we reduce (2.41) to the following
amplitude (2.42), (2.47):

jy2;αðtÞj ≈ 0.65θmϕ
M
MA

n1=3
2πj sin ðmϕα

2
tþ παÞj

j sin παj

×

( j sinð4 M
MA

nþ πα
2
Þj; for even n

j cosð4 M
MA

nþ πα
2
Þj; for odd n

: ð2:48Þ

As expected, in the extremely small vicinity of resonance,
i.e., at α → 0, our result (2.48) reproduces the linear
resonant solution (2.44) under the assumption of (2.29).
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To find the relevant value of the parameter α which
governs (2.47), we introduce the absolute value of ampli-
tude y2ðtÞ,

max jy2j≈
����y2;α

�
π

mϕα

�����: ð2:49Þ

Assuming α ≪ 1 and 2θ M
MA

n1=3 ≪ max jy2j, we can
express α through max jy2j in the following form (2.48):

α ≈
1

max jy2j
ωres

mϕ
: ð2:50Þ

Then, adopting (2.49), (2.50) in the vicinity of resonance
(2.47), the solution (2.48) can be presented as

jy2;αðtÞj ≈max jy2j ×
���� sin

�
ω · t
2

�����; ð2:51Þ

where

ω ≈
ωres

max jy2j
: ð2:52Þ

We recall that our results obtained above rely on the
small energy transfer condition (2.29). However, the final

outcome (2.51) in the limit max jy2j → 1 matches the
evolution at the resonance (2.45). It suggests that our
result (2.51) can be applied for arbitrary value of y2ðtÞ if
only its amplitude max jy2j is treated as a free parameter,
and its relation with (2.50) is not exploited. To verify this
statement, we confront our estimate (2.51) with the
numerical solution (2.28) of the same amplitude for various
values of max jy2j and n. Figure 2 reveals that our approach
(dashed green line), indeed, can be applied even for a big
enough max jy2j.
Eventually, we define a range of momenta, Δpn ≡

jp − pnj, for which max jy2j > 1=
ffiffiffi
2

p
holds via (2.47),

Δpn ¼
αj1= ffiffi2p

n
pn; ð2:53Þ

where αj1= ffiffi2p relates to (2.50) at max jy2j ¼ 1=
ffiffiffi
2

p
.3 Thus,

the width of resonance reads (2.53),

FIG. 1. The blue line represents the numerical solution of Eqs. (2.28). The red line depicts our analytical approximation (2.44) in the
regime (2.29). The green dashed line refers to our phenomenological result (2.45).

3We stress that the relation between α and max jy2j (2.50) for
such a big max jy2j becomes inaccurate. The reason of that
consists in the assumption (2.29), which we adopted to derive the
solution in vicinity of resonance (2.48). However, the corre-
sponding discrepancy for max jy2j ¼ 1=

ffiffiffi
2

p
appears not critical

since this only leads to an extra prefactor in (2.50), which will be
properly accounted for in the subsequent fitting procedure of the
spectrum in Sec. III.
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Δpn

pn
≃

ffiffiffi
2

p

n
ωres

mϕ
: ð2:54Þ

For our choice of parameters (2.32), the resonance
(2.43) is narrow, Δpn=pn < 1. It implies that the neutrino
conversion in the resonance might be inefficient once one
considers expansion of the Universe. The latter effect gives
rise to a particular feature in the spectrum of sterile
neutrinos produced in resonance that is the subject of
Sec. III. But before moving forward, we study the reso-
nance behavior in the presence of a dense environment
composed of the thermally populated SM particles.

C. Plasma effect

The results obtained above are based on the vacuum
oscillation framework. However, at high temperatures, the
active neutrino propagates through dense cosmological
plasma that affects oscillations. This effect may be crucial
for the resonant behavior at high temperatures. Given this
reason, we generalize our results obtained in Secs. II A and
II B in the presence of matter.
The forward scattering of active neutrino in the thermal

bath induces the following effective Hamiltonian (2.21):

Heff ¼ H −
�
V 0

0 0

�
; ð2:55Þ

where V denotes effective potential for active neutrinos in
the plasma. We consider the mixing of sterile state only
with electron neutrino and vanishing initial primordial
lepton number, so [22],

V ≈ 63 × Γ; Γ ≈ 1.27 × G2
FT

4p: ð2:56Þ

In what follows, we consider significantly high scalar
field values and examine matter effects in the following
reasonable assumption:

V ≪
M2

A

4p
: ð2:57Þ

Then one can apply the stationary phase method elaborated
in Sec. II A directly to the effective Hamiltonian (2.55) and
obtain the following resonant condition in the plasma:

M2
A þ 2M2

4pn
þ V ¼ nmϕ; n ∈ N: ð2:58Þ

FIG. 2. The blue line represents the numerical solution of Eqs. (2.28) on the amplitude max jy2j. The green dashed line depicts our
estimate (2.51) of the same amplitude max jy2j. The black dashed line shows the chosen value max jy2j in each case.
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This relation generalizes the resonance condition in vac-
uum (2.43) and provides a bit different neutrino momentum
at the resonance pn, assuming (2.57). In turn, the resonance
solution in the presence of matter matches that in the
vacuum (2.45) and exhibits the same frequency (2.46). This
means that in the assumption of (2.57), the plasma effects
do not affect the resonant behavior and introduce only a
slight offset in the resonance condition (2.58). The con-
tribution of this displacement is not significant either, if one
enquires about the average resonant momentum pn pro-
vided by (2.58) in the assumption of (2.57).
Finally, using the numerical analysis based on (2.20),

(2.55), (2.21) with precise oscillation parameters (2.14),
(2.16), we verified that our analytical approach elaborated
in Sec. II A and II B works reasonably well until

5M ≲MA; ð2:59Þ

5V ≲M2
A

4p
ð2:60Þ

become valid; see (2.10), (2.56).

III. SPECTRUM WITH NARROW RESONANCE

Expansion of the Universe eventually moves the system
through the region, where the resonance condition for a
particular mode (2.43) is fulfilled, that can thereby provide
with meaningful sterile neutrino abundance. In particular,
the redshift effect gives rise to time dependency of resonant
conformal momentum yn passing through n resonance at
temperature T (2.43),

yn ≡ pn

T
≈

M2
A

4Tmϕ

1

n
: ð3:1Þ

The whole band of the width Δyn ¼ Δpn=T (2.54) moves
through a given resonant momentum yn (3.1) over time,

δtn ¼
Δyn
_yn

¼ 1

n
ωresffiffiffi
2

p
mϕH

: ð3:2Þ

If this period is shorter than the typical time of resonant
oscillations ω−1

res, the resonance becomes ineffective (“nar-
row”). This happens at a high temperature when

ffiffiffi
2

p
mϕH

ω2
res

n > 1: ð3:3Þ

The lhs of (3.3) describes the efficiency of n resonance at
a temperature T in the expanding Universe. Hence, this
quantity can be used to parametrize the spectrum of sterile
neutrinos produced in the case of “narrow” resonance.
First, we recover the asymptotic behavior of sterile neutrino
distribution function in several limits of (3.3) on theoretical

grounds. Second, we resort to numerical analysis and build
the interpolating solution for a sterile neutrino spectrum
valid for any reasonable value of the parameter (3.3).
In the static limit, n

ffiffiffi
2

p
mϕH=ω2

res ≪ 1, the amount of
sterile neutrino reaches the Fermi-Dirac distribution after a
typical time ω−1

res (2.45), so
4

fN
fFD

≃ 1: ð3:4Þ

In the opposite limit, n
ffiffiffi
2

p
mϕH=ω2

res ≫ 1, the generation of
sterile neutrinos is strongly suppressed. The production rate
in the resonance is given by the frequency of the corre-
sponding solution ωres; see (2.45). However, the “narrow”
resonance terminates earlier due to the strong expansion
effect over δtn ≪ ω−1

res (3.2). Thereby, the distribution
function of the generated during one “narrow” resonance
sterile neutrino is given by fN=fFD ≃ ωresδtn or (3.2),

fN
fFD

≃
� ffiffiffi

2
p

mϕH

ω2
res

n

�−1

: ð3:5Þ

To find solution interpolating between these two
limits (3.4) and (3.5), we solve matrix-valued generaliza-
tions of the Boltzmann equations called density matrix
equations [23],

i
∂
∂t ρ ¼ ½H; ρ� − i

2
fΓA; ρ − ρeqg; ð3:6Þ

where ρ is the 2 × 2 density matrix corresponding to active
and sterile neutrinos, with ρ11 (ρ22) being the probability
density of the active (sterile) neutrino. Here, ρeq ¼
diagðfFDðyÞ; fFDðyÞÞ is the equilibrium Fermi-Dirac dis-
tribution, and ΓA ¼ ðΓ

0
0
0
Þ is the damping term due to active

neutrino interactions in the thermal bath. The evolution
starts at early times with ρ ¼ diagðfFDðyÞ; 0Þ, and the
interesting distribution of the produced sterile neutrinos is
obtained as fNðyÞ ¼ ρ22ðyÞ at late times, t → ∞. We
exploit the Hamiltonian in vacuum (2.21) since its thermal
modification brings only subdominant contribution in
accordance with Sec. II C. We also employ precise oscil-
lation parameters (2.14), (2.18), (2.16).
We work in the limit ωres ≫ H, so the redshift effect in

(3.6) can be addressed by the following linear expansion:

4Hereinafter, we assume that the plasma effect is significant on
the typical time scale of resonant oscillations ∼1=ωres. It implies
that sterile neutrinos in the “broad” resonance (expansion of the
Universe is irrelevant) equilibrate to a large extent in the
primordial plasma over the typical times ω−1

res (2.45). We verified
that the interacting rate of such intensity or less does not affect
our outcomes.
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p ¼ p̃ð1 −HtÞ

MA ¼ M̃A

�
1 −

3

2
Ht

�
; ð3:7Þ

where p̃ and M̃A refer to the moment of resonance (2.43).
Solving (3.6), (2.21), (3.7) for various values of lhs of

(3.3) yields the sterile neutrino distribution function.
Results of this numerical analysis for various model
parameters are shown in Fig. 3. Matching of fN=fFD for
various values θ, MA=M, n, and Γ demonstrates stability
and universal dependency of the solution on the lhs of (3.3)
which parametrizes the “narrow” resonance in the expand-
ing Universe. We also verified that fN=fFD is insensitive to
mϕ and to the absolute value of M.
For a proper usage, we fit our numerical result with the

following analytical function:

fN ¼ fFDffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 0.84ð

ffiffi
2

p
mϕH
ω2
res

nÞ2
r ; ð3:8Þ

where
ffiffiffi
2

p
mϕH=ω2

res refers to the moment of resonance
(2.43). Since the temperature unambiguously corresponds
to a particular resonant conformal momentum via (3.1), our
result (3.8) can be presented in a more conventional form
(2.46) [13],

fNðyÞ ¼
fFDðyÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 0.84ð yysÞ5
q ; ð3:9Þ

where the cutoff scale ys is defined by

ys ¼
0.24

n17=15

�
θ

4.2 × 10−6

�
4=5
�

M
keV

�
2
�
9.3 MeV

Te

�
9=5

×

�
eV
mϕ

�
3=5
�
50

g�;s

�
1=5
�
hs
he

�
3=5

: ð3:10Þ

The mode, corresponding to ys passes through the reso-
nance (2.43) at a temperature (3.1), (3.10),

Ts ¼
28 MeV

n1=15

�
θ

4.2 × 10−6

�
2=5
�

Te

9.3 MeV

�
3=5
�
mϕ

eV

�
1=5

×

�
50

g�;s

�
1=10
�
he
hs

�
1=5

: ð3:11Þ

The net results are given approximately by the sum of
(3.9) over resonances n ¼ 1; 2;…. However, one observes
from (3.10) that the higher resonances are relevant at lower
neutrino momentum. The most prominent contribution
both to neutrino abundance and to the average neutrino
velocity comes from the lowest resonance n ¼ 1. This case
is studied in the next section.

IV. STERILE NEUTRINO DARK MATTER

In this section, we consider the sterile neutrino DM
that is produced in resonance and has a spectrum (3.9).
The correct DM neutrino abundance, in this case, can be
achieved only if the resonant conformal momentum (3.10)
is small enough. Since higher resonances are relevant at
lower neutrino momentum (3.10), the resonance with the
highest momentum (n ¼ 1) gives the most important
contribution both to the neutrino abundance and to the
average neutrino velocity. Given this reason, we neglect
any contribution of higher resonances (n > 1) and examine
sterile neutrino production in resonance with n ¼ 1 only.
The proper abundance of DM composed of sterile

neutrinos of a spectrum (3.9) is achieved for [13]

ys ≃ 0.24 ×

�
1 keV
M

�
2=5

: ð4:1Þ

The sterile neutrino distribution function (3.9) for this
cutoff is shown in Fig. 4. The characteristic feature in the
sterile neutrino distribution function at y≳ ys provides a
cool spectrum with the average,

FIG. 4. The Fermi-Dirac fFD and sterile neutrino fN spectra in
a logarithmic scale.

FIG. 3. fFD=fN as a function of lhs of (3.3). Dashed black line
refers to our fitting result (3.8).
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⟪y⟫ ¼ 0.6
�
50
g�;s

�
1=3

; ð4:2Þ

where g�;s refers to the plasma effective degrees of freedom
at the reference temperature of sterile neutrino production
T ≃ Ts. Such a feature allows us to alleviate structure
formation constraints on the mass of DM particle. Ly-α
constraint mNRP > 8 keV [4] is translated in our case to

M > 1.5 keV

�
50

g�;s

�
1=3

: ð4:3Þ

A. Parameter constraints

Here, we examine the available parameter region ðθ2;MÞ,
where the sterile neutrinos with a spectrum (3.9), (4.2) is
capable of composing all the present dark matter. For that,
we should address all relevant constraints.
For the purpose of this section, one can equate (4.1) and

(3.10) that leads to

θ ∼ 4.2 × 10−6
�
1 keV
M

�
3
�
g�;s
50

�
1=4
�

Te

9.3 MeV

�
9=4

×

�
mϕ

1 eV

�
3=4
�
he
hs

�
3=4

: ð4:4Þ

Further, we assume that sterile neutrino DM is effectively
produced at temperature T ≃ Ts (3.1), (4.1),

Ts ¼ 3Te

�
Te

9.3 MeV

�
1=2
�

mϕ

1 eV

�
1=2
�
1 keV
M

�
6=5
�
he
hs

�
1=2

:

ð4:5Þ

Since we explore here parameter space ðθ2;MÞ, it is
convenient to rewrite (4.5) in the following form (4.4):

Ts ¼ 28 MeV

�
θ

4.2 × 10−6

�
2=3
�

M
keV

�
4=5
�
50

g�;s

�
1=6

:

ð4:6Þ

One of the most rigorous foundations of our theoretical
framework refers to the assumption of significantly large
scalar field values. To address (2.59) at the moment of
sterile neutrino production, we require Te < 3Ts; see
(2.10). In addition, we always assumed that the active
neutrinos equilibrate in the thermal bath, so the parameter
space should meet 1 MeV < Te. Finally, Te is confined
within

1 MeV < Te <
Ts

3
: ð4:7Þ

To provide small thermal modifications and address
(2.60), we impose (2.56), (2.10), (4.1), (4.5),

5V
4yT
M2

A

����
y¼ys
T¼Ts

< 1: ð4:8Þ

At T ≃ Te, the regime of high scalar field amplitude
(2.32) terminates, and the common scenario of the non-
resonant production via active-sterile oscillations in plasma
[10] is resumed. Sterile neutrino amount produced at
T < Te should be relatively small,

ΩN;T<Te
< ΩDM; ð4:9Þ

where ΩN;T<Te
denotes the corresponding sterile neutrino

contribution, generated at T < Te (Meff ≈M); for details,
see [12].
To avoid the effective scalar decay to sterile neutrinos,

we limit the mass scale as

mϕ < M: ð4:10Þ

When the mass of a scalar field belongs to the interval
0.01 eV ≈

ffiffiffiffiffiffiffiffiffiffiffiffi
Δm2

sol

p
< mϕ < M, the scalar field can decay

to active neutrinos. This moment relates to H ∼ Γϕ→νν ¼
f2mϕ=16π and hence, happens when the at the temperature
T ≃ Tdec, such that

Tdec

T0

¼ θ2

4
ffiffiffi
π

p f

Ω1=4
rad

�
mϕ

H0

�
1=2
�

g�;0
g�;dec

�
1=4

: ð4:11Þ

This decay channel does not affect the sterile neutrino
production at T ≃ Ts if the corresponding decay is late
enough (4.11), (4.5), i.e.,

Tdec < Ts: ð4:12Þ

We suggest that the perturbative treatment is applied to
the scalar field sterile neutrino interaction and hence,
assume that (4.14)

f < 1: ð4:13Þ

It is worth noting that the Yukawa coupling (2.4) enters
conditions (4.12) and (4.13) only. As we are interested in
the most extended attainable region in model parameter
space, one can fix f in its lower boundary coming from the
dark matter overproduction constraint, Ωϕ < ΩDM,

f2min ¼
m2

ϕM
2

2ΩDMρcrit

h0T3
0

heT3
e
: ð4:14Þ

Finally, sterile neutrino dark matter should be astrophysi-
cally viable. That means, the vacuum mixing must agree
with the x-ray constraint,

θ < θX−rayðMÞ: ð4:15Þ
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B. Results

At each point of parameter space ðθ2;MÞ, we look over
hTe;mϕi and find optimal parameters which address (4.15),
(4.7), (4.8), (4.9), (4.10), (4.12), and (4.13) satisfactorily.
As a result of this procedure, we find the most extended
available region on the plane (M; sin2 2θ), which is
depicted in Fig. 5.
The lower boundary on the mixing angle in the plot of

Fig. 5 refers to Ts ¼ 3Te ¼ 3 MeV; see (4.7). At lower
values of θ, the temperature Te drops below 1 MeV and
with the active neutrino out of equilibrium, our analysis
becomes more involved. The maximum possible mixing
angle, in turn, is defined by the x-ray constraint (4.15).
Condition (4.9) requires Te ≲ 150 MeV above the non-
resonant production line [13], which does not affect our
region in the model parameter plane (M; sin2 2θ): the
corresponding constraint on θ is always weaker than that
from the x ray in Fig. 5.
One comment is in order here. Numerical analysis

carried out in Sec. III holds in case of small enough
interaction rates, namely, Γ < ωres. However, the resonan-
ces, which bring the bulk contribution to the sterile neutrino
dark matter, are narrow; see (3.9), (4.1). It implies that the

typical time of neutrino conversions in resonance is small
compared to ω−1

res, and the corresponding constraint on Γ is
weaker. All in all, the interaction rate does not affect the
oscillations in resonance if the interaction length in plasma
surpasses the typical time of resonant oscillations (3.2), i.e.,

2Γ−1 > δt1: ð4:16Þ

We outline the region where the condition (4.16) is
broken by a dotted line in the top part of Fig. 5. The
parameter space above this line cannot be reliably
described by the outcomes of Sec. III and needs a more
sophisticated approach, which accounts for the interplay
between flavor oscillations and decoherence processes
induced by real scattering. We verified that the interaction
rate of large intensity efficiently suppresses sterile neutrino
production in resonance. Hence, assuming inefficient
nonresonant generation, one can easily produce a sterile
neutrino dark matter in the regime of strong interaction
2Γ−1 < δt1. However, in this parameter space, momentum
distribution of dark matter particles is no longer described
by (3.9), and one needs a more proper solving of (3.6),
which is beyond the scope of this paper. Since the regime
of strong interaction refers to significantly small sterile
neutrino masses where structure formation constraints
become crucial, the validity of the region with relatively
large mixing in top of Fig. 5 inquires a further investigation.
To be more conservative in what follows, we will assume
⟪y⟫ > 0.55 in accord with Fig. 5. We emphasize that the
scalar induced resonance can lead to a substantially cooler
velocity distribution of sterile neutrinos as compared to
[13]. The reason for this is the refined treatment of resonant
oscillations in the high temperature regime provided in
Sec. II C, which was previously unexplored.
To provide a straightforward comparison of sterile

neutrino velocity distribution among different generation
mechanism of sterile neutrino dark matter, we list average
momenta per temperature in various scenarios calculated
just before active neutrino freeze-out, corresponding to
g� ¼ 10.75 in Table I. Scalar induced resonance provides
the coldest sterile neutrino distribution among all known
mechanisms relying on active-sterile mixing, except for
those who have significant entropy release after the

TABLE I. A summary of the models with their respective
average momenta per temperature rescaled to the moment before
active neutrino freeze-out, corresponding to g� ¼ 10.75 with
relevant references.

Model ⟪p=T⟫ References

Dodelson-Widrow 2.8 [10,30]
Shi-Fuller 1–2.8 [11,30]
Scalar decay at T ∼ 100 GeV 1.1 [24,26]
Entropy production in dark sector 0.3–1 [29,31]
Scalar induce resonance 0.55–1 This work

FIG. 5. Parameter scan over the sterile neutrino mass and
active-sterile mixing angle (the corresponding scalar masses
10−2 eV < mϕ < M help to avoid additional production of sterile
neutrinos from scalar decays at T ≃mϕ as in Refs. [24–26] and
1 MeV < Te < 150 MeV). The blue line is the upper limit from
x-ray observations [9,27,28]. The color region gives the fraction
of the sterile neutrino equal to DM, ΩN ¼ ΩDM. The color
indicates the reference temperature of the sterile neutrino pro-
duction Ts (4.6). The white dashed region is excluded by
studying the cosmic structure formation. Red lines refer to sterile
neutrino average momenta per temperature calculated just before
active neutrino freeze-out (4.2). For reference: the black line is for
the conventional nonresonant generation mechanism [4], black
dashed line corresponds to the maximal lepton asymmetry
attainable in the νMSM [4], upper dotted line relates to equality
of (4.16), lower dotted line corresponds to equality of (5.1).
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production of the sterile neutrino like grand unified theory
[29]. So, the proposed mechanism opens a wide area of
sterile neutrino masses compatible with dark matter.
Discovery of sterile neutrino dark matter with low masses
would thus favor the current mechanism. Moreover, as far
as a nonvanishing active-sterile mixing angle is required in
the model, the observation of an x-ray signal from the dark
matter decay is predicted and potentially testable by the
future x-ray satellite missions.

V. OTHER ISSUES

The amplification of sterile neutrino production in the
early Universe we discuss in this paper is based on a rather
general observation that a nonstandard cosmological evo-
lution of the model parameters can have drastic conse-
quences for the oscillating active-sterile neutrino system.
We have demonstrated this by introducing (possibly) the
simplest ingredient—a massive light scalar coupled to the
sterile neutrino. This choice is ad hoc but plays its role
nicely, illustrating many important features of the suggested
mechanism. However, the model with only one additional
scalar field is not realistic. For a fully realistic extension of
SM (which has, for example, more fields and interactions),
one has to solve the set of typical problems, unrelated to the
main idea of the mechanism. In this section, we intend to
consider those problems and its possible solutions.
In a realistic model, the scalar potential can be naturally

more complicated: both in form and in content.
To illustrate the point, take the simple scalar model we

used (2.4), (2.7). The scalar is not free; it couples to sterile
neutrinos, and hence, generically induces quantum correc-
tions introducing more interaction terms in the model
Lagrangian. Naturally, one expects additional ϕ2, ϕ3,
and ϕ4 terms. The first term is the renormalization of
the scalar mass, which like the SM Higgs mass is not
protected and suffers from the quadratic divergences. The
second term originates from logarithmically divergent
Feynman diagrams, and it is proportional to the sterile
neutrino mass reflecting remnants of the lepton symmetry
in the model. The third term is of the order y4f4=ð64π2Þ and
also comes from logarithmically divergent diagrams.
All the three terms are dangerous for the scalar vacuum

because they tend to destabilize it. Indeed, the cubic ϕ3

term delivers explicitly opposite sign contributions at
ϕ → �∞. The quartic ϕ4 term is negative and grows in
value with the energy scale, and the scalar quantum
potential becomes negative at large fields exceeding a
certain finite normalized value. Finally, a naive estimate of
the divergent contribution with momentum cutoff reveals
the negative mass squared for the quadratic ϕ2 term, which
may be meaningless given the major hierarchy problem for
the scalar mass scale m. A specific mechanism can be
invoked to cancel the quantum corrections, like those (e.g.,
supersymmetry, technicolor) introduced to protect the

electroweak scale and cure the gauge hierarchy problem
for the SM Higgs.
While the vacuum stability is an important issue for the

theory itself, the new terms in the scalar potential may
well participate in the scalar field dynamics of the
expanding Universe. In particular, the ϕ4 term dominating
over ϕ2 term changes the time dependence of the oscil-
lating field amplitude and hence, the time dependence of
the sterile neutrino mass. The active-sterile neutrino
system still exhibits resonant behavior in this case, but
the numerical results differ. Apart from that, if the ϕ4 term
dominates in the late Universe as well, the scalar con-
tributes to the dark radiation component, rather than to the
dark matter. One has to take care of the potential scalar
impact on the cosmology, with a possible interplay
between ϕ4- and ϕ2-dominating regimes. In specific
situations, the impact may be negligible, e.g., with the
scalar potential vanishing in the late Universe. The scalar
forms stiff matter, and its energy density disappears (no
relevant limits on Ωϕ then).
Generally, with several degrees of freedom in the scalar

sector, the situation becomes more complicated. Some
of them may be involved in cosmological dynamics
and impact both the Universe evolution and the sterile
neutrino production process. The natural physically moti-
vated extension of our model includes Majoron—the
Goldstone scalar emerging after the spontaneous breaking
of the lepton symmetry. This framework implies the
promotion of our scalar ϕ to the complex scalar, which
is the complex phase associated with the Majoron. It is
massless and hence, may contribute to the dark radiation of
the Universe (if inhomogeneous) or form stiff matter (the
kinetic term dominates). Another example is familon in the
extensions where the flavor structure of the neutrino sector
is developed.
Apart from the different homogeneous evolution at the

time of sterile neutrino production, new degrees of freedom
may change the late time behavior of the system, e.g., by
inducing the scalar ϕ decay (hence, invaliding limits on
Ωϕ). Coupling to other fields may contribute to the scalar
mass, so that ϕ becomes heavy in the late Universe. In this
way, the scalar decay rate can increase, and even plasma
processes may change. Indeed, within our simple model, in
the late-time Universe, the annihilation processes NN →
ϕϕ can dilute the sterile neutrino abundance produced in
resonance. Using the number density of sterile neutrinos,
nN ¼ 2 4

11
T3
R
4πy2fNðyÞdy (3.9), (4.1), the characteristic

annihilation cross section σann ∼ 10−2f4=T2, and the
Hubble H efficiency of such a process at T ¼ M should
be small (4.14),

nNσann
HðTÞ

����
T¼M

≈ 0.8

�
fmin

4 × 10−4

�
4
�
keV
M

��
g�;0
g�;ann

�
1=2

< 1:

ð5:1Þ

SCALAR INDUCED RESONANT STERILE NEUTRINO … PHYS. REV. D 101, 103516 (2020)

103516-13



This constraint and Te < Ts=3 (4.7) induce a new lower
boundary for a relatively largeM outlined by the dotted line
in the bottom of Fig. 5. With much heavier scalars in the
late Universe, the annihilation is kinematically forbidden.
Otherwise, one must generate more sterile neutrinos to have
ΩN ¼ ΩDM and take care of the decay products of the
scalars in the late Universe.
Likewise, the sterile neutrino component itself may

impact on the scalar field via a backreaction process.
Even if the source of sterile neutrinos is active neutrinos
in plasma (not the scalar field itself, which is also one of the
options investigated in Ref. [13]), their population may
change the effective potential of the scalar in primordial
plasma of the expanding Universe (and so may other
components in a realistic extension of the SM). One can
estimate the possible effect by Yukawa coupling as

yN̄cNϕþ H:c: → ynNϕ;

where nN is the sterile neutrino number density. This term
contributes to the equation of motion for the scalar field by
inducing the external force. The latter shifts ϕ from its
minimum at zero to the new value around which the scalar
oscillates. Naturally, the scalar contribution to the sterile
neutrino mass changes as well influencing the system
dynamics. This procedure induces the y2ðN̄cNÞ2=m2

ϕ term
in the sterile neutrino sector, which gives the effective
potential suppressing the sterile neutrino production in
plasma, when the density reaches the value high enough for
the induced potential to balance the mass term,

y2

m2
ϕ

nN ∼MN ∼ yϕ:

This implies the relation,

MNnN ∼
M2

Nm
2
ϕ

y2
∼m2

ϕϕ
2;

that is the equality between the neutrino and scalar energy
densities. Since both quantities equally degrade in the
expanding Universe, the backreaction prevents the sterile
neutrino component from dominating over the scalar one in
the late Universe, if the scalar remains the same as in our
minimal model. New degrees of freedom and new inter-
action terms may change this situation (e.g., the scalar field
may disappear in the late Universe in the situations we
mentioned above).

VI. SUMMARY AND PROSPECTS

We explored the parametric resonance phenomenon in
active-sterile oscillations with oscillating cosmic back-
ground coupled to the sterile state. Considering the massive
light scalar field for illustrative purposes, we developed a

new theoretical framework which yields the time evolution
of the neutrino probability function at and near the
resonance point. Apart from this, our analytical pipeline
allows one to systematically address several effects such as
flavor oscillations, thermal modifications, and expansion of
the Universe, which make our approach applicable in
cosmology.
Using the elaborated framework, we showed that the

parametric resonance induced by the oscillating scalar field
can be responsible for the sterile neutrino dark matter
production in the early Universe. The designed mechanism
has several advantages over other generation scenarios
commonly discussed in the literature. First, it provides the
coldest relic sterile neutrino momentum distribution com-
pared to all other mechanisms relying on active-sterile
oscillations (except for the models with entropy production
in the dark sector, see discussion at the end of Sec. IV).
Thus, the scalar induced resonance opens a window of
lower mass dark matter, which is otherwise forbidden by
strong constraints from the cosmic structure formation.
Second, this mechanism operates even for very small
mixing angle with active neutrinos thus, evading the
x-ray constraints. Therefore, further searches for the peak-
line signatures with the new generation of x-ray telescopes,
e.g., eRosita and ART-XC, are justified [16,17]. Third, the
oscillating background itself can be a source of particles.
Sterile neutrinos directly produced by the scalar field are
completely nonrelativistic and hence, avoid any structure
formation constraints; see [13].
The present manuscript improves the previous analysis

[13] in several aspects. First, we generalize the analytical
framework in the presence of matter; see Sec. II C. This
extension allows us to investigate sterile neutrino produc-
tion at a higher temperature, which results in a substantially
cooler spectrum with average neutrino momentum down to
p ¼ 0.55 · T compared to p ¼ T as in Ref. [13]. This
improvement is crucial in light of strong structure for-
mation constraints. Moreover, the refined treatment makes
our mechanism competitive with other popular scenarios of
sterile neutrino production relying on active-sterile mixing;
see Table I. Second, we discussed various issues related to
the direct implementation of the developed mechanism in
full realistic situations. In Sec. V, we list the essential parts
of any realistic model (quantum corrections, subsequent
sterile neutrino annihilation, backreaction, etc.) and assess
their influence on final outcomes. We also outline several
natural physically motivated extensions capable of address-
ing these issues. These findings pave the way to construct a
fully realistic and self-consistent extension of SM capable
of generating sterile neutrino dark matter.
We stress that the application of our analytical pipeline is

not limited by the case considered in this paper. Our
theoretical approach can be applied to a general periodi-
cally varying scalar field coupled to the massive sterile
state. For instance, our analysis can be extended by adding
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a ϕ4 term, which is motivated by quantum corrections; see
Sec. V. Possible interplay between ϕ2-ϕ4-dominating
regimes makes resonance dynamics more involved with
intriguing outcomes for cosmology. The novel analytical
approach designed in this paper can be straightforwardly
adopted to describe the parametric resonance phenomenon
in other physical situations with several oscillators and
periodic external fields involved. However, in a realistic
model, the backreaction of the produced particle has to be
taken into account, which can further change the results of
the analysis.
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APPENDIX: VALIDITY OF ASSUMPTIONS

The theoretical approach of Sec. II based on the sta-
tionary phase method relies on several assumptions. Two of
them (2.19), (2.22) allow one to reduce rather a compli-
cated framework (2.17) to a much more primitive form
(2.28). Here, we examine the validity of this transition.
Assumptions (2.19) and (2.22) restrict the mass scale

(2.6), which can be addressed by (2.28). One of them (2.22)
implies j sin θeff j ≪ 1=2 (2.23), which can be recast by
making use of (2.6), (2.9), (2.24) to

jzþ sinmϕtj ≫ 2θz: ðA1Þ

The adiabaticity condition (2.19), in turn, can be trans-
formed to (2.18), (2.23),

jzþ sinmϕtj ≫
�
θz

mϕ

2β

�
1=4

: ðA2Þ

To understand where the resonance feature manifests
itself, we scrutinize the neutrino system evolution during
one oscillating period of the scalar field. Evident trans-
formations help to reformulate (2.28) in the following
second-order differential equation on the transition prob-
ability y2ðtÞ:

∂2y2ðtÞ
∂t2 −

∂y2ðtÞ
∂t

�
2iβðzþ sinmϕtÞ2 þ

m cosmϕt

zþ sinmϕt

	

þ 4y2ðtÞβ2z2θ2ðzþ sinmϕtÞ2 ¼ 0; ðA3Þ

with initial conditions, y2ð0Þ ¼ 0, ∂y2∂t ð0Þ ¼ −2iβz2θ;
see (2.28).
The Sturm–Liouville theory allows us to present the

solution of (A3) in the following form:

y2ðtÞ ¼ uðtÞ · wðtÞ; ðA4Þ

where uðtÞ can be found analytically,

uðtÞ ¼ e
1
2

R
t

0
½2iβðzþsin ζÞ2þmϕ cosmϕζ=ðzþsinmϕζÞ�dζ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi���� zþ sinmϕt

z

����
s

eiγ; ðA5Þ

with γ ¼ R t0 βðzþ sinmϕζÞ2dζ,5 and wðtÞ obeying

∂2wðtÞ
∂t2 þ qðtÞ · wðtÞ ¼ 0; ðA6Þ

qðtÞ≡ β2ðzþ sinmϕtÞ4 −
3

4

m2
ϕ cos

2mϕt

ðzþ sinmϕtÞ2
þ iβmϕðzþ sinmϕtÞ cosmϕt

−
1

2

m2
ϕ sinmϕt

zþ sinmϕt
þ 4β2z2θ2ðzþ sinmϕtÞ2: ðA7Þ

To begin with, we note that our assumption (A1) implies
the hierarchy,

4β2z2θ2ðzþ sinmϕtÞ2 ≪ β2ðzþ sinmϕtÞ4: ðA8Þ

It means that we can neglect the term 4β2z2θ2ðzþ
sinmϕtÞ2 in (A7) since it gives a subdominant contribution
to qðtÞ, which governs dynamics of the system (A6). Now,
let us consider two limits: ðmϕ

β Þ1=3 ≪ jzþ sinmϕtj ≤ 1 and

jzþ sinmϕtj ≪ ðmϕ

β Þ1=3. In the first case, we obtain (2.31),

3

4

m2
ϕcos

2mϕt

ðzþ sinmϕtÞ2
≪ β2ðzþ sinmϕtÞ4;

jβmϕðzþ sinmϕtÞ cosmϕtj ≪ β2ðzþ sinmϕtÞ4;���� 12 m2
ϕ sinmϕt

zþ sinmϕt

����≪ β2ðzþ sinmϕtÞ4: ðA9Þ

In the second case, one gets (2.31), (2.32),

β2ðzþ sinmϕtÞ4 ≪
3

4

m2
ϕ cos

2mϕt

ðzþ sinmϕtÞ2
;

jβmϕðzþ sinmϕtÞ cosmϕtj ≪
3

4

m2
ϕ cos

2mϕt

ðzþ sinmϕtÞ2
;

���� 12 m2
ϕ sinmϕt

zþ sinmϕt

����≪ 3

4

m2
ϕ cos

2mϕt

ðzþ sinmϕtÞ2
: ðA10Þ

5Since we are interested in probability amplitude jy2ðtÞj, we
will often neglect a pure phase multiplier in what follows.
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Then, according to (A8), (A9), and (A10), the asymp-
totics for qðtÞ in (A7) equal

jzþ sinmϕtj ≫
�
mϕ

β

�
1=3

→ qðtÞ ≈ β2ðzþ sinmϕtÞ4 > 0;

ðA11Þ

jzþ sinmϕtj≪
�
mϕ

β

�
1=3

→ qðtÞ≈−
3

4

m2 cos2mϕt

ðzþ sinmϕtÞ2
< 0:

ðA12Þ
Since the squared frequencies in the two considered limits
are of different signs, we refer to (A11) and (A12) as
oscillations and dumping regimes, respectively.
We start with the oscillation regime (A11). We examine

the solution of (A6) near the point zþ sinmϕt0 ¼ 1 and
obtain wðtÞ ¼ C1 sin ðβtþ C2Þ. Assuming wðt0Þ ¼ 0,
∂wðt0Þ=∂t ¼ −2iβz

ffiffiffi
z

p
θ, see (A4) and (2.28), we arrive at

y2ðtÞ ¼ −2izθ sin ½βðt − t0Þ�: ðA13Þ

The solution (A13) in the vicinity of zþ sinmϕt0 ¼ 1

describes oscillations with a regular amplitude 2zθ.
In the regime (A11), we explore the solution of (A6) near

the point zþ sinmϕt0 ¼ 0. In the limit mϕt ≪ 1, we find
wðtÞ ¼ CðzþmϕtÞ3=2. Putting wðt0Þ ¼ ∂wðt0Þ=∂t ¼ 0,
see (A4) and (2.28), one finally gets

y2ðtÞ ¼ ðzþmϕtÞ2: ðA14Þ
This solution ensures the amplitude dumping in a small
vicinity of the point zþ sinmϕt0 ¼ 0. Such behavior
matches with the oscillating picture: oscillations are sup-
pressed when the neutrino mass is vanishingly small.
Assuming (A13) and (A14), we make a reasonable

assumption that (A6) manifests nontrivial resonance behav-
ior near the transition between two regimes, (A11) and
(A12), at

jzþ sinmϕtj≲ ϵ

�
mϕ

β

�
1=3

; where ϵ ∼ 1: ðA15Þ

To verify this statement, we resort to a numerical analysis.
First, we solve numerically (2.28) in resonance (2.43) and
depict the resulting transition amplitude jy2ðtÞj for different
model parameters in Fig. 6 (ϵ ¼ 0). To unmask a resonance
dynamic in such a system, we also solve (2.28) over a long
evolution period, excluding the regions (A15), where y1ðtÞ
and y2ðtÞ were keeping constant. Results of such a
procedure for different values of ϵ are depicted on the
same plots of Fig. 6 (ϵ ¼ 0.5, 1).
We confirm that the regions jzþ sinmϕtj ≪ ðmϕ

β Þ1=3
(A12) really give only subdominant contributions to the
transition probability as argued above. We also verified that
our method in the case ϵ ≤ 0.2 entirely reproduces the
resonant behavior (ϵ ¼ 0), but we do not show it in Fig. 6
for a clear representation. For ϵ ¼ 1, we do not find any
significant amplification of the amplitude jy2ðtÞj. It justifies
our statement that a nontrivial dynamic in system (2.28)
manifests itself mainly at (A15).
Once the relevant mass scale related to the resonance

behavior (A15) is found, one can verify our primordial
assumptions (A1), (A2). We assume that the error budget of
our framework (2.28) in the resonance is insignificantly
small if (A1) and (A2) are violated far beyond the region
where the resonance reveals itself (A15). Consequently, we
require

2θz ≪
�
mϕ

β

�
1=3

; and

�
θz

mϕ

2β

�
1=4

≪
�
mϕ

β

�
1=3

:

ðA16Þ
Finally, our framework (2.28) can be applied to describe

neutrino oscillations in resonance (2.43) only if (A16), i.e.,

2θz ≪
�
mϕ

β

�
1=3

≈
1

n1=3
ðA17Þ

FIG. 6. The oscillating behavior of jy2ðtÞj in resonance (2.43) (ϵ ¼ 0) and excluding all regions near the points MeffðtÞ ¼ 0 (A15)
(ϵ ¼ 0.5, 1) for two sets of parameters.
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is addressed, where in last equality we used (2.32).
For the reasonable values of oscillations parameters

(2.32) and not too large n, the condition (A17) is always

fulfilled. This justifies the applicability of a simplified
oscillation framework (2.28) used in the numerical analyses
of Sec. II.
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