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We study cosmological tensor perturbations induced by second-order scalar perturbations in the
presence of anisotropic non-Gaussianity. This class of induced tensor modes arises on superhorizon scales
through the anisotropic coupling between long modes and short modes. We show that scalar perturbations
on the inflationary Hubble scale to the Silk damping scale at recombination contribute to the induced tensor
powerspectrum at the cosmic microwave background (CMB) scale, and that the induced tensor spectrum
becomes almost scale-invariant. The former property suggests that measurements of the CMB offer a test of
tiny scale physics. However, the latter implies the secondary effect may contaminate the primordial tensor
spectrum, which tells us the energy scale of inflation. We derive the induced tensor modes originated from
two concrete examples of anisotropic non-Gaussianity; statistically anisotropic scalar non-Gaussianity and
scalar-scalar-tensor non-Gaussianity, and discuss observational consequences of extremely short scale
physics. Also, we comment on various possibilities of enhancing the induced spectrum with nonstandard
early Universe physics.
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I. INTRODUCTION

A common feature of gravitational waves sourced after
inflation is infrared behavior of the powerspectrum [1–3].
The induced powerspectrum is always suppressed on
superhorizon scales because physical processes causally
generate the gravitational waves. For example, a nonlinear
effect of scalar perturbations induces the dimensionless
tensor powerspectrum, which scales as q3 in the q → 0
limit. Consequently, even if catastrophic gravitational wave
productions happened inside the tiny horizons in the early
Universe, we would not see the remnants in the low-
frequency tail of the induced tensor powerspectrum that is
related to B-mode polarization of the cosmic microwave
background (CMB).
In the above example, the previous works mostly

assumed Gaussian scalar perturbations for the initial con-
dition, which does not allow mode coupling of different
Fourier modes. Causal processes secondarily produce
additional mode couplings among subhorizon modes, but
superhorizon correlations never arise. Thus, Gaussianity of
the initial scalar perturbations is a reason for the scaling. On
the other hand, primordial non-Gaussianity, in particular,
the local shape gives intrinsic mode mixing between long
modes and short modes at second-order as the primordial
bispectrum is nonzero in the squeezed limit. Therefore,
including this type of initial condition, we will see entirely

different infrared scaling of the induced tensor power-
spectrum. It would be interesting if the induced super-
horizon modes carry cosmological information at tiny
scales because we can test it, using the recent polarization
B-mode measurements (see Refs. [4–7] for recent efforts of
B-mode measurements). References [8–10] studied pri-
mordial non-Gaussianity for the induced gravitational
waves, but no one has considered the generation of
superhorizon tensor perturbations. Indeed, standard iso-
tropic non-Gaussianity never induces the superhorizon
tensor modes in terms of angular momentum conserva-
tion, and we will show quadrupole anisotropy in non-
Gaussianity is essential.
In this paper, we compute induced tensor perturbations

for statistically anisotropic scalar non-Gaussianity [11–21]
and scalar-scalar-tensor non-Gaussianity [22–28]. The
former correlation functions yield in inflationary models
with spinning fields, which break background isotropies in
the early Universe [15–19]. The latter case is more common
even for single-field inflation models [22–25], and one
expects enhancements in some models with massive spin-2
fields [27,28]. We discuss the observational consequences
of these non-Gaussian initial conditions with various
nonstandard early Universe physics which enhances the
secondary tensor perturbations, e.g., a specific reheating
scenario and primordial black hole formation.
This paper is organized as follows. First, we give a brief

introduction to mode coupling between long modes and
short modes in the presence of local non-Gaussianity in*a.ota@damtp.cam.ac.uk
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Sec. II. We introduce operator product expansion (OPE) of
cosmological perturbations, which is a useful mathematical
tool for the soft limit calculations. Then, we review an
example of the mode coupling effects in the case of scalar
perturbations. In Sec. III, we present a second-order
cosmological perturbation theory to compute induced
tensor perturbations. We derive a superhorizon solution
for non-Gaussian initial conditions and study the evolution
of the source functions in Sec. V. We show that the
superhorizon tensor perturbations arise if the OPE coef-
ficients have quadrupole anisotropy. In Sec. IV, we give two
examples of the anisotropic OPE coefficients: statistically
anisotropic non-Gaussianity and scalar-scalar-tensor non-
Gaussianity. We discuss the observational consequences of
these two examples in Secs. VI and VII. Then we give a
summary and conclusions in the final section.

II. MODE COUPLING EFFECTS AND
PRIMORDIAL NON-GAUSSIANITY

In this section, we explain the role of primordial non-
Gaussianity for the mode coupling effects of cosmological
perturbations. We will also give an example of observable
mode coupling effects in the case of scalar perturbations.

A. Operator product expansion for cosmological
perturbations

In the standard framework of cosmological perturbation
theory, the inflationary Universe sets initial conditions of
cosmological perturbations on superhorizon scales. These
modes are constant on superhorizon scales, reenter the
horizon as the Universe expands, and evolve to form
various structures in the present Universe (e.g.,
Refs [29,30] for reviews). While they are initially almost
linear Gaussian perturbations, causal processes secondarily
produce nonlinearity on subhorizon scales. Even in the
radiation era where the density perturbations do not grow,
there exist nonlinear effects. For instance, we can describe
friction heat due to shear in a viscous photon-baryon
plasma in second-order cosmological perturbation theory.
We see the linear CMB temperature anisotropy is damped
at multipole l > Oð100Þ in the observed angular power-
spectrum. In addition, while it has not been detected yet,
friction heat arises and deforms the blackbody spectrum at
second-order [31–35]. Not only the scalar perturbations but
also the vector and tensor perturbations arise at second-
order. The induced second-order vorticity in the photon-
baryon plasma during recombination leads to magnetic
fields [36–43], and the quadrupole anisotropy at second-
order scalar perturbations produce the tensor perturbations
[1–3,8,10,44–63]. A common feature among these secon-
dary effects is that physical processes induce these effects.
Hence the secondary powerspectra are significant, in
principle, at causal scales. Their dimensionless power-
spectra scale as qγ with γ > 0 on superhorizon scales

[1–3,41,42,64], in the variety of examples. Thus the
secondary cosmological perturbations are not produced
on superhorizon scales q → 0, which makes sense in terms
of causality.
So far we mentioned secondary effects originated from a

Gaussian primordial perturbation ξ, which we write the
powerspectrum in the following way:

hξðqÞξðq0Þi ¼ ð2πÞ3δð3Þðqþ q0ÞPðqÞ: ð1Þ

ξ can be, for example, the adiabatic or isocurvature
perturbations. Various inflationary models predict q3PðqÞ
is almost scale-invariant with a small tilt. The delta function
appears because of background homogeneity during infla-
tion. Equation (1) means that Gaussian perturbations only
couple to the same Fourier modes. On the other hand, many
inflationary models with nonlinear interaction also predict
intrinsic nonlinearity in cosmological perturbations [22].
For example, we write local form non-Gaussianity as

hξðqÞξðk1Þξðk2Þi¼ð2πÞ3δðqþk1þk2ÞBξðq;k1;k2Þ; ð2Þ

where we have defined

Bξðq; k1; k2Þ≡ fNLðPðqÞPðk1Þ þ 2 perms:Þ: ð3Þ

In contrast to Eqs. (1), (2) tells us ξ couples to the various
Fourier modes at second-order. Moreover, Fourier modes
are correlated even for a squeezed limit where one of the
three modes is on superhorizon scales.
Operator product expansion (OPE) of cosmological

perturbations gives us a more intuitive picture of this sort
of mode coupling. Equations (1)–(3) suggest that we may
expand a momentum space operator product in the follow-
ing way:

ξ

�
kþ q

2

�
ξ

�
−kþ q

2

�
¼ PðkÞð2πÞ3δð3ÞðqÞ þ Cξðk;qÞξðqÞ þ � � � þOðq=kÞ;

ð4Þ

where � � � imply some possible operators for given initial
conditions. Once we fix the expansion parameters, OPE (4)
simplifies soft limit calculations of second order cosmo-
logical perturbations. Taking the expectation value of both
sides of Eq. (4), and taking q=k → 0 limit, we immediately
find the first term is consistent with Eq. (1). Multiplying
ξðq0Þ on the both sides, one finds the matching condition
for Cξ:�
ξðq0Þξ

�
kþ q

2

�
ξ

�
−kþ q

2

��
¼ ð2πÞ3δð3Þðqþ q0ÞCξðkÞPðqÞ þ � � � þOðq=kÞ: ð5Þ
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The left-hand side (LHS) is given in Eqs. (2) and (3), so we
find

Cξ ¼ 2fNLPðkÞ: ð6Þ

Thus, nonvanishing Cξ means mode coupling between
short modes and long modes. Depending on the types of
primordial non-Gaussianity, we have a variety of possibil-
ities of OPE. We will discuss concrete examples of them
in Sec. IV.

B. An example of the mode coupling effect: CMB
spectral distortion anisotropy

Next, we review an example of the actual cosmological
observables related to the above mode coupling effect:
CMB spectral distortion anisotropy, and we show how OPE
(4) works. The energy spectrum of the CMB is a perfect
blackbody with small anisotropies because the early
Universe was dense radiation fluid, and photon interactions
rapidly realize local chemical equilibrium states. However,
precise numerical simulations revealed that the early
Universe was out of chemical equilibrium after the redshift
z ≃ 2 × 106 when the double Compton scattering becomes
inefficient [65,66]. After that, the Compton scattering
dominates photon interactions, which conserves the num-
ber of photons; therefore, the thermalization of nontrivial
energy injection to the local blackbody will not only change
the local temperature but also induce the nonzero chemical
potential. This process continues until z ≃ 5 × 104 when
the Universe departs from kinetic equilibrium. A possible
source of this additional energy injection is friction heat
that arises because of the acoustic oscillation of a viscous
photon-baryon plasma [31,33,34]. The friction heat is
second-order in the cosmological perturbations, and hence
the induced chemical potential μ can be generally written
as [67]

μðη;q; p̂Þ ¼
Z

d3k1d3k2
ð2πÞ6 ð2πÞ3δð3Þðk1 þ k2 − qÞ

× μ̃ðη;k1;k2; p̂Þξðk1Þξðk2Þ; ð7Þ

where μ̃ðη;k1;k2; p̂Þ is a transfer function in second-order
perturbation theory that we find by solving fluid dynamics
with gravity. Note that p̂ is the direction of photons.
Introducing a new coordinate

k1 ≡ kþ q0

2
; k2 ≡ −kþ q0

2
; ð8Þ

we integrate Eq. (7) with respect to q0, and one finds

μðη;q; p̂Þ ¼
Z

d3k
ð2πÞ3 μ̃

�
η;kþ q

2
;−kþ q

2
; p̂

�

× ξ

�
kþ q

2

�
ξ

�
−kþ q

2

�
: ð9Þ

Employing Eq. (1), we find an averaged μ parameter

hμðη;x; p̂Þi ¼
Z

d3k
ð2πÞ3 μ̃ðη;k;−k; p̂ÞPðkÞ; ð10Þ

where real space position x can be arbitrary. On the other
hand, with Eqs. (4) and (6), the fluctuation of the chemical
potential δμ≡ μ − hμi in Fourier space becomes [64,68]

δμðη;q; p̂Þ ¼ 2fNLhμðη;x; p̂ÞiξðqÞ þOðq=kÞ: ð11Þ
Let k0 be the horizon scale at the time of μ generation. Then
the transfer function μ̃ðη;k1;k2; p̂Þ will mask k1; k2 < k0
modes because physical dissipative process happens only
on subhorizon scales. Hence, for the q ≪ k0 modes, we
safely truncate the gradient corrections in Eq. (11). Thus,
short-wavelength perturbations produce μ fluctuations on
top of the long-wavelength linear perturbations through
primordial non-Gaussianity. The monopole spectral dis-
tortion anisotropy is constant before it enters the horizon as
usual density perturbations. The above generation mecha-
nism of secondary superhorizon fluctuations does not
violate causality because nonlinear interactions during
inflation induce the original mode coupling between long
modes and short modes.
While the μ anisotropy in the CMB sky is tiny as its

monopole is hμi ∼ q3P ∼ 10−9, the cross-correlation of δμ
and the temperature perturbationΘ is sensitive tofNL.This is
becauseΘ ∝ ξ so that hΘδμi ∝ fNLP2 [64]. Also, the μ auto
powerspectrum is related to the collapsed limit trispectrum
conventionally parametrized by τNL, which is related to the
squeezed bispectrum as τNL ≥ f2NL [69]. This inequality can
be shown by using Eq. (4) and the Cauchy-Schwarz inequal-
ity,andit reducestoτNL ¼ f2NL forsinglefieldcases.Onemay
wonder that theμμ autopowerspectrumis also sourcedby the
Gaussian perturbations, and the Gaussian contribution
should be more significant than the non-Gaussian contribu-
tion because hδμgδμgi ∼ P2 and hδμngδμngi ∼ τNLP3. As we
show in Fig. 1, we may consider these μμ correlation
functions are 1-loop and 2-loop diagrams, respectively.
Therefore, naively, we expect the 1-loop diagram is more
significant than the 2-loop contribution (see caption of Fig. 1
for details of diagrammatic explanations).
Indeed, Oðq=kÞ corrections contain the Gaussian con-

tribution, and hence the 1-loop contribution is suppressed
for q=k → 0. In Ref. [64], the angular powerspectrum of μ
is evaluated for both Gaussian and non-Gaussian initial
conditions as

l2Cμμ;g
l ∼ l210−29; ð12Þ
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l2Cμμ;ng
l ∼ 10−23τNL: ð13Þ

The non-Gaussian contribution is dominant even for Oð1Þ
of τNL on the CMB scale Oð100Þ < lobs < Oð103Þ. Thus,
we can measure small scale non-Gaussianity by observing
the large scale μ anisotropies [64,67,68,70–80].
Although the μ anisotropies are damped as the CMB

temperature anisotropies on small scales, let us ignore this
effect and extrapolate the angular powerspectrum to
lphys ¼ 108, which corresponds to the physical scales of
μ generation around the redshift z ∼ 106:

l2Cμμ;g
l jl¼lphys ∼ 10−13; ð14Þ

l2Cμμ;ng
l jl¼lphys ∼ 10−23τNL: ð15Þ

Thus, on the scale where μ is generated, the Gaussian
contributions are dominant as expected. Note that we may
obtain a two point correlation hδμngδμngi by contracting a
collapsed connected 4-point correlation with hydrodynam-
ical effects of short modes. In this sense, OPE is not
necessary, while it simplifies calculations. In particular, the
OPE is useful when we extend the above discussion for
tensor modes.
So far, we reviewed a concrete example of spectral

distortion anisotropy, but we may generalize a conclusion
of this section as follows: secondary quantities sourced by
high k modes will acquire long-wavelength correlations for
local non-Gaussianity, and hence wemay observe extremely
short wavelength perturbations by observing low k spec-
trum. Indeed, this type of long mode modulation have been
considered invarious contexts (see e.g., [64,81–84]), but they
were mostly for scalar perturbations. Now, we notice that the
induced tensor perturbations are similar to the above setup:
quadratic sources on small scales generate them. Then, can
the induced tensor perturbations be produced on super-
horizon scales due to primordial non-Gaussianity?

III. COSMOLOGICAL PERTURBATION THEORY
AT SECOND-ORDER

Aswe described in the previous section, this paper aims to
calculate the induced tensor perturbations in the presence of
primordial non-Gaussianity. More concretely, we are going
to generalize Eq. (11) for the tensor perturbations and
evaluate their powerspectrum. In this section, we give a
self-contained introduction to second-order cosmological
perturbation theory and find the superhorizon solution of the
induced tensormodes. Thenwe introduce the induced tensor
powerspectrum, which we will compare with observations.

A. Gravity

First of all, we write the metric tensor gμν in the following
way:

g00 ¼ −a2e2A; ð16Þ
g0i ¼ 0; ð17Þ
gij ¼ a2e2Dδij þ a2Hij; ð18Þ

where a is the scale factor, and we have chosen conformal
Newtonian gauge for the scalar perturbations. The non-
linear metric perturbations can be expanded into X ≡P

n¼1 X
ðnÞ for X ¼ A and D with n being the order in

primordial perturbations. Hij is traceless transverse secon-
dary tensor perturbation or first-order primordial one. We
ignore vector perturbations for simplicity. Note that
Refs. [45,85] discussed gauge dependence of the induced
tensor perturbations, and Ref. [86] recently evaluated them
in various gauges and show that the induced effect increases
in some gauges. Thus, the second-order tensor perturba-
tions depend on gauge conditions for the scalar perturba-
tions. In this paper, we work on the conformal Newtonian
gauge, where one can identify the nonlinear instability with
that in Newtonian gravity on subhorizon scales.
Starting from Eqs. (16) to (18), we obtain each compo-

nent of the Christoffel symbol

Γμ
νρ ≡ 1

2
gμαð∂ρgαν þ ∂νgαρ − ∂αgνρÞ ð19Þ

as

Γ0
00 ¼ Hþ A0; ð20Þ

Γ0
0i ¼ ∂iA; ð21Þ

Γ0
ij ¼ e−2Aþ2Dδij½HþD0� þHHij þ

1

2
H0

ij; ð22Þ
Γi

00 ¼ e−2Dþ2A∂iA; ð23Þ

Γi
0j ¼ ðHþD0Þδij þ

1

2
H0

ij; ð24Þ

Γi
jk ¼ −∂iDδjk þ ∂kDδij þ ∂jDδik

−
1

2
∂iHjk þ

1

2
∂kHij þ

1

2
∂jHik: ð25Þ

(c)(b)(a)

FIG. 1. Diagrams of the secondary effects. μ̃ and P correspond
to a dashed line and a solid line (a propagator). We use k and q for
a loop and an external momenta, respectively. (a) hμi corresponds
to a tadpole diagram but is not divergent because of μ̃ in
Eq. (10). (b) hδμgδμgi is understood as a 1-loop diagram. This
diagram implies that a Gaussian induced μμ propagator PG

μμ is q
independent in q=k → 0 limit. Hence q3PG

μμ ∝ q3. Therefore
superhorizon correlations are prohibited. (c) hδμngδμngi corre-
sponds to a 2-loop diagram. We can take the loop momenta k1

and k2 independently from the external momentum q. Therefore,
we get a nonvanishing contribution for q → 0.
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A prime is a derivative with respect to the conformal time,
andH≡ a0=a is the comoving Hubble parameter. Then the
Ricci tensor

Rμν ¼ ∂αΓα
μν − ∂μΓα

αν þ Γβ
αβΓα

μν − Γα
βμΓβ

αν; ð26Þ

is obtained as

R00 ¼ −3H0 − 3HD0 þ 3HA0 − 3D00 þ 3A0D0

− 3D02 þ e2A−2D½∂2Aþ ∂A∂Dþ ð∂AÞ2�; ð27Þ

R0i ¼ −2∂iD0 þ 2H∂iAþ 2D0∂iA; ð28Þ

Rij ¼ e2D−2Aδij½H0 þ 2H2 þD00 −HA0

þ5HD0 −D0A0 þ 3D02�
þ δij½−∂2D − ∂D∂A − ð∂DÞ2�
− ∂i∂jD − ∂i∂jAþ ∂iD∂jD

− ∂iA∂jAþ ∂iD∂jAþ ∂iA∂jD

þ 1

2
½H00

ij þ 2HH0
ij −∇2Hij�: ð29Þ

Finally, the Einstein tensor

Gμ
ν ¼ Rμ

ν −
1

2
δμνRα

α; ð30Þ

is given as

G0
0 ¼ a−2e−2Að−3H2 − 6HD0 − 3D02Þ

þ a−2e−2Dð2∂2Dþ ð∂DÞ2Þ; ð31Þ

G0
i ¼ a−2e−2A½−2∂iD0 þ 2H∂iAþ 2D0∂iA�; ð32Þ

Gi
j ¼ a−2e−2Aδij½−2H0 −H2 − 2D00

þ2HA0 − 4HD0 þ 2D0A0 − 3D02�
þ a−2e−2Dδij½∂2Aþ ∂2Dþ ð∂AÞ2�
þ a−2e−2D½−∂i∂jD − ∂i∂jAþ ∂iD∂jD

−∂iA∂jAþ ∂iD∂jAþ ∂iA∂jD�

þ 1

2a2
½H00

ij þ 2HH0
ij −∇2Hij�: ð33Þ

One finds a more detailed derivation, for example,
in Ref. [87].

B. Matter

Next, we introduce the energy-momentum tensor.
Assuming the matter sector is a perfect fluid, we have
the following energy-momentum tensor:

Tμν ¼ ðρþ pÞuμuν þ pgμν; ð34Þ

where uμ is time-like 4-velocity of the fluid, which satisfies
gμνuμuν ¼ −1. A static observer on the fluid measures
the energy density ρ and the pressure p. Introducing the
equation of state p ¼ wρ, we get

T0
i ¼ ρð1þ wÞu0ui; ð35Þ

Ti
j ¼ ρð1þ wÞuiuj þ ρwδij: ð36Þ

Note that anisotropic stress is non-negligible on small
scales, but we drop it for simplicity.

C. The Einstein equation

Using the Einstein equation

Gμ
ν ¼

1

M2
pl

Tμ
ν; Mpl ≡ 1ffiffiffiffiffiffiffiffiffi

8πG
p ; ð37Þ

we will compute the evolution of the tensor perturbation at
second-order. First of all, we find the evolution of the fluid
velocity using Eqs. (32), (35) and (37) as

ui ¼
2M2

pl

u0a2ρð1þ wÞ ½−∂iD0 þH∂iA�: ð38Þ

Then, we can write the spatial component of the energy
momentum tensor (36), using the metric perturbations, and
one finds

2a2

M2
pl

Ti
j ¼

8

3

1

H2ð1þ wÞ
× ∂i½HA −D0�∂j½HA −D0� þ ρwδij: ð39Þ

We also used Friedmann equation 3H2M2
pl ¼ a2ρ, which

follows from the background 00 component of the Einstein
equation (37). Combining this expression with Eq. (33), we
get

H00
ij þ 2HH0

ij −∇2Hij ¼ Sij; ð40Þ

where the source term is given as

Sij ≡ 8

3

1

H2ð1þ wÞ ∂i½HA −D0�∂j½HA −D0�

þ 2½−2D∂i∂jD − 2D∂i∂jA − ∂iD∂jD

þ∂iA∂jA − ∂iD∂jA − ∂iA∂jD� þ � � � : ð41Þ

The dots imply the terms proportional to δij or total
derivatives, which do not contribute to the second-order
tensor perturbations.
We solve Eq. (40) in Fourier space where we expand

cosmological perturbations into helicity. In this paper, we
define the Fourier transform of Xðη;xÞ as follows:
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Xðη;qÞ≡
Z

d3xe−iq·xXðη;xÞ: ð42Þ

For the adiabatic initial condition, we usually normalize the
scalar perturbations by the curvature perturbation on the
uniform density slice ζ as

Aðη;kÞ ¼ Ãðη; kÞζðkÞ; Dðη;kÞ ¼ D̃ðη; kÞζðkÞ; ð43Þ

where a tilde means a transfer function. This ζ is a gauge-
invariant and superhorizon conserved quantity; therefore,
we commonly use it to relate some predictions of the early
Universe models with physics in the late Universe. We will
discuss concrete expressions of the transfer functions in
Sec. V B.
Tensor perturbations are expanded into

Hijðη;qÞ ¼
X
s¼�2

HðsÞðη;qÞeðsÞij ðqÞ; ð44Þ

where �2 represent the helicity �2, and eðsÞij is the
gravitational wave polarization tensor whose normalization

conditions are given as eðsÞij e
ðs0Þ�
ji ¼ δss0 . More explicitly,

setting the Fourier momentum q parallel to z-axis, we may
choose a frame where

eð�2Þ
ij ðqÞ ¼ 1

2

0
B@

1 �i 0

�i −1 0

0 0 0

1
CA: ð45Þ

Using the above helicity decomposition, we find the
evolution equation of the tensor modes. In Fourier space,

multiplying eðsÞ�ij and Eq. (40), we obtain

HðsÞ00 þ 2HHðsÞ0 þ q2HðsÞ ¼ eðsÞ�ij Sij: ð46Þ

The right-hand side (RHS) is written as a convolution of the
linear perturbations as Eq. (41) is a quadratic form of the
metric perturbations.

D. Superhorizon solution

HðsÞ is composed of the intrinsic primordial tensor

fluctuation produced during inflation HðsÞ
L and the induced

second-order perturbation HðsÞ
NL. The former is a homog-

enous solution to Eq. (46), which we write

HðsÞ
L ðη;qÞ ¼ H̃ðsÞ

L ðη; qÞξðsÞðqÞ: ð47Þ

The transfer function H̃ðsÞ
L is set to unity on superhorizon

scale qη → 0.
We will find the latter solution by the Green’s function

method. A Green’s function of Eq. (46) is easily found in
qη → 0 limit. In this limit, we solve

Gðη; η̄Þ00 þ 2HðηÞGðη; η̄Þ0 ¼ δðη − η̄Þ: ð48Þ

It is straightforward to integrate this equation:

Gðη; η̄Þ ¼
Z

η

η̄
dη0

aðη̄Þ2
aðη0Þ2 : ð49Þ

For an arbitrary constant wð≠ −1=3Þ, the scale factor is
given as a ∝ η

2
1þ3w. The above Green’s function depends on

the equation of states at both η̄ and η0, and w is not
necessarily the same for them. For example, consider the
induced tensor modes arise in the radiation era
(wðη̄Þ ¼ 1=3). Then we also need to follow their evolution
in the late matter era (wðη0Þ ¼ 0). Thus, we should split the
η0 integral into several parts, depending on w0 ≡ wðη0Þ. If w0
is constant for ηn < η0 < ηnþ1, one can expand Eq. (49) into

Gðη; η̄Þ ¼
XN−1

n¼1

Gnðη; η̄Þ; ð50Þ

where η1 ¼ η̄, ηN ¼ η, and

Gnðη; η̄Þ ¼
Z

ηnþ1

ηn

dη0Λ−ϵ0
n

η̄
4

1þ3w̄

η0
4

1þ3w0
; ð51Þ

ϵ0 ≡ 12ðw0 − w̄Þ
ð1þ 3w̄Þð1þ 3w0Þ : ð52Þ

Note that w̄ ¼ wðη̄Þ, and Λn is a constant whose dimension
is Mpc. Λ would be typically given by the conformal time
at transition, so ηn−1 < Λn < ηn. Then we find

Gnðη; η̄Þ ¼
1þ 3w̄
3ð1 − w0Þ

η̄

Λϵ0
n

0
B@ η̄

3ð1−w̄Þ
1þ3w̄

η
3ð1−w0Þ
1þ3w0
n

−
η̄
3ð1−w̄Þ
1þ3w̄

η
3ð1−w0Þ
1þ3w0
nþ1

1
CA: ð53Þ

Since we have η̄ ≤ ηn < ηnþ1 and w ≤ 1=3, we obtain

Gðη; η̄Þ ¼ 1þ 3w̄
3ð1 − w̄Þ η̄

�
1þO

�
η̄γ

Λϵ0
n η

γ−ϵ0
n

��
; ð54Þ

where γ > 0. Thus the induced superhorizon modes do not
depend on η, i.e., the induced tensor perturbations are
conserved on superhorizon scales.
The RHS of Eq. (46) is also simplified for q=k → 0.

Assuming the following OPE

ζ

�
kþ q

2

�
ζ

�
−kþ q

2

�
¼ PζðkÞð2πÞ3δð3ÞðqÞ
þ

X
s0¼0;�2

Cs0 ðk;qÞξðs0ÞðqÞ þOðq=kÞ; ð55Þ
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with ξð0Þ ≡ ζ and using Eqs. (41), (42) and (43), we find

lim
q=k→0

eðsÞ�ij Sij ¼
ffiffiffiffiffiffiffiffi
2

15π

r X
s0¼0;�2

ξðs0ÞðqÞ
Z

k2dk
2π2

× k2Cs0;2sðk;qÞ
�
Ã2ðη; kÞ þ D̃2ðη; kÞ

þ
4ðÃðη; kÞ − D̃0ðη;kÞ

HðηÞ Þ
2

3ð1þ wÞ
�
; ð56Þ

where Cs0;2sðk;qÞ is the quadrupole harmonic coefficient of
Cs0 ðk;qÞ for k̂, and we used

eð�Þ�
ij ðqÞk̂ik̂j ¼

ffiffiffiffiffiffi
8π

15

r
Y�
2;�2ðk̂Þ: ð57Þ

Note that we will fix the OPE parameters in the following
sections.
To summarize, we find the following superhorizon

solution to Eq. (46):

lim
q→0

HðsÞðη;qÞ¼ H̃ðsÞ
L ðη;qÞξðsÞðqÞ

þ
X

s0¼0;�2

Z
k2dk
2π2

Cs0;2sðk;qÞWðη;kÞξðs0ÞðqÞ;

ð58Þ

where we introduced a k space window function

Wðη; kÞ ¼
ffiffiffiffiffiffiffiffi
2

15π

r Z
η

ηini

dη̄Gðη; η̄Þk2
"
Ãðη̄; kÞ2 þ D̃ðη̄; kÞ2

þ
4ðÃðη̄; kÞ − D̃0ðη̄;kÞ

Hðη̄Þ Þ
2

3ð1þ wÞ

#
: ð59Þ

Thus, Cs0;2sðk;qÞ ≠ 0 is necessary to get nonvanishing
superhorizon induced tensor perturbations. q → 0 has two
meanings; qη → 0 and q=k → 0. The former means we
consider the superhorizon induced perturbations, and
the latter implies a hierarchy between the scale of the
induced tensor modes and that of the quadratic sources.
Interestingly we may write the nonlinear part of Eq. (58) as

lim
q=k→0

HðsÞ
NLðη;qÞ ¼

X
s0¼0;�2

H̃ðsÞ
NL;s0 ðη;qÞξðs

0ÞðqÞ: ð60Þ

Thus, we can treat the induced tensor perturbations as if
they are linear perturbations in q=k → 0 limit even when qη
is not small. Therefore, we may linearly extrapolate the
evolution of the induced tensor perturbations after the
horizon entry for q=k → 0 configurations. This property is
useful because we can avoid a complicated calculation of

second-order perturbation theory for the evolution after the
horizon entry.

E. Induced powerspectrum

Our observables are B-mode polarization, which is
produced by the induced tensor perturbations at the last
scattering surface. The maximum observable wave number
is the Silk damping scale kD at recombination time ηrec.
Therefore, we evaluate the induced tensor perturbations of

q < kDðηrecÞ; ð61Þ

wherewe use a letter of “k” for a loopmomentum and “q” for
an external leg in this article unless otherwise stated. Note
that the solution is written in the form of Eq. (60) for
k > kDðηrecÞ, so we chose the lower bound of k integral (58)
as k ¼ kDðηrecÞ and ignore kDðηrecÞ > k modes. Also, we
evaluate the induced powerspectrum when this mode enters
the horizon, that is, at ηD ≡ k−1D ðηrecÞ. One can justify
this prescription because we already know non-
Gaussianity is tiny at kDðηrecÞ > k through the CMB
anisotropy measurements.
Now, we define the powerspectrum of the induced tensor

perturbations as

lim
q=k≪1

X
s

hHðsÞðηD;qÞHðsÞ�ðηD;q0Þi

¼ ð2πÞ3δð3Þðq − q0ÞPHðqÞ; ð62Þ

which can be decomposed into

PHðqÞ ¼ PH;NLðqÞ þ 2PH;NL−LðqÞ þ PH;LðqÞ: ð63Þ

PH;NL, PH;NL−L and PH;L are auto powerspectrum of HNL,
cross powerspectrum of HNL and HL, and auto power-
spectrum of HL, respectively. Note that the induced tensor
powerspectrum can be angular dependent: we will show in
the following sections that statistically anisotropic non-
Gaussianity inevitably induce the statistically anisotropic
tensor perturbations. In the present normalization condi-
tion, we can also write limq=k≪1hHijðηD;qÞH�

ijðηD;q0Þi ¼
ð2πÞ3δð3Þðq − q0ÞPHðqÞ. Therefore,we introduce the tensor-
to-scalar ratio as

r≡ PH

Pζ
; ð64Þ

where we introduced the scalar powerspectrum

hζðqÞζðq0Þi ¼ ð2πÞ3δð3Þðqþ q0ÞPζðqÞ: ð65Þ

We also use the dimensionless powerspectrum Pζ ≡
k3Pζ=2π2 in the following sections.
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IV. INITIAL CONDITIONS

Equation (58) shows that superhorizon induced tensor
perturbations are nonzero for quadrupole OPE coefficients.
Indeed, such an angular dependent coefficient does not
appear in the most standard scalar non-Gaussianity, but we
will see it is not vanishing for anisotropic non-Gaussianity.

A. Case 1: Statistically anisotropic non-Gaussianity

Let us consider scalar bispectrum defined as

hζðkÞζðk0ÞζðqÞi¼ð2πÞ3δð3Þðkþk0þqÞBζðk;k0;qÞ: ð66Þ

For standard statistically isotropic perturbations bispectra
can be parametrized by at most 3 parameters as Bζðk; k0; qÞ.
On the other hand, some inflationary model with U(1)
gauge fields predicts violation of statistical isotropy, which
results in the additional angular dependence of the scalar

bispectrum [11,12,17]. More generally, higher spin fields
during inflation leave anisotropy in primordial non-
Gaussianity [15–19]. In this article, let us focus on the
most straightforward and concrete example of spin 1. In the
squeezed limit, one can write such a bispectrum in the
following form (see e.g., Ref. [12])

lim
k∼k0≫q

Bζðk;k0;qÞ

¼ 24PζðkÞPζðqÞg⋆ðkÞNðqÞ
× ½1 − ðk̂ · d̂Þ2 − ðq̂ · d̂Þ2 þ ðk̂ · d̂Þðq̂ · d̂Þðk̂ · q̂Þ�; ð67Þ

where d̂ is a preferred direction in the presence of a vector
field during inflation. NðqÞ ∼ 60 e-folds, and g⋆ðkÞ is a
parameter which is related to the U(1) gauge field strength
and inflationary potential evaluated when a kmode exits the
horizon. This g⋆ controls the magnitude of the anisotropy.

One can write the angular dependent part using the spherical harmonics in the following way:

1 − ðk̂ · d̂Þ2 − ðq̂ · d̂Þ2 þ ðk̂ · d̂Þðq̂ · d̂Þðk̂ · q̂Þ

¼ 1 −
�
2

3
P2ðk̂ · d̂Þ þ

1

3

�
−
�
2

3
P2ðq̂ · d̂Þ þ 1

3

�
þ P1ðk̂ · d̂ÞP1ðq̂ · d̂ÞP1ðk̂ · q̂Þ

¼ 4π

3

ffiffiffiffiffiffi
4π

p
Y�
00ðk̂ÞY00ðq̂ÞY�

00ðd̂Þ −
2

3

4π

5

ffiffiffiffiffiffi
4π

p X2
M1¼−2

Y�
2M1

ðk̂ÞY00ðq̂ÞY2M1
ðd̂Þ

−
2

3

4π

5

ffiffiffiffiffiffi
4π

p X2
M1¼−2

Y�
00ðk̂ÞY2M1

ðq̂ÞY�
2M1

ðd̂Þ þ
�
4π

3

�
3 X
M1;M2;M3

Y1M1
ðk̂ÞY1M3

ðk̂ÞY�
1M3

ðq̂Þ

× Y�
1M2

ðq̂ÞY�
1M1

ðd̂ÞY1M2
ðd̂Þ:

Then we can expand the squeezed limit bispectrum as follows:

lim
k∼k0≫q

Bðk;k0;qÞ ¼ 24g⋆ðkÞNðqÞPζðkÞPζðqÞ
X
limi

Bl1l2l3
m1m2m3

Y�
l1m1

ðk̂ÞYl2m2
ðq̂ÞY�

l3m3
ðd̂Þ; ð68Þ

where i runs from 1 to 3, and multiharmonic coefficients are defined as

Bl1l2l3
m1m2m3

¼ 4π

3

ffiffiffiffiffiffi
4π

p
δl10δm10

δl20δm0δl30δm30
−
2

3

4π

5

ffiffiffiffiffiffi
4π

p
δl12δl20δm20

ð−1Þm1δl32δm3;−m1

−
2

3

4π

5

ffiffiffiffiffiffi
4π

p
δl10δm10

δl22δl32δm3;m2
þ
�
4π

3

�
3 X
M1;M2;M3

Gl1;1;1
m1;M1;M3

ðGl2;1;1
m2;M2;M3

Þ�ð−1ÞM1Gl3;1;1
m3;−M1;M2

; ð69Þ

with the Gaunt integral

Gl1l2l3
m1m2m3

≡
Z

dn̂Yl1m1
ðn̂ÞYl2m2

ðn̂ÞYl3m3
ðn̂Þ: ð70Þ

We find the OPE coefficient for s0 ¼ 0 as

C0ðk;qÞ ¼ 24g⋆ðkÞNðqÞPζðkÞ
X
limi

Bl1l2l3
m1m2m3

× Y�
l1m1

ðk̂ÞYl2m2
ðq̂ÞY�

l3m3
ðd̂Þ: ð71Þ
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Then, Eq. (60) becomes

HðsÞ
NL ¼ ζh0

X
limi

B2;l2l3
−s;m2m3

Yl2m2
ðq̂ÞY�

l3m3
ðd̂Þ; ð72Þ

where we have defined

h0ðη; qÞ≡
Z

k2dk
2π2

PζðkÞ24g⋆ðkÞNðqÞWðη; kÞ: ð73Þ

Without loss of generality, we may choose a z axis, so let us
consider ẑkq̂. In this case, we find

Ylmðq̂ ¼ ẑÞ ¼ δm0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4π

r
: ð74Þ

Then, we may simplify r by using Legendre polynomials:

r ¼
X

s;l;l2l3l02l
0
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4π

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2l2 þ 1

4π

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2l0

2 þ 1

4π

r

× B2;l2l3

−s;0;s B
2;l0

2
l0
3
�

−s;0;s G
ll3l03
0;−s;sPlðd̂ · q̂Þh20; ð75Þ

where we assume that the primary tensor perturbations are
subdominant for simplicity. Simplifying Eq. (75), we get

r ¼ 8h20
225

�
1 −

10

7
P2ðq̂ · d̂Þ þ 3

7
P4ðq̂ · d̂Þ

�
: ð76Þ

Introducing Legendre expansion of the tensor-to-scalar
ratio

r ¼
X4
l¼0

ð−iÞlð2lþ 1ÞrlPlðq̂ · d̂Þ; ð77Þ

we find the monopole component

r0 ¼
8h20
225

: ð78Þ

r depends on q through NðqÞ, which is almost scale
invariant at the CMB scale. Thus, we can have a scale-
invariant tensor powerspectrum without primordial tensor
perturbations. Moreover, the tensor powerspectrum
becomes statistically anisotropic, and we obtain the follow-
ing consistency relations:

r2
r0

¼ 2

7
;

r4
r0

¼ 1

21
;

r4
r2

¼ 1

6
; ð79Þ

which can be useful to distinguish the induced tensor
powerspectrum from the other initial conditions.

B. Case 2: Scalar-scalar-tensor non-Gaussianity

Another possibility of angular dependent OPE coeffi-
cients is scalar-scalar-tensor non-Gaussianity:

hζðkÞζðk0ÞHðsÞðqÞi¼ ð2πÞ3δð3Þðkþk0 þqÞBðsÞ
ζζHðk;k0;qÞ:

ð80Þ

This type of scalar-tensor cross bispectrum was discussed
in Refs. [22–28]. In particular, authors in Ref. [27] showed
that massive spin-2 fields potentially enhance this corre-
lation without changing the standard predictions of single-
field inflation. In the squeezed limit, BðsÞ

ζζHðk;k0;qÞ can be
written in the following form [22]

lim
k∼k0≫q

BðsÞ
ζζHðk;k0;qÞ

¼ 3

4
αðsÞðqÞPH;LðqÞβðkÞPζðkÞeðsÞij ðqÞk̂ik̂j; ð81Þ

where we assumed separable coefficient αðsÞβ, which is 1
for slow-roll single field inflation. By definition, primary
tensor perturbations are inevitable in this case; therefore
one would be more interested in a possibility such that the
induced effects dominate the primordial tensor perturba-
tions. Combining Eqs. (55) and (81), we find

C�2ðk;qÞ ¼
3

4
αð�2ÞðqÞβðkÞPζðkÞ

ffiffiffiffiffiffi
8π

15

r
Y2;�2ðk̂Þ: ð82Þ

Then s0 ¼ �2 coefficient in Eq. (60) is nonzero, and we
obtain

HðsÞ
NL ¼ hsξðsÞ; ð83Þ

where we have defined

h�2ðη;qÞ≡
ffiffiffiffiffiffi
3π

10

r Z
k2dk
2π2

αð�2ÞðqÞβðkÞPζðkÞWðη;kÞ: ð84Þ

The total tensor powerspectrum is

PH ¼ PH;L

2

X
s¼�2

ð1þ hsÞ2: ð85Þ

Thus, we cannot distinguish the induced powerspectrum
from the primary tensor powerspectrum as long as α is scale
invariant. Let us write the cross term of the linear and
nonlinear parts of the tensor-to-scalar ratio as

rNL−L ≡ 2PH;NL−L

PH;L
: ð86Þ

If jrNL−Lj > 1, the observed tensor perturbations are
dominated by the induced contributions. Therefore, rNL
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can be large enough to observe even if the primary
contribution is small.

V. EVALUATION OF THE INDUCED
TENSOR PERTURBATIONS

In the previous sections, we presented a theoretical
framework of the superhorizon induced tensor perturba-
tions. The first goal of this article is to evaluate Eqs. (78)
and (86) by computing the window function (59) and
integrating it in k space.

A. Characteristic scales

Aswe discussed in Eq. (62), we evaluate the superhorizon
tensor powerspectrum at some conformal time before hori-
zon entry of the Silk damping scale at recombination. In this
paper, we chose ηD ¼ 10: Mpc in Eq. (62). Then the lower
limit of the k space integral (58) is kD ¼ 0.1 Mpc−1 since
H ¼ 1=η in the radiation era. On the other hand, the upper
bound of k space integral should be the horizon scale kI at
the end of inflation. The present Hubble parameter is
67 km · s−1 · Mpc−1, so we get k0 ¼ 2.2 × 10−4 Mpc−1.
Then kI ¼ HðηIÞHðη0Þ−1k0 ¼ e60k0 ¼ 2.6 × 1022 Mpc−1

for inflation of e-fold 60. Therefore, we integrate thewindow
function for0.1≲kMpc≲1022 andevaluate it at η¼ 10:Mpc.
The Universe has experienced different regimes before

recombination since inflation terminated. First of all, if the
inflaton or some other fields oscillate at the bottom of
inflationary potential, the Universe becomes matter dom-
inant effectively. We call this epoch an early matter-
dominated epoch. Depending on preheating or reheating
scenarios, this early matter era takes a short time or a long
time. Then, fields decay into radiation, reheating termi-
nates, and the Universe becomes radiation dominant.
Finally, cold dark matter starts to dominate after redshift
z ∼ 3400, or keq ¼ 2ð2 − ffiffiffi

2
p Þη−1eq ∼ 0.01 Mpc−1. We call

this period the late matter era.
The evolution of the induced tensor modes highly

depends on the evolution of the background Universe, or
more directly, the evolution of the gravitational potential. In
the radiation era, the gravitational potential is decaying
after the horizon entry, and fluid velocity is not growing. As
a result, the secondary source is damped soon after the
horizon entry. On the other hand, during the matter era, the
linear gravitational potential is constant on all scales, and
the fluid velocity is growing on small scales. Therefore, the
source is not decaying, and tensor perturbations can be
induced a lot in the early matter era.
In contrast to the transition from the radiation era to the

late matter era, we know very little about the transition from
the early matter era to the radiation era. Even worse, we
have no idea when it happened. Therefore, reheating
temperature TR or reheating conformal time ηR ∼ k−1R are
free parameters in the following analysis. ηI ∼ k−1I is the
minimum possible value of ηR for instantaneous reheating

after inflation. In most cases, we assume TR should be
above the temperature of big bang nucleosynthesis (BBN).
The relation between TR and ηR is given as [57]

ηR ¼ 10−14 Mpc

�
gs

106.75

�
1=3

�
g

106.75

�
−1=2

×

�
TR

1.2 × 107 GeV

�
−1
; ð87Þ

with the effective degrees of freedom for the entropy
density gs and the effective relativistic degrees of freedom
g. For simplicity, we ignore the details of transition; we
evaluate contributions from the radiation era and early
matter era separately. However, Refs. [56,57] studied
induced tensor perturbations for a sudden transition and
a gradual transition from the early matter era to the
radiation era, providing concrete models. In this paper,
we will comment on the superhorizon induced spectrum for
the sudden transition after some conservative analysis.

B. Analytic transfer function
of the gravitational potential

In this article, we do not integrate the Einstein equation
full numerically. Instead, we use analytic transfer functions
of the gravitational potential with several assumptions.
First, when we ignore the anisotropic stress in the Einstein
equation, one finds A ¼ −D. Note that this assumption is
not valid deep inside the horizon. Then, we assume the
equation of state is constant. For an arbitrary constant w,
with a ∝ η

2
1þ3w, we find [29]

Ã00 þ 6ð1þ wÞ
1þ 3w

1

η
Ã0 þ wk2Ã ¼ 0; ð88Þ

and its general solution

Ã ¼ ð ffiffiffiffi
w

p
kηÞ−ν½C1Jνð

ffiffiffiffi
w

p
kηÞ þ C2Yνð

ffiffiffiffi
w

p
kηÞ�; ð89Þ

where ν≡ ð5þ 3wÞ=2ð1þ 3wÞ. Jν and Yν are the Bessel
functions of the first kind and the second kind, respectively.
In each era, matching the coefficients on superhorizon
kη → 0, we obtain

Ã ¼ 3þ 3w
5þ 5w

Γ½νþ 1�
� ffiffiffiffi

w
p

kη
2

�−ν
Jνð

ffiffiffiffi
w

p
kηÞ; ð90Þ

where Γ is the Gamma function. For w ¼ 1=3, one
finds [30]

Ãðη; kÞ ¼ 2

3

9

k2η2

�
sinðkη= ffiffiffi

3
p Þ

kη=
ffiffiffi
3

p − cosðkη=
ffiffiffi
3

p
Þ
�
: ð91Þ

Also, for w ¼ 0, we get Ã ¼ −D̃ ¼ 3=5 on superhorizon
scale. In the early matter era, we write the transfer func-
tions as
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Ãðη; kÞ ¼ 3

5
θðkcutðηÞ − kÞ; ð92Þ

wherewe introduced the step function θ to include the cutoff
scale. Two factors determine this cutoff scale. First, the early
matter era starts when inflation ends at η ¼ ηI. The initial
condition of the gravitational potential is well defined on the
superhorizon scale at that time, so we drop modes inside the
horizon at ηI for simplicity. Second, in the matter-dominated
epoch, density perturbations grow nonlinearly. Using the
Poisson equation

2M2
plk

2A ¼ a2ρδ ð93Þ

and the Friedmann equation

3H2M2
pl ¼ a2ρ; ð94Þ

with H ¼ 2=η in matter era, we find

A ¼ 6

k2η2
δ: ð95Þ

AsA is constant inmatter era, andwe haveA ¼ 3=5
ffiffiffiffiffiffi
Pζ

p
for

the scale-invariant curvature perturbations. Assuming
Pζ ¼ 2.2 × 10−9, we find δ ¼ 1 for kη ∼ 462. Solving this
equation, the authors in Ref. [50,51,57] concluded that the
nonlinear cutoff scale is given by 462=η and hence

kcut ¼ min: ½462=η; 1=ηI�: ð96Þ

However, nonlinear evolution normally starts before δ gets
unity in linear theory. So, writing the full density contrast as
δ ¼ δL þ δNL, we should get δNL ¼ 1 ≫ δL. In other words,
when we get δL ¼ 1, one finds the full density contrast is
above unity, and nonlinear correlations are dominant. Thus,
Eq. (96) does not provide a cut-off scale of linear perturbation
theory properly. Nevertheless, we may justify computing
tensor perturbations using Eq. (96) in the present case. This
justification is because different OPE coefficients determine
the significance of the nonlinear terms. For example, one can
parameterize a cubic order operator product by the conven-
tional local form cubic order parameter gNL. However, such a
contribution is normally subdominant because the cubic term
employs an additionalPζ. Also, the gravitational potential is
not highly nonlinear even if the matter perturbations become
large. Therefore, the quadratic term of linear perturbations
would be dominant for the source of superhorizon tensor
perturbations, even in the nonlinear regime. Then, can we
extend the cutoff scale to an arbitrarily small scale? The
answer is “no,” butwe point out that one can extend the cutoff
scale more. In this case, the crucial scale is given by the
critical density δc ¼ 1.69 rather than δ ¼ 1. In the Press-
Schechter theory for halo formation, a spherical region
collapses when the linear density perturbations reach the

critical density (see, e.g., [29], for a review of the nonlinear
collapse). One usually considers that shell crossing happens
at some point in the nonperturbative regime, and dense
regions are virialized. We account for this smoothing effect
by introducing the cutoff scale with a step function (92);
therefore, more optimistically, we may improve the cutoff
scale as

kcut ¼ min: ½585=η; 1=ηI�: ð97Þ

In this article, wewill use this cutoff scale instead of Eq. (96).

C. Window functions

Using the above approximate formulas, let us evaluate
the window function (59) at η ¼ ηD. We show plots of the
window function (59) in Fig. 2. In Fig. 2, we evaluated the
window function for the radiation era and the early matter
era with TR ¼ 1.2 × 107 GeV. The contribution from the
radiation era is asymptotically flat on high k. We can see the
window function is enhanced for the early matter era, as
was pointed out in Ref. [50]. The plateau during early
matter era is because of the step function θðkcutðηÞ − kÞ. If
we do not have this step function, the window function
blows up because of the linearly extrapolated high kmodes.
References [56,57] showed that details of the transition

from the early matter era to the radiation era might affect
the induced tensor perturbations. They found that, depend-
ing on the transition time scale, induced tensor perturba-
tions can be amplified or suppressed significantly. For
example, if it is a sudden transition, scalar perturbations
deep inside the horizon at the initial time of the radiation era
strongly enhance the induced spectrum. This enhancement
is because high k modes oscillate quite rapidly after the

FIG. 2. Plots of the window functions for the early matter era,
the radiation era and their sudden transition. We chose
TR ¼ 1.2 × 107 GeV, which is equivalent to ηR ¼ 10−14 Mpc.
The secondary source for radiation era (dashed line) is almost
scale-invariant, and the window for early matter era (dot-dashed
line) is 103 times bigger than that of the radiation era. The solid
orange line accounts for both era and their sudden transition.
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transition. We find the scalar transfer functions by matching
the gravitational potential and its derivative at η ¼ ηR using
Eq. (89), following Ref. [57]. Note that they pointed out we
may assume continuity of the gravitational potential on
subhorizon scales, while it is discontinuous on super-
horizon scales. Then, in Fig. 2, we showed the enhance-
ment due to the sudden transition from the early matter era
to the radiation era. We can see a huge enhancement in
kR < k < kcutðηRÞ. The peak of the window function is
Oð109Þ at k ¼ kcut. We can reproduce this value by
evaluating Eq. (59) as

Wðη; kcutÞ ∼
ffiffiffiffiffiffiffiffi
2

15π

r
ðkcutηÞ4

4

4

3ð1þ wÞ
�
3

5

�
2
				
w¼1

3

: ð98Þ

Thus, the term proportional to ðD0=HÞ2 in Eq. (59) gives
the peak.

VI. TENSOR-TO-SCALAR RATIO FOR
STATISTICAL ANISOTROPY

Now we discuss observability of the induced tensor
powerspectrum. In this section, we estimate the tensor-to-
scalar ratio for the statistically anisotropic scalar non-
Gaussianity (67). Here, we assume g⋆ is scale-invariant
for simplicity.

A. Induced spectrum in the radiation era

As we mentioned, TR is a model-dependent parameter in
the present analysis, and the choice of TR changes
estimations drastically. Therefore, we first give the most
conservative estimation of the spectrum in the radiation era
and discuss upper bounds on parameters. In Fig. 3, we plot
Eq. (78) as a function of kmax, which is the integral upper

bound in Eq. (58). For pure radiation era and kmaxMpc ¼
1022, Fig. 3 shows

r0 ∼ 1011ðPζg⋆Þ2: ð99Þ

Since the k space window function is nearly constant as we
showed in Fig. 2, we see r is logarithmically divergent but
is not sensitive to the practical choice of kmax.
Now, let us discuss upper bounds on statistical

anisotropy. No one knows about short-wavelength density
powerspectrum, so we constrain or forecast a pair of
ðPζ; g⋆Þ. Figure 4 is a contour plot of tensor-to-scalar ratio
in ðPζ; g⋆Þ plane. The red dashed line corresponds to
r ¼ 0.056, so the current observations exclude the param-
eter region above this line [7]. The interval of the contour is
100 times, as shown in the legend. For the scale-invariant
scalar powerspectrum, the upper bounds on g⋆ is much
weaker than unity. However, once we have enhancements
of Pζ or g⋆ in kD < k < kmax, the signal would be
detectable. The blue and yellow dashed line corresponds
to r ¼ 10−6 and r ¼ 10−8, respectively.
In Ref. [46], the authors estimated the B-mode power-

spectrum due to the induced tensor perturbations. In the
previous analysis, the initial condition was Gaussian so that
the scalar perturbations on krec < k < kD sourced the induced
tensor powerspectrum, as we discussed in Sec. II B. They
showed that this signal corresponds to r ∼ 10−6, which can
be noise for the monopole tensor-to-scalar ratio unless we

FIG. 3. Tensor-to-scalar ratio as a function of kmax for the early
matter era, the radiation era and their sudden transition. We chose
TR ¼ 1.2 × 107 GeV, which is equivalent to ηR ¼ 10−14 Mpc.
The logarithmic divergence is slow enough for practical values
of kmax.
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FIG. 4. A contour plot of the (monopole) tensor-to-scalar ratio
induced in the radiation era. The red dashed line corresponds to
the current upper bound from the observations of the CMB
polarization. The blue dashed line corresponds to r ¼ 10−6,
which is comparable to noise due to the induced gravitational
waves from Gaussian initial conditions. The yellow dashed line
means r ¼ 10−8. This line gives the observable lower limit of
anisotropic part of r for the above noise. The red solid line
includes the enhancement due to the sudden transition from the
early matter era to the radiation era.
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observe primordial tensor perturbations of r > 10−6. Also, as
Ref. [88] has discussed possible lower bounds of detectable
r, we can remove lensing contaminations to observe
r ∼ 10−6. Then, once we measure tensor-to-scalar ratio
robs ¼ max½rL; rNL; 10−6�, what is the measurable lowest
value of g⋆? For the monopole tensor-to-scalar ratio, appa-
rently we cannot see the signal below robs, so the error bar is
Δr0 ∼ robs, which corresponds to Δg⋆ ∼ 20 for robs ¼ 10−6.
On the other hand, as we showed in Eq. (79), the non-
Gaussian induced contribution is statistically anisotropic and
has P2 and P4 dependence. Consistency relation (79) is
useful to test anisotropic initial conditions. Reference [89]
studied detectability of statistical tensor anisotropy.
They showed that we might observe the Legendre coeffi-
cients of the tensor powerspectrum up to 1% level of
the observed monopole component. Note that their
definitions of the Legendre coefficients are different
from Eq. (77). Therefore, the error bar would be Δr2;
Δr4 ∼ robs=100. Suppose we get robs ¼ 10−6, Δr2 ∼ Δr4 ∼
10−8. We showed 10−8 with the yellow line in Fig. 4, which
corresponds to Δg⋆ ¼ 0.2. Thus, for the most conservative
setup, the error bar on g⋆ is not improved, compared to
Δg⋆ ¼ 0.02, which we observed in the previous analysis
with CMB temperature anisotropies [90]. However, our
forecast covers complementary scales for the previous
analysis based on Planck. They derived the strong upper
bound on g⋆ðkÞ for k0 < k < kD. On the other hand, the
present induced tensor perturbations are sensitive to g⋆ðkÞ on
kD < k < kI . Thus, they studied g⋆ of 6 to 7 e-folds only, but
our forecast covers the rest of e-folds more than 50.

B. Induced spectrum in the early matter era

Next, we consider the tensor-to-scalar ratio for various
reheating temperatures. In Fig. 3, we can see r is enhanced
during the early matter era by a factor of 103 to 104,
depending on the reheating temperature. Assuming scale-
invariant curvature perturbations, i.e., Pζ ¼ 2.2 × 10−9, we
show a contour plot of r in TR-g⋆ plane in Fig. 5. Then,Δg⋆
improves by a factor of 103 to 104. Thus, if there exists an
early matter era, it has a considerable impact on the
superhorizon induced tensor modes.

C. Enhancement due to sudden transitions

We also leave a comment on the enhancement of the
induced tensor perturbations for the sudden transition from
the early matter era to the radiation era. The tensor-to-scalar
ratio as a function of kmax is shown in Fig. 3. As we see in
this plot, the enhancement due to the transition is dominant,
and hence TR dependence is lost. We found that the tensor-
to-scalar ratio is amplified by a factor ofOð1012Þ compared
to the pure radiation case, which we can estimate as

8
225

· ½24 · 60 · 1
4
Wðη; kcutÞ�2

1011
∼ 1012; ð100Þ

where we used Eqs. (73), (78) and (98). In Figs. 4 and 5, we
also show this enhancement with a solid red line. Thus, in
this case, the present upper bound on r has already strongly
constrained the anisotropy as g⋆ < 3.5 × 10−4.

VII. TENSOR-TO-SCALAR RATIO FOR SCALAR-
SCALAR-TENSOR NON-GAUSSIANITY

In Eq. (85), we showed that the induced powerspectrum
and the primary spectrum scale in the same way. Also,
Eq. (79) is not applicable for scalar-scalar-tensor non-
Gaussianity. Thus, in principle, we cannot distinguish these
tensor spectra, which would be a problem if we observe the
primordial B-mode polarization in the future. Of course, the
nonlinear part is dominant only for large parameters

jαβj ×
�

Pζ

2.2 × 10−9

�
≳ 1.4 × 105; ð101Þ

when we only account for the radiation era (we assume
αð�2Þ ¼ α and β are scale-invariant.). However, such a large
parameter is not so ridiculous if we consider primordial
black hole formation in the early Universe. Let us consider
the scalar powerspectrum has a peak at k ¼ kp. Here, we
model this powerspectrum using the delta function as [48]

PζðkÞ ¼ A2δðln k=kpÞ; ð102Þ

where typically we have A2 ∼ PζðkpÞ × ðpeak widthÞ.
Using this spectrum, we find

rNL−L
rL

∼ 2

ffiffiffiffiffiffi
6π

5

r
A2αðqÞβðkpÞWðηD; kpÞ: ð103Þ
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FIG. 5. A contour plot of the (monopole) tensor-to-scalar ratio
induced in the early matter era in TR-g⋆ plane. We define the
dashed lines in the same way as Fig. 4. The solid red line includes
the enhancement due to sudden transition from early matter era to
radiation era.
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While we have to specify an inflationary model to fix jαβj,
the induced tensor mode can be dominant for A2 ¼
Oð10−2Þ and jαβj ¼ Oð1Þ. On the other hand, even for
the scale-invariant perturbations with small nonlinear
parameters, the induced spectrum can be enhanced,
depending on reheating scenarios. For sudden transition
in the previous section, we find

rNL−L
rL

∼ 4.8 × αβ ×

�
Pζ

2.2 × 10−9

�
: ð104Þ

Thus, even for αβ ¼ 1, tensor perturbations are dominated
by the induced contribution. Note that any detection
of tensor powerspectrum suffers from this degeneracy
unless we exclude the above nonstandard early Universe
physics.

VIII. CONCLUSIONS

In this paper, we studied induced tensor perturbations,
at second-order in scalar perturbations, sourced by
mode coupling effects originated from primordial non-
Gaussianity. We computed the source term of the induced
tensor modes, applying OPE for cosmological perturba-
tions and derived a superhorizon solution. The amplitude of
the induced spectrum is sensitive to the size of anisotropic
non-Gaussianity and scalar perturbations on all scales from
the horizon scale at the end of inflation to the Silk damping
scale in the CMB anisotropies. Therefore, the induced
powerspectrum can be a powerful tool to test small scale
physics, including primordial black hole formations and
reheating scenarios in the early Universe. We also found
that the induced superhorizon tensor powerspectrum
becomes scale-invariant in the presence of anisotropic
non-Gaussianity; therefore, the ongoing measurements of
CMB polarization B-modes are more useful to detect these
effects rather than the laser interferometers. We evaluated
the induced tensor-to-scalar ratio for two concrete examples
of anisotropic non-Gaussianity: statistically anisotropic
scalar non-Gaussianity motivated by some inflationary
model with a vector field, and scalar-scalar-tensor non-
Gaussianity, which is more common for various infla-
tionary models [22–28].
In Fig. 4, we presented a contour plot of the tensor-to-

scalar ratio for a given scalar powerspectrum and statistical
anisotropy parametrized by g⋆. Upper bounds on g⋆ derived
from this plot are much weaker than the present constraint
by Planck. However, Planck only tested large scale isot-
ropies on 6–7 e-folds, while our bounds apply to the rest of
the total e-folds. Thus, we showed that the induced tensor
powerspectrum offers a test of statistical anisotropy on
smaller scales. In other words, if there are large anisotropies
on tiny scales, the induced contribution contaminates the
primordial tensor powerspectrum. This degeneracy is
potentially a problem if we observe the primary B-modes
in the future because we cannot conclude the energy scale

of inflation without excluding the possibility of observing
the secondary spectrum. For the statistically anisotropic
non-Gaussianity, the induced powerspectrum also becomes
statistically anisotropic, so that we can distinguish the
signals by looking at the angular dependence. On the other
hand, the induced spectrum from the scalar-scalar-tensor
non-Gaussianity completely degenerates with primordial
contributions. This signal can be dominant only for con-
siderable scalar-scalar-tensor non-Gaussianity. However,
we showed that the induced signal could increase in the
case of a specific reheating scenario with a sudden
transition from the early matter era to the radiation era.
Similarly, primordial blackhole formations lead to a sig-
nificant enhancement of the induced tensor modes.
Therefore, it is essential to specify the early Universe
physics to identify the origin of the tensor powerspectrum if
we measure it in the future. In this sense, combining the
CMB polarization observations with gravitational wave
laser interferometer experiments would be crucial.
Lastly, we point out future directions related to the

formalism presented here. First, in this paper, we did not
discuss gauge dependence of the second-order tensor
modes, and we just provided a formalism in the conformal
Newtonian gauge. However, the gauge issue would be
important because second-order tensor modes depend on
gauges in general, and we discussed their actual detect-
ability. It would be interesting to study how the statements
on the detectability of the signal can be affected by gauge
dependence. Note that once we clarify the gauge issue, it
would be straightforward to compare our results with others
because our analysis was consistently done in a single
gauge. Second, we assumed that statistical anisotropy is
scale-invariant for simplicity. However, anisotropic infla-
tion normally predicts scale-dependent anisotropy. There
exist anisotropic attractor solutions, where initially unstable
isotropic inflation converges to anisotropic inflation [91].
In this model, the early stage of isotropic inflation is
consistent with the observed CMB anisotropies, but sizable
anisotropies may exist on small scales. g⋆ðkÞ freezes out
when the k mode exits the horizon. Therefore, the induced
tensor powerspectrumwould constrain the scale dependence
of g⋆. Third, we only considered statistical anisotropies
originated from a vector field. However, remnants of some
new spinning particles during inflation possibly produce
anisotropic non-Gaussianity [15,26]. Extending the present
calculation to the higher spins would be straightforward.
In general, the presence of spin s fields leads to l ≤ 2s
Legendre polynomials in the scalar bispectrum spectrum
[15,26], so we conjecture the induced tensor powerspectrum
has l ≤ 4s statistical anisotropy. Depending on reheating
scenarios, we would be able to constrain the presence of
higher-spin fields during inflation severely. It would also be
interesting to consider statistically isotropic non-Gaussianity
in solid inflation because its squeezed limit formula has
quadrupole angular dependence [92,93]. Further, we expect
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similar mode coupling effects for the various gravitational
wave events in the early Universe, such as phase transitions,
preheating, or topological defects. Our framework would
allow CMBmeasurements to constrain parameters related to
the above events with primordial non-Gaussianity, while we
only focused on reheating scenarios and primordial black-
hole formations in this paper.
We also leave more general comments on second-order

effects of cosmological perturbations. One might wonder
that similar machinery can be useful to discuss the secondary
vector fields such as magnetic fields at a large scale.
However, OPE coefficients in Eq. (4) cannot be an odd
function of k due to the permutation symmetry of the
operator product. Hence we cannot include Y1;�1ðk̂Þ in the

OPE coefficients, which are essential to get the secondary
superhorizon vector perturbations. Thus, we only have
diagrams similar to (b) of Fig. 1 for the second-order vector
perturbations, which have been already discussed in many
references [36–43].
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