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We derive a full analytical approximation to the stochastic gravitational wave background generated by
the loops that are produced throughout the cosmological evolution of cosmic string networks. We show that
this approximation not only predicts the amplitude of the radiation-era plateau exactly, but also provides a
good fit to the high-frequency cutoff and to the low-frequency peak generated by the loops that decay
during the matter era, irrespective of cosmic string tension and of the length of loops created. We then find
that it provides a good quantitative description of the full stochastic gravitational wave background across
the relevant frequency range.
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I. INTRODUCTION

The production of cosmic string networks as a conse-
quence of symmetry-breaking phase transitions is a crucial
prediction of several beyond the standard model theories,
including grand unified scenarios [1]. These networks are
generally expected to survive throughout cosmological
history, potentially leaving behind characteristic observa-
tional signatures which can be used to probe the underlying
particle physics (for a review see [2,3]). One such signature
is a characteristic stochastic gravitational wave background
(SGWB) generated by cosmic string loops [4–6]. These
loops are generally expected to be copiously produced
throughout cosmological history as a result of the frequent
interactions between strings. After creation, however, they
detach from the network and decay by emitting their energy
in the form of gravitational waves (GWs). It is the super-
position of the individual transient signals of these cosmic
string loops that gives rise to this background of gravita-
tional radiation.
The recently inaugurated era of GWAstronomy [7,8] has

opened new possibilities to probe the SGWB generated by
cosmic string loops. The Laser Space Interferometer Space
Antenna (LISA), in particular, may be able to detect cosmic
string networks up to tensions of Gμ ¼ Oð10−17Þ [9]

(where G is the universal gravitational constant), an
improvement of about six orders of magnitude over current
constraints [10]. LISA will then be an ideal instrument to
probe this background and it is expected to either result in
its detection or in a significant tightening of the constraints
on cosmic string-forming scenarios. In any case, accurately
characterizing the SGWB generated by cosmic string
networks is pivotal to use the current and upcoming GW
detectors to their full potential and, for this reason, this
subject has been generating considerable interest [11–21].
The characterization of the SGWB produced by cosmic

strings often relies on numerical tools. However, multiple
computations of the spectrum, covering a wide parameter
space, are generally necessary to confront different cosmic
string scenarios with observational data. As a result, this
numerical approach may be, in some instances, rather slow
and computationally costly. In this paper, we derive an
analytical approximation to the SGWBgenerated by cosmic
string networks that accurately quantifies the full spectrum.
It rigorously describes the main features of the SGWB
spectrum produced by a network of cosmic strings such as
the low- and high-frequency cutoffs, the peak originated by
loops that decay in a matter-dominated era and the plateau
resulting from loops that decay in a radiation era. This
analytical approximation is accurate independently of the
size of loops and for different values of the string tension,
thus allowing for the quick and efficient calculation of the
SGWB for a wide range of parameters.
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This paper is organized as follows. In Sec. II, we
introduce the velocity-dependent one scale (VOS) model
to describe the cosmological evolution of cosmic string
networks. The emission of GWs by cosmic string loops is
briefly reviewed in Sec. III, and we also introduce the
method for computation of the SGWB spectrum therein. In
Sec. IV, we derive the general shape of the spectrum and
compute the amplitude of the radiation-era plateau of the
spectrum. In Sec. V, we provide an analytical description
for the loop distribution function for a network in which all
the loops created at an given time have the same length and
show that this model may be used to construct the loop
distribution function of more complex models in which
loop production happens at more than one lengthscale. In
Sec. VI, we provide a detailed derivation of an analytical
approximation to the SGWB generated by realistic cosmic
string networks and we compare this approximation to
spectra obtained numerically in Sec. VII. We then conclude
in Sec. VIII. Throughout this paper wewill use natural units
with c ¼ ℏ ¼ kB ¼ 1 (unless explicitly stated otherwise).

II. THE COSMOLOGICAL EVOLUTION OF
COSMIC STRING NETWORKS

The cosmological evolution of cosmic string networks
may be described statistically, on sufficiently large scales,
by following the evolution of two variables: the character-
istic length L—which is a measure of the energy density of
the network ρ ¼ μ=L2—and the root-mean-squared (RMS)
velocity v̄ [22,23]:

dv̄
dt

¼ ð1 − v̄2Þ
�
kðv̄Þ
L

− 2Hv̄

�
; ð1Þ

dL
dt

¼ ð1þ v̄2ÞHLþ c̃
2
v̄; ð2Þ

where

kðv̄Þ ¼ 2
ffiffiffi
2

p

π
ð1 − v̄2Þð1þ 2

ffiffiffi
2

p
v̄2Þ 1 − 8v̄6

1þ 8v̄6
ð3Þ

is a phenomenological parameter that accounts, to some
extent, for the effects of small-scale structure on the long
strings [23], c̃ ¼ 0.23� 0.04 [23] is a parameter quantify-
ing the efficiency of the energy-loss mechanism of the
network, H ¼ ðda=dtÞ=a is the Hubble parameter, and a is
the cosmological scale factor. Equations (1) and (2), known
as the velocity-dependent one-scale (VOS) model, provide
a thermodynamical description of the cosmological evo-
lution of cosmic string networks. (Note however that here
we have not included the effects of the frictional forces
caused by the scattering of the particles of the background
plasma by cosmic strings, which are included in the
original VOS model. These frictional forces are only
expected to be relevant at early cosmological times before

the production of gravitational waves becomes significant
and hence they may, in general, be neglected in this
context.)
The interactions between strings play a crucial role in

cosmic string network dynamics. When two strings collide,
they generally exchange partners and reconnect. This
process, known as intercommutation, not only leads to
the formation of small-scale structure on the string but also
often results—when a string self-intersects or two strings
intersect simultaneously in two points—in the formation of
closed cosmic string loops. After formation, these loops
detach from the cosmic string network and decay radia-
tively. Cosmic string interactions then result in a stream of
energy loss by the cosmic string network that may be
written as [24]:

dρ
dt

����
loops

¼ c̃ v̄
ρ

L
: ð4Þ

As a result of this energy loss, the cosmic string network
evolves toward a linear scaling regime during which its
characteristic length grows proportionally with physical
time and its energy density remains a fixed fraction of the
energy density of the cosmological background. In fact,
one may see that a regime of the form

L ¼ ξt and
dv̄
dt

¼ 0; ð5Þ

with

ξ2 ¼ kðkþ c̃Þ
4βð1 − βÞ and v̄2 ¼ k

kþ c̃
1 − β

β
ð6Þ

is an attractor solution of the VOS equations for a ∝ tβ

and 0 < β < 1.

III. THE STOCHASTIC GRAVITATIONAL WAVE
BACKGROUND GENERATED BY COSMIC

STRING NETWORKS

When cosmic string loops detach from the long string
network, they start to oscillate relativistically under the
effect of their tension and decay by emitting gravitational
radiation. The frequencies of the GWs emitted by a loop are
given by [25,26]:

fj ¼
2j
l
; ð7Þ

where l is the length of the loop at the time of emission and
fj is the frequency corresponding to the jth harmonic
mode. The distribution of power in the different harmonics
is determined by the small-scale structure of the loops. In
fact, it was shown [27,28] that, in the large j limit, the
power emitted in each mode scales as j−4=3 if the loop
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contains points where the velocity is locally 1 known as
cusps; as j−5=3, if it has kinks (which are discontinuities in
the tangential vector introduced by the intercommutation
process); and j−2 when kink-kink collisions occur. Note
however that, at any given time, there are several loops with
different shapes and structure and one may, in general,
assume that, on average, the power emitted in each mode is

dEj

dt
¼ PjGμ2; ð8Þ

where

Pj ¼
Γ
E
j−q; ð9Þ

is the averaged loop power spectrum, E ¼ Pn�
m m−q,

q ¼ 4=3, 5=3, 2 for loops with cusps, kinks or for kink-
kink collisions respectively, and Γ ∼ 50 is a parameter
quantifying the efficiency of GW emission [4,16,29,30]. In
principle, when computing the SGWB generated by cosmic
string loops, one should consider the contribution of all the
harmonic modes of emission (i.e., n� ¼ ∞). Note however
that it was shown in [11] that, in general, one only needs to
consider modes up to a cutoff n� ¼ 103, 105 for q ¼ 4=3, 2
respectively, since the inclusion of higher harmonics has a
negligible impact on the shape of the spectrum.
As a result of GW emission, cosmic string loops lose

energy, on average, at a roughly constant rate

dE
dt

¼ −ΓGμ2; ð10Þ

where E ¼ μl is the loop energy, and consequently their
length decreases until they eventually evaporate. Loops
then give rise to a transient signal of GWs. However, at any
given time of the evolution of the network, there is a large
number of loops emitting GW bursts in many different
directions. The superposition of all these emissions is
expected to give rise to a SGWB [4–6,31].
The amplitude of the SGWB generated by cosmic string

loops is generally characterized through the spectral energy
density of GW (in units of critical density ρc ¼ 3H2

0=8πG):

Ωgwðf; q; n�Þ ¼
1

ρc

dρgw
d log f

: ð11Þ

If we separate the contributions from the different
harmonic modes, we may write

Ωgwðf; q; n�Þ ¼
Xn�
j

j−q

E
Ωj

gwðfÞ; ð12Þ

where

Ωj
gwðfÞ ¼ 16π

3

�
Gμ
H0

�
2 Γ
f

Z
t0

ti

jnðljðf; t0Þ; t0Þ
�
aðt0Þ
a0

�
5

dt0

ð13Þ

is the contribution of the jth harmonic mode of emission to
the SGWB [11,32]. Here, ti is the instant of time in which
loop production becomes significant, which is often
assumed to be at the end of the friction-dominated regime
ti ∼ tpl=ðGμÞ2 [3] (where tpl is the Planck time), and the
subscript “0” is used to refer to the value of the corre-
sponding parameter at the present time. The loop distri-
bution function nðl; tÞdl gives us the number density of
string loops with lengths between l and lþ dl that exist at
the time t, and ljðf; t0Þ ¼ 2jaðt0Þ=fa0 is the physical length
of the loops that radiate in the jth harmonic mode at a time
t0 GWs that have a frequency f at the present time.
Note that, since one has

Ωj
gwðjfÞ ¼ Ω1

gwðfÞ; ð14Þ

one may straightforwardly construct Ωj
gwðfÞ for an arbi-

trary harmonic mode j once the contribution of the
fundamental mode, with j ¼ 1, is computed. We will,
therefore, restrict ourselves to the fundamental mode for
(most of) the remainder of this article (and drop the
superscript “1”). We will discuss the contribution of higher
order modes in Sec. VII.

IV. GENERAL CONSIDERATIONS ABOUT
THE COSMIC STRING SGWB

Equation (4) implies that in a linear scaling regime, the
decrease of the energy density of the network in an
infinitesimal logarithmic time interval d log t due to loop
production is proportional to ρd log t, with the average
energy density ρ of the cosmic string network scaling
proportionally to t−2. If the normalized distribution of loop
lengths at the moment of creation scales linearly with the
cosmic time and Γ is a constant, the variation of the
gravitational wave background energy density associated
with loop emission in the time interval ½te; te þ dte� is
given by

dρgw½e� ∝ ρed log te ∝ t−2e d log te ∝ a−2=βe d log ae; ð15Þ

where the subscript “e” indicates that the quantities are
evaluated at the time te, and the normalized probability
density distribution PðfÞ of the emitted gravitational wave
energy over frequency is independent of the emission time
te once the frequencies are rescaled in proportion to the
inverse of te. The corresponding quantity at the present
time (after including the volume expansion and redshift
effects) is
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dρgw ¼ dρgw½e�a4e ∝ að4β−2Þ=βe d log ae: ð16Þ

Let us consider the frequencies fe ∝ 1=te corresponding
to an arbitrary constant value of P. An observed frequency
at a time t is related to the corresponding emitted frequency

at the time te through f ¼ aefe ∝ ae=te ∝ aðβ−1Þ=βe . Hence,
ae ∝ fβ=ðβ−1Þ with d log ae ∝ d log f, thus implying that

dρgw
d log f

∝ fð4β−2Þ=ðβ−1Þ ∝ f2ðw−1=3Þ=ðwþ1=3Þ: ð17Þ

Here, we have used the relation β ¼ 2=ð3ð1þ wÞÞ, where
w is a constant equation-of-state parameter (equal to the
ratio between the proper pressure and the proper density
of the universe). The result given in Eq. (17) is only valid
for w ≥ 1=9. For w ≤ 1=9 the spectrum would be propor-
tional to f−1—the characteristic power spectrum of the
gravitational radiation emitted at the end stages of the
lifetime of the loops created throughout the cosmological
history [33]—and is dominated by late-time contributions
even at high frequencies. In summary, the result given in
Eq. (17) (with the f−1 cutoff for w ≤ 1=9) is independent of
PðfeÞ and, therefore, this is a simpler way of determining
the general shape of the power spectrum for power law
cosmologies considered in [18,34].
Equation (17) implies that for w ¼ 1=3 the power

spectrum is flat, thus explaining the radiation-era plateau
of the SGWB. A corollary of this result is that the
normalization of the radiation-era plateau is independent
of the shape of PðfÞ—only the total energy converted into
gravitational waves matters, irrespective of its distribution
over frequency. One may, therefore, take advantage of this
property to compute the normalization of this plateau in a
simple way.
Let us start by considering a loop created at an instant tb

with a length lb ¼ lðtbÞ and assume the network is in a
linear scaling regime in a background with a ∝ tβ. The
energy that arrives in form of GWs to an observer at t0 is
given by

E0 ¼
Z

td

tb

dE
dt

aðt0Þ
a0

dt0 ¼ Eb
ab
a0

ð1þ ϵÞβþ1 − 1

ϵð1þ βÞ ; ð18Þ

where the subscript “b” is used to refer to the value of the
corresponding quantity at the time of birth of the loop tb,
Eb ¼ μlb, and td ¼ ð1þ ϵÞtb is the time at which the loop
completely evaporates. Here, we have also defined
ϵ ¼ lb=ðΓGμtbÞ, which is independent of tb since we have
assumed that the length of the loops at the time of creation
scales, if the network is in a linear scaling regime,
proportionally to cosmic time.
The spectral energy density of GWs emitted by the loops

created at a time tb that reaches an observer in the present is
then given by

dρgw
dtdf

¼ dρ
dt

����
loops

ð1þ ϵÞβþ1 − 1

ϵð1þ βÞ
�
aðtbÞ
a0

�
4

PðfÞ: ð19Þ

The only ingredient missing to compute the amplitude of
the plateau is the probability density distribution of the GW
energy over frequency P. It is straightforward to show that
the normalized distribution of the GW energy density over
emitted frequency fe is given by

PðfeÞ ¼
���� dEdfe

����Θðfe − fmin;eÞ ¼
fmin;e

f2e
Θðfe − fmin;eÞ;

ð20Þ
where fmin;e ¼ 2=lðtbÞ is the minimum frequency emitted
by the loops and ΘðxÞ is a Heaviside function. As
predicted, this is independent of te provided fmin;e is
rescaled in proportion to the inverse of te. Note that, as
a loop emits GWs, its length decreases and consequently
the frequency of emission increases. As a result, a loop is
expected to emit GWs for all frequencies f ≥ fmin;e (hence
the inclusion of the Heaviside function). Small loops,
which have lb ≪ ΓGμtb, decay effectively immediately
on the cosmological timescale and thus, as shown in [32], it
is reasonable to assume that the entirety of the energy of the
loops is radiated instantaneously at tb. As a result, the
probability density distribution PðfÞ of the emitted GWs
over observed frequency f is also given by Eq. (20), but
with fe → f and fmin;e → fmin ¼ 2ab=ðlðtbÞa0Þ [32]. In
the case of large loops, with l ≥ ΓGμtb,—in which the
approximation that loops radiate their energy instantane-
ously at the time of formation no longer holds—GWs are
emitted in distinct instants of time (between tb and td) and
for this reason are redshifted by different amounts. This
gives rise to a more complex PðfÞ, whose explicit
dependence on ab and f depends on β. However, since
the normalization of the plateau is independent on the
explicit form of this function [provided we take Eq. (18)
into account], here for simplicity we chose to use the PðfÞ
for small loops (given by Eq. (20), with fe → f and
fmin;e → fmin).
Since loops emit GWs for all f ≥ fminðtbÞ, the first loops

that will contribute to the SGWB at a given frequency f
will be those created at a time tmin for which fminðtminÞ ¼ f.
If one considers a radiation-dominated universe, with

H2 ¼ H2
0Ωr

�
a0
aðtÞ

�
4

; ð21Þ

this instant is determined by

a0
amin

¼ ϵΓGμ
4H0Ω

1=2
r

f; ð22Þ

where Ωr is the radiation density parameter at the present
time. By using Eqs. (11), (18) and (19) with β ¼ 1=2, we
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find that the amplitude of the radiation-era plateau of the
cosmic string SGWB is given by

Ωplateau
gw ðfÞ ¼ 32π

9H2
0

Ar

f

Z þ∞

tmin

�
aðtbÞ
a0

�
5 ð1þ ϵÞ3=2 − 1

Γϵ2t4b
dtb

¼ 128

9
πArΩr

Gμ
ϵ

½ð1þ ϵÞ3=2 − 1�; ð23Þ

where we have defined Ar ¼ c̃vr=ð
ffiffiffi
2

p
ξ3rÞ—which includes

a factor of 1=
ffiffiffi
2

p
to account for the effects of the redshifting

of the peculiar velocities of loops [3]—and where vr and ξr
are the scaling constants during the radiation era (given by
Eq. (6), with β ¼ 1=2). The result in Eq. (23) is identical to
the result of the full computation presented in [9] (see
also [3]).
As to the SGWB created during the matter era, we shall

see later in this article that, although the simple estimation
in Eq. (17) is generally accurate, the picture is somewhat
more complex.

V. LOOP DISTRIBUTION FUNCTION

As we have seen, the loop distribution function is the
crucial ingredient to compute the SGWB generated by
cosmic string networks. In order to construct this function
one may either resort to numerical simulations of cosmic
string networks [35–37] or use analytical modeling
[11,14,24,38,39] (see [9] for a recent review). Here, since
we aim to derive an analytical approximation to the
spectrum, we shall opt for the later and follow the approach
in [14].
When constructing the loop distribution function ana-

lytically, it is generally assumed that the energy lost by the
network [given in Eq. (4)] goes into the formation of
cosmic string loops, so that

c̃ v̄
ρ

L
¼ μ

Z
∞

0

lfðl; tÞdt; ð24Þ

where the loop production function fðl; tÞ represents the
number density of loops with length between l and lþ dl
produced per unit time. As discussed in [40], this
assumption is crucial to get the correct normalization of
the loop production function. Moreover, in this context, it is
also often assumed that all of the loops have the same
length at the moment of creation. Here, we shall assume
that this length is determined by the characteristic length of
the long string network at the moment of creation tb [14]:

lðtbÞ ¼ αLðtbÞ; ð25Þ

where α < 1 is a constant loop-size parameter which is
generally treated as a free parameter. In reality, one does not
expect all loops to be created with exactly the same size, but

instead to follow a distribution of lengths. We will discuss
the effects of relaxing this assumption later in this section.
Under this assumption, and taking into account the

energy balance in Eq. (24), one should have

fðl; tÞ ¼ c̃ffiffiffi
2

p
l

v̄ðtÞ
LðtÞ3 δðl − αLÞ; ð26Þ

where we have also included the 1=
ffiffiffi
2

p
correction factor

that accounts for the energy lost due to the redshifting of the
peculiar velocities of cosmic string loops [3].
Since, after formation, the size of loops decreases due to

the emission of gravitational radiation roughly as

lðtÞ ¼ αLðtbÞ − ΓGμðt − tbÞ; ð27Þ

nðl; tÞ will have contributions from all preexisting loops
that have a physical length l at a time t. So, the computation
of the loop distribution function actually reduces to the
computation of the time of formation of all the loops that
contribute to it. In other words, we need to compute

nðl; tÞ ¼
Z

t

ti

dtbfðlb; tbÞ
�
aðtbÞ
aðtÞ

�
3

; ð28Þ

where we have taken into account the dilution of the loops
caused by the background expansion, which yields

nðl; tÞ ¼
X
i

��
α
dL
dt

����
t¼tib

þ ΓGμ
�

−1 c̃ v̄ðtibÞ
αLðtibÞ4

�
aðtibÞ
aðtÞ

�
3
	
;

ð29Þ

where the index i runs over the times of birth, tib, of loops
that contribute to nðl; tÞ. Note that this expression does not
rely on any assumption regarding cosmic string dynamics
and it may be used throughout cosmological evolution
(even during the radiation-matter transition and after the
onset of dark-energy, when the network cannot maintain a
linear scaling regime).
In order to illustrate the effect of having a distribution of

loop lengths, instead of a single scale, at the moment of
formation, let us assume that a ∝ tβ so that the network is
in a linear scaling regime characterized by L ¼ ξβt and
v̄ ¼ vβ [where ξβ and vβ are given by Eq. (6)]. In this case,
one has

nðl; tÞ ¼ AβCβðαÞ
t3βðlþ ΓGμtÞ4−3β ; ð30Þ

where we have defined

CβðαÞ ¼
ðαξβ þ ΓGμÞ3ðβ−1Þ

αξβ
ð31Þ
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and

Aβ ¼
c̃ffiffiffi
2

p vβ
ξ3β

: ð32Þ

Let us now assume that the lengths of loops at the
moment of production follow a given distribution (see also
[11,36]). In principle, one may write the corresponding
loop production function in terms of δ-functions. Indeed, if
one assumes that the energy lost as a result of loop
production is distributed in N different scales characterized
by loop-size parameters α1;…; αN , with associated weights
w1;…; wN , we should then have

fðl; tÞ ¼
XN
i¼1

wi
c̃ffiffiffi
2

p
l

v̄
L3

δðl − αiLÞ≡
XN
i¼1

wifiðl; tÞ

⟶
N→∞

Z
wðα0Þfα0 ðl; tÞdα0 ð33Þ

Note that, in this case, we should have that

XN
i¼1

wi ¼ 1⟶
N→∞

Z
wðα0Þdα0 ¼ 1 ð34Þ

in order to ensure energy balance (i.e., so as to have that all
the energy lost by the network goes into the production
of loops).
In this case, it is straightforward to show that

nðl; tÞ ¼
XN
i¼1

winiðl; tÞ⟶
N→∞

Z
dα0wðα0Þnα0 ðl; tÞ; ð35Þ

where niðl; tÞ (nαðl; tÞ) is the loop production associated to
the loop-size parameter αi (α). Using Eq. (30) one finds

nðl; tÞ ¼
P

N
i¼1 wiCβðαiÞAβ

t3βðlþ ΓGμtÞ4−3β ⟶
N→∞

R
dα0wðα0ÞCβðα0ÞAβ

t3βðlþ ΓGμtÞ4−3β :

ð36Þ
Note that, if we are not considering a distribution up to
infinitely small α, for l=t < αminξβ (where αmin is the
minimum loop-size parameter of the distribution) the result
of the sum/integral in the numerator of Eq. (36) is
independent of l and t. Therefore, in this case, the effect
of having a distribution of lengths at the moment of creation
is to change the normalization of the loop production
function (which can be computed if the exact distribution is
known). For larger l=t, however, only the loops produced
with loop-size parameters α≳ l=ðξβtÞ can contribute to
nðl; tÞ and the lower limit of the sum/integral is actually
dependent on l and t.
In any case, if the loop production function has a

dominant scale α (i.e., if the distribution is peaked at a
scale α), one may in principle describe it using Eq. (30)

provided that one corrects the normalization. In other
words, one may redefine the parameter in Eq. (32) in such
a way that

Aβ ¼ F
c̃ffiffiffi
2

p vβ
ξ3β

; ð37Þ

where F ¼ ðR wðα0ÞCβðα0Þdα0Þ=CβðαÞ is a parameter that
accounts for the spread of the distribution. As a matter of
fact, it was shown in [9,34] that the simulation-infered
model of [36]—which exhibits loop production at a range
of lengths—is well described by this model for F ¼ 0.1
and l ¼ 0.1t.
For more complex distributions, with more than one very

different (and prominent) loop production scale, this will
lead to some loss of information in the low-frequency range
of the spectrum: only one of the peaks of the spectrum,
corresponding to the chosen dominant scale, will be
predicted. Note however that Eq. (36) also implies that

ΩgwðfÞ ¼
XN
i¼1

wiΩgwðf; αiÞ⟶
N→∞

Z
dα0wα0Ωgwðf; α0Þ;

ð38Þ

where Ωgwðf; αÞ is the spectrum obtained for a fixed loop-
size parameter α. Thus, for any known distribution of loops’
lengths at the moment of formation, it is straightforward to
construct the SGWB spectrum by using the analytical
Ωgwðf; αÞ. This simple analytical model may then be used
to fully characterize the realistic SGWB generated by any
(scaling) loop production function.

VI. ANALYTICAL APPROXIMATION
TO THE SGWB SPECTRUM

In order to make the problem of deriving an analytical
approximation to the SGWB generated by cosmic string
loops tractable, some simplifying assumptions are neces-
sary. First of all, we will assume that the cosmic string
network is in a linear scaling regime of the form of Eq. (5)
throughout its evolution, with L ¼ ξrt or L ¼ ξmt and v̄ ¼
vr or v̄ ¼ vm in the radiation or the matter era (with a
sudden transition between the two regimes at the time of
radiation-matter equality teq). The parameters ξrðξmÞ and
vrðvmÞ are constant parameters given by Eqs. (3) and (6)
with β ¼ 1=2 and β ¼ 2=3 respectively. As discussed in
[14,41], this assumption is not realistic since the network
cannot maintain scaling after the onset of the radiation-
matter transition. As a result, this will lead to an under-
estimation of the amplitude of the contribution of the loops
produced in the matter era to the SGWB. We will discuss
the impact of this assumption in Sec. VII. Moreover, we
will consider two populations of loops: one created in the
radiation era, with ti ≤ tb ≤ teq, and another created in the
matter era, with teq ≤ tb ≤ t0. We will also assume that
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these two populations may be described by the same loop-
size parameter α: this is supported by the most recent (and
largest) Nambu-Goto simulations [42] of cosmic string
networks, which found αr ≃ 0.33 and αm ≃ 0.35 in the
radiation and matter eras respectively. Finally, we shall
assume that the universe is effectively radiation(matter)-
dominated, with β ¼ 1=2ð2=3Þ, for t ≤ teqðt > teqÞ, but for
consistency we shall assume that H0 ¼ 100h Km=s=Mpc,
with h ¼ 0.678, and a flat universe in which the radiation
and matter density parameters at the present time are
respectively Ωm ¼ 0.308 and Ωr ¼ 9.1476 × 10−5, as
determined by Planck 2018 data [43].

A. Radiation era

Let us start by considering the population of loops
created in the radiation era, during which the Hubble
parameter is effectively given by Eq. (21). In this case,
we have that

nrðl; tÞ ¼
CrðαÞ

t3=2ðlþ ΓGμtÞ5=2 ; ð39Þ

with

CrðαÞ ¼ F
c̃vrffiffiffi
2

p
αξ4r

ðαξr þ ΓGμÞ3=2 ≡ Ar

αξr
ðαξr þ ΓGμÞ3=2:

ð40Þ

Note that this expression is only valid for t ≤ teq.
However, if the loops are large, with α ≥ ΓGμ, the loops
created between teq=ð1þ ϵrÞ < tb < teq, with ϵr ¼ αξr=
ðΓGμ), are expected to survive beyond teq and to decay
during the matter era. The number density of radiation-era
loops in the matter era will merely result from the dilution
and decay of the loops existing at the time of radiation-
matter equality [36]. Therefore, we have that

nrmðl; tÞ ¼
CrðαÞð2H0Ω

1=2
r Þ3=2

ðlþ ΓGμtÞ5=2
�

a0
aðtÞ

�
3

: ð41Þ

In Fig. 1, we plot the loop distribution function of the
loops created in the radiation era for different values of α
and different instants of time. As this figure illustrates,
during the radiation era, this loop population is in scaling
and t4nrðl; tÞmaintains its shape for all t ≤ teq: it is roughly
independent of the loop size for l=t < ΓGμ and it decreases
as ðl=tÞ−5=2 for larger loops. The amplitude of nrðl; tÞ,
however, is dependent on the loop-size parameter: it scales
as ðαξrÞ1=2 for αξr ≫ ΓGμ and it is inversely proportional
to αξr in the opposite limit. However, as the production of
loops ceases at t ¼ teq this population of loops cannot
maintain scaling and is diluted by the background expan-
sion. As a result, the amplitude of t4nrmðl; tÞ decreases with

time and, since loops shrink as they emit GWs, the length of
the surviving loops is progressively smaller.
Let us start by considering the contribution of the

radiation-era loops that decay during the radiation era.
Any loop, created at a time tb will radiate GWs with
frequencies larger than a minimum frequency fmin
defined as

f ≥ fminðtbÞ ¼
2

αξrtb

aðtbÞ
a0

: ð42Þ

So, as time progresses, loops will contribute dominantly in
progressively lower bins of frequency. As a result, the
SGWB at a given frequency f will only receive contribu-
tions from loops created after the instant of time tmin for
which fminðtminÞ ¼ f. In other words, one should only
consider the contributions of loops created after

a0
amin

¼ αξr

4H0Ω
1=2
r

f; ð43Þ

where amin ¼ aðtminÞ. The contribution of these loops to
the SGWB spectrum is then

Ωr
gwðfÞ ¼

16π

3

�
Gμ
H0

�
2 Γ
fa0

Z
aeq

amin

�
aðtÞ
a0

�
4 da
HðaÞ nrðl; tÞ;

ð44Þ

which yields

FIG. 1. Number density of radiation-era loops for α ¼ 10−1

(blue lines) and α ¼ 10−5 (orange lines). Solid lines correspond
to the (scaling) loop distribution function during the radiation era
t4nrðl; tÞ, for t ≤ teq. Dashed lines correspond to the number
density of radiation-era loops that survive into the matter era
t4nrmðl; tÞ for different instants of time t > teq. For α ¼ 10−1, the
dashed lines correspond, from top to bottom, to t ¼ 10teq, 102teq,
103teq, 104teq, t0. For α ¼ 10−5, we plot t4nrmðl; tÞ for t ¼ 10teq,
102teq, 0.99td (where td is the time in which the last loops created
in the radiation era disappear). The vertical (dotted) line corre-
sponds to l=t ¼ ΓGμ.
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Ωr
gwðfÞ ¼

128

9
πArΩr

Gμ
ϵr

��
fð1þ ϵrÞ

BrΩm=Ωr þ f

�
3=2

− 1

�
;

ð45Þ

where we have defined Br ¼ 4H0Ω
1=2
r =ðΓGμÞ. Although at

a first glance this expression looks different from the
amplitude of the plateau we have derived in Eq. (23),
the latter is recovered in the limit f ≫ BrΩm=Ωr.
As we have discussed earlier, the production of loops is

only expected to become significant once the friction-
dominated era of cosmic string dynamics ends, around
ti ∼ tpl=ðGμÞ2. The SGWB spectrum will then necessarily
have a cutoff at a certain frequency—above which the
spectrum should scale proportionally to f−1 [33]—that is
not included in Eq. (45). This cutoff frequency may
straightforwardly be computed by noting the following:
since Eq. (39) has the underlying assumption that the
population of loops has already reached scaling (i.e., it
assumes that there are loops in all stages of life, from
“birth” to “death,” at the time t), strictly speaking it can
only be considered valid after the first loop created by the
network evaporates completely, for t ≥ ð1þ ϵrÞti. Thus,
the integration of Eq. (44) should start at

a0
amin

¼ Gμ

ð2H0Ω
1=2
r ðϵr þ 1ÞtplÞ1=2

: ð46Þ

As a result, the last term in Eq. (45) should actually be

�
fðϵr þ 1Þ
Bi þ f

�
3=2

; ð47Þ

with

Bi ¼
2

Γ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2H0Ω

1=2
r

tplðϵr þ 1Þ

s
; ð48Þ

instead of 1. Note that, for Bi ≪ f, this yields

ðϵr þ 1Þ3=2
�
1 −

3

2

Bi

f

�
ð49Þ

and, therefore, fc ∼ 3Bi=2—which corresponds roughly to
the minimum frequency emitted by the first loops produced
after this loop population has reached scaling—may be
regarded as being approximately the frequency above
which the spectrum has a cutoff. Note that, since fc ∝
ðϵr þ 1Þ−1=2, this cutoff frequency scales proportionally to
α−1=2 in the large loop regime and it is roughly independent
of α for small loops (which have ϵr ≪ 1Þ.
The contribution of loops created and decaying in the

radiation era in Eq. (45), with the cutoff correction in
Eq. (47), is plotted in Fig. 3 for Gμ ¼ 10−10 and α ¼ 10−1

and α ¼ 10−5. Therein, one may see that, for BrΩm=
Ωr ≪ f ≪ Bi, it does exhibit the expected characteristic
plateau and that its amplitude decreases with decreasing
loop size (approximately as ∼α1=2, in the large loop regime,
as Eq. (39) predicts). The f−1 cutoff to the spectrum for
frequencies above fc may also be observed there.
As to the radiation-era loops that decay in the matter era,

we need to compute

Ωrm
gwðfÞ ¼

16π

3

�
Gμ
H0

�
2 Γ
fa0

Z
amax

aeq

�
aðtÞ
a0

�
4 da
HðaÞ nrmðl; tÞ;

ð50Þ

and so one needs to find the last instant of time in which
there is a contribution to the spectrum at the frequency f. At
the time of radiation-matter equality, there are several loops
with lengths in the range 0 < l < αξrteq. However, for a
given frequency f, only loops with a length l ≥ lminðteqÞ ¼
2aeq=ðfa0Þ will contribute to the SGWB. The loops
with lðteqÞ ¼ lminðteqÞ will be the first to contribute and
it is simple to realize that the last ones would be those
created at teq. So this question reduces to finding the instant
of time in which the loops created at teq contribute to the
SGWB at a frequency f. Equivalently, we need to solve the
equation

f
2
½ðαξr þ ΓGμÞteq − ΓGμt� ¼ aðtÞ

a0
: ð51Þ

Note however that, since loops may survive for a significant
period of time and since we are interested in computing
Ωrm

gwðfÞ at the present time, one should takeamax ¼ a0 if aðtÞ
satisfying Eq. (51) exceeds a0. As a matter of fact, the last
loops created in the radiation era survive until ad ¼ ðϵr þ
1Þ3=2aeq and large enough loops—with ϵr ≳ ðΩm=ΩrÞ3=2—
are expected to survive beyond the present time. So, except
for frequencies f ≫ 2aaeq=ð2αξrteqa0Þ, one generally
expects amax ¼ a0 for large loops. Here, for simplicity,
wewill opt to always use amax ¼ a0 for all ϵr ≳ 1. Although
this may lead to an overestimation of this contribution, we
shall see in Sec. VII that this choice does not have a
significant impact on the quality of the analytical approxi-
mation. Note also that since small loops, with ϵr ≪ 1, decay
effectively immediately on the cosmological timescale [32],
radiation-era loops will not survive into the matter era in this
limit. This contribution should not be included in this case.
So, by setting amax ¼ a0 and assuming that the back-

ground is effectively matter-dominated, with

H2 ¼ H2
0Ωm

�
a0
aðtÞ

�
3

; ð52Þ

we find
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Ωrm
gwðfÞ ¼ 32

ffiffiffi
3

p
πðΩmΩrÞ3=4H0

Ar

Γ
ðϵr þ 1Þ3=2
f1=2ϵr

×

� ðΩm
Ωr
Þ1=4

ðBmðΩm
Ωr
Þ1=2 þ fÞ1=2

�
2þ f

BmðΩm
Ωr
Þ1=2 þ f

�

−
1

ðBm þ fÞ1=2
�
2þ f

Bm þ f

�	
; ð53Þ

where we have defined Bm ¼ 3H0Ω
1=2
m =ðΓGμÞ. This con-

tribution is also plotted in Fig. 3. As we may see therein, the
radiation-era loops that decay in the matter era give rise to a
sharp peak whose amplitude decreases as the length of
loops decreases (also as α1=2 as expected).

B. Matter era

In the matter-dominated era, the loop number density is
of the form

nmðl; tÞ ¼
CmðαÞ

t2ðlþ ΓGμtÞ2 ; ð54Þ

with

CmðαÞ ¼ F
c̃ffiffiffi
2

p
α

vm
ξ4m

ðαξm þ ΓGμÞ≡ Am

αξm
ðαξm þ ΓGμÞ:

ð55Þ

The loop distribution function of matter-era loops is plotted
in Fig. 2. This loop population is in scaling during the
matter era and, as a result, the shape and amplitude of
t4nmðl; tÞ remains unchanged for t > teq. As was the case
for the radiation-era loops, t4nmðl; tÞ is independent of l=t
for l=t ≪ ΓGμ. However its amplitude decreases less
steeply as l=t increases: in fact, in this case, it scales
proportionally to ðl=tÞ−2 for l=t ≫ ΓGμ. Note that, for
αξm ≪ ΓGμ, the amplitude of nmðl; tÞ is also inversely
proportional to αξm. However, unlike for radiation-era

loops, the amplitude of the loop number density is, for
matter-era loops, independent of loop size in the large loop
regime.
We then need to compute

Ωm
gwðfÞ ¼

16π

3

�
Gμ
H0

�
2 Γ
fa0

Z
a0

amin

�
aðtÞ
a0

�
4 da
HðaÞ nmðl; tÞ;

ð56Þ

where amin is the scale factor at the time of the production
of the first matter-era loops that contribute to the SGWB.
As in the case of the radiation-era loops, these loops should
have fmin ¼ f and so�

a0
amin

�
1=2

¼ αξm

3H0Ω
1=2
m

f: ð57Þ

Using Eqs. (52) and (54), we find

Ωm
gwðfÞ ¼ 54πH0Ω

3=2
m

Am

Γ
ϵm þ 1

ϵm

Bm

f

�
2Bm þ f

BmðBm þ fÞ

−
1

f
2ϵm þ 1

ϵmðϵm þ 1Þ þ
2

f
log

�
ϵm þ 1

ϵm

Bm

Bm þ f

�	
;

ð58Þ

where we have introduced ϵm ¼ αξm=ðΓGμÞ. As we may
see from this expression, the realistic picture is more
complex than the simple scaling as f−1 predicted in
Eq. (17). Note however that the different scalings that
appear in this equation are a result of loop production
ending at the present time, which introduces a cutoff in the
low-frequency range. As a matter of fact, for f ≫ Bm (a
range in which this sudden end of loop production is
irrelevant), we have Ωm

gwðfÞ ∝ f−1. Note also that the
production of matter-era loops only starts at aeq and so,
for large enough frequencies which have amin < aeq,
strictly speaking one should take amin ¼ aeq. However,
since Ωm

gwðfÞ → 0 quickly as one increases the frequency,
this only has a negligible effect on the spectrum.
The contribution of the loops formed in the matter era to

the stochastic gravitational wave spectrum is also repre-
sented in Fig. 3. Loops created in the matter era give rise to
a sharply peaked spectrum (as the radiation-era loops that
decay in the matter era do). However the peak of this
contribution is located at a different frequency and the low-
frequency cutoff scales more slowly with frequency. The
actual shape and amplitude of the total SGWB spectrum
will then be determined by the balance between the Ωrm

gwðfÞ
and Ωm

gwðfÞ contributions. Therein we may also observe
that, for large enough frequencies, the contribution from
matter era loops to the SGWB does indeed scale propor-
tionally to f−1 as predicted in Eq. (17). More interestingly,
though, this contribution is, in the large loop regime,

FIG. 2. Loop number density of the cosmic string loops
produced in the matter era t4nmðl; tÞ. The vertical (dotted) line
corresponds to l=t ¼ ΓGμ.
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roughly independent of α [cf. Eq. (54)] and therefore its
maximum amplitude remains effectively unchanged as we
decrease α. As a result, if the loop-size parameter is
decreased, the relative importance of the radiation-era
loops that decay in the matter era also decreases when
compared to that of matter-era loops. So, the effect of the
choice amax ¼ a0 for all α is mitigated even when amax <
a0 for ϵr < ðΩm=ΩrÞ3=2.

C. Small loop regime

Although the expressions derived in the previous sec-
tions also apply to small loops, with α < ΓGμ (provided
one switches off the Ωrm

gwðfÞ contribution), the fact that
loops decay effectively immediately after creation allows us
to further simplify this approximation. In this case, one has
that [32]

ΩgwðfÞ ¼
16π

3

G
H2

0

1

f

Z
t0

tmin

dρ
dt

����
loops

dt
αLðtÞ

�
aðtÞ
a0

�
5

; ð59Þ

and thus

ΩgwðfÞ ¼
64π

3
GμΩrAr þ 54π

H0Ω
3=2
m

ϵmΓ
Am

f

�
1 −

Bm

ϵm

1

f

�
;

ð60Þ

which is equivalent to the approximation found in [32] for
the small-loop regime.

VII. COMPARISON WITH SPECTRA
OBTAINED NUMERICALLY

To assess the quality of the analytical approximation
derived in the previous section, we will compare our results
with those obtained by integrating Eq. (13) in a realistic
cosmological background (which is assumed to contain
radiation, matter and a cosmological constant). When
computing these spectra numerically, we shall make
minimal simplifying assumptions regarding cosmic string
dynamics—i.e., we will solve Eqs. (1) and (2) (together
with the Friedmann equation) throughout cosmological
history—and we will determine nðl; tÞ numerically using
Eq. (29) to accurately gauge it through the radiation-matter
transition as in Ref. [14].
Let us start by considering the case in which the loops

produced by the network are large, with ϵr, ϵm ≫ 1. In this
case, the spectrum is approximated by

ΩgwðfÞ ¼ Ωr
gwðfÞ þΩrm

gwðfÞ þ Ωm
gwðfÞ; ð61Þ

where Ωr
gwðfÞ, Ωrm

gwðfÞ and Ωm
gwðfÞ are given by Eqs. (45),

(53) and (58), respectively. In Fig. 4, the approximation in
Eq. (61) is plotted alongside spectra obtained numerically
for Gμ ¼ 10−10 and different values of α. As this figure
illustrates, this approximation provides a very good
description of the realistic SGWB generated by cosmic
strings throughout the observationally relevant frequency

FIG. 3. Analytical approximation to the stochastic gravitational
wave background generated by cosmic string networks with
Gμ ¼ 10−10 and α ¼ 10−1 (top panel) and α ¼ 10−5 (bottom
panel). The solid (blue) lines represent the total SGWB, the
dashed (yellow) lines represent the contribution of loops that are
created and decay in the radiation era, the dash-dotted (green)
lines corresponds to the radiation-era loops that decay during the
matter era and the dotted (red) lines represents the contribution of
loops created in the matter era. The vertical lines correspond to
the cutoff frequency fc.

FIG. 4. Analytical approximation to the stochastic gravitational
wave background generated by cosmic string networks with
Gμ ¼ 10−10 and different values of α. The solid lines represent
the approximation to the SGWB in Eq. (61), while the dashed
lines correspond to the SGWB obtained numerically.
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range. This approximation is exact in the high-frequency
range corresponding to the radiation-era plateau. However,
some discrepancies can be observed in the low-frequency
range, which is where the (necessary) simplifying assump-
tions can have some impact on our results. First of all, the
peaks of the approximated spectra are, in general, slightly
less broad than the peaks of the spectra obtained numeri-
cally. This is a consequence of assuming that the radiation-
matter transition happens abruptly at t ¼ teq, instead of the
expected smooth transition. Moreover, in the very low-
frequency range, one may see that there is a small
overestimation of the amplitude of the spectrum, since
we did not account for the dilution of cosmic strings and
string loops caused by the recent onset of dark energy in our
numerical approximation. This effect may be seen in Fig. 4
in the spectra with α ≤ 10−5, but it is also present for larger
α. More important, though, is the effect of assuming that
the cosmic string network remains in a linear scaling
regime throughout its evolution. As discussed in [14], this
leads to a significant underestimation of the number of
loops produced in the matter era and, consequently, to an
underestimation of the amplitude of the spectrum. It is
precisely this effect that causes the discrepancies in the
amplitude of the peaks of the spectra plotted in Fig. 4. For
large α, this effect is barely visible since the dominant
contribution in the frequency range corresponding to the
peak is that of the loops created in the radiation era that
survive into the matter era, Ωrm

gwðfÞ (although this effect is,
in fact, present at lower frequencies [9]). However, as Fig. 3
illustrates, as we lower α,Ωm

gwðfÞ becomes more relevant to
the peak of the spectrum and eventually dominates the
contribution in this frequency range. As a result, and since
the assumption of linear scaling leads to an underestimation
of this contribution, the quality of our approximation is
poorer for lower α. The same can been seen in Fig. 5, where
we plot the SGWB generated by cosmic strings for fixed
α ¼ 10−5 for different values ofGμ alongside the analytical

approximation in Eq. (61): the larger α is when compared to
Gμ, the better our approximation is.
Note, however, that in any case this approximation is

generally very good: the maximum relative difference in
the amplitude of the peak of the spectrum never exceeds
30% in the large loop limit and is, in general, significantly
smaller than this value. It may be used to describe with
minor error only the full SGWB spectrum generated by
cosmic string networks, if one includes the correction in
Eq. (47). We plot an example of the approximation to the
full SGWB spectrum, including the correction in Eq. (47),
with Gμ ¼ 10−10 and α ¼ 10−1 in Fig. 6. Therein, we may
see that this correction indeed provides a good description
of the high-frequency cutoff of the spectrum, albeit with a
slight underestimation of the amplitude of the spectrum in
the transitional region between the plateau and the cutoff
(that is caused by the fact that, when deriving the
approximation, we only considered the contribution of
loops once scaling is reached). We have verified numeri-
cally that Ωr

gwðfÞ with the cutoff correction in Eq. (47)
provides a good fit to the spectrum down to its cutoff
for α ≥ 10ΓGμ. For smaller α, if one is interested in
describing the spectrum up to frequencies f > fc ∼ 3.5 ×
1010=ð1þ ϵrÞ Hz (which is currently outside of the sensi-
tivity windows of the major current and upcoming GW
experiments [33]), one may use Eq. (45) without any
correction for f < fc and manually switch on the correc-
tion in Eq. (49) for f > fc (which always works in the
f ≫ fc limit).
In the small-loop regime, with α ≪ ΓGμ, as we have

seen, our approximation may be reduced to Eq. (60). We
have verified numerically that this approximation provides
a good fit to the numerical spectrum—with the discrepan-
cies caused by our assumptions discussed for the large loop
regime—for α < 0.1ΓGμ, as shown in Fig. 7. However, the
small-loop regime is precisely the limit in which the

FIG. 5. Analytical approximation to the stochastic gravitational
wave background generated by cosmic string networks with α ¼
10−5 and different values of Gμ. The solid lines represent the
approximation to the SGWB in Eq. (61), while the dashed lines
correspond to the SGWB obtained numerically.

FIG. 6. Analytical approximation to the full stochastic gravi-
tational wave background generated by cosmic string networks
with α ¼ 10−1 andGμ ¼ 10−10, including the cutoff correction in
Eq. (47). The solid line represents the approximation to the
SGWB in Eq. (61), while the dashed line corresponds to the
SGWB obtained numerically.
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underestimation of the matter-era contribution is more
dramatic and this is patent in this figure. The maximum
error in the height of the peak of the spectrum is
approximately 45% in this case. Note that in the range
ΓGμ > α ≥ 0.1ΓGμ one still has to resort to Eq. (61), but
without the contribution Ωrm

gwðfÞ.
Finally, up until now we have only considered the

contribution of the fundamental mode of emission to the
SGWB generated by cosmic string networks. The inclusion
of higher harmonic modes, however, is expected to have a
significant impact on the spectrum and may significantly
alter its shape. Nevertheless, one may construct an ana-
lytical approximation up to an arbitrary number of modes
of emission n�, for any q, by using Eqs. (12) and (14):

Ωgwðf; q; n�Þ ¼
Xn�
j¼1

j−q

E
Ω1

gwðf=jÞ: ð62Þ

As Fig. 8 illustrates, for Gμ ¼ 10−10, α ¼ 10−1, q ¼ 4=3
and various values of n�, the quality of the analytical
approximation is, as expected, not significantly affected by
the inclusion of higher emission modes.

VIII. CONCLUSIONS

We have derived a full analytical approximation to the
SGWB generated by cosmic string networks as a func-
tion of α, Gμ, q, n�, significantly extending previous
work, which was restricted to the limit where the loops
produced by the networks are small. By comparing it
with the numerical results obtained taking into account
the full cosmological network dynamics as given by the
cosmic string VOS model, we have demonstrated that
this analytical result provides an excellent approximation
to the SGWB power spectrum generated by standard
cosmic strings. Our analytical approximation has been
shown to provide a high quality fit to the SGWB power
spectrum for a wide range of frequencies and for the
relevant (α, Gμ, q, n�) parameter space, with the
maximum relative error in the height of the peak of
the spectrum never exceeding 50% both in the small and
large loop regimes—and being, in general, significantly
smaller than that. Note that, although this approximation
was derived under the assumption that loop production
occurs at a single lengthscale, our results can, in
principle, be used to construct an analytical approxima-
tion to more complex scenarios in which the length of
loops at moment of creation follows a distribution
(as demonstrated by the results in Sec. V). Moreover,
although the results presented here correspond to stan-
dard strings, which are well described by the VOS model
with c̃ ¼ 0.23, this approximation may, in principle, also
be used to characterize the SGWB generated by non-
standard networks with different values of c̃ provided
there is significant loop production (for instance,
strings which have a reduced intercommutation proba-
bility [15]).
This analytical fit is expected to become an extre-

mely useful tool for fast estimations of the SGWB power
spectrum generated by cosmic string networks over a
wide parameter space, thus allowing for a quick deriva-
tion of the observational constraints on cosmic string
scenarios from current and forthcoming GW experiments.
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