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The universal character of the gravitational interaction provided by the equivalence principle motivates a
geometrical description of gravity. The standard formulation of general relativity à la Einstein attributes
gravity to the spacetime curvature, to which we have grown accustomed. However, this perception has
masked the fact that two alternative, though equivalent, formulations of general relativity in flat spacetimes
exist, where gravity can be fully ascribed either to torsion or to nonmetricity. The latter allows a simpler
geometrical formulation of general relativity that is oblivious to the affine spacetime structure.
Generalizations along this line permit us to generate teleparallel and symmetric teleparallel theories of
gravity with exceptional properties. In this work we explore modified gravity theories based on nonlinear
extensions of the nonmetricity scalar. After presenting some general properties and briefly studying some
interesting background cosmologies (including accelerating solutions with relevance for inflation and dark
energy), we analyze the behavior of the cosmological perturbations. Tensor perturbations feature a
rescaling of the corresponding Newton’s constant, while vector perturbations do not contribute in the
absence of vector sources. In the scalar sector we find two additional propagating modes, hinting that fðQÞ
theories introduce, at least, 2 additional degrees of freedom. These scalar modes disappear around
maximally symmetric backgrounds because of the appearance of an accidental residual gauge symmetry
corresponding to a restricted diffeomorphism. We finally discuss the potential strong coupling problems of
these maximally symmetric backgrounds caused by the discontinuity in the number of propagating modes.

DOI: 10.1103/PhysRevD.101.103507

I. INTRODUCTION

The gravitational phenomena can be interpreted as a
manifestation of having a curved spacetime and this
interpretation is possible thanks to the equivalence princi-
ple. The tremendous implication of this assumption is that
the gravitational interaction is totally oblivious to the type
of matter fields. However, still within the geometrical
framework, the curvature is not the unique geometrical
object to represent the affine properties of a manifold [1–4].
In fact, besides the curvature, the other two fundamental
objects associated with the connection of a metric space are
torsion and nonmetricity. In standard general relativity
(GR) à la Einstein, both nonmetricity and torsion vanish.

If we embrace the geometrical character of gravity
advocated by the equivalence principle, it is pertinent to
explore in which equivalent manners gravity can be
geometrized. An equivalent representation of GR arises
if one considers a flat spacetime with a metric but
asymmetric connection. In this teleparallel description
gravity is entirely assigned to torsion. A third equivalent
and simpler representation of GR can be constructed on an
equally flat spacetime without torsion, in which gravity is
this time ascribed to nonmetricity. Hence, the same under-
lying physical theory, GR, can be described by the Einstein-
Hilbert action

R ffiffiffiffiffiffi−gp
RðgÞ, the action of teleparallel equiv-

alent of GR
R ffiffiffiffiffiffi−gp

T [5] and coincident GR
R ffiffiffiffiffiffi−gp

Q [6]
that rests on a symmetric teleparallel geometry [7]. The
geometrical trinity of GR and its concise manifestation in
detail can be found in [4].
The fundamental basis of these geometrical interpreta-

tions offers a promising road for modified gravity. The
equivalent descriptions of GR with curvature, torsion and
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nonmetricity represent different alternative starting points
to modified gravity theories once the corresponding scalar
quantities are for instance promoted to arbitrary functions
thereof. Since modified gravity theories based on fðRÞ
[8–10] and fðTÞ [11–13] are widely studied in the
literature, we will focus on the less studied case of fðQÞ
theories, which was introduced for the first time in [6].
Since at the cosmological background level, models based
on fðQÞ are indistinguishable from fðTÞ models, we will
pay special attention to the study of perturbations and
their distinctive properties in fðQÞ theories. Concerning
perturbations on top of a FLRW (Friedmann-Lemaître-
Robertson-Walker) background, models based on fðTÞ
seem to suffer from strong coupling problems because
some of the genuine physical degrees of freedom lose their
kinetic term at the quadratic order and, consequently, the
standard perturbation theory breaks down on these back-
grounds [14]. At this stage, the number and nature of new
propagating degrees of freedom in fðTÞ models on an
arbitrary background is still under investigation in the
literature; see [15,16] and related studies [17–19]. In this
work, we will investigate whether models of modified
gravity based on fðQÞ suffer from a similar strong coupling
issue or whether it can be avoided for some interesting
FLRW backgrounds relevant for dark energy and inflation.
Besides the fðQÞ models [6], a few other classes of

modified or extended gravity theories have been considered
within the same symmetric teleparallel framework.1 The so-
called newer GR [6,29–31] is a five-parameter quadratic
extension of the action

R ffiffiffiffiffiffi−gp
Q, which has been also

considered in the language of differential forms [32–34]
and extended to arbitrary derivative order by including, in
the most general case, ten free functions of the
d’Alembertian operator [35]. Parity-odd quadratic terms
were taken into account in an exhaustive analysis of scale-
invariant metric-affine theories [36]. Without the restriction
to quadratic terms, cosmological solutions based on
Noether symmetries were derived for generic first deriva-
tive order nonmetric actions [37]. Järv et al. introduced a
nonminimal coupling of a scalar field to the Q-invariant
[38], which then Rünkla and Vilson generalized by
coupling the scalar to the five newer GR terms [39].
Nonminimal couplings to matter were also considered in
extended fðQÞ models by Harko et al. [40,41]. To probe
the potential cosmological viability of these and other
classes of models, it is natural to begin by uncovering the
propagating degrees of freedom of the prototype fðQÞ
models in the FLRW background.
This paper is structured as follows. After reviewing the

theory in Sec. II, we briefly look at the FLRW background
equations in Sec. III. The main analysis of the perturbations
and the structure formation is found in Sec. IV. To provide a

better understanding and a more clear interpretation of the
perturbations we discuss the gauge transformation proper-
ties of the Q-scalar in Sec. V. Section VI presents a concise
summary of our findings and points out the direction for
further research that needs to be carried in order to fully
uncover the cosmological potential of fðQÞ gravity.

II. THE THEORY

We will use the so-called Palatini formalism where the
metric and the connection are treated on equal footing so
they are independent objects whose relation is only
imposed by the field equations. In this framework, our
spacetime manifold is endowed with a metric structure
determined by the metric gμν, while the affine connection
Γα

μν provides the affine structure that stipulates how
tensors are transported, thus defining the covariant deriva-
tive. In the class of theories under consideration in this
work, the fundamental object is the nonmetricity tensor
defined as Qαμν ¼ ∇αgμν. It manifests the failure of the
connection in being metric compatible. From the non-
metricity tensor Qαμν, we can derive the disformation

Lα
μν ¼

1

2
Qα

μν −QðμνÞα; ð1Þ

that measures how far from the Levi-Civita connection
the symmetric part of the full connection is. It will also
be convenient to introduce the nonmetricity conjugate
defined as

Pα
μν ¼ −

1

2
Lα

μν þ
1

4
ðQα − Q̃αÞgμν −

1

4
δαðμQνÞ; ð2Þ

where the two independent traces Qα ¼ gμνQαμν and Q̃α ¼
gμνQμαν of the nonmetricity tensor enter. Let us now
introduce the nonmetricity scalar that will play a central
role in this work

Q ¼ −QαμνPαμν: ð3Þ

One can then see why we call Pαμν the nonmetricity
conjugate because it satisfies

Pαμν ¼ −
1

2

∂Q
∂Qαμν

: ð4Þ

We can then use the nonmetricity scalar to write the action
for the theories that we consider as

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
1

2
fðQÞ þ LM

�
; ð5Þ

where LM stands for the matter Lagrangian. The motivation
for the particular choice of the nonmetricity scalar and the
above action is that GR is reproduced (classically, up to a

1Other recent studies of torsion and nonmetricity include
e.g., [20–28].
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boundary term) for the choice f ¼ Q=8πG [6]; i.e., for this
choice we recover the so-called symmetric teleparallel
equivalent of GR.
Before proceeding any further, it will be convenient to

clarify that the geometrical framework that we use has a flat
and torsion-free connection so that it must correspond to a
pure coordinate transformation from the trivial connection
as explained in [6]. More explicitly, the connection can be
parametrized with a set of functions ξα as2

Γα
μβ ¼

∂xα
∂ξρ ∂μ∂βξ

ρ: ð6Þ

Therefore, it is always possible to make a coordinate choice
so that the connection vanishes (more specifically, any
coordinates affinely related to ξα ¼ xα). We call these
coordinates the coincident gauge and we will denote
quantities evaluated in this gauge with a ring over the
corresponding symbol so, by definition Γ̊α

μν ¼ 0. Thus, in
the coincident gauge we will have

Q̊αμν ¼ ∂αgμν; ð7Þ

while in an arbitrary gauge we have

Qαμν ¼ ∂αgμν − 2Γλ
αðμgνÞλ

¼ Q̊αμν − 2
∂xλ
∂ξρ ∂α∂ðμξρgνÞλ: ð8Þ

The metric field equations can be written as

2ffiffiffiffiffiffi−gp ∇αð
ffiffiffiffiffiffi
−g

p
fQPα

μνÞ þ
1

2
gμνf

þ fQðPμαβQν
αβ − 2QαβμPαβ

νÞ ¼ Tμν; ð9Þ

where fQ ¼ ∂f=∂Q. By raising one index this adopts an
even slightly more compact form,

2ffiffiffiffiffiffi−gp ∇αð
ffiffiffiffiffiffi
−g

p
fQPαμ

νÞþ
1

2
δμνfþfQPμαβQναβ¼Tμ

ν: ð10Þ

The connection equation of motion can be straightfor-
wardly computed by noticing that the variation of the
connection with respect to ξα is equivalent to performing a
diffeomorphism so that δξΓα

μβ ¼ −LξΓα
μβ ¼ −∇μ∇βξ

α,
where we have used that the connection is flat and
torsion-free. Thus, in the absence of hypermomentum
the connection field equations read

∇μ∇νð
ffiffiffiffiffiffi
−g

p
fQPμν

αÞ ¼ 0: ð11Þ

From the metric and the connection equations one can
verify that DμTμ

ν ¼ 0, where Dμ is the metric-covariant
derivative [29], as it should by virtue of diffeomorphism
invariance. In the most general case with a nontrivial
hypermomentum, one would obtain a relation between
the divergence of the energy-momentum tensor and the
hypermomentum [40].
In order to clarify the conservation in the matter sector

and the Bianchi identities, let us look at the gauge
invariance of the theory. Under a diffeomorphism given
by xμ → xμ þ ζμ, the nonmetricity scalar changes as

δζQ ¼ ∂Q
∂gμν;α δζgμν;α þ

∂Q
∂gμν δζgμν þ

∂Q
∂Γα

μν
δζΓα

μν: ð12Þ

The first term is

∂Q
∂gμν;α δζgμν;α ¼ 2PαμνLζQ̊αμν; ð13Þ

where

LζQ̊αμν ¼ ζρ∂ρ∂αgμν þ ∂αζ
ρ∂ρgμν þ 2∂αgρðμ∂νÞζρ

þ 2gρðμ∂νÞ∂αζ
ρ: ð14Þ

The last term in (12) is

∂Q
∂Γα

μν
δζΓα

μν ¼
∂Q

∂Qαβγ

∂Qαβγ

∂Γκ
μν
LζΓκ

μν

¼ −2Pαβγð−2δμαδνðβgγÞλÞð−∇μ∇νζ
λÞ

¼ −4Pαβγgλðβ∇γÞ∇αζ
λ: ð15Þ

It is possible to show that the nonmetricity scalar varies
under diffeomorphism as

δζQ ¼ ∂Q
∂Qαμν

LζQαμν þ
∂Q
∂gμν Lζgμν ¼ −LζQ; ð16Þ

and thus the action (5) is diffeomorphism invariant.
However, when fixed to the coincident gauge, the action
no longer remains generally diffeomorphism invariant. One
obtains

δζS̊ ¼ −2
Z

d4xζλ
h ffiffiffiffiffiffi

−g
p ð∂α∂γfQÞP̊αγ

λ

þ 2ð∂ðαfQÞð∂γÞ
ffiffiffiffiffiffi
−g

p
P̊αγ

λÞ
i
: ð17Þ

We have dropped a total derivative and used the identity

∂α∂μ

� ffiffiffiffiffiffi
−g

p
P̊αμ

ν

�
¼ 0: ð18Þ

Thus, only when fQQ ¼ 0, the action is in general diffeo-
morphism invariant. However, for a generic f there appears

2It must be understood in (6) that ξα ¼ ξαðxμÞ is an invertible
relation and ∂xα

∂ξρ is the inverse of the corresponding Jacobian.
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a term which vanishes on shell as the result of the nontrivial
extra set of Eqs. (11).

III. COSMOLOGICAL BACKGROUND
EVOLUTION

As we mentioned above, at the cosmological background
level our model based on (5) does not differ from the fðTÞ
models. It also shares similar cosmological solutions as the
vector distortion parametrization [42,43]. The background
evolution and the different self-accelerating solutions were
briefly discussed in [6]. We shall only quickly review the
background equations of motion and their defining proper-
ties. We will consider the FLRW metric

ds2 ¼ −N2ðtÞdt2 þ a2ðtÞdx⃗2; ð19Þ

where NðtÞ and aðtÞ are the lapse function and the scale
factor, respectively. From now on and unless otherwise
stated, we will fix the coincident gauge so the connection is
trivial. The nonmetricity scalar is then Q ¼ 6 H2

N2. Since we
have used diffeomorphisms to fix the coincident gauge, one
could think that we are not allowed to select any particular
lapse function. However, the special case of fðQÞ theories
does allow so because Q retains a residual time-reparamet-
rization invariance, as already explained in [6] so we will
use this symmetry to set N ¼ 1.
The cosmological equations of motion are given by

6fQH2 −
1

2
f ¼ ρ;

ð12H2fQQ þ fQÞ _H ¼ −
1

2
ðρþ pÞ: ð20Þ

The standard matter fields satisfy the continuity equation
_ρ ¼ −3Hðρþ pÞ, that is consistent with the above cos-
mological equations thanks to the time-reparametrization
invariance aforementioned. These equations are formally
the same as those of the fðTÞ theories so we refer to [44] for
an extensive analysis of the background cosmology based
on those equations. We will content ourselves with dis-
cussing some interesting features of the background cos-
mology for these theories.
There is a particularly interesting class of theories that

give a background evolution identical to that of general
relativity. Such a class of models can be easily obtained by
imposing QfQ − 1

2
f ¼ Q

16πG whose solution is

f ¼ 1

8πG
ðQþM

ffiffiffiffi
Q

p
Þ ð21Þ

withM some mass scale. Of course,M ¼ 0 corresponds to
the GR equivalent, but it is remarkable that there exists a
whole class of theories whose background cosmology is the
same as in GR for any matter content. The different values
of M could only be discriminated by analyzing the

evolution of the perturbations and this property by itself
makes this particular choice of fðQÞ an interesting study
case since the evolution of the perturbations can be
modified while maintaining the background oblivious to
such modifications.
On the other hand, the Symmetric Teleparallel

Equivalent of General Relativity (STEGR) supplemented
with a general power-law term, i.e.,

f ¼ 1

8πG

�
Q − 6λM2

�
Q

6M2

�
α
�

ð22Þ

with λ and α dimensionless parameters, gives rise to
branches of solutions applicable either to early Universe
cosmology or to dark energy depending on the value of α.
For these models, the Friedmann equation modifies into

H2

�
1þ ð1 − 2αÞλ

�
H2

M2

�
α−1�

¼ 8πG
3

ρ: ð23Þ

Again, for α ¼ 1=2 we recover the aforementioned class of
theories with the same background evolution as GR, while
α ¼ 1 is of course degenerate with the STEGR and can be
fully absorbed into G. It is then apparent from the above
modified Friedmann equation that the corrections to the
usual GR evolution will appear at low curvatures for α < 1,
while for α > 1, the corrections will be relevant in the high
curvatures regime. Thus, theories with α > 1 will be
relevant for the early Universe (with potential applications
to inflationary solutions), whereas theories with α < 1 will
give corrections to the late-time cosmology, where they can
give rise to dark energy.
We would like to bring the equations into an autono-

mouslike form. In order to do that we introduce the
dimensionless variables

x1 ¼
ρm
QfQ

; x2 ¼
ρr

QfQ
and x3 ¼

f
2QfQ

: ð24Þ

We have assumed that the total energy density ρ is
comprised by a matter ρm and a radiation ρr component.
In terms of the variables the dynamical system takes the
form

x01 ¼ x1ðϵ − 3Þ þ 3x21 þ 4x1x2;

x02 ¼ x2ðϵ − 4Þ þ 3x1x2 þ 4x22;

x03 ¼ ϵðx3 − 1Þ þ 3x1x3 þ 4x2x3; ð25Þ

where ϵ ¼ − _H=H2 and the prime denotes the derivative
with respect to loga. The independent variables can be
taken as fx1; x2; ϵg. The Friedmann equation (20) imposes
the constraint equation

x1 þ x2 þ x3 ¼ 1: ð26Þ
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One can easily solve the system for its critical points. We
find the following three critical points of the dynamical
system

I∶ ðx1 ¼ 0; x2 ¼ 0; x3 ¼ 1Þ;

II∶
�
x1 ¼ 1 −

1

3
ϵ; x2 ¼ 0; x3 ¼

1

3
ϵ

�
;

III∶
�
x1 ¼ 0; x2 ¼ 1 −

1

4
ϵ; x3 ¼

1

4
ϵ

�
: ð27Þ

We can include small perturbations and consider the
following linearized system

d
dt

0
B@

δx1
δx2
δx3

1
CA ¼ M

0
B@

δx1
δx2
δx3

1
CA ð28Þ

with the matrix M of the dynamical system given by M ¼
0
B@

6x1 þ 4x2 þ ϵ− 3 3x2 3x3
4x1 3x1 þ 8x2 þ ϵ− 4 4x3
0 0 3x1 þ 4x2 þ ϵ

1
CA:

ð29Þ

The stability analysis of the critical points reveals that the
first critical point I is a stable attractor, the second one II is a
saddle point and the third one III is an unstable repeller.
In the following we will study two explicit examples

with some interesting properties.
Example 1: 8πGfðQÞ ¼ Q − 1

36
ðQ=mÞ2

In this case, the Friedmann equation in (20) simplifies to

3H2

�
1 −

H2

2m2

�
¼ 8πGρ ð30Þ

which has two branches of cosmological solutions

H2
� ¼ m2

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

16πGρ
3m2

r �
: ð31Þ

The cosmological background evolution for this example is
formally the same as the one obtained in [43] from a
completely different framework based on a generalized
Weyl geometry with vector distortion giving both non-
metricity and torsion, first introduced in [42]. Thus, we will
limit ourselves to summarize the main properties of these
solutions and we will refer to [43] for a more detailed
analysis. The most remarkable feature of this cosmology is
the existence of a maximum allowed density in the
Universe given by 8πGρmax ¼ 3

2
m2, which is enforced

by the square root in (31).3 Below the maximum density,
we have two branches: H2

− that approaches the usual GR
evolution at low densities and H2þ that gives an approxi-
mate de Sitter universe withH2

dS ≃ 2m2 regardless the value
of ρ (see left panel in Fig. 1).
Example 2: 8πGfðQÞ ¼ QþM4=Q
The Friedmann equation in this case becomes

H2

�
1 −

M4

12H4

�
¼ 8πGρ ð32Þ

that can be solved for H2 as

H2
� ¼ 4πG

3
ρ

 
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3M4

64π2G2ρ2

s !
: ð33Þ

The negative branch is not physical because it gives
H2

− < 0, so only the branch H2þ is physical. As in the
previous example, this evolution was also obtained in
the framework of generalized Weyl geometries in [43].

FIG. 1. In these figures we show the Hubble function H2 as a function of ρ for the two examples discussed in the main text. We have
normalized to the Planck mass and fixed the parameters to m ¼ 0.5MPl in the left panel and M ¼ 10−2MPl in the right panel.

3The existence of a maximum energy density enforced by
some square root structure is the main motivation behind the
Born-Infeld-inspired theories of gravity (see [45] and references
therein).
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The physical branch H2þ recovers the usual GR Friedmann
equation for ρ ≫ M2M2

Pl, while at low densities the Hubble
function approaches the constant H2

dS ¼ M2

2
ffiffi
3

p corresponding

to an asymptotically de Sitter solution, as shown in the right
panel of Fig. 1. This example can thus be relevant for dark
energy applications since it allows for solutions that natu-
rally give a transition from amatter dominated universe to an
accelerating de Sitter universe. However, as we will show in
our analysis of the perturbations in the subsequent sections,
these asymptotically de Sitter solutions are prone to strong
coupling problems in the scalar sector of the perturbations,
thus casting doubts on its phenomenological viability.
Since the fðQÞ theories share the background equations

with the fðTÞ theories, we will not investigate further the
possible background cosmologies and we will now turn to
the main focus of this paper, i.e., the evolution of the
perturbations. Let us finish this brief discussion of the
background cosmological evolution by advancing the exist-
ence of strong coupling problems at the perturbative level
that may cast serious doubts on the viability of the back-
ground cosmologies.

IV. COSMOLOGICAL PERTURBATIONS

For the sake of generality, we will study the evolution of
the cosmological perturbations in the presence of a K-
essence field so our action is

SM ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
1

2
fðQÞ þ PðXÞ

�
; ð34Þ

where X ¼ −∂μχ∂μχ. The background Friedmann equa-
tions now read

f þ Pþ 12H2fQ − 2PX _̄χ
2 ¼ 0; ð35Þ

PX _̄χ
2 þ 2 _HðfQ − 12H2fQQÞ ¼ 0: ð36Þ

On the other hand, the scalar field equation reads

d
dt
ða3PX _̄χÞ ¼ 0: ð37Þ

Since the crucial difference to fðTÞ theories will arise at the
level of perturbations, we will investigate in detail the
second order action of cosmological perturbations.
For this purpose, we decompose the metric in terms of

the irreducible representations of the background SOð3Þ
symmetry expressed in conformal time as follows [46]:

δg00 ¼ −2a2ϕ;

δg0i ¼ δgi0 ¼ a2ð∂iBþ BiÞ;

δgij ¼ 2a2
�
−φδij þ

�
∂i∂j −

δij
3
∂k∂k

�
Eþ ∂ðiEjÞ þ hij

�
;

ð38Þ

with the scalar perturbations ϕ, B, φ and E, the vector
perturbations Bi and Ei satisfying ∂iBi ¼ 0 ¼ ∂iEi and the
tensor perturbations hij with the properties ∂ihij ¼ 0 ¼ hii.
Similarly, we decompose the K-essence field into its
background contribution and perturbation

χðτ; x; y; zÞ ¼ χ̄ðτÞ þ δχðt; x; y; zÞ: ð39Þ

As usual, the different sectors will decouple thanks to the
background symmetries so we can treat them separately.
We shall use conformal time, corresponding to the choice
of lapse N ¼ a in (19), by τ. Derivatives with respect to the
conformal time will be denoted by primes, and thus the
conformal Hubble rate is defined as H ¼ a0=a ¼ aH.
A word on the choice of time variable is in order before
proceeding. As we have discussed, the background equa-
tions retain time-reparametrization invariance, so the choice
of the time coordinate is irrelevant there. However, since we
are working in the coincident gauge, the perturbations do
not enjoy diffeomorphisms invariance and the choice of the
background time coordinate might lead to different results.
We have checked that all our conclusions below remain
valid regardless the choice of the lapse function.

A. Tensor perturbations

We introduce the tensor perturbations as the transverse
traceless part of the metric fluctuations that can be
decomposed into its two helicity modes hðλÞ. After decom-
posing the tensor field in Fourier modes with respect to the
spatial coordinates and using the background equations of
motion, the second order action becomes

Sð2Þ
tensor ¼

1

2

X
λ

Z
d3kdτa2fQ½ðh0ðλÞÞ2 − k2h2ðλÞ�: ð40Þ

As it becomes clear from the above expression, the tensor
perturbations are massless and have the same propagation
speed of gravitational waves as in GR [6]. This was to be
expected from the form of the action for the theories under
consideration because all the modifications to the pure
tensor perturbations come from the term QαμνQαμν ∼
∂αhij∂αhij. All the other independent scalars constructed
out of the nonmetricity vanish for the quadratic action. It is
clear that tensor perturbations cannot contribute to the
vector traces of the nonmetricity at first order. The
remaining independent scalar is QαμνQμαν ∼ ∂ihjk∂jhik

which gives zero in the quadratic action via integration
by parts and recalling that the background is homogeneous.
Thus, our result is what we expected, as the only modi-
fication to tensor perturbations is the appearance of the
time-dependent redressing of the effective Planck mass
with fQ. This has some observational consequences
because the coupling constant of GWs to matter sources
will be G=fQ. As we will see, this is the same effective
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Newton’s constant driving the growth of structures. On the
other hand, the modified coupling constant will also
affect the cosmological propagation of gravitational waves
because the usual Hubble friction term acquires an fQ-
dependent correction. More explicitly, the propagation of
GWs is governed by the modified equation

h00ðλÞ þ 2H
�
1þ d log fQ

2Hdη

�
h0ðλÞ þ k2hðλÞ ¼ 0: ð41Þ

An immediate consequence is thus a modification on the
luminosity distance as measured from GWs. Due to the
additional friction introduced by the time-dependent value
of fQ, the amplitude of GWs decays as jhðλÞj ∝ 1=ða ffiffiffiffiffiffi

fQ
p Þ

instead of the usual 1=a dilution. We can then obtain
constraints on fQ by comparing the luminosity distance as
measured with GWs and the one inferred from observing
photons, assuming that their propagation is described by
Maxwellian electromagnetism. A perfect candidate for this
is the merger of two neutron stars as detected by the LIGO
Collaboration where the signals in GWs and the electro-
magnetic counterpart were measured. This modification to
the luminosity distance is formally analogous to what
happens in models with extra dimensions where gravity
can leak into the additional dimensions [47]. The effect on
the luminosity distance arising from a time variation of the
effective Planck mass has also been analyzed in [48] (see
also [49–51] for the effects on the propagation of GWs
arising from a modified friction term).

B. Vector perturbations

Naively counted there are four vector modes in Ei and
Bi. However, one immediate observation is that the fields
Bi appear in the second order action as nondynamical fields
and they can be integrated out by means of an algebraic
equation. We use their equations of motion in order to
remove them from the second order action. Then, the
remaining action solely depends on Ei. Nevertheless, once
the background equations of motion are used, their con-
tributions trivialize in the sense that the entire second order
action vanishes. This can also be straightforwardly under-
stood from the field equations directly, which can be
written as

k2fQðB⃗ − E⃗0Þ ¼ 0; ð42Þ

k2½fQðB⃗ − E⃗0Þ�0 ¼ 0; ð43Þ

where we have made use of the background equations. We
then see that the first equation is not dynamical and simply
fixes B⃗ in terms of E⃗0. The second equation being the
derivative of the constraint does not give new information.
This means that vector perturbations do not propagate,
which coincides with the usual result in GR in the absence

of vector sources. However, while in GR this is a
consequence of diffeomorphisms invariance and the vector
modes can be associated with the Lagrange multipliers of
transverse diffeomorphisms, in the fðQÞ theories, once we
fix the coincident gauge as we have done here, there is not,
in principle, any symmetry ensuring that the vector per-
turbations are Lagrange multipliers and, consequently, one
might expect that they become dynamical in the full theory.
There is in fact a simple argument that clearly shows that at
most two vector modes will become dynamical in the full
theory, while the other two vector modes will remain
nonpropagating d.o.f.’s. The reason is that, in the coincident
gauge, the scalar Q reduces to the Ricci scalar deprived of
the total derivative. If we perform an Arnowitt-Deser-
Misner (ADM) splitting where the metric is decomposed
into the lapse function N , the shift vector N i and the
spatial metric γij, the nonmetricity scalar Q will only
contain time derivatives of γij (see Appendix A for more
details) so that the fðQÞ action in the ADM formalism will
have the form

SADM ¼ −
1

2

Z
d3xdtN

ffiffiffiffiffiffi
−γ

p
fð_γij; γij;N ;N iÞ ð44Þ

where we clearly see the nondynamical character of the
lapse and the shift. This means that only the vector modes
contained within γij can become dynamical, while those
contributing to the shift remain nondynamical at the full
nonlinear level. Thus, the nondynamical nature of B⃗
reflects that the shift is not a propagating d.o.f. in the full
theory. As for E⃗, it remains to be seen if it also corresponds
to a nondynamical field in the full theory. If this was not the
case, E⃗ would represent a mode that becomes strongly
coupled in the highly symmetric FLRW background.

C. Scalar perturbations

There are four scalar modes fB;ϕ;φ; Eg in the metric
fluctuations and one in the fluctuation of the matter field δχ.
However, the two scalar perturbations B and ϕ are not
dynamical and can be immediately integrated out using
their algebraic equations of motion. The nondynamical
nature of these modes can be understood from our previous
discussion on the ADM decomposition because B and ϕ are
just the linearized lapse function and the longitudinal part
of the perturbed shift, which are in fact nondynamical in the
full theory. The remaining second order action depends on
the scalar perturbations fφ; E; δχg. Its cumbersome form
will not be necessary for us here so we will omit it.4 It is
interesting however to give the determinant of the corre-
sponding Hessian, which is

4The full Hessian is reported in Eq. (B1). We give the
corresponding equations of motion in Sec. IV D.
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12k4Q2fQf2QQðfQ þ 2QfQQÞϵ2
12f2Q þ 2QfQfQQð9 − 5ϵÞ −Q2f2QQð8 − 3ϵÞϵ ; ð45Þ

where we have introduced ϵ ¼ 1 −H0=H2, which is the
usual slow-roll parameter expressed in conformal time
(though we do not assume it to be small here). The
vanishing of the above expression indicates a degenerate
system so that at least one of the remaining three scalar
modes becomes nondynamical. This is of course the case
when fQQ ¼ 0 as it corresponds to GR (we know that there
will actually be two more nondynamical modes in that case
owed to diffeomorphisms invariance). Since the determi-
nant is proportional to k4, we also see that the system
becomes degenerate for homogeneous perturbations, which
is a reflection of the additional time-reparametrization
symmetry of the background. Besides these two limiting
cases, there is another situation where the Hessian is
degenerate, which corresponds to background solutions
with ϵ ¼ 0. These solutions describe maximally symmetric
backgrounds, i.e., Minkowski and (anti–)de Sitter. The
Hessian for these backgrounds reduces to the simple form

0
BB@

0 0 0

0 − 2k4QfQfQQ

6fQþ9QfQQ
0

0 0 1

1
CCA

that clearly shows how one of the scalar modes loses its
kinetic term and becomes nondynamical. Furthermore, it is
not difficult to show that, after integrating out this new
nondynamical mode, the equation for the remaining scalar
mode of the gravitational sector trivializes so that the full
scalar sector disappears (assuming that the matter sector is
simply given by an exact cosmological constant). More
explicitly, the equations for φ and E in the presence of a
cosmological constant and after integrating out the non-
dynamical modes ϕ and B are given by

k4QfQfQQ

H2ð2fQ þ 3QfQÞ
ð3HE0 þ k2E − 3φÞ ¼ 0; ð46Þ

k4QfQfQQ

H2ð2fQ þ 3QfQÞ
½E00 þ 18H3E0 þ k2ð3H2 − k2ÞE

− 9Hφ0 þ 3ðk2 − 3H2Þφ� ¼ 0: ð47Þ

We can see that φ is not dynamical and can be solved for
from the first equation. We can then plug the solution into
the second equation and corroborate that it is indeed
identically satisfied, thus leaving a trivial scalar sector.
The loss of kinetic terms might signal the presence of

a strong coupling problem because, as we go arbitrarily
close to those maximally symmetric backgrounds, the
canonically normalized mode becomes arbitrarily strongly
coupled (either to itself or to other modes). It is interesting

to notice that these background configurations are in fact
the expected solutions in vacuum, since deviations from
ϵ ¼ 0 will require a nontrivial background profile for the
scalar field. For a general FLRW background, however,
all three scalar modes propagate. In other words, in the
absence of the matter fields, the disappearance of the scalar
modes signals toward a potential strong coupling problem.
At a more practical level, these findings suggest the
existence of a low strong coupling scale, but it remains
to compute it explicitly to see if it leaves room for nontrivial
phenomenologies since, at the strong coupling scale, the
perturbation theory breaks down and we cannot make any
reliable statement. Nevertheless, the situation is better than
in fðTÞ theories since there the strong coupling problem
appears for general FLRW backgrounds, i.e., regardless of
the presence or type of matter fields. Here, we encounter
this problem only for (anti–)de Sitter/Minkowski back-
grounds and the presence of matter fields can crucially help
to raise the strong coupling scale.
It is interesting to compare our results for the perturba-

tions in fðQÞ theories with what happens in single field
inflation. Let us recall that the curvature perturbation5R for
a single field inflationary model features the following
quadratic action

SR ¼ M2
Pl

Z
dτd3x

a2ϵ
c2s

½ _R2 − c2s j∇Rj2�; ð48Þ

where c2s stands for the propagation speed of the scalar
perturbations. In this action we encounter something
similar to our fðQÞ theories in that the limit ϵ → 0 seems
to lead to a strong coupling issue because the scalar
perturbation loses its kinetic term. This is in fact true.
However, in the strict limit ϵ ¼ 0, we recover that the
matter sector is a cosmological constant and the disappear-
ance of the scalar mode is associated with the fact that a
cosmological constant does not fluctuate, so in this par-
ticular case there is no onus. The case of the fðQÞ theories
is more problematic because we have the disappearance of
two scalar modes. The disappearance of one of the modes
could have been expected on the grounds that the matter
sector reduces to a nonfluctuating cosmological constant
for ϵ ¼ 0. However, we encounter that a second scalar
mode also disappears and this mode is expected to be part
of the dynamical degrees of freedom of the fðQÞ theories
so its disappearance in fact signals that it becomes strongly
coupled. We will return to this point below where we will
relate these evanescent modes around maximally symmet-
ric backgrounds with the appearance of a gauge symmetry.
Let us nevertheless finalize this brief comparison with usual

5Let us stress thatR denotes the scalar perturbation and not the
Ricci scalar. Since this is standard notation and there is no risk of
confusion, we prefer to stick to the general notation within the
inflationary literature.
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inflationary perturbations by saying that very small values
of the slow-roll parameter can in fact incur strong coupling
issues. As a matter of fact, going through a phase where the
slow-roll parameter decreases for a few e-folds after the
cosmological microwave background scales have exited
the horizon and before the end of inflation originates a peak
in the power spectrum (that could eventually form primor-
dial black holes). If ϵ becomes sufficiently small, the peak
in the power spectrum can be so large that perturbation
theory breaks down.

D. Field equations

In the following we will consider a perfect fluid for the
matter field instead of aK-essence field and explicitly show
the dependence of background variables in the perturba-
tions equations of motion. The perturbed line element will
be explicitly given in (51). It is sometimes convenient to
introduce the Bardeen potential ψ with the purely temporal
transformation

ψ → ψ þHζ0; ð49Þ

by combining the trace of the shear perturbation E with the
φ on the spatial diagonal as

ψ ¼ φþ 1

3
δijE;ij; ð50Þ

so that

ds2

a2ðτÞ¼−ð1þ2ϕÞdτ2þ2ðB;iþBiÞdτdxi

þ½ð1−2ψÞδijþ2E;ijþ2Eði;jÞ þ2hij�dxidxj: ð51Þ
The matter energy-momentum tensor we parametrize in

the fluid form,

T0
0 ¼ −ρð1þ δÞ; ð52Þ

T0
i ¼ −ðρþ pÞð∂ivþ ViÞ; ð53Þ

Ti
0 ¼ ðρþ pÞ½∂iðv − BÞ þ Vi − Bi�; ð54Þ

Ti
j ¼ ðpþ δpÞδij þ ∂i∂jπ −

1

3
δij∇2π þ Πi

j: ð55Þ

Here ρ and p are the background energy density and
pressure. Denoting w ¼ p=ρ, c2s ¼ p0=ρ0, the continuity
and Euler equations are

δ0 ¼ ð1þ wÞð−k2v − k2Bþ 3φ0Þ þ 3H
�
wρ −

δp
ρ

�
; ð56Þ

v0 ¼ −Hð1 − c2sÞvþ
δp

ρþ p
−
2

3

w
1þ w

k2π þ ϕ: ð57Þ

Similarly, the energy constraint can be expressed in a
compact form as

−a2δρ ¼ 6ðfQ þ 12a−2H2fQQÞHðHϕþ φ0Þ þ 2fQk2ψ

− 2½fQ þ 3a−2fQQðH0 þH2Þ�Hk2B: ð58Þ

The velocity propagation can be withdrawn from

1

2
a2ðρþpÞv¼ ½fQ þ 3a−2fQQðH0 þH2Þ�Hϕ

þ 6a−2fQQH2φ0 − 9a−2fQQðH0 −H2ÞHφ

þ fQψ 0 − a−2fQQH2k2B: ð59Þ

The pressure equation is a little bit more cumbersome but
can be expressed as

1

2
a2δp ¼ ðfQ þ 12a−2fQQH2ÞðHϕ0 þ φ00Þ þ

�
fQ

�
H0 þ 2H2 −

1

3
k2
�
þ 12a−2fQQH2ð4H0 −H2Þ þ 12a−2

dfQQ

dτ
H3

�
ϕ

þ 2

�
fQ þ 6a−2fQQð3H0 −H2Þ þ 6a−2

dfQQ

dτ
H
�
Hφ0 þ 1

3
fQk2ψ

−
1

3
ðfQ þ 6a−2fQQH2Þk2B0 −

1

3

�
2fQ þ 3a−2fQQð5H −H2Þ þ 6a−2

dfQQ

dτ
H
�
Hk2B: ð60Þ

In the presence of anisotropic stress in Ti
j, we can similarly follow the shear propagation via the equation

pa2π ¼ −2½fQ þ 6a−2fQQðH0 −H2Þ�HBþ 2½fQ þ 6a−2fQQðH0 −H2Þ�HE0

fQðψ − ϕÞ þ fQE00 − fQB0: ð61Þ

Last but not least, we also have the contributions coming from the connection field equations. The two independent
connection field equations from (11) are
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− fQQH½2Hφ0 þ ðH0 þH2Þϕþ ðH0 −H2Þðψ − B0Þ�

−
h
fQQ

�
H02 þHH00 − 3H2H0 −

1

3
H2k2

�
þ dfQQ

dτ
ðH0 −H2ÞH

i
B ¼ 0; ð62Þ

and

− fQQðH0 − 3H2ÞHϕ0 −
�
fQQðH00HþH02 − 9H0H2Þ − dfQQ

dτ
ðH0 − 3H2ÞH

�
ϕ

þ 2fQQH2φ00 þ
�
fQQðH0 þ 3H2Þ þ 2

dfQQ

dτ
H
�
Hφ0 − 3

�
fQQðH02 þH00H − 3H0H2Þ þ dfQQ

dτ
ðH0 −H2ÞH

�
φ

−
1

3
fQQH2k2B0 þ 1

3

�
fQQðH0 − 3H2Þ − dfQQ

dτ
H
�
Hk2B ¼ 0: ð63Þ

In terms of the gauge-invariant vector perturbations
B̂i ¼ ðB − E0Þi, the vector equations satisfy

ðρþ pÞVi ¼ 1

2
k2B̂i; ð64Þ

pΠi ¼ fQðB̂i0 þ 2HB̂iÞ
þ 6a−2fQQHðH0 −H2ÞB̂i: ð65Þ

Equipped with these equations of motion of the perturba-
tions we can derive the effects in the cosmological
observables, one of the important ones being the change
in the growth of structures.

E. Growth of matter perturbations

We have two extra perturbation variables in the metric
compared to the usual case. We also have two extra
equations. At small scales, we have from (62) that6

k2B ¼ 3H−1½2Hφ0 þ ðH0 þH2Þϕþ ðH0 −H2Þψ �: ð66Þ

Let us consider dust, w ¼ c2s ¼ 0. In the quasistatic limit7

(which is just the small-scale approximation), the energy

constraint (58) yields the usual Poisson equation with a
modulated Newton’s constant,

ψ ¼ −
4πGρδ
k2fQ

; ð67Þ

where the Newton’s constant is explicitly restored
(fQ → fQ=8πG). Both equations of the spatial diagonal
(60) and (61) both imply at the quasistatic limit that

ϕ ¼ ψ : ð68Þ

The connection equation (66) then further simplifies to

B ¼ 6

k2

�
φ0 þH0

H
ϕ

�
: ð69Þ

On the other hand, the continuity equation (62) implies for
dust that

δ00 ¼ −k2ðv0 þ B0Þ þ 3φ00; ð70Þ

which, by using the Euler equation (63) and then again (62)
becomes

δ00 þHδ0 þ k2ϕ ¼ 3ðφ00 þHφ0Þ − k2ðB0 þH0BÞ: ð71Þ

Consistent with (67) and (69), the right-hand side of this
equation can be neglected at the quasistatic limit. We thus
end up with the simple evolution equation for the over-
density δ,

δ00 þHδ0 ¼ 4πGρ
fQ

δ; ð72Þ

where the modification with respect to the standard
equation is that the effective gravitational constant is
modulated by the time-dependent background function
fQ such that G → G=fQ. This is essentially the same

6A similar relation is found for the extra perturbation ζ in the
fðTÞ models, which however is exact [14], whereas Eq. (66)
applies only at the limit k ≫ H.

7Let us stress that the strict quasistatic limit is not well defined
within these theories because, as we have seen and we will
discuss in more depth below, the scalar sector becomes strongly
coupled around maximally symmetric backgrounds. Since the
quasistatic limit essentially amounts to considering a static
background, it is likely that the strong coupling scale is reached
before the quasistatic regime. The reason to proceed as we do in
this section is to give a comparison with the results in fðTÞ
theories and explicitly show that the perturbations evolve differ-
ently even though the background evolutions are formally
identical in both families of theories. It is important to notice
that the quasistatic limit is even more ill-defined in the fðTÞ
theories due to the more severe strong coupling problems of those
theories.
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equation that governs the growth of structures in the
quasistatic limit of fðTÞ cosmology [14].

V. GAUGE TRANSFORMATIONS
OF THE PERTURBATIONS

In order to appreciate better the involved symmetries,
we will consider gauge transformations of the cosmological
perturbations in this section. We shall again consider the
generally perturbed flat FLRW line element in Eq. (38).
We can derive the gauge transformations of the metric
potentials under an infinitesimal coordinate change
xμ → xμ þ ζμ, whose scalar sector is given by ζ0 and ζi ¼
δij∂jζ and vector sector by a transverse ζ̂

i. The result for the
vectors is

Bi → Bi − ζ̂i0;

Ei → Ei − ζ̂i; ð73Þ

and for the scalars

ϕ → ϕ − ζ00 −Hζ0;

B → B − ζ0 þ ζ0;

φ → φ −
1

3
k2ζ þHζ0;

E → E − ζ: ð74Þ

As we have explained in several occasions above, the use of
the coincident gauge exhausted the freedom allowed by
diffeomorphism invariance. This is crucially different from
other diffeomorphism-invariant theories (as e.g., GR and
many other extensions based on its curvature formulation),
but it is somewhat similar to what happens for massive
gravity theories where the mass term breaks diffeomor-
phisms invariance and it is not legitimate to fix any of the
gravitational potentials (some of which remain nondynam-
ical like in our case). The analogy with massive gravity also
extends to the diffeomorphisms-restored versions of the
theories. In massive gravity it is possible to resort to the
Stueckelberg trick and restore diffeomorphism invariance
by the introduction of a set of four compensating fields with
appropriate transformation properties (under both Lorentz
and diffeomorphisms transformations), while in symmetric
teleparallel theories the connection naturally acquires the
form of an inertial connection given in terms of compen-
sating Stueckelberg fields, the ξ0s, and the coincident gauge
is nothing but the corresponding unitary gauge. It will be
instructive to explicitly see how the form of the inertial
connection indeed restores the scalar character of the
nonmetricity scalar in the cosmological framework. This
will also permit us to gain a better understanding of the
disappearance of scalar modes around maximally symmet-
ric backgrounds obtained above as a consequence of the

emergence of a constrained diffeomorphism symmetry for
such backgrounds.
The nonmetricity scalar in the coincident gauge for our

perturbed metric at first order is8

a2Q̊ ¼ 6H2 − 2H½6ðHϕþ φ0Þ − k2B�: ð75Þ

Notice that vector perturbations do not contribute at this
order, so we will not consider them for now, but we will
come back to them later when discussing the invariance of
the field equations.
The transformation of the nonmetricity perturbation in

the coincident gauge can then be easily computed as9

ΔζδQ̊ ¼ 2H
a2

½6ðH2 −H0Þζ0 þ k2ðζ0 þ ζ0Þ�: ð76Þ

As expected, Q̊ does not transform as a scalar but it features
an additional term. It is interesting however, that the failure
to transform as a scalar is

ΔζδQ̊þ LζQ̊ ¼ 2H
k2

a2
ðζ0 þ ζ0Þ ð77Þ

which shows three remarkable properties. First, Q̊ does
transform as a scalar for large gauge transformations with
zero momentum and this can have interesting consequences
for adiabatic modes. Second, nonzero momentum gauge
transformations still realize a restricted diffeomorphism
symmetry provided the gauge parameters satisfy ζ0 ¼ −ζ0.
Notice however that this does not mean the existence of a
gauge symmetry in the theory. Finally, the Minkowski
background with H ¼ 0 also makes δQ̊ transform as a
scalar. This already suggests that Minkowski is a special
background as we will confirm in the following. In order to
elucidate more clearly the role of the gauge transformations
on the dynamics, let us see how the equations for the
perturbations behave under diffeomorphisms. We do not
need the specific form of the equations, but only how they
change under a diffeomorphisms transformation. As above,
we will use a scalar field as a proxy for the matter sector.
Since this matter sector is diffeomorphism invariant, its
equation of motion will be gauge invariant so we do not
need to consider it and we can only focus on the
gravitational equations for the perturbations, which corre-
spond to the diffeomorphism-breaking sector. These equa-
tions change as

8We will restore the notation of denoting a quantity in the
coincident gauge with a ring over for clarity.

9In this section we will use Δζ to denote the variation under a
diffeomorphism, while δ will be used to denote the first order
perturbation of a given quantity.
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ΔζEφ ¼ −2k2Q̄fQQðζ0 þ ζ0Þ0 þ ϵk2HQ̄fQQð5ζ0 þ 7ζ0Þ
þ 4k2HQ̄2fQQQðϵ − 1Þðζ0 þ ζ0Þ;

ΔζEϕ ¼ k2HQ̄fQQ½2ðζ0 þ ζ0Þ þ ϵðζ0 − ζ0Þ�;

ΔζEB ¼ 1

3
k2Q̄fQQ½3ϵHðζ00 þ k2ζÞ − k2ðζ0 þ ζ0Þ�;

ΔζEE ¼ −
4ϵ

3
k4HQ̄fQQζ

0: ð78Þ

From these equations we can see that, as expected, the
STEGR where fðQÞ is a linear function of Q the equations
is gauge invariant. However, we can also see that back-
ground solutions with ϵ ¼ 0 also have perturbations equa-
tions that are invariant under the restricted diffeomorphisms
with ζ0 ¼ −ζ0, which is the same subset of diffeomor-
phisms that make δQ̊ transform as a scalar. This feature also
allows us to explain the disappearance of the scalar modes
discussed above around maximally symmetric back-
grounds. We can now understand that these backgrounds
enjoy an additional gauge symmetry so that one scalar
perturbation becomes a gauge mode. However, since this
symmetry is not in the full theory, we can conclude that it is
just an accidental gauge symmetry of those backgrounds.
The accidental nature of this symmetry is in fact corrobo-
rated by the fact that more general cosmological back-
grounds do not have it, which can be easily understood by
noticing that there is no relation between ζ0 and ζ that
makes the rhs in (78) vanish for an arbitrary background.
This is precisely the origin of the aforementioned strong
coupling problem of the scalar perturbations around max-
imally symmetric backgrounds. On the other hand, the fact
that Minkowski exhibits this enhanced symmetry also
explains that the very subhorizon modes realize the
symmetry up to corrections suppressed by H2=k2.
Let us now turn to the vector sector whose equations we

gave in (43). From there, it is obvious to see that they do
retain the gauge invariance of GR for an arbitrary purely
vector diffeomorphism. Whether this symmetry is main-
tained at higher order is not clear. If they do, the non-
dynamical nature of the vector modes would extend to the
full nonlinear order. If a completion of this linear symmetry
is not present, then vector modes would exhibit strong
coupling problems more severe than those of the scalar
perturbations.
To end this section, it is instructive to see how the above

gauge transformations relate to the choice of connection. At
the background order the nonmetricity can be written as

Qαμν ¼ 2Hδ0αgμν; Qα ¼ 8Hδ0α; Q̃α ¼ 2Hδ0α; ð79Þ

and for its conjugate we obtain

Pαμν ¼ H½δ0αδiμδjν − δiαδ
j
ðμδ

0
νÞ�gij: ð80Þ

If we transform the connection away from the coincident
gauge by the same ζμ as in (75), up to the linear orderwe have
δQαμν ¼ −2gβðμ∂νÞ∂αζ

β and then, fromQ ¼ −PαμνQαμν we
obtain, by using (80), that δQ ¼ −2Hðζ0;ij þ ζi;ðj0ÞÞgij.
Thus the variation of Q due to the change of the connection
is given by

δQ ¼ 2a−2Hk2ðζ0 þ ζ0Þ; ð81Þ

which precisely cancels the nonscalar variation in (76) and
we obtain ΔζδQ ¼ −LζQ; i.e., it does transform as a scalar.
Any other contraction of the nonmetricity, besides Q,

will be a scalar too. Let us check for example the term

a2Q1 ≡ a2QαμνQαμν

¼ −16H2 þ 8Hð4Hϕ − ϕ0 þ 3φ0Þ; ð82Þ

which under (74) transforms in the coincident gauge as

Q1 → Q1 þ 8Ha−2½ζ000 þ 4ðH0 −H2Þζ0 − k2ζ0�: ð83Þ

In this case we immediately see from (79) that the
accompanying change of the connection away from the
coincidence gauge gives

δQ1 ¼ 2Qαμν2gβðμ∂νÞ∂αζ
β ¼ −8Ha−2ðζ000 − k2ζ0Þ; ð84Þ

so the total change given by the sum of the above two
contributions (i.e., the change in the coincident gauge plus
the change of the connection) is

ΔζQ1 ¼
32

a2
HðH0 −H2Þζ0 ð85Þ

which is nothing butΔζQ1 ¼ −ζ0Q̄0
1 ¼ −LζQ̄1 as it should

for a scalar. It is straightforward to show that any other
contraction also transforms as a scalar when the change in
the connection is properly taken into account.

VI. CONCLUSIONS

In this work we have studied the cosmological implica-
tions of the new type of modified gravity theories that
originate from the equivalent formulation of GR based on
nonmetricity, namely: the symmetric teleparallel equivalent
of GR. Models of general functions of the Ricci or torsion
scalar have already been extensively studied in the literature.
The cosmological realization of fðRÞ theories tends to force
to remain close to GR, whereas models based on fðTÞ suffer
from strong coupling problems on general FLRW back-
grounds. The third equivalent formulation of GR by means
of the Q-scalar motivates novel ways of modifying gravity,
one of such examples being the fðQÞ theories. Even if these
models are indistinguishable from fðTÞ theories at the
background level, crucial differences arise at the level of
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cosmological perturbations, which has been the aim of this
work. Specially, we have shown that the strong coupling
problems possibly encountered in fðTÞ theories are absent
in fðQÞ models on general FLRW backgrounds. However,
they do appear on maximally symmetric backgrounds such
as Minkowski and de Sitter. Although these highly sym-
metric backgrounds might suffer from such strong coupling
problems, they are less severe than the ones exhibited by
fðTÞ theories and, given that less symmetric cosmologies do
not suffer from these problems, there can be room for
interesting phenomenologies.Wehave also shown that at the
small-scale quasistatic limit the predictions of the fðQÞ and
the fðTÞ models coincide, but at larger scales the fðQÞ
models generically propagate 2 scalar degrees of freedom
that are absent in the case of fðTÞ. These 2 degrees of
freedom are the ones that disappear around maximally
symmetric backgrounds and, thus, cause the discussed
strong coupling problem.
Since the fðQÞ theories in the coincident gauge do not have

the usual gauge invariance of cosmological perturbations, we
have performed a detailed analysis of the behavior of the
equations under diffeomorphisms transformation. Since the
theory is no longer diffeomorphism invariant, the equations do
change under a diffeomorphism. Remarkably, we have found
that maximally symmetric backgrounds retain a gauge sym-
metry given by a restricted diffeomorphism. These findings
have allowed us to give a better understanding of the dis-
appearanceofdegreesoffreedomaround thesebackgroundsas
aconsequenceof theappearanceof a residualgaugesymmetry,
which then roots the strong coupling problems.
There is an important caveat that has to be taken into

account before drawing conclusions about the viability of
fðQÞ cosmology. Because in this framework the connection
is an independent fundamental degree of freedom besides the
metric, the space of solutions is richer than in purely metric
gravity. In particular, there exist physically inequivalent
cosmological solutions that respect the FLRW symmetry
at the background level, but whose perturbations may behave
differently.10 In the case fðQÞ ¼ Q the dynamics are frame
independent, but once fQQðQÞ ≠ 0 an ambiguity arises.
Recently, we have put forward the conjecture that in the
canonical frame the energy momentum of the metric field is
vanishing [52]. This is a covariant criterion that eliminates
the ambiguity in the predictions of the modified models. The
question arises whether the strong coupling issue on
Minkowski and de Sitter backgrounds could be avoided
by the more judicious choice of the background solution for
the metric and the connection. This calls for reconsideration
of the fðQÞ cosmology in the canonical frame, a task we plan
to undertake in the near future.
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APPENDIX A: UPPER BOUND ON THE
DYNAMICAL DEGREES OF FREEDOM

In this appendix we will elaborate on the argument that
establishes a maximum of six propagating modes in the full
fðQÞ theories. For that we will resort to the ADM analysis
that is based on the following decomposition of the
metric

ds2 ¼ −ðN 2 −N iN iÞdt2 þ 2N idxidtþ γijdxidxj ðA1Þ

whereN is the lapse function,N i is the shift vector and γij
is the spatial metric, which is in turn used to lower and raise
spatial indices. It will be convenient to work in the
coincident gauge where the full connection vanishes and
the nonmetricity scalar can be written in terms of the
Christoffel symbols of the metric as follows:

Q ¼ gμνðf α
αβgf β

νμg − f α
νβgf β

αμgÞ: ðA2Þ

The crucial point now is to realize that (A2) is precisely the
so-called ΓΓ part of the metric Ricci scalar as can be easily
identified from the general expression

R ¼ gμνð∂αΓα
νμ − ∂νΓα

αμ þ Γα
αβΓβ

νμ − Γα
νβΓβ

αμÞ ðA3Þ

so we can utilize the usual results from the ADM analysis
of GR by simply dropping the terms containing second
derivatives that originate from the piece ∂Γ in the Ricci
scalar. To be explicit, let us take the general ADM
decomposition of the Ricci scalar

RðgÞ ¼ ð3ÞRþ KijKij þ K2

−
2

N
ð _Ki

i −N ið3Þ∇iK þ ð3Þ∇2N Þ ðA4Þ

10An analogous issue has been recently pointed out concerning
the fðTÞ and other modified teleparallel gravity models. There
the number and the nature of the degrees of freedom can depend
on the Lorentz frame wherein one chooses to introduce the
fluctuations [14,17].
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with Kij ¼ − 1
2
N −1ð_γij − 2ð3Þ∇ðiN jÞÞ the extrinsic curva-

ture,K its trace and ð3ÞR the Ricci scalar of γij. Thus, we can
straightforwardly obtain the ADM decomposition of Q as

Q ¼ KijKij þ K2 þ γklðΓi
ijΓj

lk − Γi
ljΓj

ikÞ: ðA5Þ

Since the only time derivatives in Q come from _γij in Kij,
we can directly conclude that N and N i will be non-
dynamical fields in the full fðQÞ theories and, as a
consequence, these theories can only have up to six
dynamical modes corresponding to the six components
of γij. To unveil the full dynamical content of the theories, a
complete Hamiltonian analysis would be necessary and the
number of propagating modes will depend on the specific
function form of f. For instance, for constant fQ we will
recover that the shift and the lapse enforce the first class
constraints associated with diffeomorphisms. Moreover,
the Poisson algebra will also exhibit singular points for
some background configurations that will feature acciden-
tal gauge symmetries as it occurs for the maximally
symmetric configurations considered in this work. A
similar feature appears in fðTÞ theories [53].

APPENDIX B: FULL HESSIAN
FOR THE SCALAR SECTOR

For completeness, in this appendix we will give the full
expression for the Hessian of the scalar perturbations.
Having a positive definite Hessian will be required to
guarantee the absence of ghostlike degrees of freedom in
the scalar sector and this will impose additional stability
constraints. The expression for the Hessian after integrating
out the nondynamical scalar modes is given by

H ¼ 1

g

0
B@

a b c

b d e

c e f − g

1
CA; ðB1Þ

where

g ¼ 12f2Q þ 2ð2 − 5ϵÞfQQfQQ − ϵð8 − 3ϵÞQf2QQ;

and

a¼−6ϵðfQþ2QfQQÞð4f2Qþ6fQQfQQ−3ϵQf2QQÞ;
b¼4ϵk2fQð2fQ−QFQQÞðfQþ2QFQQÞ;
c¼−6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ϵðfQþ2QfQQÞ

q
½2f2Qþð3−ϵÞfQQfQQ−ϵQf2Q�;

d¼2

3
k4fQ½2ð3þϵÞfQQfQQþð8−3ϵÞϵQF2

QQ−4ϵf2Q�;

e¼2k2fQ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ϵðfQþ2QfQQÞ

q
½2fQþð2−ϵÞQfQQ�;

f¼2QfQQðfQþ2QfQQÞ:

There is no simple statement about the stability that can be
extracted from this, unless some special limits and/or
functions are taken. The determinant is given by (45).

APPENDIX C: BIANCHI I UNIVERSE

In this appendix we will briefly discuss the cosmology of
the fðQÞ theories for anisotropic universes in order to
explicitly show that universes close to isotropic solutions
will isotropize as in more conventional cases. This will
show that the pathological behavior of the perturbations is
not captured by simple deformations of the FLRW uni-
verses. The Bianchi I metric is described by the line
element

ds2 ¼ −N2ðtÞdt2 þ a21ðtÞdx2 þ a22ðtÞdy2 þ a23ðtÞdz ðC1Þ

with aiðtÞ the scale factors along the three spatial direc-
tions. We will introduce the isotropic scale factor defined as
a3 ≡ a1a2a3 and the corresponding expansion rates

Hi ¼
_ai
ai
; H ¼ _a

a
: ðC2Þ

The action in the corresponding mini-super-space is
given by

S ¼ −
1

2

Z
dtNa3fðQÞ ðC3Þ

where the nonmetricity scalar reads

Q ¼ 2
H1ðH2 þH3Þ þH2H3

N2
: ðC4Þ

It is easy to see that the Bianchi I ansatz retains the time-
reparametrization invariance so we will set the lapse N ¼ 1
after having obtained the field equations. The full set of
equations can be easily obtained from (C3). However, since
we are only interested in studying perturbations around the
isotropic case, we will only need the combinations

δS
δa1

−
δS
δa3

¼ 0;
δS
δa2

−
δS
δa3

¼ 0 ðC5Þ

that describe the evolution of the anisotropy. Notice that,
provided the matter sector does not contain any anisotropic
stresses, these equations are not sourced. Furthermore, it
will be sufficient for us to consider small perturbations so
we will parametrize the small deformation of the FLRW
metric as follows:

H1 ¼ H þ 2δ1 − δ2; ðC6Þ
H2 ¼ H − δ1 þ 2δ2; ðC7Þ
H3 ¼ H − δ1 − δ2 ðC8Þ
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where δ1 and δ2 describe the two independent anisotropies
of the Bianchi universe and the parametrization has been
chosen for convenience and to guarantee that 3H ¼
H1 þH2 þH3. When plugged into (C5) and expanded
to first order in δ1;2, we obtain the equations

_δi þ 3H

�
1þ 4 _HfQQ

fQ

�
δi ¼ 0; i ¼ 1; 2: ðC9Þ

This equation shows that an expanding universe will

isotropize provided 1þ 4 _HfQQ

fQ
> 0. We can do better by

noticing that the above equation can be rearranged into the
form

d
dt
ða3fQδiÞ ¼ 0 ðC10Þ

so the stability is entirely determined by the behavior of fQ.
This result is the expected one because a Bianchi I universe
describing a small anisotropic deformation of FLRW can be
associated with a long wavelength GW and, as we
discussed in Sec. IVA, there is no pathological behavior
in that sector as long as fQ > 0. In fact, what we have
obtained in (C10) is nothing but the equation for the GWs
in the limit k → 0, as it should be.
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