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We study the details of eternal inflation in the presence of a spectator Higgs field within the framework of
the minimal Standard Model. We have recently shown that in the presence of scalar field(s) which allow
inflation only within a finite domain of field values, the Universe reaches a steady state where the
normalized distribution for the field(s) converges to a steady state distribution [Phys. Rev. D 100, 023513
(2019)]. In this paper, we analyze this eternal inflation scenario with the renormalized Standard Model
Higgs potential, since it also allows inflation in a finite domain, but turns over at high scales due to the
running of the self-coupling, marking an exit from inflation. We compute the full steady state distribution
for the Higgs using an integral evolution technique that we formulated in Phys. Rev. D 100, 023513 (2019)
and the fractal dimension of the Universe. We then obtain a bound on the inflationary Hubble scale in order
to have a large observable universe contained within the instability scale of H ≲Oð109Þ GeV depending
on the top mass. Upon reheating of the Universe, thermal fluctuations in the Higgs field could potentially
pose another problem; however, we compute the rate of thermal bubble production and find that the
probability of tunneling in the postinflationary era is negligibly small even for very high reheat
temperatures.
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I. INTRODUCTION

The discovery of the Higgs boson [1], which is required
to maintain unitarity of W, Z boson scattering, completes
the Standard Model (SM) of elementary particles. For the
first time we now have a theory that does not violate tree-
level unitarity. When combined with gravity, we know that
the theory does violate unitarity at the Planck scale, but one
wonders at what scale, if any, new physics enters before the
Planck scale. There are reasons to suspect all sorts of
possible new physics associated with dark matter, grand
unification, strong CP problem, hierarchy problem, baryo-
genesis, inflation, etc. However, with the lack of discovery
of new physics at the LHC, we have to keep an open mind
to the possibility that such new physics may only enter at
extremely high energies.
We can therefore enquire: What is the absolute highest

scale at which new physics can enter? The Higgs sector
itself may suggest a potential problem when studied

beyond tree level: It is well known that when loop effects
are taken into account, the Higgs self-coupling λ becomes
negative at energies around 1010 − 1011 GeV for the latest
top mass bounds [2] (mostly due to its interactions with top
quarks and W, Z bosons). This makes the renormalized
Higgs potential turn over at some field value hht and then
become negative, meaning there is a potential instability at
high field values [see Fig. 4 (lower panel)]. The lifetime of
the electroweak vacuum is estimated to be much higher
than the current lifetime of the Universe [3–6], and so it
may not appear as an immediate problem. However, this
instability may be very important in the very early Universe
when energy densities were extremely high and the Higgs
field could explore large field values.
In particular, this instability has potentially huge ramifi-

cations for evolution during early Universe inflation
[7–10]. This is because during inflation the Higgs field
on superhorizon scales roughly undergoes quantum dif-
fusion with step size ∼H=ð2πÞ per Hubble time and drifts
due to the renormalized potential V. For sufficiently large
Hubble scale during inflation H, the quantum diffusion can
lead to the Higgs field h becoming larger than the
instability scale hht. In this case the renormalized potential
then causes the field to drift down the potential to even
large field values, leading to a potential cosmic catastrophe
and terminating inflation. In any case, it leads to field

*mudit.jain@tufts.edu
†mark.hertzberg@tufts.edu

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 101, 103506 (2020)

2470-0010=2020=101(10)=103506(15) 103506-1 Published by the American Physical Society

https://orcid.org/0000-0002-5223-3071
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.101.103506&domain=pdf&date_stamp=2020-05-06
https://doi.org/10.1103/PhysRevD.100.023513
https://doi.org/10.1103/PhysRevD.100.023513
https://doi.org/10.1103/PhysRevD.100.023513
https://doi.org/10.1103/PhysRevD.101.103506
https://doi.org/10.1103/PhysRevD.101.103506
https://doi.org/10.1103/PhysRevD.101.103506
https://doi.org/10.1103/PhysRevD.101.103506
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


values on the “wrong” side of the potential, which is
evidently not our observed electroweak vacuum.
This leads to several important questions to be

addressed: (i) How frequently does this allow for a large
observable universe, that is at least ∼60 e-foldings across in
each spatial direction? (ii) What bounds does this imply for
the scale of inflation? (iii) What is the global structure of
the Universe in the context of eternal inflation? (iv) What
are the effects of reheating? In this paper we will make
progress in addressing these important questions.
Some of these questions have been the subject of con-

siderable investigation in the literature; see Refs. [11–28].
However, the existing works seem to be partially incom-
plete. For instance, usually a Gaussian ansatz is used in the
estimations of the probability distribution of Higgs dur-
ing inflation which is used to obtain bounds on inflatio-
nary Hubble by requiring a large observable universe
(∼e180H−3) to be born at the end. More importantly, it is
often thought that the number of e-foldings provided by the
inflaton (typically taken to be N ≈ 60) is essential to
estimate the fate of the observable Universe, since other-
wise for large enough e-foldings and high enough Hubble
value the distribution grows indefinitely. However, as we
will show in this paper, neither the Gaussian ansatz, nor the
requirement of finite number of e-foldings (irrespective of
inflationary scales), is needed to describe the physics.
Indeed we will study the system much more systemati-

cally: We will consider the structure of the Universe in the
context of eternal inflation. This leads to results that are
independent of the arbitrary choice of initial conditions
for the Higgs. Other works in the literature often assume
the Higgs begins near the origin, spreads out, and then is
truncated at N ≈ 60. But as we will see, this is not
necessary, as a steady state is established, leading us to
consider the possibility of much longer phases of inflation,
including eternal inflation. The assumption of N ≈ 60 is a
conservative one and plausible. However, it is of significant
interest to study the possibility that inflation lasted a lot
longer and may very well have in fact been eternal. To our
knowledge this is the first time such an investigation has
taken place. We will show that the Universe can obtain a
steady state distribution and from this distribution we can
determine the probability of obtaining a large observable
universe. Along the way we will compute global properties,
such as the fractal dimension of the Universe. Furthermore,
we will move beyond the Gaussian ansatz and carefully
track the distribution of different Hubble patches more
accurately than in the standard treatments.
At the time of reheating, temperature corrections to the

Higgs potential can be important and potentially alter the
constraints. For instance, in Ref. [16] it is claimed that high-
scale reheating can save the Universe from the instability;
that high-scale inflation is allowed, because even though
the Higgs can end up on the wrong side of the potential
during inflation, it is rescued during reheating due to

thermal corrections to the potential. These claims are
potentially problematic as it requires extraordinarily
fast reheating to prevent the Higgs field from rolling down
to a catastrophe, and such problems were not properly
taken into account. At the other end of the spectrum,
Refs. [14,15] claim that an upper bound on the reheat
temperature can be obtained, even if the scale of inflation is
relatively low, because they claim the large thermal
fluctuations in the Higgs field can cause it to be thrown
over to the wrong side, unless the temperature is suffi-
ciently low. However, the authors only considered the
Higgs distribution at a single point in space. Instead a
correct analysis would be to compute the probability of
bubble formation of the Higgs at a finite temperature. We
will do this and show that even for extremely high reheat
temperatures, the tunneling probability is small enough for
a true vacuum bubble to form in the observable Universe. In
this sense, finite temperature SM poses no problems for the
observable Universe.
In typical models of inflation, it is well known that the

Universe on large scales undergoes eternal inflation (see
[8,10]) and generates infinite numbers of patches in which
inflation has ended. In this work we assume that inflation is
driven by some other field in some potential, characterized
by some scale H. In addition the Higgs field can act as a
spectator field (to be clear, we are not assuming the “Higgs-
inflation” scenario often studied in the literature, where
the Higgs drives inflation, especially because the latest
top mass bounds suggests this is unlikely to be viable).
Nevertheless the Higgs can act as a field to cause inflation
to terminate. In the case of the SM Higgs, inflation is
allowed to continue in regions that contain Higgs within its
slow-roll end point hend (on the unstable side of its
potential), while other regions exit inflation.1 Then it is
important to note that the distribution of Higgs in each
Hubble patch ultimately converges to a constant steady
state distribution [29] and any initial transient behavior
washes out. Therefore, there is no dependence on the
amount of e-foldings that the inflaton may provide. All
interesting statistical quantities, like the average sizes of
regions containing Higgs within hht, the bound on H to
ensure the average size to be at least that of the observable
Universe, the fractal dimensions of the eternally inflating
Universe, etc., must be computed at steady state. Finally, in
order for our observable Universe to be achieved, inflation
must end (at least) locally and there must exist a large
(∼e180H−3) volume which thermalizes and ultimately
settles to the electroweak vacuum.2 To describe this post-
inflationary era, a finite temperature field theory analysis is

1Whether such regions form an anti–de Sitter (AdS) crunch
or a black hole, etc., depends on the details of very high
energy physics and will not be pursued here.

2We assume no specific mechanism for the end of inflation
provided by the inflaton, as this is not necessary for our purposes.
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required and one must compute tunneling probability of the
Higgs toward its true vacuum by forming a thermal bubble.
In this paper, apart from pointing out subtleties and

assumptions made in this subject in the literature, our
primary objective is twofold: first, to compute the above-
mentioned statistical quantities for the eternally inflating
universe in the presence of the SM Higgs. For this we make
use of an integral (kernel) evolution technique [29] for the
distribution of the Higgs (radial degree of freedom in a 4D
Euclidean field space). Second, to describe finite temper-
ature effects after inflation by carefully tracking the rate of
bubble formation. Throughout this work, we assume no
new physics beyond the minimal SM and work with the
(two-loop) renormalized effective Higgs potential with the
latest values of relevant parameters [2]; we take central
values of all parameters and scan the top mass in the
allowed range: mtop ¼ 172.9� 0.4 GeV. Also for the sake
of simplicity, we assume H ¼ const throughout this work;
this will be justified because the primary bounds will come
at rather low-scale inflation values, in which H must be
very slowly varying (it requires a very tiny εsr ¼ − _H=H2 to
achieve the correct amplitude of density fluctuations).
The organization of the paper is as follows: In Sec. II, we

first derive the kernel that propagates the probability
distribution for the magnitude (or “radius”) of a multi-
component scalar field (relevant to the Higgs doublet) in
any Hubble patch. Then to illustrate deviations from
Gaussian approximation, we analyze a toy model of four
fields with a rotationally symmetric “M”-shaped potential
and we also simulate a 1þ 1-dimensional universe. We
show comparisons of various statistical quantities obtained
from actual simulation, with that from Gaussian approxi-
mated and actual steady state distribution obtained
using the radial field’s kernel. In Sec. III, in order to have
a concrete understanding of the situation with SM Higgs
in 3þ 1-dimensional space-time, we simulate 1þ 1-
dimensional universes with the SM Higgs for different
choices of H and central top mass. We provide plots of
various statistical quantities and compare them with ones
obtained through steady state distribution using the radial
field’s kernel and also Gaussian approximated ones.
Having obtained confidence in the kernel propagation
method, we then use this method to obtain the steady state
distribution for our primary subject of interest: the SM
Higgs in 3þ 1 dimensions for various H and different top
masses, and use them to get the average size of regions with
Higgs within hht, bounds on inflationary Hubble, and
fractal dimension of the eternally inflating universe. In
Sec. IV, we assume the scale of inflation is low enough that
a large universe can be achieved and then study the
postinflationary era in a simplified way: We account for
temperature corrections to the Higgs potential, calculate
thermal tunneling probabilities of the Higgs at different
temperatures, and show that the SM provides no instabil-
ities even for very high reheating temperatures. In Sec. V

we summarize our results. Finally, in the Appendix we
include the relevant SM beta functions.

II. EVOLUTION OF RADIAL FIELD
AND STEADY STATE

We are interested in the evolution of a spectator Higgs
field during inflation. On superhorizon scales it acquires de
Sitter fluctuations, with standard deviation (or “kick”) κ
that acts as a diffusion per Hubble time and is determined
by the Hubble scale [we have κ ¼ H=ð2πÞ in the important
case of three spatial dimensions, but has different units in
other dimensions]. We also assume that the field is
influenced by its potential V.
To model the evolution of the Higgs field on super-

horizon scales, we make use of the usual Fokker-Planck
equation. We consider the slow-roll approximation and for
now we study general spatial dimensionsD. We allow for a
multicomponent field of length n (the Higgs is a complex
doublet with n ¼ 4) φ⃗ and call the corresponding proba-
bility distribution for the field pðφ⃗; NÞ, where N ¼ Ht are
the number of e-foldings. The corresponding Fokker-
Planck equation for the evolution of the distribution in
any Hubble patch is

∂p
∂N ¼ ∂

∂φ⃗ ·

�
1

DH2

∂V
∂φ⃗ p

�
þ κ2

2

∂2p
∂φ⃗2

: ð1Þ

This holds only within a field domain that allows infla-
tionary energy to dominate and hence inflation to con-
tinue. For our purposes we have V ¼ Vðjφ⃗jÞ≡ VðρÞ, and
the inflationary domain is 0 ≤ ρ ≤ ρend, where ρend is the
slow-roll end point. Also, there exists some instability scale
ρht in the potential function such that once ρ gets past it,
its classical evolution is to roll down to higher and higher
field values which quickly acquire negative energy den-
sities and ultimately around ρ ≃ ρend inflation ends. As we
shall discuss, a useful region to focus on is in fact
0 ≤ ρ ≤ ρht, since when we are near the critical Hubble
values of interest, the field value ρht is actually quite close
to ρend (see Fig. 9).
Solving this partial differential equation requires precise

boundary conditions pð0; NÞ and pðρend; NÞ, which can be
highly nontrivial [30,31], unless the form of potential is
whighly simplified. Furthermore, it seems impossible to
obtain exact solutions for any initial condition pðρ; 0Þ. This
can be dealt with by means of numerical integral evolution
with support only within the specified domain [29].

A. Kernel for radial field

To make progress, it is useful to discretize the time
variable and step the evolution through time by use of a
kernel. Upon time discretization, the kernel K that evolves
the distribution through one time step ϵ can be determined
by the following chain of reasoning. Firstly, the kernel is
implicitly defined by the condition
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piðjφ⃗jiÞ ¼
Z Yn

a¼1

dφa
i−1Kðφ⃗i; φ⃗i−1; ϵÞpi−1ðjφ⃗ji−1Þ: ð2Þ

The field itself evolves in a stochastic fashion, governed by
the Langevin equation

φ⃗i − φ⃗i−1

ϵ
þ 1

DH2

∂V
∂φ⃗ ðjφ⃗i−1jÞ ¼ κη⃗i ð3Þ

with η⃗i being a set of n normal random variables, i.e.,
having the following probability density:

Yn
a¼1

dηai Pðη⃗iÞ ¼
 Yn

a¼1

dηai

ffiffiffiffiffiffi
ϵ

2π

r !
e−ðϵ=2Þ

P
a
ðηai Þ2 : ð4Þ

Then one can show the appropriate kernel is

Kðφ⃗i; φ⃗i−1; ϵÞ ¼
1

ð2πκ2ϵÞn=2 e
−ðϵ=2κ2Þ

P
a

�
φa
i
−φa

i−1
ϵ þ 1

DH2

∂Vi−1
∂φa
�

2

ð5Þ

with support only in 0 ≤ jφ⃗ji ≤ jφ⃗jend and is trivially
obtained by replacing ηai for φa

i . Also, the derivative of
potential (or any function of only the radial field ρ for that
matter) is

∂V
∂φ⃗ ¼ φ⃗

ρ

dV
dρ

: ð6Þ

Since it is overly complicated to track all individual
components of the field, we can focus on its radial (or
magnitude) ρ ¼ jφ⃗j. This is all we really need as the Higgs
potential is symmetric, and it is only the radial value that
determines its central dynamics [i.e., if ρ is small then the
field is safe, or if ρ is too large then it can be unstable; see
Fig. 4 (lower panel) where we replace ρ → h].
We emphasize that in the case of the SM, even though

different components of the Higgs doublet are related by
gauge redundancies, one must still use a volume measure
on the four-component field space, as we explained in
Ref. [32]. In order to obtain the kernel for ρ then, we
express the field variables in angular coordinates. With θ
and αμ as the polar angle and the other n − 2 angles,
respectively, the integration measure is

Yn
a¼1

dφa ¼ dρρn−1dΩðθ; αÞ; ð7Þ

where dΩ is the differential solid angle. Throughout this
paper, we will absorb the radial measure ρn−1 and total solid
angle Ω into the probability distribution p, so that it is
normalized as

R∞
0 dρpðρÞ ¼ 1. Now since the whole

dynamics must only depend on ρ at any time step, we

can always align φ⃗i and φ⃗i−1 such that φ⃗i−1 points along the
polar axis for φ⃗i. With this, we have the following
simplification:

Xn
a¼1

�
φa
i − φa

i−1
ϵ

þ 1

DH2

∂Vi−1

∂φa

�
2

¼
�
ρi − ρi−1

ϵ
þ 1

DH2

dVi−1

dρ

�
2

− 2
ρi
ϵ

�
ρi−1
ϵ

−
1

DH2

dVi−1

dρ

�
ð1 − cos θiÞ; ð8Þ

and we can integrate over the solid angle for any n in
general. For the relevant case of four fields (Higgs doublet),
we have

dΩ ¼ dθsin2θdα1dα2 sin α2 → 4πdθsin2θ ð9Þ

with 0 ≤ θ ≤ π, and therefore the radial field’s kernel for a
four-field system is

Kðρi; ρi−1; ϵÞ ¼
e−ðϵ=2κ2Þ½ðρi=ϵÞ−zi−1�2

ϵ2κ2
I1ðρizi−1κ2

Þe−ðρizi−1=κ2Þ
ρizi−1

ð10Þ

with support only in 0 ≤ ρi ≤ ρend, and

zi−1 ≡ ρi−1
ϵ

−
1

DH2

dVi−1

dρ
: ð11Þ

Here I1 is the modified Bessel function of the first kind.
Therefore we have the following evolution equation for the
radial field’s distribution:

piðρiÞ ¼
Z

ρend

0

dρi−1Kðρi; ρi−1; ϵÞpi−1ðρi−1Þ

¼
Yi−1
s¼0

Z
ρend

0

dρsKðρsþ1; ρs; ϵÞpðρ0; 0Þ: ð12Þ

This is an iterative matrix multiplication technique (upon
discretization of field space) and will converge to the
dominant eigenstate of the kernel, which after normaliza-
tion will give the steady state distribution p̃ðρÞ:

p̃ðρÞ≡ pðρ;∞ÞR ρend
0 dρpðρ;∞Þ : ð13Þ

B. Gaussian approximation and its limitations

A concrete way to analyze the Fokker-Planck equation is
to study its moments. For example, the equation for the
variance σ2 can be obtained by multiplying the Fokker-
Planck equation (1) with ϕ⃗2 and integrating over the
fields ϕ⃗:
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d
dN

σ2 þ 2

nDH2
hϕ⃗ · ∇ϕVi ¼ κ2: ð14Þ

Similarly one can obtain equations of motion for higher
moments.
To simplify things, however, very often in the literature a

Gaussian approximation is made:

pð0Þðρ; NÞ ¼ ρn−1ffiffiffiffiffiffiffiffiffiffiffið2πÞnp
σnðNÞ exp

�
−

ρ2

2σ2ðNÞ
�
; ð15Þ

where, as mentioned earlier, we have absorbed the radial
integration measure ρn−1 in the distribution. The only
quantity then is the variance σ2 which obeys the above
simple ordinary differential equation.
An important point to note, however, is that for potentials

like that of the SM Higgs and especially under a Gaussian

ansatz, there exists a critical Hubble Hð0Þ
cr (that depends on

the parameters of the potential), such that although forH <

Hð0Þ
cr this Gaussian approximated distribution pð0Þ tends to a

constant function even if one had no a priori knowledge of

the steady stateness in eternal inflation; for H > Hð0Þ
cr , pð0Þ

grows indefinitely. In any case, people often simplify the
analysis by evolving it for some finite e-foldings (typically
∼60 in the case of SM Higgs for our Universe) and use this
to calculate various quantities, e.g., probability of obtaining
large volumes with a field within the domain 0 ≤ ρ ≤ ρht,
etc. [11–15]. However, in either case, the simplification
made is significant. First of all it is obvious that due to a
finite ρend, for any H there exists a steady state distribution
p̃ðρÞ which cannot have support outside of ρ > ρend. Then,
to leading order the Gaussian approximation can be valid in
principle, only as long as σðNÞ≲ ρend. For the latter case

H > Hð0Þ
cr , this eventually breaks completely and therefore

the approximation is not meaningful for all N. For the

former case H < Hð0Þ
cr , even though it could be that

σð∞Þ < ρend, the non-Gaussianity in the actual steady state
distribution could be significant enough for there to be
corrections in the estimated quantities. To demonstrate this,
we consider the following M-shaped potential:

VðρÞ ¼ m2

2
ρ2 −

λ

4
ρ4 þ const ð16Þ

(ironically, this is upside down from the classical Higgs
potential, but it qualitatively captures the renormalization
group (RG) corrected Higgs potential since it in fact rises,
then goes negative at large values, just like this). This leads
to the following equation for the variance in the Gaussian
approximation:

d
dN

σ2 þ 2

DH2
½−λðnþ 2Þσ4 þ σ2m2� ¼ κ2; ð17Þ

which can be rewritten as

d
dN

σ2 −
2λðnþ 2Þ
DH2

ðσ2 − σ2þÞðσ2 − σ2−Þ ¼ 0: ð18Þ

For the sake of comparison with actual 1D simulations, we
work in one spatial dimension (although the argument
holds for any spatial dimension in general) for which we
have κ ¼ 1=

ffiffiffiffiffiffi
2π

p
[29]. This gives

σ2� ¼ m2

2λðnþ 2Þ

"
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
H

Hð0Þ
cr

�
2

s #
;

Hð0Þ
cr ¼

�
πm4

λðnþ 2Þ
�

1=2

ð19Þ

with Hð0Þ
cr the above-mentioned critical Hubble. The sol-

ution is trivially obtained [with σð0Þ ≈ 0]:

σ2ðNÞ ¼ σ2þσ2−ð1 − e−γNÞ
σ2þ − σ2−e−γN

; ð20Þ

where

γ ≡ 2λðnþ 2Þ
H2

ðσ2þ − σ2−Þ: ð21Þ

Now forH ≤ Hð0Þ
cr , we have an attractive fixed point σ− and

thus σð∞Þ ¼ σ− dictating a constant distribution.3 In this
case, the Gaussian approximation is valid in principle since
we have σ− < ρend, where ρend marks the slow-roll end
point

jV 00ðρendÞj ≃ 9H2

⇒ ρend ≃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9H2 þm2

3λ

r
; ð22Þ

and neglecting the effect of the finiteness of ρend is
warranted, at least in principle, to first order in approx-

imations.4 However, on the other hand, for H > Hð0Þ
cr , there

is no real fixed point and the distribution grows indefinitely
σð∞Þ ¼ ∞. The Gaussian approximation therefore com-
pletely breaks. In reality a finite ρend would lead to a steady
state distribution ρ̃ðρÞ which we can easily obtain numeri-
cally using the radial field’s kernel derived earlier.

C. Comparisons

We now present some numerical results for various
important quantities. For a 1þ 1-dimensional simulation,
we have used our network I as we outlined in detail in

3This is true for any σð0Þ < σþ.4The factor of 9 here is not of much significance. Our results
are very insensitive to increments in the slow-roll end point.
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Ref. [29]. We begin with one cell with four field values all
at zero and double the number of cells at each step. The
field values in the daughter cells are dictated by Langevin
equation (3) with ϵ ¼ ln 2 and are produced only if the
radial field ρ in the parent cell was less than the slow-roll
end value ρend. For the kernel evolution, we begin with a
delta distribution pðρ; 0Þ ¼ δð0Þ and evolve it until the
normalized distributions at the final step and one previous
step (with ϵ ¼ ln 2) differed from each other by only one
part in 103. In order to converge to steady state in a few e-
foldings in our simulations for this case of M potential, we
carefully choose our parameters:
For H ≪ Hð0Þ

cr , we can use Gaussian approximation
to estimate the scaling of the time of convergence.
From Eq. (20), the number of e-foldings to converge to
σ− goes like

N� ∼
1

γ
∼
H2

m2
¼ H2

λρht
: ð23Þ

On the other hand, for H ≫ Hð0Þ
cr , we can use the classical

equation of motion to estimate the time it takes for the field
to roll to ρend. A straightforward calculation gives the
following:

N� ∼
H

κ
ffiffiffi
λ

p : ð24Þ

We model different scenarios keeping λ fixed at 0.06H2

while varying ρht (in units of κ) such that we always have
N� ≲Oð10Þ. For any given scenario, our results are very
insensitive to increments in the slow-roll end values;
cf. Eq. (22). Note that the Gaussian approximation is so
simple that we carry it out in the continuum limit, while the
full simulations and kernel evolution are more complicated,
so they have a discrete time step, as mentioned above.
To begin, we first show plots of field distributions for the

two cases of H. Figure 1 (upper panel) compares the field
distribution obtained from simulation after 18 2-foldings
(red curve) with the actual steady state distribution obtained
from kernel evolution (green curve) and Gaussian approxi-

mations (cyan and blue curves) for anH > Hð0Þ
cr . In order to

force a finite bounded distribution for the latter (otherwise
spreading indefinitely), we show two illustrations of
truncating the standard deviation of the radial field at the
hilltop and the slow-roll end point, i.e., σð∞Þ≡ ρht=2 and
σð∞Þ≡ ρend=2, respectively.
Figure 1 (lower panel), on the other hand, compares the

simulation result against the steady state and Gaussian
approximated [σð∞Þ ¼ σ−] distributions for an H < Hð0Þ

cr .
Here, even though a Gaussian approximation is allowed,
deviations from it in the actual distribution are large. In
either case, our steady state distribution is in excellent
agreement with the actual simulation result.
Now, one of the interesting and necessary quantities that

we must compute is the average size of regions that contain

the radial field ρ within the hilltop value ρht ¼ m=
ffiffiffi
λ

p
. As

can be seen from above distribution plots, the non-
Gaussianity in the actual (steady state) distribution is
important to track. Figure 2 shows the average length of
inflating chains in 1þ 1 dimensions, computed from
steady state distribution obtained from kernel evolution
(green curve) and Gaussian approximated distributions
(cyan and blue dashed curves), as compared with the actual
simulation result (red curves). The former two are obtained
assuming completely uncorrelated patches, giving the
following:

hlengthi ¼ 1

1 − f
H−1;

f ¼
Z

ρht

0

dρp̃ðρÞ: ð25Þ

FIG. 1. Upper panel: Field distribution in a Hubble patch for

H ≈ 2.16Hð0Þ
cr . The red curve is the actual simulation result after

18 2-foldings, the dashed green curve is the steady state
distribution obtained from kernel evolution, and the dashed cyan
and blue curves are Gaussian approximations with their widths
truncated at ρht=2 and ρend=2, respectively, and ρend ≈ 2.18ρht.
Lower panel: Field distribution in a Hubble patch for

H ≈ 0.54Hð0Þ
cr . Color coding is the same as above. For the

Gaussian approximated distribution, σð∞Þ ¼ σ− ≈ 0.11ρht. This
is all in 1þ 1 dimensions.
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Here again for H > Hð0Þ
cr , we have the above two consid-

erations of truncating the width of Gaussian approximated
distribution at ρht=2 and ρend=2. It is apparent from the
figure that not only is the Gaussian approximated result
further from the steady state result, the latter is much closer
to the actual simulation result, especially for smallerH, and
gets even closer for larger lengths.
Another interesting quantity to consider is the fractal

dimension of chains that are within the instability scale, i.e.,
ρ < ρht, defined as

Df ¼ lim
N→∞

lnL<ρhtðNÞ
N

; ð26Þ

where L<ρhtðNÞ is the length of inflating regions with field
values within the instability point. With time discretization
ϵ and total number of steps s such that N ¼ ϵs, it is equal to
the following:

L<ρhtðNÞ ¼ eϵs
Ys−1
i¼0

Z
ρht

0

dρiKðρiþ1; ρi; ϵÞpðρ0; 0Þ: ð27Þ

Figure 3 compares the fractal dimension with ρ < ρht
obtained from 1þ 1-dimensional simulations after 12,
15, and 18 2-foldings, respectively, with that from kernel
propagation at steady state. The convergence of the
simulation toward the steady state result obtained from
kernel evolution is apparent from this plot.
Having laid out a quantitative analysis for the M

potential, all the while elucidating some subtleties and
simplifying assumptions made in the literature, and also
establishing validity of radial kernel (10) to compute
various quantities of interest, we now analyze the eternal
inflation scenario with the SM Higgs.

III. ANALYSIS WITH THE STANDARD
MODEL HIGGS

The SM potential for the Higgs V ¼ −μ2h2 þ λh4=4 is
known to pick up corrections from loops. These lead to
logarithmically slow changes in λ as we go to high energies.
For mtop ¼ 172.9� 0.4 GeV, the Higgs self-coupling λ
becomes negative at around ∼1010 − 1011 GeV within the
minimal SM. Figure 4 (upper panel) shows the RG
evolution of λ for the central, upper, and lower values of
top mass, at two-loop order. For all other relevant para-
meters, we have taken their central values [2]: mh ¼
125.1 GeV, αem ¼ 1=127.9, αs ¼ 0.1181, and sin2ðθwÞ ¼
0.23122 (all evaluated at Z mass). The two-loop beta
functions for λ, the top quark Yukawa coupling, gauge
couplings, and the anomalous dimension are provided in
the Appendix.
By replacing the energy scale by E → h, the correspond-

ing renormalized effective Higgs potential can be written as

VðhÞ ¼ λðhÞ
4

GðhÞ4h4 ð28Þ

(with G related to wave-function renormalization). The
potential is plotted in Fig. 4 (lower panel) on a log-log
scale. The point at which this reaches a maximum V 0ðhÞ ¼
0 we call the “hilltop” value hht. It is found to be given by

hht ¼

8>><
>>:

1.0 × 1011 GeV for mtop ¼ 172.5 GeV;

2.4 × 1010 GeV for mtop ¼ 172.9 GeV;

7.3 × 109 GeV for mtop ¼ 173.3 GeV:

ð29Þ

There exist ideas in the literature as to how to “cure” the
potential by adding new degrees of freedom that alter the
Higgs beta functions (such as [33,34]); however, we will
not pursue that here. Our focus is to put the minimal SM on

FIG. 2. Average length of chains with a radial field within the
hilltop in 1þ 1 dimensions. Red curves are from simulations at
12, 15, and 18 2-foldings in increasing order of darkness, while
the green, cyan, and blue are from actual steady state and
Gaussian approximated distributions, respectively, with the
assumption of completely uncorrelated Hubble patches (25).

0.8

FIG. 3. Fractal dimension of 1þ 1-dimensional universe with
ρ < ρht. Red curves are obtained from 1D simulation at 12, 15,
and 18 2-foldings, respectively, while the green curve is obtained
from kernel evolution at the steady state; cf. Eq. (40).
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trial to ever-increasing energies and see what constraints on
inflation, etc., follow.

A. Gaussian approximation and its limitations

For Gaussian approximation, we can proceed similarly
as before. Under Gaussian ansatz (15) and the renormalized
Higgs potential, we have the following simple differential
equation for the variance:

d
dN

σ2 þ 1

2DH2

	
h
dV
dh



ðσ2Þ ¼ H2

4π2
: ð30Þ

For all cases when the variance asymptotes to a constant
eventually, i.e., H ≤ Hð0Þ

cr , we may set dσ2=dN equal to
zero giving

H4 ¼ 2π2

D

	
h
dV
dh



ðσ2Þ: ð31Þ

Thus, we have

Hð0Þ
cr ¼

�
2π2

D

	
h
dV
dh


����
max

�
1=4

; ð32Þ

and for all other Hubble values smaller than this critical
value, we have two roots (fixed points) as before with the
smaller being an attractor. Numerically, we obtain the
following values of critical Hubble for the three values
of top mass and D ¼ 3:

Hð0Þ
cr ¼

8>><
>>:

1.4 × 1010 GeV for mtop ¼ 172.5 GeV;

3.5 × 109 GeV for mtop ¼ 172.9 GeV;

1.1 × 109 GeV for mtop ¼ 173.3 GeV:

ð33Þ

We note that this says for H > Hð0Þ
cr there is no fixed point.

However, as we will again see, when studied more precisely
beyond the Gaussian approximation, a steady state is
realized for any H. However, the sizes of habitable patches
will be strongly dependent on the value of H. On the other

hand, for H < Hð0Þ
cr , the Gaussian approximation does give

a steady state, though in the literature the distribution is
often just cut off at N ≈ 60 instead.

B. 1 + 1-dimensional simulation with Higgs
and comparisons

Now let us move beyond the overly simple Gaussian
approximation toward a full treatment of the problem. In
order to validate our analysis concretely, we begin by
simulating (using our network I as mentioned earlier)
1þ 1-dimensional inflating universes with the SM Higgs,
for the central value of top mass and different H.
With random walk step κ, we scale the field(s) and the
potential as

z⃗≡ h⃗
hht

;

W ≡ V
H2h2ht

; ð34Þ

giving the following (discretized) Langevin equation for the
fields’ evolution in any Hubble patch:

z⃗i − z⃗i−1
ϵ

þ z⃗i−1
zi−1

∂W
∂z ðzi−1Þ ¼

κ

hht
η⃗i; ð35Þ

and the slow-roll end point is obtained as before:

W00ðzendÞ ≃ 9: ð36Þ
To mimic some of the aspects of the desired 3þ 1-
dimensional scenario, we simulate universes with different
numerical values of H ranging from 0.1hht to 10hht and
simultaneously κ ranging from 0.1hht=2π to 10hht=2π. Note
that with these choices of parameters, it is practically
impossible to achieve steady state in simulations since we
would require a large number of 2-foldings. Therefore we

FIG. 4. Upper panel: The running of self-coupling λ as a
function of energy within the minimal SM for three different
values of the top mass, which spans the currently favored top
mass window. Lower panel: The corresponding effective Higgs
potential V as a function of Higgs value h on a log-log scale.
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obtain results from kernel propagation both for 18 2-
foldings (which is the maximum amount we go in our
simulations) and steady state. To obtain steady state, we
propagate the distribution with the appropriate kernel until
they start to deviate from each other only by one part in 103,
as mentioned before. Also for Gaussian approximation and

D ¼ 1, we have Hð0Þ
cr ¼ 4.54 × 109 GeV for the central

value of top mass. We again note that the simulation and
kernel methods have a discrete time step of ϵ ¼ ln 2, while
the Gaussian approximation is in the continuum limit.
First, we present field distributions for both cases

H > Hð0Þ
cr in Fig. 5 (upper panel) and H < Hð0Þ

cr in Fig. 5

(lower panel). The excellent agreement between actual
simulation result and kernel propagation is evident from the
red and dashed green curves (after 18 2-foldings). For the

former case of H > Hð0Þ
cr when Gaussian approximated

σðNÞ blows up eventually, we evolve it until N ¼ 60 as is
usually done in the literature. On the other hand, for the

latter case of H < Hð0Þ
cr , we show the field distribution on a

log-linear scale to make deviations from Gaussian approxi-
mation apparent.
The average length of regions containing Higgs within

its hilltop value is shown in Fig. 6 (upper panel). As before,
under the assumption of uncorrelated patches, average
length obtained using steady state distribution is given
as before [cf. Eq. (25)] with the appropriate kernel for the

FIG. 5. Upper panel: Field distribution in a Hubble patch for

H ¼ 2.09Hð0Þ
cr (i.e.,H > Hð0Þ

cr ) in 1þ 1 dimensions. The solid red
and green curves are from actual simulation and kernel propa-
gation after 18 2-foldings, respectively, and the dashed green
curve is the steady state distribution obtained from kernel
propagation, while the dashed blue curve is the Gaussian
approximation with the variance truncated at 60 e-foldings:
σð60Þ ≈ 1.2 × 1010 GeV. Lower panel: Field distribution in a

Hubble patch for H ≈ 0.52Hð0Þ
cr (i.e., H < Hð0Þ

cr ) in 1þ 1 dimen-
sions. The solid red and green curves are from actual simulation
and kernel propagation after 18 2-foldings, respectively, and the
dashed green curve is the steady state distribution obtained from
kernel propagation, while the dashed blue curve is the Gaussian
approximation with σð∞Þ ≈ 2.39 × 109 GeV.

FIG. 6. Upper panel: Average length of chains with Higgs
within the hilltop in 1þ 1 dimensions. As before, solid red curves
are from actual simulation, while green and dashed blue are from
kernel propagation (solid green corresponding to 18 2-foldings
and dashed green corresponding to steady state) and Gaussian
approximated distribution with σ truncated at σð60Þ for

H > Hð0Þ
cr , respectively, under the assumption of uncorrelated

patches. Lower panel: Fractal dimension of regions containing
Higgs within the hilltop. Solid red curves are from actual
simulations after 12, 15, and 18 2-foldings (in increasing bright-
ness). Solid green is from kernel evolution after 18 2-foldings,
while dashed green is at steady state.
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Higgs potential. Note that even though the actual average
size (red curves) is bigger in reality (due to correlations
between nearby Hubble patches), the assumption of
uncorrelated patches (solid green curve) gets closer to
the former especially for very large sizes. Finally, the fractal
dimension of these regions containing Higgs within the
hilltop given as before [cf. Eqs. (40) and (26)] is shown in
Fig. 6 (lower panel).

C. Full analysis in 3 + 1 dimensions

Having shown the validity of our kernel evolution
technique concretely, we now move on the important
case of 3þ 1 dimensions. Using the radial kernel (10)
with D ¼ 3 and κ ¼ H=2π, and ϵ ¼ ln 1.5, we numerically
obtain steady state distributions p̃ðhÞ for different Hubble
values and the three different top masses. Figure 7 shows
some of these distributions for the central value of top mass
with different H, on a linear (upper panel) and log-log
(lower panel) scale, respectively.

We can use the kernel method then to again compute
average volumes, trusting that the assumption of uncorre-
lated Hubble patches is not a terrible approximation. In
general, as a function of Hubble H, Fig. 8 (upper panel)
shows average volume of regions with h < hht computed as
before:

hvolumei ¼ 1

1 − fh
H−3;

fh ¼
Z

hht

0

dhp̃ðhÞ; ð37Þ

for the three different values of top mass. We would like the
average volume to be at least as big as our observable
Universe. Now note that we need ≈60 e-foldings of
inflation to produce our observable Universe. This leads
to a postinflationary era made up of ∼e180 inflationary

FIG. 7. Upper panel: Higgs dynamics in 1þ 1 dimensions.
Solid curves are some of the steady state distributions for
different Hubble values close to the one required for the
observable Universe, while the corresponding dashed curves
are the Gaussian approximated distributions with σ truncated at

N ¼ 60 for H > Hð0Þ
cr . Lower panel: The same curves, but on a

log-log scale to emphasize the tails.

FIG. 8. Upper panel: Average volume of regions with Higgs
within the instability scale in 3þ 1 dimensions within the
minimal SM. Curves are obtained from steady state distributions.
The horizontal dashed black line corresponds to the characteristic
size of our comoving universe ∼e180H−3 ≈ 1078H−3 at the end of
inflation. Lower panel: Fractal dimension of eternally inflating
universe for regions with Higgs within the instability scale. This
is within the framework of the minimal SM in 3þ 1 dimensions
for three different values of the top mass.
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Hubble patches. If we then expand that comoving volume
to today, it will indeed be on the size of our observable
Universe. Hence the patches created in this steady state
distribution should typically be at least this large, and
ideally the average hvolumei should be at least this large.
We find that the bound on inflationary Hubble values in
order to achieve this is

Hmax ¼

8>><
>>:

5.8 × 109 GeV for mtop ¼ 172.5 GeV;

1.4 × 109 GeV for mtop ¼ 172.9 GeV;

4.6 × 108 GeV for mtop ¼ 173.3 GeV;

ð38Þ

which is one of our primary findings.
We note that these values are less than the Gaussian

approximated critical Hubble values Hð0Þ
cr . Hence one

could in principle use the Gaussian approximation to
examine the steady state. However, in the literature, the
steady state is usually not utilized. Instead the distribution
is usually simply cut off at N ≈ 60 to obtain a critical
Hubble value.
Finally, Fig. 8 (lower panel) shows the fractal dimen-

sion Df of regions containing Higgs within the instability
scale as a function of H, which is given as before, but with
D ¼ 3 as the background dimension:

Df ¼ lim
N→∞

lnV<hhtðNÞ
N

ð39Þ

with

V<hhtðNÞ ¼ e3ϵs
Ys−1
i¼0

Z
hht

0

dhiKðhiþ1; hi; ϵÞpðh0; 0Þ

and N ¼ ϵs.
As mentioned earlier, in any realistic scenario of our

Universe, after inflation it must reheat, rendering thermal
corrections extremely important in the analysis. Having
dealt with the eternal inflation scenario at zero tempera-
ture, in the next section we will analyze these thermal
corrections.

IV. THERMAL EFFECTS AFTER INFLATION

It is known that, at a finite temperature, the Higgs
potential is partially improved, in the sense that at high
temperatures the new effective potential has an instability
scale hht that is pushed to even higher values. In the
literature it has sometimes been assumed that this can
relax the bounds on the inflationary Hubble scale
completely; i.e., any H is now allowed, since even
though the Higgs may be on the wrong side during
inflation, it can be thrown back after inflation in the
altered potential. Often authors assume “instant” reheat-
ing, and some have used related ideas to build interesting

models to explain various physical phenomenon (e.g.,
see [16]).
However there are reasons to be skeptical that the

Higgs field can be “saved” during the reheating era. In
Fig. 9 we plot a measure of slow roll, namely, V 00=H2

(which is on the order of the second slow-roll parameter
ηsr). This is the effective mass-squared in units of
Hubble. This is evaluated at H ¼ Hmax that we found
above, and a similar curve applies for nearby value of H
too. The dashed lines are the turnover scale hht at zero
temperature (during inflation). We see that for h > hht
then jV 00j=H2

max is appreciable, so the field is expected to
start to roll quickly. This gives very little time for
reheating to occur and “save” the Higgs field. For
H > Hmax, the field does not roll as fast, but this is
an even more precarious situation since so much of the
Higgs field is on the wrong side, and so it would be
rather nontrivial for it all to be saved. In summary, it
seems safe to assume that H < Hmax that we computed
above, although a full exploration of this issue is left for
future work.
On the other hand, it was claimed in Ref. [14] that

even though hht is pushed to higher values, thermal
fluctuations in the Higgs can be so large and can throw
the Higgs to the wrong side, even if H < Hmax. This may
be a particularly interesting approach when one is
considering the formation of AdS regions where gravity
will ultimately play a significant role. However, it is also
of importance to note that no physical spatial scales were
accounted for in this analysis or a direct inclusion of
local gravitational effects. Thermal fluctuations were
calculated at a point in space, which was then used to

FIG. 9. A measure of the fast roll V 00ðhÞ=H2, with H ¼ Hmax
(the maximum H value to allow for a large observable universe).
The dashed vertical lines are h ¼ hht are the hilltop values for the
Higgs. This plot shows that for h > hht the field is about to
undergo fast roll and we expect it to readily head toward an AdS
crunch or other catastrophe. This is within the framework of the
minimal SM in 3þ 1 dimensions for three different values of the
top mass.
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construct a Gaussian probability distribution in the Higgs.
This was then required to have small enough support for
h > hht such that a large ∼e180H−3 sized region can
survive, and a bound on the reheat temperature was
found. However, this does not ensure an instability. The
correct analysis is to consider the formation of thermal
bubbles; these have finite spatial extent (roughly given by
the inverse effective Higgs mass), and one needs to take
into account the spatial dependence of the two-point
correlation function. The appropriate calculation is the
corresponding finite temperature Euclidean bounce sol-
utions (instantons). Taking this into account, we will be
led to different conclusions from Ref. [14]. However,
local gravitational effects could still alter the situation,
and a full inclusion of such effects is an interesting topic.
We also mention there is important earlier work on this
thermal tunneling (including Refs. [5,6,35–38]), which is
connected to our work here.
We ignore the possibility of a direct coupling between

the inflaton and the Higgs, leaving this for future work, and
assume a generic reheating scenario that takes at least a few
e-foldings. One may imagine reheating takes place by
coupling the inflaton to gluons or other SM particles by
higher dimension operators. Once the universe gets in
thermal equilibrium with all the SM degrees of freedom, we
can then attach the thermal free energy to the effective
Higgs potential: The free energies due to bosons and
fermions in the thermal bath are

ΔVBðh; TÞ ¼
T4

2π2

Z
∞

0

dzz2 ln

0
B@1 − e

−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
z2þm2

B
ðhÞ

T2

q
1 − e−z

1
CA;

ΔVFðh; TÞ ¼
−T4

2π2

Z
∞

0

dzz2 ln

0
B@1þ e

−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
z2þm2

F
ðhÞ

T2

q
1þ e−z

1
CA; ð40Þ

respectively (we have subtracted out the radiation piece
∼T4, since, although it is important to the total energy of
the universe, it does not directly affect the Higgs dynamics
as it is h independent). The only significant contributions
come from the W and Z bosons (six and three total degrees
of freedom, respectively), and the top quark (12 total
degrees of freedom), each of which have the following
masses:

m2
WðhÞ ¼

g2ðhÞ
4

h2;

m2
ZðhÞ ¼

g2ðhÞ þ g02ðhÞ
4

h2;

m2
topðhÞ ¼

y2t ðhÞ
2

h2; ð41Þ

and where g, g0, and yt are the SU(2), U(1) and top Yukawa
couplings, respectively. The effective temperature corrected
Higgs potential is therefore

Veffðh; TÞ ¼ Vðh; 0Þ þ
X

i¼W;Z;top

ΔViðh; TÞ: ð42Þ

With this new effective potential, we can calculate bounce
actions for tunneling of the Higgs to true vacuum at a finite
temperature. In the next section, we numerically obtain
bounce actions for different temperatures with the above
temperature corrected effective Higgs potential and show
that there is no bound on reheat temperature.

A. Tunneling probability at finite temperature

For a field theory at a finite temperature in 3þ 1
dimensions, the relevant bounce action associated with
a thermal bubble is provided by the Euclidean Oð3Þ
solution [39]

SBðTÞ ¼ 4π

Z
drr2

�
1

2

�
dhB
dr

�
2

þ VðhB; TÞ
�
; ð43Þ

where hBðr; TÞ is the bounce solution for the equation of
motion

d2h
dr2

þ 2

r
dh
dr

¼ ∂V
∂r ; ð44Þ

with boundary conditions

hð∞; TÞ ¼ 0;

dh
dr

ð0; TÞ ¼ 0: ð45Þ

Then, the probability of tunneling via thermal bubble
formation is roughly (we suppress the prefactor here as
it is of subleading importance)

Ptunnel ∝ exp

�
−
SBðTÞ
T

�
: ð46Þ

With Veffðh; TÞ, we numerically obtain bounce actions for
different temperatures and hence tunneling probabilities.
Figure 10 (upper panel) shows SBðTÞ=T vs temperature T,
and Fig. 10 (lower panel) shows an estimate of correspond-
ing tunneling probabilities by simply exponentiating the
former.
This probability, when properly normalized, is per unit

volume per unit time. If we take the inverse of this
probability, it is seen to be far greater than the number
of bubble-sized patches in our comoving universe (that is
very roughly ∼e180 ∼ 1078, or so). It is clear that not only is
there no bound on reheat temperature, even extremely high
temperatures approaching the Planck scale (though they
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would not realistically be reached in any postinflationary
era) carry insignificant tunneling probabilities for there to
be a thermal Higgs bubble formation in our observable
Universe.

V. SUMMARY

In this paper, we have for the first time analyzed the
eternally inflating scenario in the context of the minimal
SM. Since the SM Higgs field develops an instability at
high field values, thereby allowing an inflationary phase
only in a finite domain, the Universe gets to an eternally
inflating steady state in which any initial transient behavior
washes out, and all interesting quantities like average
volumes of regions, fractal dimensions, etc., are therefore
independent of the number of e-foldings provided in the
final stages of slow-roll inflation.
The corresponding steady state distribution in the field

has significant deviations from Gaussianity depending on

the value of inflationary Hubble H and is therefore
important to keep track of. In order to obtain it for different
choices of parameters, we derived a kernel that propagates
the radial field’s distribution in time, which upon normali-
zation gives the desired steady state distribution. In order to
compare it against Gaussian approximation, we began with
a toy model of four scalar fields with a spherically
symmetric M-shaped potential in 1þ 1 dimensions and
showed that the usual Gaussian approximated (radial) field
distribution in any Hubble volume deviates significantly
from the former. For a concrete analysis, we also compared
them against actual 1þ 1-dimensional simulations, finding
the kernel method to be much more accurate. We then used
the radial field’s kernel to analyze this eternal inflation
scenario with the two-loop renormalized SM Higgs poten-
tial. As before, we first compared kernel propagation
analysis with actual 1þ 1-dimensional simulations and
showed that the former is accurate in calculating various
statistical quantities. Then, we applied it to 3þ 1 dimen-
sions, and along with obtaining these statistical quantities,
we obtained upper bounds on the inflationary Hubble scale
H to obtain an observable universe (of size ∼e180H−3) for
upper, central, and lower value of top quark mass.
Finally, after inflation ends locally in various regions,

they must reheat and thermal corrections (due to W, Z and
top quark) become important, leading to the instability
scale of Higgs getting pushed to higher values for larger
temperatures. Assuming a generic reheating scenario,
where the inflaton takes at least a few Hubble times to
reheat the Universe, and therefore thermal effects are
unlikely to rescue the Higgs if H > Hmax, we then
calculated tunneling probabilities from the electroweak
vacuum at a finite temperature to the true vacuum. We
found that even for extremely high temperatures, the
bounce actions are large enough that thermal bubble
creation is negligibly rare in our comoving volume.
Therefore, high reheating of the SM poses no threat to
the electroweak vacuum metastability all the way to Mpl,
but a high scale of inflation does. Modified reheating
scenarios will be the subject of future work.

ACKNOWLEDGMENTS

We would like to thank Alex Vilenkin for helpful
discussion. M. P. H. is supported in part by National
Science Foundation Grant No. PHY-1720332.

APPENDIX: BETA FUNCTIONS

Two-loop beta functions for the relevant SM couplings
and the anomalous dimension of Higgs γ are as follows
[40–44]:

FIG. 10. Upper panel: Three-dimensional Euclidean bounce
action SBðTÞ=T vs reheat temperature T for a thermal bubble.
Lower panel: The corresponding tunneling probability
Ptunnel ∼ e−SBðTÞ=T . This is within the minimal SM and we have
shown the result for three different top masses.
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þ yt

�
1

16π2

�
2
�
6ðλ2 − 2y4t − 2λy2t Þ þ y2t

�
131

16
g02 þ 225

16
g2 þ 36g2s

�

þ 1187

216
g04 −

23

4
g4 −

3

4
g02g2 − 108g4s þ 9g2sg2 þ

19

9
g2sg02

�
;

βg ¼
1

16π2

�
10

3
−
1

6

�
g3 þ

�
1

16π2

�
2

g3
�
35

6
g2 þ 3

2
g02 þ 12g2s −

3

2
y2t

�
;

βg0 ¼
1

16π2

�
20

3
þ 1

6

�
g03 þ

�
1

16π2

�
2

g3
�
9

2
g2 þ 199

18
g02 þ 44

3
g2s −

17

6
y2t

�
;

βgs ¼
1

16π2
7g3s þ

�
1

16π2

�
2

g3s

�
9

2
g2 þ 11

6
g02 − 26g2s − 2y2t

�
;

γ ¼ −
1

16π2

�
9

4
g2 þ 3

4
g02 − 3y2t

�
−
�

1

16π2

�
2
�
27

4
y4t −

5

2
y2t

�
8g2s þ

9

4
g2 þ 17

12
g02
�
þ 271

32
g4 −

9

16
g2g02 −

431

96
g04 − 6λ2

�
:

Here, λ, yt, g, g0, and gs are the Higgs self-coupling, top quark Yukawa coupling, weak SU(2) coupling, U(1) hyper-charge
coupling, and strong coupling, respectively.
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