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We investigate primordial magnetogenesis and the evolution of the electromagnetic field through a
quantum bounce P. Peter, E. J. Pinho, and N. Pinto-Neto, Phys. Rev. D 75, 023516 (2007)., in a model that
starts in the far past from a contracting phase where only dust is present and the electromagnetic field is in
the adiabatic quantum vacuum state. By including a coupling between curvature and electromagnetism of
the form RFμνFμν, we find acceptable magnetic field seeds within the current observational constraints at
1 Mpc, and that the magnetic power spectrum evolves as a power-law with spectral index nB ¼ 6. It is also
shown that the electromagnetic backreaction is not an issue in the model under scrutiny.
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I. INTRODUCTION

The existence of magnetic fields in a variety of scales in
the Universe (see, for instance, [1–3]) calls the question of
their origin. In particular, there are several observations
consistent with weak ∼10−16 Gauss fields in the interga-
lactic medium, coherent on Mpc scales: the 21-cm hydro-
gen line [4], the anisotropy of ultrahigh energy cosmic rays
[5], CMB distortions [6,7], B-mode polarization measure-
ments [8,9], magnetic reheating [10], big bang nucleosyn-
thesis (BBN) [11], and γ-rays [12], among others. Since
such fields remained largely undisturbed during the cos-
mological evolution (as opposed to those in the presence of
structure), they offer a window to their origin, which is
generally assumed to be primordial.
Primordial seed fields (which may be amplified later

by the dynamo mechanism [13]) are generated before
structure formation, for instance, out of the expansion of
the Universe, either during inflation [14–46], or in cos-
mological models with a bounce [47–57].1 However, since
minimally coupled electromagnetism is conformally invari-
ant, the expansion cannot affect its vacuum state. Hence,
such invariance must be broken in order to generate seed
magnetic fields.

Conformal invariance can be broken in several ways:
through the addition of a mass term [60], by coupling the
electromagnetic (EM) field to a massless charged scalar
field [61] or the axion [62], and by a nonminimal coupling
with gravity. The last option has been widely studied in the
case of inflationary models (see [63–68], among others).
However, inflationary magnetogenesis is not free of prob-
lems. Among these, we can mention an exponential
sensitivity of the amplitude of the generated magnetic field
with the parameters of the inflationary model [69], the
strong coupling problem [70], and the limits in the
magnetic field strength coming from the gravitational
backreaction of the electric fields that are produced
simultaneously with the magnetic fields [71]. Hence,
instead of an inflationary model, a nonsingular cosmologi-
cal model (see [72] for a review) in conjunction with a
coupling of the type RFμνFμν will be used here to study the
production of seed magnetic fields. Nonsingular models are
likely to ease both the problem of the exponential sensi-
tivity of the result and the strong coupling problem, since
they expand slower than inflationary models. Moreover, we
shall see below that backreaction is not an issue for the
model chosen here.
It is worth remarking that magnetogenesis in nonsin-

gular cosmological models has been studied before,
always in the presence of a scalar field. The models already
studied may be divided into two classes, depending on
whether the coupling of the EM field with the scalar field is
fixed on theoretical grounds (see for instance [48,73]), or
chosen in a convenient way in terms of the expansion factor
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1Cosmological magnetic fields may also be produced during

phase transitions, see, for instance, [58], or through the gen-
eration of vortical currents [59].
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(see [49,51,52]). The coupling between the Ricci scalar and
the EM field to be adopted in this work, which is theo-
retically motivated by the vacuum polarization described
quantum electrodynamics (QED) in a curved background
[74], introduces a mass scale to be fixed by observations.
We shall start in Sec. II with a brief summary of the

background model that will be used in what follows. In
Sec. III, the equations governing the behavior of the
perturbations of the electromagnetic field in a curved
background will be reviewed. We show in Sec. IV the
analytic solutions for the gauge field and its momentum.
These results are used to understand the numerical sol-
utions in Sec. V. The comparison of the results with
observations is presented in Sec. VI. The fact that back-
reaction does not affect the background dynamics is shown
in Sec. VII. Also, we show in the Appendix how to obtain
appropriate initial conditions for the electromagnetic field
from an adiabatic vacuum.

II. THE BACKGROUND

Cosmological models displaying a bounce solve the
singularity problem by construction. They join a con-
tracting phase, in which the Universe was initially very
large and almost flat, to a subsequent expanding phase. In
such models, the curvature scale tends to infinity in the
asymptotic past. As a consequence, vacuum initial con-
ditions for cosmological perturbations can be imposed in
the dust-dominated contracting phase,2 leading to a scale
invariant spectrum [78]. The bounce can be either gen-
erated classically (see, e.g., [79–82]) or by quantum effects
(see, e.g., [78,83–85]).
The cosmological model that will be used here as back-

ground was obtained in [86] by solving the Wheeler-deWitt
equation in the presence of a single perfect fluid. The
solution was obtained in the minisuperspace approximation
and in the framework of the theory of de Broglie and Bohm
(dBB) [87,88]. The reason behind this choice is that the
dBB interpretation is very well suited for cosmology, since
it needs no external classical apparatus, as opposed to the
Copenhagen interpretation.
The expression of the scale factor in the case of a flat

spatial section obtained in [86] is given by

aðTÞ ¼ ab

�
1þ T2

T2
b

� 1
3ð1−wÞ

; ð1Þ

where w is the equation of state of the fluid.3 All quantities
appearing hereafter with the subscript b are evaluated at the

bounce (with the exception of Tb, which fixes the bounce
timescale), while quantities with the subscript 0 are
evaluated today. The spacetime geometry associated with
(1) is nonsingular, and the scale factor tends to the classical
evolution for jTj ≫ Tb. The relation between T and the
cosmic time t is given by

dt ¼ a3wdT: ð2Þ

From now on, we shall set w ¼ 0, leading to a scale
invariant spectrum for the curvature perturbations, and
allowing us to set t ¼ T. It will also be useful to express
the scale factor as aðtÞ≡ a0YðtÞ, with

YðtÞ ¼ 1

xb

�
1þ t2

t2b

�
1=3

; ð3Þ

where we have defined x≡ a0=a and tb ≡ 2lb, with lb

the curvature scale at the bounce (lb ≡ 1=
ffiffiffiffiffiffiffiffiffiffiffiffijRð0Þjp

where
R is the four-dimensional Ricci scalar) satisfying
103tPlanck < tb < 1040tPlanck.

4

For the subsequent calculations, it is convenient to define
parameters that are directly related to observations. Let us
first write down the Friedmann equation,

H2 ¼ 8πG
3

ρm
a3

; ð4Þ

with ρm the dark matter density energy. The ratio between
Eq. (4) at some time t and the same equation evaluated
today leads to

H2 ¼ H2
0Ωmx3; ð5Þ

with Ωm the dimensionless dark matter density today. Note
that at x ¼ 1 we have H2 ¼ H2

0Ωm, this means that in the
contraction phase, at the same scale as today a ¼ a0, the
Hubble factor is −H0

ffiffiffiffiffiffiffi
Ωm

p
due to the lack of other matter

components. Then, from the expansion of aðtÞ for large
values of t, it follows that

H2 ≈
4

9t2b

�
x
xb

�
3

: ð6Þ

Now, using H0 ¼ 70 km s−1Mpc−1 and the lower bound
on tb, it is straightforward to derive an upper limit on xb by
equating Eqs. (5) and (6),

2In models in which radiation is important initially,
thermal fluctuations may dominate over quantum fluctuations;
see [75–77].

3Note that a scale factor of this form was introduced by hand in
[50] to generate scale invariant magnetic fields, while it emerges
naturally from quantum effects here.

4The lower bound is set by imposing the validity of the
Wheeler-DeWitt equation, i.e., by restricting the curvature to
values such that possible discreteness of the spacetime geometry
is negligible, while quantum effects are still relevant [86]. Since
tPlanck ≃ 10−44s and recalling that BBN happened around 104s,
the upper bound simply reflects the latest time at which the
bounce can occur.
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Ωm ¼ 4

9

1

t2bx
3
bH

2
0

⇒ xb <
1038

Ω1=3
m

: ð7Þ

For later convenience, we define RH0
≡H−1

0 , ts ≡
t=RH0

, and α≡ RH0
=tb, and rewrite YðtÞ as

YðtsÞ ¼
1

xb
ð1þ α2t2sÞ1=3; ð8Þ

with

α ¼ 3

2

ffiffiffiffiffiffiffiffiffiffiffi
Ωmx3b

q
: ð9Þ

We will see in the next section how to relate the previous
quantities to the electromagnetic power spectrum and what
constraints can be derived on the parameters of the model.

III. THE ELECTROMAGNETIC SECTOR

To describe electromagnetism, we shall adopt the
Lagrangian

L ¼ −fFμνFμν; ð10Þ
where

f ≡ 1

4
þ R
m2⋆

; ð11Þ

and m⋆ is a mass scale to be determined by observations.
As mentioned in the Introduction, the nonminimal coupling
in this Lagrangian breaks conformal invariance and paves
the way to the production of primordial electromagnetic
fields.
The equations of motion for the electromagnetic field

that follow from Eq. (10) are

∂μð
ffiffiffiffiffiffi
−g

p
f FμνÞ ¼ 0; ð12Þ

where the field Fμν is expressed in terms of the gauge
potential Aμ as Fμν ¼ ∂μAν − ∂νAμ. To quantize the
electromagnetic field, we expand the operator associated
to the spatial part of the vector potential as

Âiðt;xÞ ¼
X
σ¼1;2

Z
d3k

ð2πÞ3=2 ½ϵi;σðkÞâk;σAk;σðtÞeik·x þ H:c:�;

ð13Þ
where ϵi;σðkÞ are two orthonormal and transverse vectors
which are constant across spatial sheets (they have zero Lie
derivative with respect to the spatial foliation vector field),
and H.c. stands for the Hermitian conjugate. The operators
âk;σ and â†k;σ are, respectively, the annihilation and crea-

tion operators. They satisfy ½âk;σ; â†k0;σ0 � ¼ δσσ0δðk − k0Þ,
½âk;σ; âk0;σ0 � ¼ 0, and ½â†k;σ; â†k0;σ0 � ¼ 0. Note that in the
equations above we adopted the Coulomb gauge with

respect to the cosmic time foliation (A0 ¼ 0 and
∂iAi ¼ 0). The time-dependent coefficients Ak;σðtÞ and
their associated momenta Πk;σ ≡ 4afA0

k;σðtÞ must satisfy

Ak;σðtÞΠ�
k;σðtÞ − A�

k;σðtÞΠk;σðtÞ ¼ i; ð14Þ

for each k and σ. It should be emphasized that the
quantization of the gauge-fixed electromagnetic field in
the absence of charges is equivalent to that of two free
real scalar fields. Consequently, the choice of vacuum for
each polarization σ corresponds to the choice of vacuum of
each scalar degree of freedom. However, using the fact that
we are dealing with an isotropic background, there is no
reason to make different choices of vacuum for different
polarizations. For this reason, we choose a single time-
dependent coefficient to describe both polarizations, i.e.,
Ak;1 ¼ Ak;2 ≡ Ak. Therefore, the same vacuum is chosen
for both polarizations. Now, inserting this decomposition in
Eq. (12), we get the equation governing the evolution of the
modes AkðtÞ,

Äk þ
�
_a
a
þ

_f
f

�
_Ak þ

k2

a2
Ak ¼ 0: ð15Þ

Defining

ks ≡ kRH; AskðtsÞ≡ AkðtsÞffiffiffiffiffiffiffiffiffiffiffiffi
xbRH0

p ; ð16Þ

where RH ¼ RH0
=a0 is the comoving Hubble radius today,

the differential Eq. (15) can be written as

A00
sk þ

�
Y 0

Y
þ f0

f

�
A0
sk þ

k2s
Y2

Ask ¼ 0; ð17Þ

where a prime denotes the derivative with respect to ts. The
coupling (11) then takes the form

f ¼ 1

4

�
1þC2

α2t2s þ 3

ðα2t2s þ 1Þ2
�
; with C2 ≡ 4

3

l2�
t2b
; l� ≡ 1

m�
:

ð18Þ
An upper limit on C can be straightforwardly derived from
Eq. (18). Since any contribution to the usual Maxwell’s
equations at BBN must be negligible, we impose the
second term in Eq. (18) to be smaller than 10−2 at
BBN. Together with the fact that α2t2s ≫ 1 at this time,
we get

C < 10−19x3=2b : ð19Þ
The energy densities of the electric and magnetic fields are,
respectively, given by

ρE ¼ f
8π

gijA0
iA

0
j; ð20Þ
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ρB ¼ f
16π

gijglmð∂jAm − ∂mAjÞð∂iAl − ∂lAiÞ; ð21Þ

where gij ¼ δij=a2 are the spatial components of the
inverse metric. To find the spectral energy densities, we
first insert expansion (13) into ρE and ρB. The resulting
operators ρ̂E and ρ̂B upon quantization are

ρ̂B ¼ f
2π2R4

H0
Y4

Z
d ln kjAskj2k5; ð22Þ

ρ̂E ¼ f
2π2R4

H0
Y2

Z
d ln kjA0

skj2k3: ð23Þ

We now evaluate the expectation value of the two densities
in vacuum, defined by âk;σj0i ¼ 0, and define the spectra as

Pi ≡ dh0jρ̂ij0i
d ln k

; i ¼ E; B: ð24Þ

This yields the magnetic and electric spectra, respectively,

PB ≡ B2
λ ¼

f
2π2R4

H0

jAskj2
Y4

k5; ð25Þ

PE ≡ E2
λ ¼

f
2π2R4

H0

jA0
skj2
Y2

k3 ¼ 1

2π2R4
H0

jΠskj2
fY4

k3: ð26Þ

In the last line, we also expressed PE in terms of the
momentum canonically conjugate to the gauge field Πsk ¼
YfA0

sk (see the Appendix), which is nothing but the electric
field mode itself.
Finally, we can express the magnetic and electric fields,

Bλ and Eλ, using H2
0 ¼ 1.15 × 10−64 G,

Bλ ¼
ffiffiffiffiffiffiffi
f
2π2

r
jAskj
Y2

k5=21.15 × 10−64 G; ð27Þ

Eλ ¼
ffiffiffiffiffiffiffiffiffiffi
1

2π2f

s
jΠskj
Y2

k3=21.15 × 10−64 G: ð28Þ

IV. ANALYTICAL RESULTS

In this section, we obtain analytically the time behavior
and spectra of Ak satisfying Eq. (17) (from now on the
index s on the time variable and wave number will be
omitted), and its canonical momentum Πk, in the different
stages of the cosmic evolution. In the sequel, this analysis
will be compared with the numerical results.
As shown in the Appendix, the adiabatic vacuum is a

consistent choice for the EM field initial conditions. The
modes in vacuum are

jAkj ¼
ffiffiffi
2

k

r
þ…;

jΠkj ¼
ffiffiffi
k
8

r
þ…:; ð29Þ

and both the field and its canonical momentum are constant
in this regime. Now that the initial conditions for the EM
field have been defined, we can move on to the analysis of
the evolution of the electric and magnetic modes from the
far past up to the present day.
Three important characteristic times related to the

evolution of the modes are worthy of note. The first is
the time limit of the adiabatic regime, jtcj, defined in
Eq. (A11). The second one is the time where quantum
effects leading to the bounce take place, i.e., jtbj ¼ 1=α.
Consequently, the bounce phase takes place for t such that
−1=α < t < 1=α. The third one is the characteristic time
when the evolution of f becomes important. Examining
Eq. (18), one gets the time jtfj ¼ C=α, up to jtbj, which
means that the evolution of f is important when
−C=α < t < −1=α, and 1=α < t < C=α. The domain of
physically allowed parameters imposes that

jtcj ≫ jtfj ≫ jtbj: ð30Þ

For jtj < jtcj, the solution leaves the frequency-domi-
nated region. In this case, one can perform the usual
expansion in ν2 derived from the Hamilton Eqs. (A2)
through iterative substitutions,

ΠkðtÞ ¼ −
Z

t
mðt1Þν2ðt1ÞAkðt1Þdt1 þ A2ðkÞ ¼ mA0

kðtÞ ⇒

AkðtÞ ¼ −
Z

t dt2
mðt2Þ

Z
t2
mðt1Þν2ðt1ÞAkðt1Þdt1 þ A2ðkÞ

Z
t dt1
mðt1Þ

þ A1ðkÞ ⇒

AkðtÞ ¼ A1ðkÞ
�
1 −

Z
t dt2
mðt2Þ

Z
t2
mðt1Þν2ðt1Þdt1

�

þ A2ðkÞ
�Z

t dt1
mðt1Þ

−
Z

t dt2
mðt2Þ

Z
t2
mðt1Þν2ðt1Þdt1

Z
t1 dt3
mðt3Þ

�
þ…; ð31Þ

where A1ðkÞ and A2ðkÞ are constants in time depending only on k, leading to the momentum expression
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ΠkðtÞ ¼ −A1ðkÞ
Z

t
mðt1Þν2ðt1Þdt1 þ A2ðkÞ

�
1 −

Z
t
mðt1Þν2ðt1Þdt1

Z
t1 dt2
mðt2Þ

�
þ…: ð32Þ

We can now evaluate the time evolution and spectra in the
different phases of the cosmic evolution.

A. The contracting phase and the bounce

In the case of AkðtÞ, all time-dependent terms are
decaying in the contracting era up to the end of the bounce.
As a consequence, AkðtÞ ¼ A1ðkÞ is constant during all
this phase. By continuity with the adiabatic phase, we
conclude that

A1ðkÞ ∝ k−1=2: ð33Þ

The time-dependent terms of the momentum ΠkðtÞ
are also decaying, except for the one multiplying A1ðkÞ,
which grows as t−5=3 for −C=α < t < −1=α, since
f ∝ 1=t2 in this region. Then, for t < −C=α, ΠkðtÞ ¼
A2ðkÞ which, by continuity with the adiabatic phase,
implies that

A2ðkÞ ∝ k1=2: ð34Þ

In the period −C=α < t < −1=α, the term multiplying
A1ðkÞ eventually surpasses the constant mode at a time
tπ , and ΠkðtÞ grows.
At the bounce itself Y and f are almost constant;

therefore, the modes will not evolve during this phase.

B. The expanding phase

In the expanding phase, the most important growing
function related to AkðtÞ is the first one multiplying
A2ðkÞ, which grows as fast as t7=3 starting from some
time tA in the interval 1=α < t < C=α, and as t1=3

for C=α < t < tc.
In the case of ΠkðtÞ, as the integral multiplying A1ðkÞ

strongly decreases as t−5=3 when 1=α < t < C=α, the value
of ΠkðtÞ saturates in the value it gets by the end of the
bounce, t ≈ 1=α. Also, ΠkðtÞ acquires a k2 dependence
through the ν2 term. Combined with the k dependence of
A1ðkÞ, we obtain ΠkðtÞ ∝ k3=2.
After tc, both AkðtÞ and ΠkðtÞ begin to oscillate.

C. Summary

For the A-field, the spectra and time dependence in the
different cosmic evolution phases is

−∞ < t < tA∶ jAkðtÞj ∝ k−1=2;

tA < t < C=α∶ jAkðtÞj ∝ k1=2t7=3;

C=α < t < k−3∶ jAkðtÞj ∝ k1=2t1=3;

t > k−3∶ jAkðtÞj ∝ k1=2 × ðoscillatory factorsÞ;
ð35Þ

where tA ∈ ð1=α; C=αÞ.
For the Π-field, we have

−∞ < t < tπ∶ jΠkðtÞj ∝ k1=2;

tπ < t < −1=α∶ jΠkðtÞj ∝ k3=2t−5=3;

−1=α < t < k−3∶ jΠkðtÞj ∝ k3=2;

t > k−3∶ jΠkðtÞj ∝ k3=2 × ðoscillatory factorsÞ;
ð36Þ

where tπ ∈ ð−C=α;−1=αÞ.
Note that both the final spectrum of PB and PE [given in

Eqs. (25) and (26)] go as k6.
After these analytical considerations, let us now turn to

the numerical calculations, which confirm the behaviors
presented in this section and allow the calculation of the
amplitudes.

V. NUMERICAL RESULTS

We start this section by showing in Fig. 1 the time
behavior of the coupling f given in Eq. (11), the scale
factor Y ¼ a=a0 from Eq. (3), and the mass m ¼ Yf. From
the definition of jtfj and jtbj in the previous section, and
choosing C ¼ 1023 and xb ¼ 1030, we obtain, respectively,
jtfj ≃ 10−22 and jtbj ≃ 10−45. This is consistent with the
behavior shown in the figure. The numerical evolution of
the gauge field Ak and its momentum Πk is shown next. In
Fig. 2, the influence of the parameter C on the evolution of
the modes is shown explicitly for C ¼ 1019 and C ¼ 1023

with xb ¼ 1030, while the influence of xb is shown in Fig. 3
for xb ¼ 1030 and C ¼ 1036 with C ¼ 1023.5 Note that in
these figures, as well as in the following ones, we
performed the computation for 1 < k < 4000, since k ¼
4000 implies a physical wavelength of about 1 Mpc

5We choose the values ofC and xb to be well inside the allowed
parameter space at 1 Mpc, as can be seen in Fig. 9. We will
use the same set of values throughout this section, except for
Figs. 7 and 8.
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(remember that k is in units of Hubble radius). One can
verify in these figures all time and k dependence described
in Sec. IV, summarized in Eqs. (35) and (36).
Now that the evolution of the modes has been

described, we can use the shape of the spectra that
follows from the results in Figs. 2 and 3, and Eqs (25)
and (26), the last one expressed in terms of the
momentum, to fathom the time evolution of the magnetic
and electric power spectra shown in Figs 4 and 5. At the
beginning of the evolution, modes are not excited. Only
vacuum fluctuations are present, with the usual k4

spectrum, increasing as Y−4 due to contraction. When
the coupling f becomes relevant, the magnetic field
power spectrum begins to increase faster, since f is a
growing function in the contracting phase, while the
electric field power spectrum presents a slower increment,
up to the time when Πk also begins to increase. After the
bounce, the situation is reversed, because f is a decaying
function of time in the expanding phase: the electric
power spectrum decreases much slower than the magnetic
one. Using Eq. (36), one can see that the decay is mild,
going as t−2=3, when 1=α < t < C=α, opening a window
in time where the electric spectrum has a significantly
higher contribution than the magnetic one.
Another interesting aspect of the magnetic and electric

power spectra is their dependence in terms of k, shown in
Fig. 6. As predicted in Sec. IV, we obtain the spectral index
nB ¼ 6. This is typical of nonhelicoidal and causally
generated magnetic fields, as noted by Caprini and
Durrer [89,90].
From the power spectrum, we are able to get the

amplitude of the magnetic field (27) as a function of the

scale, which is shown in Figs. 7 and 8. Figure 7 shows that a
larger xb, or equivalently a lower scale factor at the bounce
(ab), results in a lower amplitude of the field. Thus, a
deeper bounce tends to generate weaker magnetic fields.
This is because electric and magnetic fields are generated
when f effectively changes in time, which happens for
−C=α < t < C=α (except for the short period of the
bounce). Since α ∝ x3=2b , a larger xb implies a shorter
period in which the nonminimal coupling is effective. For
the same reason, a larger value of C leads to a larger
amplitude of the magnetic field.
In the next section, we discuss how observations and

theoretical limits can be used to constrain the parameters of
our models.

VI. DISCUSSION

We now wish to confront the results of the previous
section with observational and theoretical limits found in
the literature. Limits coming from several physical
processes can be invoked, as recalled in the introduction.
However, it is worth noting that many of them focus on
specific models with considerable uncertainties, or use
specific priors leading to confusion on the possible upper
and lower bounds.6 Since there is no unanimously
accepted limit on the spectral index, we will focus on
the bounds derived considering nB as a free parameter.

FIG. 1. Evolution of the coupling f, the scale factor Y normalized today, and the massm ¼ af with time. We have used C ¼ 1023 and
xb ¼ 1030.

6For instance, see [8,9] for a discussion about the suppressed
apparent limit on the magnetic spectral index nB, when assuming
a different prior from Planck 2015 [6].
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Thus, we shall consider an upper bound around
Bλ < 10−9G,7 and a first lower bound of around
Bλ > 10−17G.8 The second lower limit we consider

concerns the minimum seed field in galaxies that would
be amplified via dynamo mechanism [91], namely
Bλ > 10−21G.
These theoretical and observational limits are used

in Fig. 9 to constrain the region in parameter space
for which consistent values of magnetic seed fields,9

evaluated today, are obtained at 1 Mpc. The upper value
xb ≲ 1038 comes from Eq. (7) reflecting the earliest
possible time for the bounce to occur. It is denoted

FIG. 2. Evolution of the absolute values of the magnetic modes (Ak) and their momentum (Πk) through the bounce in a dust
background for C ¼ 1019 and xb ¼ 1030 (top), and for C ¼ 1023 and xb ¼ 1030 (bottom). The same color for the gauge field and its
momentum evolution is chosen for a given ks. We see that larger values of C lead to a higher final amplitude.

7See [5,93] for recent limits using ultrahigh-energy cosmic
rays anisotropy and ultrafaint dwarf galaxies, respectively. See
also [94] for a stronger upper limit of Bλ < 10−15G, putting
detections of intergalactic magnetic fields with γ-ray under
pressure.

8This limit comes from the nondetection of secondary GeV
γ-rays around TeV blazars. However, there is still an ongoing
debate on whether this lower limit should be trusted. See, for
example, [39,95]. 9Within the commonly invoked limits, as discussed earlier.
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“Planck scale” in the graph. There is another limit set to
preserve nucleosynthesis denoted “BBN.” This can be
derived by plugging Eq. (19) into Eq. (37) presented
below, giving m⋆ ¼ 10−19me.
In order to infer the allowed mass scales for the minimal

coupling, one can use, for instance, the relation between C
and m⋆ coming from Eq. (18) to show

m⋆
me

¼ α

1038C
; ð37Þ

where me is the electron mass. The maximum mass
allowed in this model is then 0.1me. Therefore, the

value of the electron mass for m⋆ is not allowed by
our model, a feature shared with power-law inflationary
models [63,65].

VII. BACKREACTION

When dealing with primordial magnetogenesis, a
recurrent issue one must be aware of is the backreaction
of the electromagnetic contribution on the background.
When the electromagnetic energy density becomes
higher than the background energy density, the back-
ground dynamics is modified and anisotropies can
appear [96].

FIG. 3. Same as Fig. 2 for C ¼ 1023 and xb ¼ 1030 (top), and for C ¼ 1023 and xb ¼ 1036 (bottom). We see that larger values of xb
lead to a quicker evolution of the modes.
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We define the matter and radiation energy densities,
respectively, as

ρm ≡Ωm

Y3
; ρr ≡

Z
d ln kðPE;0 þ PB;0Þ

�
Y0

Y

�
4

: ð38Þ

As pointed out in previous works on magnetogenesis in
bouncing models, see, e.g., [50], the vanishing of the
Hubble rate at the bounce leads, via the Friedmann
equation (4), to ρm ¼ 0. However, this is not the case
here. The classical Friedmann equations are not valid

around the bounce, which is dominated by quantum
cosmological effects, and ρm ∝ Y−3 always. However,
this does not guarantee that the model is free from back-
reaction. Let us examine this point in more detail in this
section.
As the electromagnetic power goes as Y−4, and

ρm ∝ Y−3, the first obvious critical point to investigate
the issue of backreaction is at the bounce itself. As shown in
the previous section, we have near the bounce that jAkj ∝
k−1=2 and jΠkj ∝ k3=2. Furthermore, jAkj does not depend
on xb and C, and jΠkj ∝ C2=

ffiffiffiffiffi
xb

p
. This can be seen by

FIG. 4. Evolution of the magnetic (dashed lines) and electric (continuous line) power spectra forC ¼ 1019 and xb ¼ 1030 (top), and for
C ¼ 1023 and xb ¼ 1030 (bottom). We see that with larger C’s, the decrease of the electric contribution at late times happens later, and
the total electromagnetic power spectrum is more important.
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inspecting the integral appearing in the first term of
Eq. (32), where after integration, and evaluating at the
bounce, we get the constants C2xb=α ¼ C2=x1=2b .
After integrating the magnetic and electric energy

densities at the bounce, see Eqs. (22) and (23), and
denoting the cutoff scale as kf (which we will refer to
galactic scales, where this simple treatment may cease to be
valid due to short range interactions leading to dissipation
and other effects), we obtain

ρB;b ¼
3C2x4b

32π2R4
H0

k4f; ρE;b ¼
C2x3b
9π2R4

H0

k6f: ð39Þ

The ratio of magnetic energy density over electric energy
density is then simply

ρB;b
ρE;b

≈
xb
k2f

; ð40Þ

and the magnetic field is dominant when ρB;b ≫ ρE;b, orffiffiffiffiffi
xb

p ≫ kf. As xb ≫ 1, this condition is always satisfied.
In units of Hubble radius, the matter energy density reads

ρm;b ¼
7.8Ωm10

120

R4
H0
Y3

: ð41Þ

FIG. 5. Same as Fig. 4 for C ¼ 1023 and xb ¼ 1030 (top), and for C ¼ 1023 and xb ¼ 1036 (bottom). Higher values of xb imply an
overall stronger total electromagnetic power spectrum, but with a stronger decrease rate at late times.
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At the bounce, the matter energy density is given by

ρm;b ¼
7.8Ωm10

120x3b
R4
H0

: ð42Þ

Then, comparing the magnetic density to the matter density,
and requiring the ratio be small enough gives

ρB;b
ρm;b

< 10−4 ⇒ C2xbk4f < 10118: ð43Þ

Choosing the galactic scale (tens of kiloparsecs), k ≈ 105,
gives C2xb < 1098. The values given in Fig. 9 all respect
this constraint. In conclusion, there is no electromagnetic
backreaction at the bounce.
As we have seen in Figs. 4 and 5, and discussed

when commenting them, the electric density over-
comes the magnetic density after the bounce for some
time during the period 1=α < t < C=α. The coupling
behaves as

FIG. 6. Behavior of the magnetic power spectrum today from (25) (blue) for C ¼ 1023 and xb ¼ 1030. It is perfectly compatible with a
power-law (top figure) with spectral index nB ¼ 6 (orange). Note that PB0 ≡ PBðkRH ¼ 1Þ. We also show that the electric power
spectrum behaves in the same fashion (bottom).

PRIMORDIAL MAGNETOGENESIS IN A BOUNCING UNIVERSE PHYS. REV. D 101, 103503 (2020)

103503-11



f ∝ t−2;
1

α
< t <

C
α

ð44Þ

and the scale factor as Y ∝ t
2
3 in this region. This can be also

be seen in Fig. 1. Then, the electric density goes as
ρE ∝ t−2=3. This is to be compared to the matter density
ρm ∝ t−2, giving the ratio evolution

ρE
ρm

∝ t
4
3: ð45Þ

To get an estimate of the electric backreaction, let us
evaluate the initial conditions at the bounce and evolve
this ratio in the considered time range. Performing a
procedure similar to the one leading to (43), we obtain

ρE;b
ρm;b

¼ 10−122C2k6f: ð46Þ

Then, the ratio will evolve as

FIG. 7. Magnetic field amplitude for C ¼ 2.6 × 1026 and xb ¼ 1038 (top), and C ¼ 6.5 × 1025 and xb ¼ 1038 (bottom). For these
values, the seed field is sufficient to trigger the dynamo mechanism at large scales. The amplitude today is larger at all scales for larger
values of C.
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ρE
ρm

¼ 10−122C2k6f

�
tf
ti

�4
3

: ð47Þ

Choosing the initial time ti ≡ 1=α and the final time tf ≡
C=α and imposing once again that the backreaction be
small, we finally obtain

ρE
ρm

< 10−4 ⇒ C
10
3 k6f < 10118: ð48Þ

Once again, kf ≈ 105 is compatible with the maximum
value C ≈ 1026.3 allowed in Fig. 9. Again, there is no
backreaction problem in our model.10

FIG. 8. Magnetic field amplitude for C ¼ 6.5 × 1025 and xb ¼ 1038 (top) and for C ¼ 6.5 × 1025 and xb ¼ 1036 (bottom). The
amplitude today is bigger at all scales when xb is smaller.

10To discuss the (absence of) backreaction in our model, we
have shown that the electromagnetic energy density is always
smaller than the matter energy density. In other models of bounce,
such as those based on the Lee-Wick theory [75], there are
mechanisms preventing ab initio the uncontrolled growth of the
electromagnetic energy density.
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VIII. CONCLUSIONS

We presented in this work the generation of primordial
magnetic fields in the context of a cosmological bounce,
through a coupling between curvature and electromag-
netism, predicted by QED in curved spacetimes [74].
A homogeneous and isotropic background filled with
pressureless (dark) matter in the contracting phase, fol-
lowed by a bounce and an expanding phase has been
considered. The bounce is produced by quantum effects
described in the de Broglie-Bohm interpretation of quan-
tum mechanics, motivated by the inconsistency of using
standard quantum mechanics in quantum cosmology [97].
Moreover, one of the advantages of bouncing magneto-
genesis is the absence of the strong coupling problem.
The model is characterized by three parameters, namely,
the presureless (dark) matter density today, Ωm, the scale
factor at which the bounce happens, xb, and the mass scale
of the coupling m⋆.
We showed that an adiabatic vacuum can be defined as

initial condition for the electromagnetic field in the far
past of the contracting phase. Having defined the vacuum,
we were able to explain analytically the behavior of the
electric and magnetic modes, summarized in Eqs. (35)
and (36). We then confronted these analytical results with
a numerical integration of the modes, given in Figs. 2
and 3, and presented in Figs. 4 and 5 the time evolution of
the magnetic and electric power spectra. We illustrated the
scale dependence of both spectra in Fig. 6, finding they
behaved as a power-law with the same spectral index

nE ¼ nB ¼ 6. This result is reminiscent of nonhelicoidal,
causally generated magnetic fields from phase transitions
in the early Universe [90]. In Figs. 7 and 8, we showed the
amplitude of the magnetic field today was found to be
strong enough on a wide range of scales to pass the current
limits from observations.11 At the scale of 1 Mpc, we have
derived constraints on xb and m⋆, summarized in Fig. 9.
Finally, we also demonstrated that backreaction is not a
problem in our model.
Though the results from our analysis are quite promising,

we have omitted several possible effects that could con-
strain our results further. First, the presence of an electro-
magnetic energy density in spacetime should induce a
stochastic background of gravitational waves, even more so
since the magnetic fields generated have a very blue
spectrum. Thus, the inclusion of theoretical limits on
gravitational waves production [89] will be investigated
in the future. This will be even more relevant with the
upcoming detections from LISA [98–101].
A second point of interest would be to take into account

other possible backreaction effects. It has been shown
recently that the vacuum polarization in a dielectric
medium, the so-called Schwinger effect, increases the
medium conductivity and subsequently stops the magnetic
field production [33,35,38,41,43]. This would lead to
weaker magnetic fields than expected and could constrain
further our model.
As a possible extension of our work, other nonminimal

couplings between the electromagnetic and the gravita-
tional field (involving the Ricci and Riemann tensors)
could be considered in the generation of primordial
magnetic fields.12 Also of importance is the parity-violating
coupling RFF̃,13 which may be associated to the generation
of helical magnetic fields. We leave these open questions
for future work.
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FIG. 9. Parameter space with magnetic field amplitudes con-
sistent with current limits at 1 Mpc. The blue region represents
the allowed values to initiate the dynamo effect, with the blue line
a theoretical lower limit [14,91]. The orange region represents
allowed values by observations at large scales in voids, with the
orange line a lower limit derived by blazars observations [92] and
the green line an upper limit derived using ultrahigh-energy
cosmic rays, ultrafaint dwarf galaxies, 21-cm hydrogen lines, etc.
[4,5,93]. Note the orange and blue regions are overlapping. The
gray shaded region represents excluded values of the magnetic
field. Each oblique gray line gives an amplitude for the magnetic
field a hundred times higher than the lower line.

11It is worthwhile noting that the same coupling, when
considered in the context of power-law inflation, does not
generate large enough magnetic fields; see [65].

12Such couplings were considered in the framework of power-
law inflation in [66].

13The authors wish to thank the referee for calling their
attention to this possibility.
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APPENDIX: ADIABATIC VACUUM
INITIAL CONDITIONS

First, we need to impose initial conditions for the EM
field. To this end, we follow the adiabatic vacuum pre-
scription implemented in Ref. [102]. Even though we are
dealing with vector degrees of freedom, since the time-
dependent coefficient AkðtÞ satisfies the normalization
condition (14), it follows that AkðtÞ has a behavior similar
to the one of the coefficient one would obtain when
quantizing a single free scalar field. Let us then consider
the Hamiltonian

H ¼ Π2
k

2m
þmν2A2

k

2
; ðA1Þ

where m and ν can be functions of time. The Hamilton
equations of motion

A0
k ¼

Πk

m
; Π0

k ¼ −mν2Ak ðA2Þ

lead to Eq. (17) if one identifies m ¼ Yf and ν ¼ k=Y.
A convenient choice is to express Ak and Πk as the

components of a particular eigenvector of the complex
structure matrix (see Ref. [102] for the mathematical and
physical reasons to implement this choice),

Ak ≡ 1

2
exp ð−γk=2Þ½exp ðχk=2Þ − i exp ð−χk=2Þ�;

Πk ≡ −
1

2
exp ðγk=2Þ½exp ðχk=2Þ þ i exp ð−χk=2ÞÞ�: ðA3Þ

The variables χk and γk are real time-dependent functions
and can be used to represent the aforementioned matrix as

Ma
b ¼

�
sinh χk cosh χk expð−γkÞ

− cosh χk expðγkÞ − sinh χk

�
: ðA4Þ

Latin indices (a; b; c;…) refer to the phase space vector
components defined by va ≡ ðAk;ΠkÞ, which are raised
and lowered using the symplectic matrix as defined in
Ref. [102]. The phase space vectors va satisfying the
normalization condition (14) (modulo a global time-
dependent phase) have a one-to-one correspondence
with matrices of the form shown in Eq. (A4) and con-
sequently with a pair ðχk; γkÞ. For this reason, we will
denote interchangeably ðAk;ΠkÞ and ðχk; γkÞ with the same
symbol va.
The Hamilton Eq. (A2) induces the dynamics of the

matrix Ma
b, which reads

χ0k ¼ −2ν sinhðγk − ξÞ;
γ0k ¼ þ2ν coshðγk − ξÞ tanhðχkÞ; ðA5Þ

where ξ≡ lnðmνÞ. The complex structure matrix satisfies

Ma
cMc

b ¼ −δab; ðA6Þ

and, the comparison of two different vacuum definitions,
given, respectively, by va and ua, yields the Bogoliubov
coefficients

jβv;uj2 ¼ −
1

4
Tr½IþMðvÞMðuÞ�; ðA7Þ

with Tr the trace operator, I the identity matrix, and MðvÞ
(MðuÞ) is the matrix associated with the components
Ma

bðvÞ (Ma
bðuÞ) defined by the vector components va

(ua). In this framework, a vacuum choice translates into a
choice of functions vVa ≡ ðχVk ðtÞ; γVk ðtÞÞ defined locally
(with a finite number of time derivatives of the background
variables), which do not necessarily satisfy the equations of
motion (A5) but give an approximation close enough to a
solution. Moreover, the vacuum must be fixed by choosing
a time t0 where the variables satisfy

vaðt0Þ ¼ vVa ðt0Þ;⇒ ðχkðt0Þ; γkðt0ÞÞ ¼ ðχVk ðt0Þ; γVk ðt0ÞÞ:

In other words, if vVa is stable in the sense that

Δva ≡ ðδχk; δγkÞ ¼ ðχkðtÞ − χVk ðtÞ; γkðtÞ − γVk ðtÞÞ

remains small for a finite time interval, then particle
creation will also be small in this interval. This character-
izes the so-called adiabatic vacuum. Hence, we find the
adiabatic vacuum by finding the critical points of the
system (A5). When ξ is constant in time, the critical points
of the system (A5) are obvious: χVk ¼ 0 and γVk ¼ ξ, a
choice satisfying the condition of being locally defined in
terms of the background. Then, substituting into Eq. (A3),
and using it as initial conditions for the system (A2), yields
the following solution:

Ak ¼
e−iπ=4ffiffiffiffiffiffiffiffiffi
2mν

p exp

�
−i

Z
t

t0

νdt

�
;

Πk ¼ −ie−iπ=4
ffiffiffiffiffiffi
mν

2

r
exp

�
−i

Z
t

t0

νdt

�
: ðA8Þ

In this case, the vacuum is perfectly stable, there is never
particle production because χkðtÞ ¼ χVk ðtÞ ¼ 0 and γkðtÞ ¼
γVk ðtÞ ¼ ξ for any time t, and consequently jβv;vV j2 ¼ 0; see
Eq. (A7). We have a perfect adiabatic vacuum, which
coincides with the Wentzel-Kramer-Brillouin (WKB)
solution.
In the case where ξ changes in time, there is one well-

known situation where adiabatic vacua can be defined:
when the mode frequencies dominate the dynamics. Let us
define

Fn ≡
�
1

2ν

d
dt

�
n
ξ;
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where F0 ¼ ξ, the function F1 is the ratio between the time
derivative of ξ and θ≡ R

2νdt, F2 the ratio between the
time derivative of F1 and θ, and so forth. Then, in the case
1 ≫ F1 ≫ · · · ≫ Fn > · · ·, which means that ξ slowly
varies in cosmic time when compared with the variation
of θ, one can still find approximate critical points (i.e.,
adiabatic vacua), which can be reached through successive
approximations, as explained in Ref. [102]. Up to second
order, the approximate critical points read

χVk ¼ F1;

γVk ¼ F0 − F2: ðA9Þ

If they are inserted in Eq. (A3), they lead to the usual WKB
expansion (modulo a time-dependent phase). As discussed
in [102], around these functions, the variables Δva satisfy a
forced harmonic oscillator equation of motion with force of
order OðF3Þ.
In our case, we have mν ¼ kf. In the far past of the

contracting phase, one gets, for f given in Eq. (18),���� dξdθ
���� ≈ C2

x3bkjtj7=3
≪ 1; ðA10Þ

which implies that

jtj ≫ jtaj≡
�
C2

x3bk

�
3=7

:

As the physically relevant parameter space we consider
satisfies C2=x3b ≪ 1, then jtaj ≪ 1, and this condition is
easily satisfied.
However, the other adiabaticity conditions impose a

more stringent constraint on jtj. Indeed,���� d2ξdθ2

���� ≪
���� dξdθ

���� ⇒ jtj ≫ jtcj≡
�
7

3k

�
3

≈ k−3: ðA11Þ

One can easily verify that all other conditions yield, apart
numerical factors of order 1,14 the same condition (A11).
Hence, the adiabaticity condition reads

jtj ≫ jtcj ≈ k−3: ðA12Þ

This means that modes with the size of the Hubble radius
today leave (enter) the adiabatic regime in the contracting
(expanding) phase for times of the order the Hubble time
today, independently of the parameters xb and C. Smaller
wavelengths leave (enter) the adiabatic regime later (ear-
lier) than the present Hubble time, following the rule k−3.
To summarize, one can impose adiabatic vacuum initial

conditions for the electromagnetic field in the contracting
phase of the present bouncing model when jtj ≫ jtcj ≈ k−3.
In this regime, the modes read, at leading order,

Ak ¼
e−iπ=4ffiffiffiffiffiffiffiffi
2kf

p exp ð−ikηÞ þ…;

Πk ¼ −ie−iπ=4
ffiffiffiffiffi
kf
2

r
exp ð−ikηÞ þ…; ðA13Þ

where η is the conformal time dt ¼ Ydη.
Since f ≈ 1=4 for jtj ≫ jtcj, it follows that

jAkj ¼
ffiffiffi
2

k

r
þ…;

jΠkj ¼
ffiffiffi
k
8

r
þ…:; ðA14Þ

and both the field and its canonical momentum are constant
in this regime.
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