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We study the implications of the recently proposed Trans-Planckian censorship conjecture (TCC) for
early Universe cosmology and in particular inflationary cosmology. The TCC leads to the conclusion that if
we want inflationary cosmology to provide a successful scenario for cosmological structure formation, the
energy scale of inflation has to be lower than 109 GeV. Demanding the correct amplitude of the
cosmological perturbations then forces the generalized slow-roll parameter ϵ of the model to be very small
(<10−31). This leads to the prediction of a negligible amplitude of primordial gravitational waves. For slow-
roll inflation models, it also leads to severe fine-tuning of initial conditions.
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I. INTRODUCTION

Cosmological observations provide detailed information
about our Universe on the largest observable scales.
Cosmic microwave background (CMB) measurements
[1–3], for instance, demonstrate that fluctuations in the
matter and energy persist on cosmological scales. There is
no causal explanation for the origin of these fluctuations in
standard big bang cosmology. Scenarios of early Universe
cosmology such as the inflationary Universe [4] provide a
causal mechanism to generate these fluctuations. A key
aspect of both inflationary cosmology and of other scenar-
ios that provide an explanation for the origin of structure in
the Universe (see e.g., [5] for a comparative review) is the
existence of a phase in the early Universe during which the
Hubble horizon H−1ðtÞ, where HðtÞ is the Hubble expan-
sion rate as a function of time t, shrinks in comoving
coordinates. The Hubble horizon provides the limiting
length above which causal physics that is local in time
cannot create fluctuations. In both inflationary cosmology
and in the proposed alternatives, comoving length scales
which are probed in current cosmological experiments were
inside the Hubble horizon at early times. It is postulated

that fluctuations in both matter [6] and gravitational
waves [7] originate as quantum vacuum perturbations that
exit the Hubble radius during the early phase, are squeezed
and classicalize, and then reenter the Hubble radius at late
times to produce the CMB anisotropies and matter density
perturbations that we observe today.
In [8] (see also [9]) it was realized that if the inflationary

phase lasts somewhat longer than the minimal period, then
the length scales we observe today originate from modes
that are smaller than the Planck length during inflation.
This was called the trans-Planckian problem for cosmo-
logical fluctuations (see also [10]). This problem was
viewed not so much as an issue with a particular model,
but more as a question of how to treat trans-Planckian
modes in such a situation. It has been conjectured [11],
however, that this trans-Planckian problem can never arise
in a consistent theory of quantum gravity and that all the
models which would lead to such issues are inconsistent
and belong to the swampland. This is called the trans-
Planckian censorship conjecture (TCC).
According to the TCC no length scales which exit the

Hubble horizon could ever have had a wavelength smaller
than the Planck length. In standard big bang cosmology no
modes ever exit the Hubble horizon, and the TCC has no
implications (indeed the TCC is automatically satisfied for
all models with a w ≥ −1=3). However, in all early
Universe scenarios which can provide an explanation
for the origin of structure, modes exit the Hubble horizon
in an early phase. If ai is the value of the cosmological
scale factor at the beginning of the new early Universe
phase, and af is the value at the time of the transition from
the early phase to the phase of standard big bang
expansion, the TCC reads
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af
ai

<
Mpl

Hf
; ð1Þ

where Hf is the radius of the Hubble horizon at the final
time tf and Mpl is the reduced Planck mass.
In [11], the relationship between the TCC and other

swampland conjectures [12] which have recently attracted
a lot of attention (see e.g., [13] for reviews) was discussed.
Here, we focus on the consequences of the TCC for
inflationary cosmology.
It is clear from the form of (1) that the TCC will have

strong implications for inflationary cosmology. In the case
of de Sitter expansion, af is exponentially larger than ai,
and hence (1) strictly limits the time duration of any
inflationary phase. The implications for some alternative
early Universe scenarios are weaker. For example, in string
gas cosmology [14], the early phase is postulated to be
quasistatic. Hence, the condition (1) is satisfied: no modes
which were larger than the Hubble scale at the beginning of
the standard cosmology phase ever had a wavelength
smaller than the Planck length. The same is true for the
various bouncing scenarios (e.g., the matter bounce [15],
and the pre-big-bang [16] and ekpyrotic [17] scenarios)
[18], where the initial phase is one of contraction. This is
true as long as the energy scale at the bounce point is
smaller than the Planck scale. In the following we will
study the consequences of the TCC for inflationary
cosmology.
The outline of this paper is as follows: In the following

section we discuss general constraints imposed by the TCC
on the energy scale of inflation and the resulting conse-
quences for the amplitude of gravitational waves. These
conclusions do not depend on what drives inflation, only
that it occurred. In Sec. III, we then specialize to slow-roll
inflation models, and show that consistency with the TCC
leads requires fine-tuning of the initial conditions.
We will work in the context of homogeneous and

isotropic cosmologies with four space-time dimensions.
For simplicity, we assume spatially flatness so that the
metric can be written in the form

ds2 ¼ dt2 − aðtÞ2dx2; ð2Þ

where x are the spatial comoving coordinates and aðtÞ is
the scale factor [which can be normalized such that
aðt0Þ ¼ 1, where t0 is the present time]. The Hubble
expansion rate is

HðtÞ≡ _a
a
; ð3Þ

and its inverse is the Hubble radius. As is well known
(see [19] for an in-depth review of the theory of cosmo-
logical fluctuations and [20] for an overview), quantum-
mechanical fluctuations oscillate on sub-Hubble scales,

whereas they freeze out and become squeezed when the
wavelength is larger than the Hubble radius. During a phase
of accelerated expansion, the proper wavelengths of fluc-
tuations initially smaller than the Hubble scale can be
stretched to super-Hubble scales. This transition from sub-
Hubble to super-Hubble is referred to as horizon crossing.
The TCC prohibits horizon crossing for modes with initial
wavelengths smaller than the Planck length.
We will be considering models of inflation in which a

canonically normalized scalar field ϕ with potential energy
VðϕÞ constitutes the matter field driving the accelerated
expansion of space. We will be using units in which the
speed of sound, Boltzmann’s constant and ℏ are set to 1.

II. IMPLICATIONS OF THE TCC FOR THE
ENERGY SCALE OF INFLATION

In this section we work in the approximation that the
Hubble expansion rate during the period of inflation is
constant. In order for inflation to provide a solution to the
structure formation problem of standard big bang cosmol-
ogy, the current comoving Hubble radius must originate
inside the Hubble radius at the beginning of the period of
inflation (see Fig. 1). This condition reads

FIG. 1. Space-time sketch of inflationary cosmology. The
vertical axis is time, the horizontal axis represents physical
distance. The inflationary period lasts from ti to tR. Shown are
the Hubble radius H−1ðtÞ and two length scales λ0ðtÞ and λ1ðtÞ
(fixed wavelength in comoving coordinates). For inflation to
provide a possible explanation for the observed fluctuations on
large scales, the scale λ0ðtÞ corresponding to the current Hubble
horizon must originate inside of the Hubble radius at the
beginning of inflation. This leads to the condition (4). The
TCC, on the other hand, demands that the length scale λ1ðtÞ
which equals the Hubble radius at the end of inflation was never
trans-Planckian. In the sketch, both conditions are marginally
satisfied.
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1

H
· eNþ ·

aR
aend

·
TRg�ðTRÞ1=3
T0g�ðT0Þ1=3

≃
1

H0

; ð4Þ

where H is the Hubble scale during inflation, aend and aR
are the values of the scale factor at the end of inflation and
when reheating is completed, and g� indicates the number
of spin degrees of freedom in the thermal bath. Here Nþ is
the number of e-foldings accrued during the inflation after
the CMB-scale modes exit the horizon, T0 is the temper-
ature of the CMB at the present time, and TR is the
corresponding temperature after reheating. Equation (4)
can be summarized as follows. We start with a Hubble
horizon scale which at the time of the inflation is 1=H, by
the end of inflation it is magnified by eNþ, by reheating it
has grown again by aR=aend, and between reheating and the
present day it grows by the ratio of the TR=T0 (corrected by
the number of degrees of freedom). To solve the horizon
problem, this scale should then be larger than the Hubble
scale of the current Universe 1=H0. To obtain the order of
magnitude of the constraints, we consider rapid reheating
and take the reheating temperature to be given by the
potential energy at the end of inflation, and hence set
aR ∼ aend. For simplicity we also assume that the ratio of
g�’s is 1.
Under the assumption that the period of reheating lasts

less than one Hubble time TR is given by the potential
energy V during inflation via TR ≈ V1=4. Using the
Friedmann equation, the Hubble scale 1=H0 is given by
the current energy density ρ0 via

1

H0

¼
ffiffiffi
3

p
ρ−1=20 Mpl: ð5Þ

In turn, ρ0 can be reexpressed in terms of the temper-
ature T0:

ρ0 ≈ T4
0

Teq

T0

1

Ωm
; ð6Þ

whereΩm is the fraction of energy density in matter and Teq

is the temperature at the time of equal matter and radiation,
and we have used the fact that the matter energy density
today is larger than the radiation energy density T4

0 by the
factor Teq=T0. UsingH ¼ V1=2=ð ffiffiffi

3
p

MplÞ, the condition (4)
then becomes

eNþ ≃
V1=4

ðT0TeqÞ1=2
ffiffiffiffiffiffiffi
Ωm

p
∼

V1=4

ðT0TeqÞ1=2
: ð7Þ

In the approximation of constant value of H during
inflation, the TCC condition (1) can be written in the form

eNþ <
Mpl

H
: ð8Þ

Equation (7) forNþ and the upper bound (8) onNþ coming
from the TCC are compatible only provided that the
condition

V3=4 <
ffiffiffi
3

p
M2

plðT0TeqÞ1=2 ð9Þ

is satisfied. Inserting the values of T0, Teq and Mpl we
obtain

V1=4 < 6 × 108 GeV ∼ 3 × 10−10Mpl: ð10Þ

Note that this conclusion is independent of the assumption
that quantum fluctuations during inflation are the seeds for
primordial structure formation. While we have used a
potential V to describe the energy density during inflation,
our analysis holds for more general scenarios and Eq. (10)
can be interpreted as a bound on the energy density during
the inflationary epoch.
We now add the assumption that quantum fluctuations of

the inflaton are responsible for the origin of structure. In
this case, the power spectrum P of the curvature fluctuation
R (see [19]) is given by

PRðkÞ ¼
1

8π2ϵ

�
HðkÞ
Mpl

�
2

; ð11Þ

where k is the comoving wave number of the fluctuation
mode andHðkÞ is the value ofH at the time when the mode
k exits the Hubble radius. The parameter ϵ determines the
deviation of the equation of state in the inflationary phase
compared to pure de Sitter:

ϵ≡ 3

2

�
p
ρ
þ 1

�
; ð12Þ

where p and ρ are pressure and energy densities, respec-
tively. For inflation to provide the source of structure in the
Universe, we need [21]

PRðkÞ ∼ 10−9: ð13Þ

Combining (10), (11), and (13) leads to an upper bound
on ϵ

ϵ ∼ 109
1

8π2

�
HðkÞ
Mpl

�
2

∼ 109
V

24π2M4
pl

< 10−31: ð14Þ

Since the power spectrum of gravitational waves is
given by

PhðkÞ ∼
�
HðkÞ
Mpl

�
2

; ð15Þ

the tensor to scalar ratio r is given by
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r ¼ 16ϵ < 10−30; ð16Þ
where the factor 16 comes from the different normalization
conventions for the scalar and tensor spectra. While the
discussion above assumed that the inflaton dominated the
scalar perturbations it is important to note that the TCC
constrains the absolute amplitude of the primordial gravi-
tational waves. The bound on r therefore relies only on the
TCC bound on the energy in Eq. (10) and the observed
amplitude of PR. Allowing scalar perturbations from
additional fields or a modified sound speed for the inflaton,
for example, will not relax Eq. (16).
From (16) we draw the conclusion that any detection of

primordial gravitational waves on cosmological scales
would provide evidence for a different origin of the
primordial gravitational wave spectrum than any infla-
tionary model consistent with the TCC. Note that a number
of cosmological scenarios alternative to inflation do predict
significant primordial tensor modes on cosmological
scales. One example is string gas cosmology which predicts
both a scale-invariant spectrum of cosmological perturba-
tions with a slight red tilt [22] and a roughly scale-invariant
spectrum of gravitational waves with a slight blue tilt [23].
Note that the above analysis applies not only to single field

inflation, but also to multifield inflation. The conclusions
only depend on the fact that the parameter ϵ is≪ 1 which is
self-consistent with what we found. The constraint also
applies to warm inflation [24] models, models which can be
consistent with the de Sitter swampland conjecture [25].
In this section, we have been general and have not

assumed a slow-roll inflation. In the following section we
will study the consequences of the TCC for slow-roll
inflation.

III. APPLICATION TO SLOW-ROLL INFLATION

The equation of motion of a canonically normalized
scalar field ϕ in a homogeneous and isotropic metric of the
form (2) is

ϕ̈þ 3H _ϕþ V 0 ¼ 0; ð17Þ
where the prime indicates the derivative with respect to ϕ.
Here, we have assumed that there is no important coupling
of ϕ to other matter fields during inflation. Thus, the
analysis in this section applies to cold inflation but not to
warm inflation. The Friedmann equation takes the form

3H2M2
pl ¼

1

2
_ϕ2 þ V: ð18Þ

In the case of single field slow-roll inflation, the slow-
roll parameter ϵ is

ϵ ≃
M2

pl

2

�
V 0

V

�
2

: ð19Þ

The slow-roll equation of motion is

3H _ϕ ¼ −V 0: ð20Þ

The field range Δϕ which the inflaton field ϕ moves
during the period of inflation is given by

jΔϕj ≃ j _ϕΔtj; ð21Þ

where Δt is the time period of inflation. We will show that
Δϕ is very small compared to the Planck mass. In this case,
it is self-consistent to assume that H and _ϕ are constant. In
this case using the TCC

Δt ¼ H−1N < H−1 ln

�
Mpl

H

�
; ð22Þ

and, making use of (19), the field range becomes

jΔϕj <
ffiffiffi
2

p
ϵ1=2 ln

�
Mpl

H

�
Mpl

<
109=2V1=2

Mpl
ln

�
M2

plffiffiffiffi
V

p
�

< 10−13Mpl; ð23Þ

where in the last inequality we used the monotonicity of
½x lnð1=xÞ� for x < e to substitute the upper bound on V
from (10). As first studied in [26], in the case of large field
inflation, i.e., jΔϕj ≫ Mpl, the inflationary slow-roll tra-
jectory is a local attractor in initial condition space, even
taking into account metric fluctuations [27,28]. Small field
inflation as is the case here, on the other hand, is not an
attractor in initial condition space, as reviewed in [29]. If
the field range for slow-roll inflation is constrained by the
TCC conjecture to obey (23), then the inflationary scenario
is faced with an initial condition problem. The expected
initial field velocity is

_ϕ2
i ∼ V ð24Þ

and hence

_ϕSR

_ϕi

∼ ϵ1=2 < 10−15; ð25Þ

and it takes fine-tuning of the initial velocity in order to be
sufficiently close to the slow-roll trajectory.
In the following we propose a model which can con-

sistently explain observations, including the observational
value of the tilt. We consider an inverted parabola potential
VðϕÞ ¼ V0 − jV 00jϕ2=2 over a small field range ½ϕi;ϕf�
such that δV=V ≪ 1 over the field range. Given the
smallness of ϵ from (14), we have
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M2
pl
V 00

V
≃
ns − 1

2
; ð26Þ

where ns ¼ 1þ 2η − 6ϵ is the tilt parameter and η ¼
M2

plV
00=V is the second slow-roll parameter. This fixes

V 00 from observation. From Eqs. (11) and (19) we find

V0

12π2M2
plϕ

2
CMB

≃ PðkÞ
�
ns − 1

2

�
2

; ð27Þ

where ϕCMB is the value of the field when the modes on
CMB scales exited the Hubble horizon. Assuming H

remains almost constant H ≃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V0=3M2

pl

q
during the

slow-roll inflation, one can show

ln

�
ϕ2

ϕ1

�
≃ jηjNðϕ1 → ϕ2Þ; ð28Þ

where Nðϕ1 → ϕ2Þ is the number of e-folds accrued as ϕ
goes from ϕ1 to ϕ2. If we plug ϕ1 ¼ ϕCMB and ϕ2 ¼ ϕf

into the above identity and use Eq. (7), we find

ϕf

ϕCMB
¼ ejηjNþ ≃

V
jηj
4

0Ω
jηj
2
m

ðT0TeqÞ
jηj
2

: ð29Þ

Plugging ϕCMB from (27) into (29) leads to

ϕf ≃
V

1
2
þjηj

4

0 Ω
jηj
2
m

M2
plðT0TeqÞ

jηj
2 12

1
2P

1
2πjηj

≃ 3.9 × 105 ·

�
V0

Mpl

�
0.505

;

ð30Þ

where in the last step we substituted jηj ≃ 0.02, P ≃
2 × 10−9, T0 ≃ 3K, Teq ∼ 104K, and Ωm ≃ 0.3. This fixes
the end of the field range ϕf in terms of the energy scale V0.
The only free parameters left are V0 and ϕi.
Now we impost the TCC for the slow-roll trajectory to

find a constraint in terms of ϕi and V0. Plugging ϕ1 ¼ ϕi
and ϕ2 ¼ ϕCMB in (28) gives

ϕCMB ≃ ϕie
1−ns
2
N− ; ð31Þ

where N− is the number of e-folds accrued before the
modes on CMB scales exit the horizon. The total number of
e-foldings is Ntotal ¼ N− þ Nþ. From (7) we find

eN ≃ eN−
V1=4

ðT0TeqÞ1=2
: ð32Þ

On the other hand, from the TCC, we know that the total
number of e-folds is bounded by eN < Mpl=H. Using (31),
this can be expressed as

�
ϕCMB

ϕi

� 2
1−ns

<
ð3M4

plT0TeqÞ12
V

3
4

0

: ð33Þ

Plugging ϕCMB from (27) in (33) with P ≃ 2 × 10−9,
ns ≃ 0.96, T0 ≃ 3K, and Teq ∼ 104K leads to

�
V0

M4
pl

�
1.03

< 6.6 × 10−12 ·

�
ϕi

Mpl

�
2

: ð34Þ

The above inequality is necessary for the potential to be
consistent with the TCC, but it is not sufficient. This is
because a potential is consistent with the TCC if the
inequality (1) is satisfied for every expansionary trajectory,
not just one particular trajectory.
For energy scale V1=4

0 ¼ 10−10Mpl the potential
V0ð1 − 0.02ϕ2Þ defined over the field range ½ϕi;ϕf� ¼
½9.7 × 10−16Mpl; 2.4 × 10−15Mpl� satisfies all the criteria
(10), (30), and (34). These criteria were imposed by
observation and consistency with (1) for the slow-roll
trajectory. By numerical analysis, we further verified the
consistency of this potential with the inequality (1) for
every expansionary trajectory. This is an example of a
simple potential that can explain the observation and be
consistent with the TCC at the same time, however, due to
its short field range, it suffers from the fine-tuning problem.

IV. CONCLUSIONS AND DISCUSSION

Wehave studied the implications of the recently proposed
the TCC for inflationary cosmology. Demanding that the
TCC holds and that the largest scales that we currently probe
in cosmology are sub-Hubble at the beginning of the
inflationary phase (a necessary condition for the causal
generation mechanism of fluctuations of inflationary cos-
mology towork) leads to an upper bound on the energy scale
of inflation which is of the order of 109 GeV. Demanding
that the amplitude of the cosmological perturbations agrees
with observations then leads to an upper bound on the
generalized slow-roll parameter ϵ of the order of ϵ < 10−31.
As a consequence, the tensor to scalar ratio is predicted to be
smaller than 10−30. A detection of primordial gravitational
waves via B-mode polarization, pulsar timing measure-
ments or direct detection, assuming the TCC, would then
imply that the source of these gravitational waves is not due
to quantum fluctuations during inflation.
The above conclusions are independent of any assump-

tions on the possible single-field nature of inflation. If we
then specialize the discussion to the case of single field
slow-roll inflation with a canonically normalized inflaton
field, we find that the range Δϕ which the inflaton field
traverses during the inflationary phase is of the order of
ϵ1=2Mpl. This raises an initial condition problem for most of
the models since the expected field velocity is much larger
than the field velocity along the slow-roll trajectory.
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We proposed an inverted parabola potential as a simple
example that is consistent with the TCC and can explain the
observation at the same time.
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