
 

Dynamics of millicharged dark matter in supernova remnants
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Dark matter could have a small electromagnetic charge, provided the charge-to-mass ratio is much less
than that of electrons or protons. This candidate, commonly known as millicharged dark matter (mDM),
would form a plasma and interact with the interstellar medium and electromagnetic fields within galaxies.
In general, understanding the dynamics of mDM requires consideration of collective plasma effects. It has
been proposed that mDM can be accelerated in supernova remnants, forming a dark cosmic ray population
that would leave distinct experimental signatures. In this work, we study a microphysical model where
mDM is shocked by a supernova remnant and isotropized in the frame of the expanding fluid. We find that
for jqχ=mχ j ≳ 10−13e=MeV, the isotropization length for electromagnetic plasma instabilities is much
shorter than the size of the supernova remnant. This is a necessary, though not sufficient, first step for
formation of a Fermi-accelerated mDM component, and determining the size of this component requires
further study. We discuss additional implications of mDM interactions in supernova remnants.
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I. INTRODUCTION

An important open question is whether dark matter (DM)
has nongravitational interactionswith StandardModel (SM)
particles. In traditionally favored classes of DM candidates
such as the WIMP, axion, or sterile neutrino, the DM
typically has short-range interactions with the SM through
mediators at the weak scale (or heavier). Such candidates
and interactions are being actively searched for in indirect
detection, direct detection and collider experiments.
If DM has long-range electromagnetic (EM) interactions

with the SM, there can be dramatic effects on astrophysical
and cosmological scales. Consider particleDM that hasmass
mχ and a small electromagnetic charge jqχ j, with equal parts
þqχ and−qχ components. Wewill refer to this candidate by
the often-used nomenclature of millicharged DM (mDM),
although possible values of jqχ j range many orders of
magnitude.1 For sufficiently small charge-to-mass ratios
interactions, this DM candidate could have been undetected
thus far. For instance, there are strong bounds from consid-
ering the scattering of mDM with the ionized plasma in the
early universe, which leads to damping in the CMB anisot-
ropies and matter power spectrum [3–5]. Current bounds
[6–8] require that jqχ j=e≲ 10−6ðmχ=GeVÞ1=2, assuming
DM mass mχ below a GeV and that this candidate forms
100% of the observed relic abundance.

Given such stringent constraints, what motivates our
interest on the possibility of DM with fractional charge?
First, it provides a simple model where the DM relic
abundance can be obtained through only EM interactions.
For charges jqχ=ej ∼ 10−11–10−10 it is possible to obtain the
observed relic abundance through freeze-in [9,10], where the
DM is never in thermal equilibrium with the SM thermal
bath. (Note the constraints on jqχ j exclude the possibility that
100% of the DM came from thermal freeze-out of mDM.)
This small fractional electric charge could be generated if DM
has a small fractional hypercharge, or if the DM is charged
under a nearly massless dark photon which has a kinetic
mixing with the SM photon (see for example Ref. [11]).
The key idea is that even with such tiny charges, long-

range EM interactions can give rise to observable signa-
tures in experiments or in astrophysical environments.
For instance, mDM has sizeable scattering rates in direct
detection experiments, particularly through DM-electron
scattering [12]. Because the long-range interactions are
enhanced for low momentum transfer scattering, a low-
threshold experiment could probe values of jqχ j where
mDM is produced by freeze-in (or even smaller jqχ j).
Direct detection experiments are now employing newly
developed methods and technologies to search for this
candidate and closely related models [13].
In addition, mDM has been of interest following the

reported observation of an anomalous absorption in radio
frequencies by the EDGES collaboration [14]. The obser-
vation has been interpreted as a 21 cm absorption trough
due to DM-baryon scattering at cosmic dawn; since DM is
typically much colder than baryons at these redshifts, this
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1A DM candidate which is much heavier than the proton and

where jqχ j=e is an Oð1Þ number is more often referred to as a
charged massive particle (CHAMP) [1,2].
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would cool the baryons relative to the CMB. Investigations
have focused on a long-range Rutherford-type interaction
such as that from mDM, since the scattering is larger at late
times [15–18]. For mDM comprising 100% of the relic
abundance, CMB bounds exclude the required charges to
match the EDGES observation; however, there remain
viable scenarios where mDM is only a fraction of the total
DM [6,19].
While the signatures discussed thus far focus on particle-

particle interactions of mDM, the implications may be even
more striking if we account for wave-particle interactions
of mDM in galactic EM fields. Because of the tiny charges,
mDM generally is not found in bound states and instead
forms a dark plasma. In supernova remnants (SNR), this
dark plasma can interact with the shock front and it has
been suggested [2,20] that there is an mDM component that
undergoes diffusive shock acceleration (DSA), also known
as first-order Fermi acceleration [21,22]. Implicit in this
scenario is the assumption that mDM efficiently scatters
against the turbulent magnetic fields generated in a SNR. If
this is the case, it was argued that the accelerated mDM is
evacuated from the disk [20] (which would hinder their
detection on Earth) or alternatively that there is a flux of
the accelerated component at Earth [23,24] (which would
aid in their detection). Mergers of mDM halos could result
in the formation of collisionless shocks through plasma
instabilities, which would impact galaxy formation as well
as observations of cluster mergers such as the Bullet
cluster; a related scenario where DM has long-range dark
photon interactions was studied in Refs. [25,26]. Finally, it
has also been pointed out that the interactions of halo mDM
passing through the magnetic field of the Milky Way disk
would lead to angular momentum exchange and result in
spin-down of the disk [27]. Clearly, understanding such
signatures and possible constraints is needed to determine
the viability and detectability of mDM as a DM candidate.
Our goal is to study the consequences of the long-range

electromagnetic interactions of mDM in the environment of
supernova remnants. Specifically, in this work we will
determine the mDM parameter space where mDM can be
swept up by SNR and discuss possible implications.
Previous work assumed that mDM can efficiently undergo
DSA in remnants similar to proton cosmic rays (CR)
[20,23,24], but did not provide a microphysical justification
or model. In fact, there are a number of stages for mDM
dynamics in the SNR before they could be considered as
undergoing DSA. The interaction of mDM with shocked
ISM gas is a first necessary step, whereby the ambient
mDM is swept up to 3=4 of the shock speed and isotropized
in the frame of the expanding fluid. Our approach is to
develop a microphysical model for this process, where we
can analyze the sweep-up timescale in the linear regime.
The basic idea is the following: viewed from the frame

of the expanding SNR, the mDM plasma has a large bulk
velocity and free energy, a configuration which is unstable to

the generation of EM fields. If the growth times for these
plasma instabilities are sufficiently fast, the bulk motion of
the mDM is slowed down and it can become isotropized in
the expanding remnant. Note that we will focus on the
dynamics of the bulk of the mDM. After the mDM is swept
up by the SNR, it is possible that a small fraction of themDM
could cross the shock front multiple times and start the DSA
process. However, obtaining a robust quantitative prediction
for the fraction and spectrum of accelerated mDM requires
additional techniques beyond the scope of this work.
A summary of the main results can be found in the

remainder of this introduction. In Sec. II, we provide a
review of supernova shock waves and acceleration of
proton cosmic rays, make a comparison for mDM, and
describe the plasma instabilities that we analyze. The
detailed numerical results for the growth times are covered
in Sec. III for electrostatic instabilities and in Sec. IV for
electromagnetic instabilities. We then discuss some con-
sequences for the mDM distribution in the Milky Way and
for the evolution of SNRs in Sec. V, and conclude in
Sec. VI. Appendix briefly reviews the derivation of the
linear response and growth rates in a plasma.

A. Summary of results

The main result of this work is illustrated in Fig. 1. We
have assumed here that mDM is 100% of the total DM relic
abundance. We will only consider the parameter space
below the red dashed line, where the mDM charge-to-mass
ratio is at least 103 times smaller than that of the proton,
jqχ j=mχ < 10−3ðe=mpÞ. Under this condition, the mDM
Larmor frequency is at least 103 times smaller than the
proton Larmor frequency, so we can safely assume that
mDM crosses the supernova shock front undeflected and
that mDM does not change the dispersion relation of
existing plasma waves in the Milky Way at a noticeable
level. Our conclusions are
(1) For quasiparallel shocks (i.e., the angle between

ambient magnetic field and shock normal is less than
45°) and jqχ j=mχ above the blue band, it is possible
for mDM to undergo pitch-angle scattering off CR-
driven turbulent magnetic fields. As discussed in
Sec. II B 1, this is possible when the mDM Larmor
radius does not exceed the maximum wavelength of
CR-driven turbulence. A fraction of mDM particles
might undergo Fermi acceleration by repeated scat-
tering off the CR-driven turbulence upstream and
downstream of the shock.

(2) For quasiparallel shocks and jqχ j=e between the blue
and orange bands, there is a mDM-driven plasma
instability. In this region, the mDM Larmor radius is
sufficiently large that we approximate the magnetic
fields as uniform. Then there is a plasma instability
due to the large relative motion of the mDM and the
expanding ionized fluid, which will act to reduce
that relative velocity. In this part of the parameter
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space, the growth of the instability is sufficiently fast
such that it saturates within one tenth of the SNR
radius, and we treat the mDM as being effectively
isotropized. A fraction of mDM particles could
undergo Fermi acceleration by scattering off the
mDM-driven turbulence.

(3) For quasiperpendicular shocks, there is no Fermi
acceleration of mDM. Similar to CR protons, the
mDM cannot cross the shock multiple times in this
case. However, above the green band, there is still a
mDM-driven instability which affects the bulk
dynamics of the mDM.

While the strength of the plasma instability depends on
the density of mDM and shock properties, roughly speaking
the growth rate can be approximated by the Larmor
frequency Ωχ. The condition that the instability saturates
within the SNR can therefore heuristically be given as
vsh=Ωχ ≪ Rsh, where Rsh and vsh are the shock radius and
velocity, respectively. This can be rewritten as the condition
that the mDMLarmor radius is much smaller than the shock
size, rL;χ ≪ Rsh, in agreement with naïve expectation. Our
analysis demonstrates this condition robustly and takes
into account the dependence of the instability on shock

properties and ambient mDM density. In comparison to the
wave-particle interactions, we note that everywhere below
the red dashed line, i.e., jqχ j=mχ < 10−3ðe=mpÞ, the mDM
trajectory in the SNR would not be significantly altered by
particle-particle Coulomb interactions. We can see this by
writing the mean free path (mfp) of mDM-proton Coulomb
scattering in the SNR [40],

mfp¼ m2
χV4

0

8πniq2χe2 lnΛ

≈ 8100 pc

�
10−3

Ωχ=Ωi

�
2
�

vsh
300 km=s

�
4
�
1 cm−3

ni

��
25

lnΛ

�
;

ð1Þ
where V0 ¼ 3vsh=4 is the relative velocity between DM and
shocked ISM,ni is the proton number density, and lnΛ is the
Coulomb logarithm. This is much larger than the maximum
SNR radius, which is ≲100 pc.
The darker gray shaded regions in Fig. 1 show collected

bounds on production of mDM, which do not make any
assumption on its relic density. There are bounds on emission
ofmDMin stars, whichwould lead to anomalous cooling;we
show limits from horizontal branch, white dwarf, and red
giant stars formχ ≲ 100 keV [32,33] and from SN1987a for
mχ ≲ 100 MeV [34]. For mχ ≲MeV, mDM can thermalize
with the SM thermal bath, leading to changes in BBN
abundances and the effective number of light degrees of
freedom; these bounds come from Refs. [32,35]. Also
included are collected accelerator bounds [28–31]. The
lighter shaded regions show constraints which make an
assumption on themDMdensity and/or velocity distribution.
We showbounds assumingmDMis 100%of theDMcontent
from direct detection [37], searches for charged DMwith the
XQCsatellite [39], and the effect ofDM-baryon scattering on
the CMB [7]. The solid line gives values of jqχ j=e where
100% of the DM relic abundance is comprised of mDM that
is produced through freeze-in [9,10]; values below this line
lead to mDM that is a fractional component of DM, while
larger jqχ j=e requires additional interactions beyond EM.
Finally, in this paper we focus on a fermion mDM

candidate with only EM interactions. As mentioned above,
there are also models that generate the millicharge via a
kinetically-mixed dark photon. DM interactions with the
dark photon can lead to phenomenological differences in
constraints and DM interactions with charged SM particles.
This possibility deserves study, but will not be considered
any more here.

II. PROTON VS MILLICHARGED DARK
MATTER DYNAMICS IN A SUPERNOVA

COLLISIONLESS SHOCK

In this section, we will overview the interaction between
the supernova ejecta and the interstellar medium (ISM) and

FIG. 1. In this work, we only consider the parameter space
below the red dashed line where jqχ j=mχ < 10−3ðe=mpÞ. Above
the colored bands, the mDM charge fraction jqχ=ej is sufficiently
large for it to be swept up by the SNR. The blue band gives the
minimum jqχ=ej for mDM diffusion due to CR proton-driven
turbulence in a quasiparallel shock. Above the orange and green
bands, there are mDM-driven plasma instabilities in parallel (k)
and perpendicular (⊥) shocks, respectively. The upper (lower)
boundary of each band is for shock velocity vsh ¼ 1500 km=s
(300 km=s). The dark gray shaded region combines bounds on
production of mDM in accelerator experiments [28–31], in stars
[32,33], in SN1987a [34], and during BBN [32,35,36]. The
lighter shaded regions are reported direct constraints on mDM
that assume standard density and velocity distributions, which
may be impacted by mDM wave-particle interactions. These
include combined direct detection bounds [37,38], from XQC
[39], and from CMB bounds on DM-baryon scattering [7]
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explain how mDM interacts differently with the supernova
shock compared to the case of ISM gas. We will lay out the
motivation and strategy for the plasma instabilities which
we study in detail in Sec. III and IV. Throughout this work,
“ion” refers to “proton” unless otherwise specified.

A. The visible sector: Protons and the supernova shock

A supernova explosion is one of the most violent events in
galaxies. A typical Type Ia supernova can expel 1 M⊙ ejecta
with kinetic energy ≈1051 erg (i.e., with initial speed
∼104 km=s).2 Because the pressure in the ejecta is signifi-
cantly higher than the pressure in the ambient interstellar
medium, the ejecta will propel a shock wave to the ambient
ISM. The ordinary matter bounded by this expanding shock
wave—the ejecta from the explosion and the interstellar
material swept up by the shock wave—is referred to as the
supernova remnant. As the interstellar gas is swept up by the
shock, entropy is generated and theorderedbulkkinetic energy
of the gas in front of the shock is converted to thermal energy.
Figure 2 is a schematic representation of a shock wave.

The cooler, unshocked region ahead of the shock front is
called upstream and the hotter, shocked region is called
downstream. The shock transition zone is where the
dissipation happens, and it requires the particle velocity
distribution be isotropized in the downstream frame. We
can determine the downstream fluid speed, density, and
temperature from the Rankine-Hugoniot (RH) jump con-
ditions, which relate the upstream and downstream states
assuming the conservation of mass, momentum and energy
in an one-dimensional flow. For a high Mach shock wave
propagating in the monatomic gas, the downstream fluid
speed in the frame of the background ISM is 3=4 of the
shock speed vsh. The number density and the magnetic
fields of the shocked gas in the downstream are 4 times the
number density and the magnetic fields in the upstream.
As for the downstream temperature, we take a somewhat

more realistic case. Including helium, with a ratio of helium
number density to hydrogen number density of 0.1, the
downstream ion temperature is T2i ≈ 3μv2sh=16, where μ ¼
1.27mp denotes the mean mass per ion (Hydrogen and
Helium nuclei) andmp is the proton mass. Thus, the proton
thermal speed in the downstream is vth;i ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2T2i=mp

p
≈

0.69vsh. We note that electrons have different temperature
from ions just behind the shock front. This is because the
ion-ion and electron-electron Coulomb scattering only leads
ions and electrons to each relax to their own Maxwellian
velocity distributions. The ion-electron relaxation time is
much greater than ion-ion and electron-electron relaxation
times, so the final temperature equilibration between ions
and electrons happens at the deeper downstream.

Our discussion thus far requires the kinetic energy of the
upstream ISMbulk flow tobe converted into heat at the shock
transition zone. For a supernova shock in interstellar space, it
is collective plasma effects involving ions and plasma waves
at the shock transition zone that cause the dissipation of the
incoming ISM flow. This type of shock is referred to as a
collisionless shock [41–43]. The formation and structure of
the collisionless shock is complex as it involves several types
of plasma instabilities and compression of the magnetic
fields at the shock front. But in a broad brush, the collective
plasmawaves come from instabilities excited by a fraction of
the ions reflected at the shock front. The thickness of the
supernova collisionless shock is approximately a few ion
Larmor radii, though it could be much larger if the ambient
magnetic field is parallel to the shock normal [41].
In the following, we briefly review the evolution of

supernova shocks and the generation of cosmic-ray pro-
tons. These will be important to understand the amount of
mDM that can be affected by the shocks as well as the
strength of preexisting turbulence in the downstream fluid.

1. A brief history of a supernova remnant

In the early evolution of the supernova remnant, the
shock wave propagates radially outward along with the
supersonic ejecta at nearly constant speed, ∼104 km=s.
This stage is called the free-expansion phase. As the shock
wave sweeps up more and more ambient gas, the swept-up
mass eventually exceeds the ejecta mass and begins to
govern the shock wave dynamics. Taking the number
density of molecules in the ISM as 0.25 cm−3, this happens
about ∼330 years after the explosion.
Subsequently, the shock starts to slow down, and the

kinetic energy of the ejecta is transferred to the shocked
matter. The shock now enters the Sedov-Taylor phase.
During this stage, the shock velocity and the distance it
has traveled at time t after the explosion are governed by the
initial kinetic energy of the ejecta, ESN, and the mass density
of the swept-up gas, ρISM. Without considering the radiative
losses and ambient gas pressure, thevariables t,ESN and ρISM
should be the dominant quantities that control the dynamics

FIG. 2. Schematic diagram for a supernova shock wave
propagating in the interstellar medium (ISM). Just behind the
shock front, the ISM has been shocked and moves at 3=4 of the
shock speed, whereas the mDM gas is at rest. The relative motion
between the shocked ISM and the unshocked mDM provides the
free energy to drive a plasma instability. If the instabilities occur,
the mDMwill be isotropized in the frame of the shocked ISM gas
and be swept up by the expanding supernova remnant.

2Type II core-collapse supernova can expel 10–20 M⊙ debris
with kinetic energy as high as 1052 erg. For simplicity, we only
consider Type Ia events in this work as a representative case.
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of the shock. Using dimensional analysis, we can construct
the time evolution of the shock radius and velocity as
RshðtÞ ¼ κE1=5

SN ρ
−1=5
ISM t2=5 and vshðtÞ ¼ 0.4κE1=5

SN ρ
−1=5
ISM t−3=5,

respectively. For a monotonic gas, numerical calculations
give κ ≈ 1.17 [44]. In Fig. 3, we show the history of a Type Ia
supernova remnant. Eventually, at even later times, radiative
losses become important and the SNRmerges with the ISM.

2. Diffusive shock acceleration of cosmic-ray protons

The standard picture for acceleration of cosmic-ray
protons in the supernova shock relies on the presence of
the interstellar magnetic field. This acceleration process is
characterized by the angle θ between the shock normal and
the background magnetic field. When θ is less (greater)
than 45°, the shock is said to be quasiparallel (quasiper-
pendicular). For the special case of a shock with θ ¼ 0°
(90°), we call it a parallel (perpendicular) shock.
In a quasiparallel shock, a small fraction3 of the

charged particles can undergo the DSA process and be

Fermi-accelerated to relativistic speeds. They scatter on the
magnetic irregularities upstream and downstream and
diffuse across the shock multiple times, gaining energy
in each crossing. However, these magnetic irregularities
are not preexisting, rather they are self-generated by the
accelerated particles. The energetic cosmic rays streaming
ahead of the shock have a highly anisotropic velocity
distribution and therefore drive plasma instabilities [50] and
excite Alfvén waves in the upstream of the shock. The
waves drifting at the upstream move slower than the shock
front and are later advected to the downstream and
amplified by the shock. The downstream is expected to
be highly turbulent. On the other hand, DSA is not
operative in quasiperpendicular shocks because the charged
particles do not propagate more than one thermal ion
Larmor radius ahead of the shock front. As a result, there
is very little magnetic turbulence generation, and the
downstream magnetic fields are expected to be uniform
in quasiperpendicular shocks. Such features have been seen
in observations of SN 1006 [51] as well as in hybrid
simulations of ion acceleration [52,53].
The characteristic lengths and amplitudes of the mag-

netic irregularities upstream and downstream can be
inferred from the maximum energy of cosmic-ray protons.
The observed cosmic-ray proton momentum spectrum is a
power law with a nearly constant spectral index up to the
“knee” energy, 106 GeV, which indicates that cosmic-ray
protons are Fermi-accelerated by one mechanism in each
acceleration site—the DSA mechanism in supernova rem-
nants [54]. However, it was shown that considering the
spatial dependence of the upstream diffusion coefficients
and the finite lifetime of supernova remnants, the maximum
energy of cosmic rays undergoing the DSA process is only
104 GeV [55]. This result is obtained with the assumptions
that (1) the upstream magnetic irregularities are driven by
streaming instability and (2) the diffusion coefficient at the
downstream is the Bohm-type, i.e., δB=B ∼ 1. Since the
turbulent magnetic fields are excited by cosmic rays, we
expect the characteristic wavelengths of the excited waves
should be comparable to the Larmor radius of the cosmic-
ray protons. So the largest scale turbulence has a wave-
length of approximately one Larmor radius of 104 GeV
cosmic-ray protons. Assuming a downstream magnetic
field of 10 μG, the downstream magnetic turbulence in
quasiparallel shocks is present for length scales up to
≈10−3 pc with turbulence strength δB=B ∼ 1.
To accelerate cosmic-ray protons to the knee energy in the

supernova remnants, the diffusion coefficient has to be
increased beyond theBohm limit. This can be achieved if the
turbulent magnetic fields are amplified to the level
δB=B ∼ 10–100. Such large magnetic turbulence likely is
achieved by nonresonant hybrid instability in fairly young
supernova remnants (R≲ 1 pc) [56]. However, younger
supernovae cover less volume and so their impact in
sweeping up mDM (which we will discuss in Sec. II B 1)

FIG. 3. Typical expansion history for a Type Ia supernova
remnant. The solid and dashed lines correspond to shock speed,
vsh, and remnant radius, Rsh, respectively. The free-expansion
phase ends at ≈330 years after the explosion.

3Knowing the fraction of ions that are injected into the DSA
process is one of the most difficult problems in cosmic ray
physics. The standard acceleration theory utilizes the diffusion-
convection equation [45]. It requires isotropic pitch-angle dis-
tributions of the accelerated particles at the upstream and
downstream of the shock and only works for particles with
speed significantly greater than the shock speed [46]. The
difficulty of determining the injection fraction is that the
kinematics of low energy ions is extremely complicated as one
has to simultaneously consider how the downstream thermal ions
enter the upstream (or how the upstream ions are reflected by the
potential barrier at the shock front [47]), drive a streaming
instability, scatter at pitch angle, gain energy for the first few
shock-crossings, escape the backstreaming Alfvén waves, and
eventually diffuse across the shock front multiple times, all before
being advected to the far downstream [48,49]. This challenge is
known as injection problem.
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is relatively small compared to the older remnants. For
simplicity, wewill only considermagnetic turbulence driven
by cosmic-ray protons with energy up to 104 GeV.

B. The dark sector: mDM plunging
to the downstream plasma

The standard picture of the shock wave described above
is restricted to the ions and electrons. We will take this as
the leading dynamics for the supernova shock and treat
mDM as test particles. Now we consider the dynamics of
mDM particles as they enter the shock front. We will
always work in the parameter space below the red dashed
line in Fig. 1 so that the mDM Larmor radius is always
several orders of magnitude larger than the ion Larmor
radius, rLχ=rLi ≫ 1.
Unlike the ion and electron flows which are dissipated at

the shock transition zone through collective plasma effects,
the mDM flow would not be isotropized in the same region.
This is because the mDMLarmor radius is much larger than
the width of the shock transition zone (about a few ion
Larmor radii). Instead, the mDM should pass through the
shock transition zone undeflected and plunge into the
downstream ion-electron plasma. In the following, we will
study how mDM particles interact with the downstream
plasma so that they can be swept up by the supernova
remnant. We will consider the possibility that mDM
scatters on the magnetic turbulence driven by cosmic-ray
protons as well as plasma waves driven by mDM particles.

1. The diffusion of mDM in the quasiparallel shocks

In the presence of magnetic irregularities driven by
cosmic rays in the quasiparallel shock, mDM particles
can undergo pitch-angle diffusion, which permits the mDM
to be deflected by an Oð1Þ angle and thus be swept up by
the supernova remnant. The diffusion happens when the
mDM Larmor radius, rLχ ¼ mχcV0=jqχ jB, is comparable
to the wavelength of the magnetic irregularities, λ. Here
V0 ¼ 3vsh=4 denotes the speed of the mDM flow in the rest
frame of the downstream fluid. The associated mean free
path for mDM pitch angle scattering4 through 90° is [59]

Lmfp ≈
rLχ

ðδB=BÞ2 : ð2Þ

To sweep up ambient mDM, (1) the pitch angle diffusion
condition has to be satisfied, i.e., rLχ ≈ λ, and (2) the mean
free path cannot exceed the size of the supernova remnant.

As we discussed previously, turbulent magnetic fields
driven by cosmic-ray protons in a quasiparallel super-
nova shock exist for wavelengths up to λmax ∼ 10−3 pc
with turbulence strength δB=B ∼ 1. Thus, mDM with
rLχ < 10−3 pc can diffuse in the quasiparallel shock and
Lmfp is approximately rLχ, inwhich caseLmfp does not exceed
the size of the supernova remnant. As a result, the condition
that mDM can scatter with the magnetic turbulence and be
swept-up by the quasiparallel shock is given as

�
300 km=s

vsh

�� jqχ j=e
8.4 × 10−11

��
MeV
mχ

�
> 1; ð3Þ

where we assume the downstream magnetic field is 10 μG.

2. Plasma instabilities in the supernova remnants

As discussed above, mDM cannot undergo pitch angle
scattering off cosmic-ray driven turbulence in some sce-
narios: (1) if the mDM Larmor radius is larger than 10−3 pc
in a quasiparallel shock, or (2) for any mDM Larmor radius
in a quasiperpendicular shock, where there is little turbu-
lence generated from cosmic-ray protons. For these cases,
we will show instead that the mDM bulk flow can self-
generate plasma waves and thus be swept-up by the
expanding supernova remnants. Since in both cases the
mDM Larmor radius is larger than any magnetic irregu-
larities in the downstream plasma, we can approximately
treat the mDM as experiencing an ordered background
magnetic field. The bulk of this work will then be devoted
to analyzing possible mDM plasma instabilities in a
homogeneous magnetic field.
In this section, we summarize the possible plasma

instabilities that would allow a supernova shock to sweep
up ambient mDM particles. In the frame of the shocked gas,
we can treat the incoming mDM particles as a beam of
charged particles moving with the bulk speed V0 ¼ 3vsh=4
and with the internal thermal speed approximately the
Milky Way virial speed, vth;χ ¼ vvir ≈ 220 km=s [60]. The
relative motion between the mDM beam and the shocked
interstellar material then provides the free energy to drive
plasma instabilities and excite plasma waves. Once the
waves are excited, they will back-scatter on the mDM
particles and slow down the mDM beam in the expanding
fluid. That is, the mDM particles interact with the down-
stream fluid through wave-particle scattering. We assume
the velocity distribution of the mDM particles becomes
isotropized in the downstream frame when the instability
saturates, and there is no more free energy to drive a plasma
instability.
Unfortunately, there is no observational evidence guid-

ing us as to which plasma waves and instabilities would be
excited by mDM. For example, we do not know a priori the
wave frequency, wavelength, and the propagation direction
(parallel or perpendicular toB0). Nor do we know about the

4Note that the pitch angle diffusion and the sweep-up of mDM
discussed here are restricted to the downstream of the quasipar-
allel shock. It is possible that the a small fraction of the charged
particles can diffuse in the cosmic ray driven turbulent environ-
ment, cross the shock front multiple times, and start the DSA
process. This idea has been applied to the dust grain acceleration
in the supernova shocks [57,58], and it could be a potential
mechanism for cosmic-ray mDM acceleration.
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wave polarization (electrostatic vs electromagnetic). In
addition, there are several dozens of plasma waves and
more than 50 kinds of plasma instabilities. As a starting
point, here we will consider some of the most representative
waves and instabilities that occur in the formation of
astrophysical shocks [61–67] as well as the anomalous
heating in the pinch experiments [68–71].
In Table I, we list the plasma waves and instabilities

studied in this work. As a simplified model, wewill take the
downstream as a spatially homogeneous plasma immersed
in an ordered magnetic fieldB0 ¼ B0ẑ. We also assume the
growth time of any mDM-driven instability in the super-
nova remnant is much greater than the dissipation time of
interstellar protons and electrons at the shock front so that
the mDM is treated as a beam drifting through the fully
ionized hot proton/electron gas. With these assumptions,
we find that the electrostatic waves are not excited because
(1) the ion Landau damping dissipates the ion-acoustic and
lower-hybrid waves, and (2) the mDM beam velocity is
lower than the velocity threshold for exciting the Langmuir
waves. On the other hand, electromagnetic waves may be
excited in the low frequency regime (≲Ωχ). This is because
the ion cyclotron frequency, Ωi, is much higher than the
frequency of the mDM-driven electromagnetic waves, and
thus ion cyclotron damping is avoided. Each of these
instabilities is described in detail in Sec. III and IV.
We conclude this overview of mDM dynamics by provid-

ing a table of the notation used frequently throughout this
work, Table II. We will present equations in CGS-Gaussian
units where the electric charge e¼ ffiffiffiffiffiffiffiffi

αℏc
p ¼4.8×10−10statC.

The relevant physical quantities for a particles species j are
the number density nj, electric charge qj, magnetic field
strength in the shocked matter B0, mass of the particle
mj, velocity of the particle vj, temperature Tj, and mass
density ρj.

III. ELECTROSTATIC WAVES AND
INSTABILITIES

In this section, we study the possible electro-
static (longitudinal polarization) instabilities driven by an
mDM beam. We will take a perturbative approach, where
the mDM beam is treated as a perturbation to the remnant
plasma, and determine the linear response. This approach is
justified because the mDM plasma frequency is negligible
compared to ion and electron plasma frequencies due to the
small mDM electric charge. Given the parameter space we
consider in this work, jΩχ=Ωij < 10−3, we are always
working in the limit of small mDM plasma frequency,
ωpχ=ωpi < 10−3

ffiffiffiffiffiffiffiffiffiffiffi
ρχ=ρi

p
≪ 1. With this assumption, the

mDM does not change the dispersion relation of existing
plasma waves in the Milky Way at a noticeable level.
While there are many kinds of electrostatic waves and

instabilities, we choose three representative candidates as
the most likely mDM instabilities: the ion-acoustic and
Langmuir waves for kkB0 propagation and lower-hybrid
waves for k⊥B0 propagation. The reason we choose these
three is motivated by their critical roles in the formation of
astrophysical collisionless shocks (e.g., solar dust grain
plasma [61], earth bow shock [62], colliding stellar winds
[63]) as well as the notorious turbulence heating in the
theta-pinch experiments [68–71]. However, while many
astrophysical shocks have high beam velocity, the mDM
beam velocity is similar to the downstream ion thermal
velocity, which leads to an unavoidable strong Landau
damping. As a result, we show below that these electro-
static waves are not excited by the mDM beam.

A. Parallel shock (ion-acoustic and Langmuir waves)

We first consider the parallel shock scenario, defined as
B0kV0, where V0 is the relative drift velocity between the

TABLE I. The plasma instabilities studied in this work. Here B0 and k denote the ordered magnetic field in the
downstream and the wave vector, respectively. The abbreviation ES and EM stand for electrostatic (longitudinal
polarization) and electromagnetic (transverse polarization), respectively.

Instability Type Beam direction Wave direction Frequency Instability

Ion-acoustic ES V0kB0 kkB0 < ωpi No (ion Landau damping)
Langmuir ES V0kB0 kkB0 > ωpe No (V0 < velocity threshold)
Lower-hybrid ES V0⊥B0 k⊥B0 ∼

ffiffiffiffiffiffiffiffiffiffiffiffijΩiΩe

p j No (ion Landau damping)
beam-firehose EM V0kB0 kkB0 ≲jΩχ j Yes
Weibel EM V0⊥B0 kkB0 ≲jΩχ j Yes

TABLE II. Notation used frequently in this work. We adopt CGS-Gaussian units and set kb ¼ 1.

Plasma frequency ωpj ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πnjq2j=mj

q
Larmor frequency Ωj ≡ qjB0=mjc

Larmor radius rLj ≡mjcvj=qjB0 Debye screening length λDj ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tj=4πnjq2j

q
Thermal speed vth;j ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Tj=mj

p
Alfvén speed vA ≡P

j B0=
ffiffiffiffiffiffiffiffiffiffi
4πρj

p
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mDM and the downstream electron-proton plasma. The
setup is shown in Fig. 4. We examine the possibility of an
mDM beam driving ion-acoustic and Langmuir wave insta-
bilities. We choose these two representative electrostatic
plasma waves for the following reason. In a parallel shock,
the electrostatic waves are most easily excited when kkV0

and we therefore restrict to the case of parallel propagation,
kkB0. Then the motions of the charged particles (e−, iþ and
χ�) associated with this wave excitation/perturbation are
parallel to B0, and the magnetic field does not alter the
trajectories of these particles. As a result, electrostatic waves
with kkB0 propagation would have dispersion relation
identical to that of electrostatic waves in a (magnetic)
field-free plasma [72]. The two electrostatic waves for the
field-free plasma are ion-acousticwaves in the low frequency
regime (ω < ωpi) and Langmuir waves in the high frequency
regime (ω > ωpe), and so we study these waves.
Here we consider an mDM beam flowing through a

background plasma consisting of Maxwellian electrons and
protons. The normalized velocity distribution of each
species is

F0jðvÞ ¼
�

mj

2πTj

�
3=2

exp

�
−
mjjvj2
2Tj

�
; j ¼ e−; iþ;

ð4aÞ

F0χðvÞ ¼
�

mχ

2πTχ

�
3=2

exp

�
−

mχ

2Tχ
ðv − V0Þ2

�
: ð4bÞ

We take the mDM thermal velocity to be the virial speed of
Milky Way halo, i.e., %vth;χ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Tχ=mχ

p
≈vvir≈220km=s.

We take the standard approach for a linear stability
analysis, wherein we determine the dielectric function in
the presence of these species and study the imaginary part
induced by the mDM beam. In Appendix A 1, we provide a

detailed derivation of the dispersion relation for electro-
static waves (that is, longitudinal polarization with kkδE)
and parallel propagation, kkB0. Electrostatic waves have a
dispersion relation determined by the poles of the dielectric
function,

0 ¼ Dðωr þ iγ;kÞ

¼ 1þ 2ω2
pi

k2v2th;i
½1þ ξiZðξiÞ� þ

2ω2
pe

k2v2th;e
½1þ ξeZðξeÞ�

þ 2ω2
pχ

k2v2th;χ
½1þ ξχZðξχÞ�; ð5Þ

where we have written the frequency in terms of real (ωr)
and imaginary (γ) parts, and ξi, ξe and ξχ are defined by

ξi ¼
ωr þ iγ
kvth;i

; ξe ¼
ωr þ iγ
kvth;e

; ξχ ¼
ωr −k ·V0 þ iγ

kvth;χ
;

ð6Þ

with k · V0 ¼ kV0 and vth;j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Tj=mj

p
. The function

ZðξjÞ is referred to as the plasma dispersion function, and
defined explicitly in Eq. (A11). The first three terms in
Eq. (5) support standard ion-acoustic and Langmuir
waves. The last term, the dark matter contribution, can
be neglected in determining the real oscillation frequency
ωr of the plasma waves because we are working in the limit
of ωpχ=ωpi ≪ 1. However, it is essential to include this
term when calculating the growth rate γ of the plasma
waves, since the mDM beam is the only source of excess
kinetic energy for driving an instability. Both the physics
and approach here is reminiscent of the well-studied bump-
on-tail instabilitywhere an electron beam drifting with high
velocity excites a Langmuir wave. In the following, we
consider the possibility of having an instability in the ion-
acoustic and Langmuir wave frequency regimes.

1. Ion-acoustic waves

The ion-acoustic wave is a type of longitudinal oscillation
in an unmagnetized plasma or in a magnetized plasma when
kkB0. Its oscillation frequency is so low that the electrons are
essentially locked to the oscillation of ions. The phase
speed of the ion-acoustic wave is approximately ω=k∼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTe þ TiÞ=mi

p
, which is due to the restoring force of

electron and ion thermal pressures. If Te ∼ Ti, the phase
velocity is close to thermal ionvelocity which suggests that a
large fraction of ions can experience nearly constant electro-
static fields from thewaves—as if ions are “surfing” on them.
Moreover, there is a large negative slope in the ion velocity
distribution at the phase speed: physically, there are more
thermal ions that are moving a bit slower than the phase
speed,which takes away energy from thewaves, compared to
thermal ions moving slightly faster than the phase speed,
which would give energy to the waves. The net effect is that

FIG. 4. The environment in the downstream plasma frame, and
our setup for a parallel shock whereB0 ¼ B0ẑ is parallel to shock
normal. In this frame, the shock front propagates with velocity
ðvsh=4Þẑ and the ambient mDM is treated as a weak beam flowing
with velocity V0 ≡ −ð3vsh=4Þẑ. The ion-acoustic and Langmuir
waves driven by the mDM beam propagate parallel to B0.
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the waves suffer from rapid energy loss due to ion Landau
damping. On the other hand, ifTe ≫ Ti then the phase speed
is on the tail of the ion distribution function, ω=k ≫ vth;i.
Then there would be far fewer thermal ions “surfing” on the
waves, and there is a reduced slope in thevelocity distribution
at the phase speed. The damping from ions is greatly
suppressed in this case.
In a supernova shock environment, the electron and

proton fluids are each isotropized after they cross the
shock front. Each species has the same initial velocity in
the downstream frame, which implies Te=Ti ≈me=mi ≈
1=1836 just behind the shock. The electrons are then heated
to several tenths of Ti through plasma instabilities [73,74],
but the final electron-ion temperature equilibration is caused
by the electron-proton Coulomb scattering and the process
takes about∼100 years [40]. However, the fact that Te ≲ Ti
suggests ion-acoustic waves suffer strong ion Landau
damping. It is therefore not possible for mDM to excite
any ion-acousticwaves in the supernova shock environment.
In the following discussion, we will demonstrate the

problem of strong ion Landau damping by taking the case
Te ≫ Ti. Although this does not correspond to the temper-
ature ratio in the SNR, it allows us to obtain an analytic
result and see that Landau damping prevents an mDM
instability even in a scenario where reduced damping is
expected. In the Te ≫ Ti limit, the phase velocity is in the
range vth;i ≪ ωr=k ≪ vth;e which corresponds ξe ≪ 1 and
ξi ≫ 1. Using the asymptotic expansions for ZðξjÞ given in
Eqs. (A12) and (A13), the real part of the dispersion
relation in Eq. (5) becomes

0 ¼ DReðωr; kÞ ≈ 1 −
ω2
pi

ω2
r
þ 1

k2λ2De
; ð7Þ

where λDe ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Te=4πnee2

p
is the electron Debye length.

(The mDM contribution to Dr is neglected since we are
working in the limit ωpχ=ωpi ≪ 1.) The phase velocity is

ωr

k
≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Te=mi

1þ k2λ2De

s
; ð8Þ

where
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Te=mi

p ≡ cs is the ion sound speed. The real
oscillation frequency ωr ranges from kcs for k2λ2De ≪ 1 to
ωpi for k2λ2De ≫ 1.5

Next, to evaluate the growth rate for a wave with kkB0,
we take the limit jγ=ωrj ≪ 1 and use Eqs. (A18) and (A20).
Then the damping rate from electrons plus ions, γeþi, is

γeþi

jωrj
≈ −

ffiffiffi
π

8

r �jωr=kj
ωpiλDe

�
3
� ffiffiffiffiffiffi

me

mi

r
exp

�
−
ω2
r=k2

v2th;e

�

þ
�
Te

Ti

�
3=2

exp
�
−
ω2
r=k2

v2thi

��

≈ −
ffiffiffi
π

8

r
1

ð1þ k2λ2DeÞ3=2
� ffiffiffiffiffiffi

me

mi

r
þ
�
Te

Ti

�
3=2

× exp

�
−

Te

2Tið1þ k2λ2DeÞ
��

; ð9Þ

and the growth rate from mDM, γχ , is

γχ
jωrj

≈
ffiffiffi
π

p �
ωpχ

ωpi

�
2
����ωr=k
vth;χ

����3
�

V0

ωr=k
− 1

�

× exp

�
−
ðωr=k − V0Þ2

v2th;χ

�
: ð10Þ

The total growth rate is γ ¼ γeþi þ γχ . From Eq. (10), we
find that the necessary condition to get γχ > 0 is V0 >
ωr=k. Rewriting the beam speed as V0 ¼ 3vsh=4 ≈ 1.1vth;i,
and using Eq. (8), we can simplify this condition as
k2λ2De > Te=2.4Ti − 1. For plasmas with Te=Ti < 2.4, all
k modes have γχ > 0. For plasmas with Te=Ti > 2.4, only

the modes with kλDe >
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Te=2.4Ti − 1

p
have γχ > 0.

Figure 5 shows the damping rate from electrons plus
ions, γeþi, and the growth rate from mDM, γχ . We assume
ωpχ=ωpi ¼ 10−3 and vsh ¼ 500 km=s, and consider plas-
mas with Te=Ti ¼ 5 and 10. (Note that γχ is only plotted in
the k range where γχ > 0.) It is clear from Fig. 5 that
damping dominates over growth at all kλDe, due in part
to the strong suppression of the mDM contribution by
ðωpχ=ωpiÞ2 < 10−6. We have checked the same conclusion
is also true for shocks at the beginning of supernova
explosion (vsh ∼ 104 km=s) to the end of the Sedov-
Taylor phase (vsh ∼ 200 km=s). As a result, the mDM
would not be swept up by the SNR via an ion-acoustic
wave instability.

2. Langmuir waves

We now consider the Langmuir waves that exist in the
large frequency regime (ω > ωpe). Langmuir waves, also
known as electron plasma oscillations, are a type of fast-
oscillating longitudinal wave in an unmagnetized plasma or
in a magnetized plasma when kkB0. The oscillation is so
rapid that the thermal ions are not able to catch up with the
waves, and ions are essentially a static background,mi→∞
and jξij → ∞. As a result, the dispersion relation of the
Langmuir waves is exclusively dictated by electrons.

5Note that the assumption of ωr=k ≫ vth;i breaks down when
k2λ2De ≳ Te=Ti, and the ion Landau damping becomes strong
again. In the limit k2λ2De ≫ Te=Ti where the phase velocity
ωr=k ≪ vth;i; vth;e, there is no collective electrostatic plasma
waves since the thermal ions and electrons can travel for
significantly more than one wavelength, k−1, within one period,
ω−1
r . That is, any formation of electrostatic plasma waves will be

“washed out” immediately. In the following discussion we
always work in the limit k2λ2De < Te=Ti.
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Similar to the discussion for ion acoustic waves, in order
to avoid electron and ion Landau damping we require that
the phase velocity ωr=k ≫ vth;e, vth;i. This corresponds to
ξe, ξi ≪ 1, and in this limit the real part of the dispersion
relation in Eq. (5) is given by

0 ¼ DReðωr; kÞ ¼ 1 −
ω2
pe

ω2
r
− 3k2λ2De

ω4
pe

ω4
r
þ � � � ; ð11Þ

where again the mDM contribution is negligible in the limit
ωpχ=ωpi ≪ 1. Solving Eq. (11) gives the real wave fre-
quency,

ωr ¼ ωpe

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3k2λ2De þ � � �

q
: ð12Þ

Note that these equations are only valid for kλDe ≪ 1,
which is required by the condition ωr=k ≫ vth;e, and that
Langmuir waves with kλDe ∼ 1 suffer strong electron
Landau damping.
The growth rate from mDM has the same form as

Eq. (10), but with the replacement ωpi → ωpe and with
ωr from Eq. (12). And so again the condition for γχ > 0 is
V0 > ωr=k. The phase speed in the regime kλDe ≲ 1 is
approximately ωr=k≳ ωpeλDe ¼ vth;e=

ffiffiffi
2

p
. As discussed

earlier, the electrons are heated up to several tenths of
Ti behind the shock front due to plasma instabilities
[73,74], corresponding to vth;e ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
mi=me

p
vth;i ∼ 10vsh.

Then the phase speed is much larger than the mDM beam
velocity in the downstream frame, V0, and the condition for
getting γχ > 0 is not satisfied. Therefore, the mDM would
not be swept up by the SNR via a Langmuir wave
instability.

B. Perpendicular shock (lower-hybrid wave)

For the perpendicular shock (B0⊥V0), we choose lower-
hybrid (LH) waves as the most likely candidate for an
electrostatic wave driven by the mDM beam. The lower-
hybrid wave instability is the high-frequency (ω ≫ jΩij)
electrostatic wave driven by the cross-field plasma beam
(i.e., moving perpendicular to the magnetic fieldB0 ¼ B0ẑ)
and the waves propagate very nearly perpendicular to B0.
The free energy is provided either from the initial kinetic
energy of the beam or from inhomogeneities in plasma
density, temperature or background magnetic field. In this
work, we only consider the first case since we do not expect
the inducedE andE × B from local electron/proton charge
separation to have significant effects on the mDM trajec-
tories near the shock front. (The latter case, also known as
lower-hybrid-drift instability, is the major driver and free
energy source for the anomalous heating in the theta pinch
experiments as well as a dissipation mechanism in astro-
physical shocks.)
The initial plasma configuration is illustrated in Fig. 6,

and described as follows. We consider an mDM beam
moving across the downstream magnetic field B0 ¼ B0ẑ
with the beam velocity V0 ¼ V0ŷ in the downstream frame.
We focus on wave perturbations with k2y ≫ k2x and kz ¼ 0.
Our choice is guided by the extensive parameter study of
lower-hybrid-drift instability and modified-two-stream
instability in Ref. [71] where the author shows that the
maximum instability growth of the LH waves occurs for
k2y ≫ k2x, kz ¼ 0 and k2yr2Le ≈ 1 when Te ≈ Ti. For simplic-
ity, we write the wave vector as k ¼ kŷ.
The typical frequency of the LH waves is around

ωr ∼ ωLH ≡ ωpi=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ω2

pe=Ω2
e

q
. For ω2

pe ≫ Ω2
e, which is

satisfied in the supernova downstream plasma, we have
ωLH ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

mi=me

p jΩij ≈ 43jΩij. The LH wave instability is
characterized by magnetized electrons where the wave
vector k satisfies k2r2Le ≈ 1 [70]. Since the thermal ion
Larmor radius, rLi ≈ 43rLe, is larger than the characteristic
wavelength of this instability, 1=k ≈ rLe, we treat the ions
as unmagnetized. The same argument applies to mDM. As
a result, the dispersion relation is given as [63,70]

0 ¼ Dðk;ωÞ

¼ 1þ 2ω2
pi

k2v2th;i
½1þ ξiZðξiÞ� þ

ω2
pe

Ω2
e

1 − I0ðbÞe−b
b

þ 2ω2
pχ

k2v2th;χ
½1þ ξχZðξχÞ�; ð13Þ

FIG. 5. The damping of ion-acoustic waves from thermal ions
(solid lines) from Eq. (9), and growth from mDM (dashed
lines) from Eq. (10). Here we assumed ωpχ=ωpi ¼ 10−3 and
vsh ¼ 500 km=s. The dotted lines correspond to the regime
k2λ2De > Te=Ti where Eq. (9) breaks down and there are no
collective plasma oscillations. The damping rate from ions is
significantly higher than the growth rate from mDM at all kλDe.
We have checked the same conclusion is true for shocks from the
beginning of the supernova explosion (vsh ∼ 104 km=s) to the
end of the Sedov-Taylor phase (vsh ∼ 200 km=s).
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where b ¼ k2r2Le=2, ξi ¼ ω=kvth;i, ξχ ¼ ðω − kV0Þ=kvth;χ
and I0ðbÞ is the modified Bessel function of the first kind of
order zero. Note that I0ðbÞ is real and the magnetized
electrons do not contribute to damping.
Because ions behave as an unmagnetized thermal gas

within one LH wavelength, the ion Landau damping to the
LH waves is non-negligible. Our goal is to determine
whether the ion Landau damping will stabilize the plasma
or if the mDM beam can successfully excite the LH waves.
Utilizing Eqs. (A18) and (A20b), the ratio of ion Landau
damping to the mDM instability growth rate for LH waves
is given as

γi
γχ

¼ Di
Imðk;ωrÞ

Dχ
Imðk;ωrÞ

¼ −
�
ωpi

ωpχ

�
2
�
vth;χ
vth;i

�
3
�

ωr=k
V0 − ωr=k

�

× exp

�
−
ω2
r=k2

v2th;i
þ ðωr=k − V0Þ2

v2th;χ

�
: ð14Þ

Note that the necessary condition for γχ > 0 is
ωr=k < V0 ¼ 3vsh=4 ≈ 1.1vth;i, so we will always work
in that condition. Taking the characteristic frequency of the
LH wave, ωr ∼ ωLH ≈ 43jΩij, and the characteristic wave
vector of the maximum growth rate of the LH wave
instability, k ∼ 1=rLe ≈ 43=rLi, the characteristic phase
velocity is approximately vth;i. Of course, ωr=k can be
higher or lower than vth;i, as long as ωr=k < 1.1vth;i. In
Fig. 7, we show jγi=γχ j as a function of shock speed at
various values of ωr=kvth;i, assuming ωpχ=ωpi ¼ 10−3.
Note that decreasing ωpχ=ωpi would only raise the curves
of jγi=γχ j, meaning a weaker growth rate from the mDM
beam. Therefore, we find ion Landau damping is dominant
over the growth rate from the mDM beam, and we do not

expect mDM to be swept up by the supernova remnant via a
LH wave instability.

IV. ELECTROMAGNETIC WAVES AND
INSTABILITIES

In this section, we investigate the possibility of mDM
exciting transverse electromagnetic (EM) waves in the
downstream plasma, in the presence of a background
magnetic field B0. We will show that an instability could
occur with growth rate γ ∼ jΩχ j. While the EM waves can,
in general, propagate along arbitrary directions, we restrict
our attention to wave propagation along B0 (kkB0). Our
choice is motivated by abundant observations of the
enhanced magnetic fluctuations in the solar winds, which
indicate that the dominant and the fastest growing EM
instability modes propagate approximately parallel or
antiparallel to B0 [75–78]. In that case, there are a variety
of kinetic waves and associated instabilities, e.g., Alfvén
waves with the firehose instabilities, ion cyclotron waves
with the ion cyclotron instability, and electron cyclotron
waves with the electron Whistler instability. Here we focus
on transverse-polarization, parallel-propagating EM waves
in a supernova shock. We then consider two limiting cases:
a beam-firehose instability in a parallel shock (V0kB0) and
a Weibel instability in a perpendicular shock (V0⊥B0).
Similar to the approach of the previous section, here we

solve for the linear dispersion relation for a transverse EM
wave propagating along B0 ¼ B0ẑ with wave vector
k ¼ kẑ. Then the electric field perturbation can be written
as δE ¼ δExx̂þ δEyŷ and the general form of the linear
dispersion relation can be expressed as [79]

FIG. 6. The environment in the downstream plasma frame, and
our setup for a perpendicular shock where B0 is perpendicular to
shock normal. In this frame, the shock front propagates with
velocity ðvsh=4Þŷ and the mDM is treated as a weak beam flowing
with velocity V0 ≡ −ð3vsh=4Þŷ. The lower-hybrid waves driven
by the mDM beam propagate perpendicular to B0.

FIG. 7. The ratio of ion damping to mDM growth rate for lower
hybrid waves, jγi=γχ j, as a function of shock speed. The various
lines correspond to different fixed values of the ratio ωr=kvth;i.
The curves are calculated under the assumption ωpχ=ωpi ¼ 10−3.
All the curves have jγi=γχ j ≫ 1, which indicates that the ion
Landau damping will suppress any mDM beam-driven LH wave
instability.
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0 ¼ D�ðk;ωÞ
¼ c2k2 − ω2

þ
X
j

ω2
pj

Z
d3v

ðω − kvzÞF0j − 1
2
kv2⊥ð∂F0j=∂vzÞ

ω − kvz � Ωj
:

ð15Þ

The superscript of D� and the � sign in front of Ωj denote
the right-handed (þ, δEx ¼ −iδEy) and left-handed
(−, δEx ¼ iδEy) EM waves. A cylindrical coordinate
system for the velocity space is used and the integration
is over the range

R
d3v ¼ R

∞
0 2πv⊥dv⊥

R
∞
−∞ dvz.

A. Beam-firehose instability in a parallel shock

In the case of a parallel shock, we will show that the
excess of kinetic energy from the mDM beam in the
direction parallel to B0 can enhance EM perturbations
and drive a beam-firehose instability.6 An illustration is
shown in Fig. 8. Physically, the firehose instability is
caused by the back-reaction of the centrifugal force from
charged particles moving along the curved magnetic lines
B ¼ B0 þ δB. A small perturbation δBwill cause charged
particles to be redirected due to the Lorentz force, and a
drift current is produced in the same direction as ∇ ×B.
This drift current induces magnetic fields transverse to B0

and tends to increase the curvature of B. The magnetic
perturbations will enhance exponentially in time as the
process is a coupled nonlinear feedback between the
curved magnetic lines and the induced currents. This
mechanism is reminiscent of a swinging firehose: when
the water flow passes through the bent section of the hose,
the centripetal force exerted on the hose tends to amplify
the curvature and the bent section becomes even more
curved. The process leads to an exponential growth of the
wave amplitude [81].
Now we consider the mDM beam flowing along B0 ¼

B0ẑ with a beam velocity in the downstream plasma frame
written as V0 ¼ −ð3vsh=4Þẑ. The dispersion relation in this
scenario is obtained by substituting the velocity distribu-
tions in Eqs. (4a) and (4b) into the EM linear dispersion
relation in Eq. (15), which gives

0 ¼ D�ðk;ωÞ

¼ c2k2 − ω2 −
X

j¼iþ;e−
ω2
pj

�
ω

kvth;j

�
ZðξjÞ

−
X

s¼χþ;χ−
ω2
ps

�
ω − kV0

kvth;χ

�
ZðξsÞ; ð16Þ

where ξj ¼ ðω�ΩjÞ=kvth;j and ξs ¼ ðω − kV0 � ΩsÞ=
kvth;χ and ZðξÞ is again the plasma dispersion function
defined in Appendix A 1. Assuming equal number density
of χþ and χ−, we have n0χþ ¼ n0χ− ¼ n0χ=2 and conse-
quently ω2

pχþ ¼ ω2
pχ− ¼ ω2

pχ=2. For V0 ¼ 0, there is no free
energy to drive an instability and Eq. (16) supports only
stable solutions with γ ≤ 0. Here we show that in the
presence of the mDM beam with nonzero V0, it is possible
to excite unstable modes of a beam-firehose instability with
characteristic wave frequency jωj ≲Ωχ.
We first focus on the electrons and ions, which we

assume to be strongly magnetized with jωj ≪ jΩij, jΩej. In
the long wavelength and low frequency limit that we are
interested in, we have jξij, jξej ≫ 1. Then we can approxi-
mate ZðξjÞ ≈ −1=ξj for j ¼ iþ; e− and simplify the ion and
electron terms in Eq. (16):

X
j¼iþ;e−

ω2
pjω

ω�Ωj
≈ ω

�
ω2
pe

�Ωe

�
1 −

ω

�Ωe

�

þ ω2
pi

�Ωi

�
1 −

ω

�Ωi

��
¼ −ω2

c2

v2A
; ð17Þ

where the charge neutrality of proton-electron plasma is
used. The standard Alfvén speed vA is defined as vA ≡
B0=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πðρi þ ρeÞ

p
and has a typical value

FIG. 8. The environment in the downstream plasma frame, and
our setup for a parallel shock whereB0 ¼ B0ẑ is parallel to shock
normal. In this frame, the shock front propagates with velocity
ðvsh=4Þẑ and the ambient mDM is treated as a weak beam flowing
with velocity V0 ≡ −ð3vsh=4Þẑ. The excess of kinetic energy
along B0 can drive a beam-firehose instability and excite EM
waves.

6Note that the instability studied here is slightly different from
the classical firehose instability [80]. In most of the literature, the
firehose instability refers to the instability of the transverse EM
waves propagating parallel or antiparallel to B0 in a two-
temperature Maxwellian plasma system with Tjk > Tj⊥ (where
the subscripts k and ⊥ refer to the directions relative to B0). The
excited waves are in the Alfvén wave frequency regime,
jωj ≪ jΩij. On the other hand, the beam-firehose instability
phrased in this work refers to a beam of mDM plasma flowing
along B0 and driving an EM wave instability.

JUNG-TSUNG LI and TONGYAN LIN PHYS. REV. D 101, 103034 (2020)

103034-12



vA ≈ 22 km=s

�
B0

10 μG

��
1 cm−3

npost;i

�
1=2

; ð18Þ

where npost;i denotes the proton number density in the
supernova downstream fluid.
The relevant source of damping for EM waves propagat-

ing in a homogeneous plasma is cyclotron damping. For the
case studied here, the cyclotron damping from thermal ions
and electrons is negligible. This is because for very low
frequency and longwavelength EMwaves (jωj ≪ jΩij, jΩej
and jξij, jξej ≫ 1), the exponential function in the plasma
dispersion function ZðξjÞ which contributes the damping is
exponentially suppressed. Physically, it means the ions and
electrons do not rotate at the same rate as the circularly
polarized EM waves, so the waves do not undergo a
cyclotron resonance. The ion (electron) cyclotron damping
only becomes important when ω → Ωi (Ωe), in which case
the ions (electrons) can absorb a significant amount of the
energy from the electric fields of the EM waves.
In the presence of the mDM beam, the dispersion

relation of right-handed EM waves becomes

0 ¼ c2k2 − ω2

�
1þ c2

v2A

�
−
ω2
pχ

2

�
ω − kV0

kvth;χ

�
½ZðξχþÞ

þ Zðξχ−Þ�: ð19Þ
The left-handed EM waves have an identical form since
Ωχþ ¼ −Ωχ− . We solve Eq. (19) numerically assuming
B0 ¼ 10 μG and npost;i ¼ 1 cm−3. The results are shown in
Fig. 9. In the left panel of Fig. 9, we show the real
oscillation frequency jωrj and the growth rate γ as a
function of ck=ωpχ for different shock speeds, assuming
ρDM ¼ ρχ ¼ 1 GeV=cm3. The value of k at which the
maximum growth occurs is a decreasing function of the

shock speed vsh ¼ 4V0=3. This is because the instability is
most effective when the crossing time of the beam through
one wavelength, ∼1=kV0, is comparable to one gyration
time of 1=Ωχ , i.e., the beam is resonant with the excited
EM waves. This also justifies the assumption made above
that jξij, jξej ≫ 1 since jξij ¼ ðω�ΩiÞ=kvth;i ∼ jΩχ=
kV0jjΩi=Ωχ j ∼ jΩi=Ωχ j ≫ 1 and the same argument
applies for the electrons as well. In the right panel of
Fig. 9, we plot the maximum growth rate γmax as a function
of vsh for various values of ρχ=ρDM, assuming ρDM ¼
1 GeV=cm3. The maximum growth rate γmax is an increas-
ing function of vsh and ρχ=ρDM, but γmax starts to saturate at
high vsh. For the optimal scenario where all DM is made up
of mDM, we find γ ∼ 0.5jΩχ j for all shock speeds in the
Sedov-Taylor phase (vsh ≳ 200 km=s).

B. Weibel instability in a perpendicular shock

In the case of a perpendicular shock, wewill show that an
excess of kinetic energy from the mDM beam in the
direction perpendicular to B0 can drive a Weibel instability
[82] and excite EM waves. The Weibel instability is a
transverse EM instability driven by a plasma with aniso-
tropic velocity distribution. The instability can occur even
in the absence of external magnetic field. The EM waves
driven by the Weibel instability is nonresonant with the
particles. A simple physical picture of the Weibel instability
is given in Ref. [83] where the author treats a two-
temperature Maxwellian gas as two counterstreaming cold
plasmas. The same mechanism also applies to a single
beam. In the following, we briefly describe the physical
picture of the Weibel instability driven by the mDM beam,
along the lines of the description in Refs. [83,84].
We consider a neutral mDM beam consisting of

equal numbers of χþs and χ−s and with beam velocity

FIG. 9. Beam-firehose instability in a parallel shock. (left) Plot of the real oscillation frequency (solid lines) and the growth rate
(dashed lines) of the right/left-handed EM waves in units of jΩχ j. The curves are plotted assuming ρDM ¼ ρχ ¼ 1 GeV=cm3. (right) Plot
of the maximum growth rate as a function of shock speed. The numbers on the curves denote the fraction of the DM abundance
comprised of mDM, ρχ=ρDM, assuming ρDM ¼ 1 GeV=cm3.
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V0 ¼ −ð3vsh=4Þx̂ in the downstream plasma frame. An
illustration is shown in Fig. 10. Now consider an EM
perturbation with kkB0 and δB⊥V0. The Lorentz force
qχ�V0 × δB deflects the mDM trajectories as shown by the
dashed curves in Fig. 10. At layer I, the χ−s congregate and
χþs disperse away, resulting an induced current sheet
pointing in the x̂ direction. The layer II has an opposite
result, with the current sheet pointing in the −x̂ direction.
The magnetic fluctuations are then amplified via Ampère’s
Law. Note that the fluctuations arising from this mechanism
are aperiodic, i.e., ωr ≃ 0.
We determine the growth rate via the linear stability

analysis. The dispersion relation in the perpendicular shock
is obtained by the same method as the previous subsection,
with the exception that V0⊥B0. The result is expressed as

0 ¼ D�

¼ c2k2 − ω2 −
X

j¼iþ;e−
ω2
pj

�
ω

kvth;j

�
ZðξjÞ

−
X

s¼χþ;χ−
ω2
ps

��
ω

kvth;χ

�
ZðξsÞ þ

�
V0

vth;χ

�
2

ð1þ ξsZðξsÞÞ
�
;

ð20Þ

where ξj ¼ ðω�ΩjÞ=kvth;j and ξs ¼ ðω�ΩsÞ=kvth;χ .
The factor V0=vth;χ quantifies the deviation of a plasma
away from an isotropic gas. For V0 ¼ 0, there is no free
energy to drive the instability and Eq. (20) supports only
stable solutions with γ ≤ 0. The ions and electrons are
again strongly magnetized (jωj ≪ jΩij, jΩej and jξij,
jξej ≫ 1) under the condition of small mDM Larmor
frequency, jΩχ=Ωij < 10−3, and the low frequency, long
wavelength EM waves that we are interested in. Thus, the
thermal ions and electrons do not resonate with the EM
waves and the cyclotron damping is exponentially sup-
pressed. As a result, the sum of the ion and electron terms in

Eq. (20) is reduced to −ω2c2=v2A following the same
reasoning discussed in Sec. IVA.
The numerical solution of Eq. (20) is shown in Fig. 11

with the assumption B0 ¼ 10 μG and npost;i ¼ 1 cm−3.
Both EM helicities have the same form of the dispersion
relation. In the left panel of Fig. 11, we show jωrj and γ
as a function of ck=ωpχ for various vsh, assuming
ρDM ¼ ρχ ¼ 1 GeV=cm3. Among the unstable k modes,
we find ωr ≃ 0. This indicates that the excited EM waves
(left- and right-handed) are aperiodic and they barely
propagate in space. The superposition of both helicities
with the same phase then gives linearly polarized EM
waves with ωr ≃ 0, which agrees with the features of the
EM waves driven by the Weibel instability. We note that all
curves of γ eventually drop to zero or negative values as
k → 0 due to the fact that the free energy driving the
instability is contained in the term ðV2

0=v
2
th;χÞ½1þ ξsZðξsÞ�,

which vanishes as k → 0 (ξs → ∞). In the right panel, we
show the maximum growth rates as a function of vsh with
various values of ρχ=ρDM assuming ρDM ¼ 1 GeV=cm3.
The maximum growth rate γmax is an increasing function of
vsh and ρχ=ρDM, and it is approximately proportional to
V0=vth;χ . For the optimal scenario where ρχ=ρDM ¼ 100%,
we find γ ≳ jΩχ j for all shock speeds in the Sedov-Taylor
phase (vsh ≳ 200 km=s).
We emphasize that while ωr=k → 0 among the unstable

k modes shown in the left panel of Fig. 11, the result does
not suggest the kinetic waves in the plasma have zero phase
speed. For the unstable EM fluctuations excited by the
instability, the linear stability analysis performed here only
contains the information about γ and ωr at a given k mode
as they are created. It does not provide information
regarding the evolution and propagation of the fluctuations
during the late stage of the instability. On the other hand,
the kinetic plasma waves are the stable collective oscil-
lations from tiny perturbations on an equilibrium plasma.
Therefore, the phase speed of the growing fluctuations from
instabilities should be distinguished from the phase speed
of the kinetic waves propagating in the equilibrium plasma.

C. Condition for sweeping up mDM

We have shown that a mDM beam can drive the firehose
and Weibel electromagnetic plasma instabilities, assuming a
simplified model for the downstream plasma and magnetic
field in a SNR. If the maximum growth rate is γmax, then the
instability will be saturated in a timescale ≈γ−1max.
Consequently, for a shock of speed vsh, the saturation length
in the downstream plasma is ≈3vshγ−1max=4, where
the mDM beam velocity is V0 ¼ 3vsh=4. That is, it takes
about a distance scale of 3vshγ−1max=4 to saturate the instability
and make the mDM velocity distribution isotropic in the
downstream frame. Since the majority of shocked ISM gas
resides in the outermost shell with thickness ≈0.1Rsh [40],

FIG. 10. An illustration of the Weibel instability driven by the
mDM beam in a perpendicular shock. The shock front faces
toward the x̂ direction. An initial magnetic fluctuation, δB, is
assumed to be perpendicular to B0 and lies in the y–z plane. The
incoming χ�s are deflected by δB and induce current sheets
pointing in opposite directions in layers I and II. The magnetic
perturbations are then amplified via Ampère’s Law.
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we require that 3vshγ−1max=4 < 0.1Rsh in order for themDM to
be swept up and isotropized in an expanding SNR.
The colored bands in Fig. 1 show the resulting condition

on the mDM charge and mass. We take the downstream ion
density as npost;i ¼ 1 cm−3 and the ambient mDM mass
density as ρχ ¼ 1 GeV=cm3. Above the orange (green)
band, the mDM charge fraction jqχ=ej is sufficiently large
for it to drive a plasma instability and be swept up by the
supernova in a parallel (perpendicular) shock. The upper
and lower boundaries of each band are for vsh ¼
1500 km=s and 300 km=s, respectively, where we have
used the appropriate value of the remnant radius Rsh for that
shock speed (see Fig. 3).

V. IMPLICATIONS

In this section, we turn to some consequences of the
mDM interaction in the SNR. Having seen that mDM can
be swept up for sufficiently large charge fractions, we next
discuss the eventual fate of the mDM velocity distribution
once the shocked ISM gas undergoes adiabatic decom-
pression and the supernova shock dies out. We comment
on the possibility and challenges of generating a Fermi-
accelerated mDM component in Sec. V B. Finally, the total
mass swept up by the SNR can increase if mDM is
accounted for, and we discuss how this could impact the
Sedov-Taylor phase.

A. Adiabatic decompression and
the mDM velocity distribution

When the mDM-driven plasma instabilities occur, a
significant fraction of the ordered kinetic energy of the
mDM beam is transferred to the disordered kinetic energy
of the mDM particles moving isotropically. The mDM is

“shocked” and heated up. For supernova shocks at the early
and mid stages of the Sedov-Taylor phase, the swept-
up mDM has bulk velocity (in the Milky Way frame) and
velocity dispersion that are significantly larger than
vth;χ ≈ 220 km=s, which would apparently have a large
impact on terrestrial dark matter detection. However, it is
not easy for these shocked mDM particles to stream out
directly from the remnant for the following reason. After
the instabilities have saturated, the mDM particles continue
to scatter on the EMwaves and are trapped in the supernova
remnant. Consequently, we expect that the trapped mDM
particles lose energy through adiabatic decompression as
the shocked ISM gas returns to the ambient ISM state. At
the same time, the bulk of the shocked mDM would slow
down with the remnant and eventually come to rest in the
Milky Way frame after the supernova shock has died out.
We first consider the effect of adiabatic decompression

on the mDM velocity dispersion in the downstream frame.
As a simplified model,7 here we assume that (1) all the
kinetic energy of the mDM beam measured in the down-
stream frame is transferred to the heat of random mDM
motion, (2) the process is instantaneous, i.e., the growth
time is neglected, and (3) the shocked mDM particles
follow a Maxwell-Boltzmann distribution after the insta-
bilities have saturated. Then for a group of mDM particles
shocked and swept up by the supernova shock wave with
speed vsh, the resulting velocity dispersion is given as

v0dis;χðvshÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2th;χ þ 3v2sh=8

q
. (Note that groups of mDM

FIG. 11. Weibel instability in a perpendicular shock. (left) Plot of the real oscillation frequency (solid lines) and the growth rate
(dashed lines) of the right/left-hand EMwave as a function of wave vector, assuming ρDM ¼ ρχ ¼ 1 GeV=cm3. We note that one feature
of Weibel instability is an aperiodic wave, i.e., ωr ≃ 0, which explains the vanishingly small values of ωr for the unstable k modes.
(right) The maximum growth rate as a function of shock speed. The numbers on the curves denote ρχ=ρDM, assuming
ρDM ¼ 1 GeV=cm3.

7The exact mDM velocity distribution as well as the kinetic
energy distribution between the shocked mDM particles and the
mDM-driven waves can be obtained from the quasilinear theory
or hybrid simulation.
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particles entering the shock at different shock speeds will
have different velocity dispersion after being swept up.
Since the different groups of mDM do not thermalize via
Coulomb interactions for the parameters we study in
this work, we use velocity dispersion here to mean the
dispersion for a given group of particles.)
Because the shocked ISM has a higher gas pressure than

the ambient pressure, its volume expands. At the same time,
the trapped mDM particles lose kinetic energy through
adiabatic decompression. If the volume of the shocked ISM
gas expands by a factor Λ−3, then each mDM particles’
speed is decreased by a factor Λ. That is, for a group of
mDM particles swept up by the shock with speed vsh, the
final velocity dispersion after decompression is given as
v00dis;χðvshÞ ¼ Λv0dis;χðvshÞ. Here we follow Ref. [85] to
specify the decompression factor Λ in two limits.
Density argument: decompression stops once the

shocked ISM gas is returned from its downstream density,
ρ2, to the ambient ISM density, ρ1. According to the RH
condition, ρ2 ¼ 4ρ1 for a high shock number. Thus, the
decompression factor is

Λd ¼
�
ρ2
ρ1

�
−1=3

¼ 4−1=3 ≈ 0.63: ð21Þ

Pressure argument: decompression stops once the
shocked ISM gas is returned from its downstream pressure,
P2, to the ambient ISM pressure, P1. With the assumption
that the shocked ISM gas is an ideal fluid and expands
adiabatically, the decompression factor is

Λp ¼
�
P2

P1

�
−1=5

¼
�
5M2 − 1

4

�−1=5
; ð22Þ

where M≡ vsh=cs denotes the Mach number and cs is the
ambient ISM sound speed. For ISM temperature T1 ¼
104 K and adiabatic index γa ¼ 5=3 for a monatomic gas,
the ISM sound speed is cs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γaT1=mi

p
≈ 12 km=s.

In Fig. 12, we show the effect of adiabatic decompres-
sion on the shocked mDM particles. The orange and blue
lines in the subplot denote Λd and Λp, respectively. The
decompression effect from the pressure argument is sig-
nificantly stronger than the effect from the density argu-
ment. This is because the downstream pressure (∼ρ1v2sh) is
easily larger than the ambient ISM pressure (∼ρ1c2s ) by few
orders of magnitude for high Mach shocks whereas the
downstream density is always approximately 4 times the
upstream density. The difference between the two argu-
ments leads to a big contrast to the mDM velocity
dispersion. In the main plot, the red dashed line represents
the mDM velocity dispersion, v0dis;χ , for the group of mDM
particles entering the shock with the speed vsh. The orange
and blue lines represent the final velocity dispersion, v00dis;χ ,
of the same group of mDM particles that have undergone

Λd and Λp, respectively. Note that v0dis;χ always drops
≈40% with the density argument whereas it can drop as
much as ≳80% with the pressure argument for shocks in
the Sedov-Taylor phase. A more realistic v00dis;χ within a
galactic supernova remnant should lie between the orange
and blue lines.
The mDM particles do not just free-stream out from the

supernova remnant after adiabatic decompression has
stopped. In the case of a quasiparallel shock, the mDM
particles continue to scatter on the magnetic irregularities
driven by the mDM beam or cosmic-ray protons. In the
case of a quasiperpendicular shock, the mDM particles are
confined in the downstream or near the shock front since
the ordered upstream magnetic fields prohibit mDM
streaming more than one Larmor radius. (Note that the
latter case is independent of whether or not the trapping
comes from mDM scattering with mDM-driven plasma
waves.) In both scenarios, the shocked mDM particles
remain trapped in the supernova remnant and the bulk
velocity would slow down with the remnant. As a result,
the velocity distribution of the shocked mDM in the
Milky Way frame, dN=dvχ , is given as

1

nχ

dN
dvχ

¼
Z

104 km=s

300 km=s
4πR2

sh
dRsh

dvsh
Fshellðvχ ; vshÞdvsh; ð23Þ

where we have normalized by the ambient mDM
number density, nχ , we have used 4πR2

shdRsh=dvsh ¼
2.94ESNρ

−1
ISMv

−3
sh , and

FIG. 12. The effect of adiabatic decompression on the mDM
velocity dispersion, in the frame of the downstream fluid. (main
plot) The red dashed line is the velocity dispersion, v0dis;χ , for a
group of mDM particles which have isotropized in a shock with
speed vsh. Note that v0χ does not include any adiabatic decom-
pression effect. The orange and blue lines are the mDM velocity
dispersion after decompression, v00dis;χðvshÞ ¼ Λv0dis;χðvshÞ, with Λ
given by a density (Λd) or pressure (Λp) argument, respectively.
The actual velocity dispersion after decompression should lie
between the orange and blue lines. (inset) Decompression factors
Λd and Λp.
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Fshellðvχ ; vshÞ ¼
4ffiffiffi
π

p v2χ
ðv00dis;χÞ3

e−v
2
χ=ðv00dis;χÞ2 : ð24Þ

Here as a conservative estimate in Eq. (23), we only
consider the supernova shock speed from 104 km=s to
300 km=s, which is the region where mDM can drive
plasma instabilities and be shocked in the case of 100%
dark matter content as mDM. (For vsh ≲ 300 km=s, mDM
beam does not drive EM plasma instabilities, as we have
shown in Sec. IV.)
In Fig. 13, we show the velocity distribution in the cases

with and without adiabatic decompression. The red curve
does not include any decompression which means
v00dis;χ ¼ v0dis;χ . The orange and blue curves include adiabatic
decompression with the density argument and the pressure
argument, respectively. The black dashed curve is for mDM
that has not interacted with any SNR. The tail of the red
curve comes from the swept-up mDM in the early phase of
the Sedov-Taylor phase where the shock speed is high. It
does not result from the DSA mechanism. The decom-
pression from density argument only decreases the tail of
high-speed particles moderately since the shocked ISM
density is only 4 times the ambient ISM density and the
bulk of the fluid is not decompressed much. On the other
hand, the decompression from the pressure argument can
cool down the shocked mDM significantly, even colder
than the ambient mDM. We expect that the shocked mDM
should lie between these limits. These arguments suggest
that, after being shocked and cooled by decompression, the
bulk of the mDM velocity distribution ends up qualitatively
similar to the initial ambient mDM distribution.

B. Challenges for generating dark cosmic rays

We have shown that mDM can be shocked and swept up
by the supernovae. A natural question one might ask is
whether mDM also undergoes the DSA process and is
Fermi-accelerated to relativistic speeds in the same way
cosmic-ray protons are accelerated. Having relativistic
mDM particles in the Milky Way would have a significant
impact on terrestrial darkmatter detection [23,24]. However,
there is no consensus on the flux of Fermi-acceleratedmDM
in the Milky Way. Reference [24] considers (1) the pos-
sibility of getting preaccelerated mDM from one shock and
injecting them into the DSA process in another shock, as
well as (2) the possibility that mDM particles with the virial
velocity larger than the shock speed can undergo Fermi
acceleration in one shock if they are never thermalized with
the ISM gas. On the other hand, Ref. [23] assumes that the
mDMcan be injected into the DSAprocess in just one shock
if the mDM particles have the same rigidity as some of the
Fermi-accelerated protons in the same shock. Because the
two works assume very different acceleration processes,
the resulting Fermi-accelerated fluxes are incompatible.
Nevertheless, there are still several critical issues that must
be answered. In this section, we bring up the challenges of
getting Fermi-accelerated mDM taking into consideration
plasma waves and adiabatic decompression.
The standard acceleration theory utilizes the diffusion-

convection equation in a quasiparallel shock. It requires
that (1) the accelerated particle speed be much higher than
the shock speed and (2) the phase space distribution of the
accelerated particles in the local fluid frame is isotropic.
Then in the steady state, the diffusion-convection equation
gives the isotropic part of the phase space distribution in the
downstream, fþ, in terms of the isotropic part of the phase
space distribution in the far upstream, f−, in the following
form [48,86,87]

fþðpÞ ¼ sp−s
Z

p
dp0f−ðp0Þp0s−1 þ C=ps; ð25Þ

where s ¼ 3r=ðr − 1Þ decides the slope of the Fermi-accel-
erated spectrum and r ≈ 4 denotes the compression ratio of
the flow given by the Rankine-Hugoniot conditions. The first
term on the right-hand side (rhs) of Eq. (25) provides the
spectrum of the Fermi-accelerated particles in the down-
stream when the pre-existing energetic particles in the far
upstream are advected through the shock front and undergo
theDSAprocess. The second term represents the spectrum of
the particles that are directly injected from the downstream
particles into the DSA process. The constantC is determined
bymatching the spectrumof the injected particles at the supra-
thermal regime8 with the power-law spectrum.

FIG. 13. The velocity distribution of the shocked mDM in each
supernova event. We only consider mDM particles entering the
supernova shock of speed between 104 km=s and 300 km=s. The
black dashed curve is the ambient (unshocked) mDM distribu-
tion. While decompression according to the density argument
only moderately cools down the shocked mDM, decompression
from the pressure argument can make the majority of the shocked
mDM colder than the ambient mDM.

8Supra-thermal regime is the transition zone where the dis-
tribution of the downstream thermal particles is joined to the
power-law distribution of the Fermi-accelerated particles.
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In Ref. [24], the authors use the first term on the right-
hand side of Eq. (25) to obtain a Fermi-accelerated mDM
spectrum. The proposed physical origins are the following:
(1) the mDM with mχ=q2χ < 3 × 106 GeV=e2 are thermal-
ized with ISM. To Fermi-accelerate them, two shocks are
required. The moving magnetic fields near the shock front
of the first supernova shock reflect mDM particles and
accelerate them to the shock speed. Among the reflected
mDM, all the particles moving faster than 200 km=s can
then undergo DSA in a second shock with vsh ¼ 200 km=s.
This process is referred as two-stage injection in Ref. [24].
(2) The mDM with mχ=q2χ > 3 × 106 GeV=e2 are not
thermalized with ISM and therefore have the velocity of
the Milky Way virial velocity (taken as 220 km=s). On
encountering a shock with vsh ¼ 200 km=s, all mDM
particles are Fermi-accelerated because they move faster
than the shock. Here we revisit both mechanisms, taking
into consideration plasma waves.
We first review the idea of particle reflection at the shock

front from the standard cosmic ray acceleration theory. It was
known that a fraction of upstream protons may be reflected
by the potential barrier at the shock front due to the shock
reformation [47,88,89]. However, heavy ions with mass-to-
charge ratio larger than protons are not reflected by the shock
barrier; instead they penetrate to the downstream [90]. Since
the mDM we study here has mass-to-charge ratio signifi-
cantly larger than the ratio of protons, we also expect mDM
impinge to the downstream directly, which represents the
first difficulty for the two-stage mechanism. The mDM
particles flow into the downstream fluid and are swept up by
the SNR. After that, they likely still remain trapped in the
downstream fluid due to the wave-particle scattering. They
will undergo adiabatic decompression and slow down along
with the expanding SNR. The number density of the
energetic mDM (say with speeds significantly higher than
200 km=s in the Milky Way frame) from the first shock will
be reduced after taking into consideration these effects, as
shown in Fig. 13.
This leads to the second challenge of getting DSA in the

two-stage injection process. For the second supernova shock
with vsh ¼ 200 km=s, the first term on the rhs of Eq. (25)
operates exclusively to pre-accelerated particles with speeds
at least several thousand km=s. Such high speeds can be
achieved only if mDM enters the first supernova shock at the
free-expansion phase or the very early stage of the Sedov-
Taylor phase so that the catastrophic energy loss from the
adiabatic decompression is overcome. Consequently, the
total number of these high-speed mDM from the first
supernova shock which might undergo standard acceleration
in the second shock would certainly be several orders of
magnitude lower than the total number of the mDM particles
covered within Rshð200 km=sÞ of the first supernova shock.
Taking all these issues into consideration, we find it
challenging to get Fermi-accelerated mDM from multiple
supernova shocks.

The direct injection of the downstream mDM particles to
the DSA process is another possibility to get dark cosmic
rays, as proposed in Refs. [23,24]. However, studying this
mechanism from first principles is a difficult problem,
and generally simulations are required to determine the
constant C in Eq. (25). (Ref. [24] assumes an Oð1Þ
injection fraction.) There are multiple stages to obtaining
the injection rate. Here we only qualitatively discuss three
challenges/issues, while much more work is required
before obtaining a self-consistent picture of the mDM
injection rate. The very first thing to figure out is the exact
mDM velocity distribution in the downstream, since it
controls the number of downstream mDM particles that can
return to upstream after they have passed the shock for their
first time. In this work, we merely use linear stability
analysis to understand the timescale for mDM to be swept
up by the SNR. The mDM velocity distribution can be
obtained by utilizing quasilinear theory, which describes
the phase space evolution and the beam relaxation back to a
marginally stable state [91].
The second challenge is understanding the dynamics of

the mDM particles that return back to the upstream from the
downstream. In the case of proton cosmic ray acceleration,
it is believed that the protons returning to the upstream from
the downstream (or reflected at the shock front back
upstream) scatter on self-generated Alfvén waves propa-
gating along the ambient magnetic fields in the (quasi)
parallel shock. Those protons are then isotropized in the
upstream frame and can return downstream again. While
the same strategy can be applied to mDM, it is not clear
how the injection process is altered due to the ultraslow
instabilities of mDM particles compared to that of cosmic-
ray protons.
The third issue is that the Alfvén waves excited in the

upstream will eventually cross the shock front and trap
a fraction of mDM particles trying to escape to the
upstream. This effect reduces the odds that particles can
gain energy from multiple crossings at the shock front and
be injected to DSA process [43,92]. Different velocity
distribution functions will lead to different probabilities that
particles can evade the trapping. It is therefore important
to understand how the downstream mDM with a non-
Maxwellian distribution responds to the particle-trapping
from the upstream Alfvén waves. Addressing all these
questions is needed to determine the normalization and
slope of any Fermi-accelerated mDM component.

C. Sedov-Taylor phase of the supernova remnant

If the mDM particles are swept up by the supernova
remnant, the total mass density of the swept-up fluid, ρ0, is
increased. Then we expect the shock wave to propagate
slower and travel a shorter distance than the case in which
only the ISM is swept up. In principle, we can determine
this slowing-down effect by measuring Rsh, _Rsh and R̈sh of
the younger Type Ia supernovae, which are at the early
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stage of the Sedov-Taylor phase and where the dynamics of
expansion is predominantly governed by the swept-up
mass. We can infer the effect of deceleration from the
swept-up mDM once the E=ρ0 is obtained, where E is the
initial kinetic energy of the ejecta.
A simple estimate shows that it is not easy to make an

observable prediction, however. The typical ISM mass
density is ρISM ∼ 1 GeV=cm3. In the optimal case where
mDM constitutes all of the DM, the mDM mass density at
few kpc away from the Galactic Center (GC) is also
ρχ ∼ 1 GeV=cm3. Thus, the total swept-up mass ρ0 ¼
ρISM þ ρχ is at most a few times larger. On the other hand,
the kinetic energy of the ejecta from a Type Ia supernova is
approximately 1 − 2 × 1051 erg—which is also uncertain
by a factor a few. With these uncertainties from the mass
density and the ejecta kinetic energy, it is challenging to
quantify the effect of deceleration from the swept-up mDM
or make any constraints on the local mDM density. Lastly,
we note that while the volume within a few hundred pc
fromGC has ρDM > 10 GeV=cm3 and is an ideal site to test
the deceleration effect, there are no observed supernovae in
that region within the past 1000 years. The lack of events is
due to the fact that the molecular clouds in the central
molecular zone (inner ∼200 pc) is subject to disruptive
shear which suppresses the star formation rate [93].

VI. CONCLUSION

We have shown that it is possible for mDM to be swept
up by supernova remnants and to become isotropized in
the expanding fluid through plasma instabilities. A few of
the most representative plasma waves and instabilities
are considered: ion-acoustic, Langmuir, and lower-hybrid
wave instabilities of electrostatic waves, and beam-firehose
and Weibel instabilities of electromagnetic waves. While
there is a tremendous amount of free energy from the
relative motion between the ambient mDM and the super-
nova remnants, we find that the electrostatic waves are
never excited due to the fact that mDM with jqχ j=mχ ≪
e=mp is not able to drive the growth fast enough to over-
come ion Landau damping. On the other hand, electro-
magnetic waves can be excited by mDM because the wave
frequency is much smaller than the ion cyclotron frequency
and thus the ion cyclotron damping is avoided.
We find that for jqχ=mχ j ≳ 10−13e=MeV, mDM can be

isotropized in the expanding supernova remnants at the
Sedov-Taylor phase by driving electromagnetic beam-
firehose and Weibel instabilities in parallel and perpendi-
cular shocks, respectively, provided that mDM constitutes
all the DM content in the Milky Way. If mDM makes up
only a fraction of the total DM, then mDM might not able
to drive electromagnetic plasma waves at the late stage of
the Sedov-Taylor phase since the mDM beam velocity
threshold for the instability increases as the density of
mDM decreases.

Finally, we emphasize that the plasma waves prevent
the majority of the shocked mDM particles from free-
streaming out the supernova remnant via wave-particle
interactions. Moreover, the mDM particles undergo sig-
nificant energy loss from adiabatic decompression as the
remnant expands. Both effects play important roles in
the final velocity distribution of the shocked mDM in
the Milky Way, and our analysis suggests that the bulk of
the shocked mDM ends up with a velocity distribution
qualitatively similar to the unshocked distribution. Further
study of mDM wave-particle interactions is needed to deter-
mine to what extent mDM undergoes Fermi-acceleration and
its subsequent Galactic dynamics.
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APPENDIX: REVIEW OF UNMAGNETIZED
LINEAR RESPONSE FUNCTION

In this Appendix, we follow closely the derivations in
Refs. [72,94] to briefly review the dispersion relation for an
unmagnetized plasma with no magnetic fields present. The
derivation of the linear response for a magnetized plasma is
similar, and can be found in many plasma physics books,
e.g., Refs. [72,79,94,95].
We start with the collisionless Vlasov-Maxwell

equations� ∂
∂tþv ·∇þ qj

mj
E ·

∂
∂v

�
fjðx;v;tÞ¼0; Vlasov equation;

∇ ·E¼
X
j

4πqj

Z
fjðx;v;tÞd3v; Gauss Law; ðA1Þ

where E ¼ Eðx; tÞ is the electric field, and qj, and mj are
the charge and mass of species j. In the present analysis, we
consider longitudinal waves with small amplitude propa-
gating through a system near equilibrium. We consider a
spatially homogeneous plasma with no external electric and
magnetic fields, i.e., E0 ¼ B0 ¼ 0. Define a normalized
particle distribution function of the species j as

Fjðx; v; tÞ≡ fjðx; v; tÞ
n0j

; ðA2Þ
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where fjðx; v; tÞ is the density in (x, v) phase space and n0j
is the ambient number density. Both Eðx; tÞ and Fjðx; v; tÞ
can be written as the sum of their equilibrium values plus
small perturbation terms:

Eðx; tÞ → δEðx; tÞ;
Fjðx; v; tÞ → F0jðvÞ þ δFjðx; v; tÞ: ðA3Þ

The analysis is greatly simplified if we apply the Fourier-
Laplace transform on δE and δFj,

δEðx; tÞ ¼
Z

d3k eik·x
Z

ω0þi∞

ω0−i∞

dω
2πi

eωtδẼðk;ωÞ;

δFjðx; v; tÞ ¼
Z

d3k eik·x
Z

ω0þi∞

ω0−i∞

dω
2πi

eωtδF̃jðk; v;ωÞ;

ðA4Þ

where ω0 ¼ ReðωÞ is chosen large enough so that
the reverse integrals

R∞
0 δẼðk;ωÞ expð−ωtÞ dt andR∞

0 δF̃jðk; v;ωÞ expð−ωtÞ dt converge. Rewriting the lin-
earized Vlasov-Maxwell equations in (k, ω) space, then

−iðω − k · vÞδF̃jðk; v;ωÞ ¼
qj
mj

δẼ ·
∂F0jðvÞ

∂v ; ðA5Þ

ik · δẼðk;ωÞ ¼
X
j

4πn0jqj

Z
δF̃jðk; v;ωÞd3v: ðA6Þ

It is straightforward to show from Eqs. (A5) and (A6) that

ik · δẼðk;ωÞ
�
1þ

X
j

ω2
pj

k2

Z
k · ∂F0jðvÞ=∂v

ω − k · v
d3v

�
¼ 0;

ðA7Þ

where ω2
pj ¼ 4πn0jq2j=mj. Equation (A7) applies for the

longitudinal component of δẼ. The requirement for a
nontrivial solution of Eq. (A7) is

Dðk;ωÞ≡1þ
X
j

ω2
pj

k2

Z
k ·∂F0jðvÞ=∂v

ω−k ·v
d3v¼0; ðA8Þ

Equation (A8) is the definition of the unmagnetized plasma
dielectric function, Dðk;ωÞ, and the associated dispersion
relation.

1. Plasma dispersion function

In many plasma environments, each species is modeled
as a gas in thermal equilibrium. It is therefore useful to
further simplify the dispersion relation in Eq. (A8). A
drifting Maxwellian gas of species j has the distribution
function given by

F0jðvÞ ¼ π−3=2v−3th;j exp

�
−
ðv − V0jÞ2

v2th;j

�
; ðA9Þ

where V0j and vth;j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Tj=mj

p
are the drift velocity

and the thermal velocity of the species j, respectively.
Using Eq. (A9) in Eq. (A8), the dispersion relation of the
unmagnetized plasma is expressed as

0 ¼ Dðk;ωÞ ¼ 1þ
X
j

2ω2
pj

k2v2th;j
½1þ ξjZðξjÞ�; ðA10Þ

where ξj ¼ ðω − k · V0jÞ=kvth;j and

ZðξjÞ≡ 1ffiffiffi
π

p
Z

∞

−∞

e−x
2

x − ξj
dx: ðA11Þ

Here we examine some important properties of the plasma
dispersion function widely used in the literature of plasma
physics. The asymptotic expansion of ZðξjÞ for small and
large values of jξjj are given as [96]

ZðξjÞ ¼ i
ffiffiffi
π

p
expð−ξ2jÞ − 2ξj þ

4

3
ξ3j −

8

15
ξ5j þ � � � ;

for jξjj < 1; ðA12Þ
and

ZðξjÞ ¼ i
ffiffiffi
π

p
expð−ξ2jÞ −

1

ξj
−

1

2ξ3j
−

3

4ξ5j
þ � � �

for jξjj > 1: ðA13Þ
Also, differentiating ZðξjÞ with respect to ξj and applying
integration by parts, we obtain

Z0ðξjÞ ¼
−2ffiffiffi
π

p
Z

∞

−∞

xe−x
2

x − ξj
dx ¼ −2½1þ ξjZðξjÞ�: ðA14Þ

As an example to show the application of Eqs. (A10),
(A12) and (A13), consider Langmuir waves propagating
through a neutral electron-proton plasma at equilibrium
with zero drift velocities. Landau damping is avoided if
we require that ωr=k ≫ vth;e ≫ vth;i, i.e., jξej ≫ 1 and
jξij ≫ 1. The dispersion relation in Eq. (A10) becomes

0 ¼ Dðk;ωÞ

¼ 1 −
ω2
pe

ω2
r
− 3k2λ2De

ω4
pe

ω4
r
−
ω2
pi

ω2
r
þ � � �

≈ 1 −
ω2
pe

ω2
r
− 3k2λ2De

ω4
pe

ω4
r
þOðω6

peÞ; ðA15Þ

where λDe ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Te=4πnee2

p
is the electron Debye screening

length. The ion contribution is neglected because
ω2
pe ≫ ω2

pi in the neutral plasma. In the limit k2λ2De ≪ 1

where electron Landau damping is avoided, we obtain the
dispersion relation for stable Langmuir waves,
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ωr ¼ ωpe

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3k2λ2De

q
: ðA16Þ

Note that theLandau damping contribution comes from the
term i

ffiffiffi
π

p
exp ð−ξ2jÞ in Eqs. (A12) and (A13). In the regime

where ξj ∼ 1, the exponential term is not negligible, and the
waves suffer strong Landau damping from the species j. To
get the damping rate, one can numerically solve Eq. (A10) or
use the technique shown in the following subsection.

2. Weakly damped or growing waves

In this section, we provide some useful results on the
growth rate for the weakly damped or growing waves.
ExpandingDðk;ωr þ iγÞ in the limit jγ=ωrj ≪ 1, we obtain

0 ¼ Dðk;ωr þ iγÞ

¼ DReðk;ωrÞ þ iDImðk;ωrÞ þ iγ
∂DReðk;ωrÞ

∂ωr
; ðA17Þ

where we have separated Dðk;ωr þ iγÞ into real and
imaginary parts and assumed higher order terms are small.
The real part of Eq. (A17), DReðk;ωrÞ ¼ 0, determines the
real oscillation frequency. Setting the imaginary part to zero
then gives the damping or growing rate,

γ ¼ −DImðk;ωrÞ
∂DReðk;ωrÞ=∂ωr

; ðA18Þ

where γ < 0 and γ > 0 correspond to damping and growing
waves, respectively.
On the other hand, the dielectric function Dðk;ωr þ iγÞ

can be directly decomposed into its real and imaginary
components by utilizing the Plemelj formula,

1

ωr − k · v þ iγ

����
jγj≪ωr

¼ P
1

ωr − k · v
− iπδðωr − k · vÞ;

ðA19Þ

with P denoting the Cauchy principle value. We obtain

DReðk;ωrÞ ¼ 1þ
X
j

ω2
pj

k2
P
Z

k ·
∂F0jðvÞ

∂v
1

ωr − k · v
d3v;

ðA20aÞ

DImðk;ωrÞ ¼ −π
X
j

ω2
pj

k2

Z
k ·

∂F0jðvÞ
∂v δðωr − k · vÞd3v:

ðA20bÞ
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