
 

Hybrid and quark star matter based on a nonperturbative equation of state

Konstantin Otto ,1,* Micaela Oertel ,2,† and Bernd-Jochen Schaefer 1,‡

1Institut für Theoretische Physik, Justus-Liebig-Universität Gießen, D-35392 Gießen, Germany
2LUTH, Observatoire de Paris, PSL Research University, CNRS, Université de Paris,
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With the recent dawn of the multimessenger astronomy era a new window has opened to explore the
constituents of matter and their interactions under extreme conditions. One of the pending challenges of
modern physics is to probe the microscopic equation of state (EoS) of cold and dense matter via
macroscopic neutron star observations such as their masses and radii. Still unanswered issues concern the
detailed composition of matter in the core of neutron stars at high pressure and the possible presence of,
e.g., hyperons or quarks. By means of a nonperturbative functional renormalization group approach the
influence of quantum and density fluctuations on the quark matter EoS in β-equilibrium is investigated
within two- and three-flavor quark-meson model truncations and compared to results obtained with
common mean-field approximations where important fluctuations are usually ignored. We find that they
strongly impact the quark matter EoS.
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I. INTRODUCTION

The recent clean mass determinations for two pulsars,
PSR J1614 − 2230 and PSR J0348þ 0432 [1], confirm the
existence of neutron stars (NS) with a mass of about—and
possibly even beyond, see [2]—two solar masses. Since the
NS mass and radius depend strongly on the underlying
equation of state (EoS), see, e.g., the reviews [3–5], any
model for the NS interior should produce an EoS leading to
a maximum NS mass at least compatible with the above
observations. The maximum mass is thereby most sensitive
to the EoS at the highest densities. The central densities
of the maximum mass configuration can reach values of
about 1 fm−3, well above the nuclear saturation density,
ρ0 ∼ 0.16 fm−3, and other degrees of freedom than neu-
trons, protons, and electrons might appear. Although addi-
tional degrees of freedom soften the EoS and thus lower the
maximum mass, it has been demonstrated that the appear-
ance of hyperons [6], mesons, or Δ-baryons [7], is not
excluded by the observation of the two massive pulsars.
Numerous studies demonstrate in addition the possibility of
a transition to quark matter at high density in such massive

stars and the formation of so-called hybrid stars [8,9].
Under the hypothesis of absolutely stable strange quark
matter [10], even pure quark stars, also referred to as
strange stars, might exist [11].
The onset of a new degree of freedom causes not only a

reduction of the maximum mass but in general leads to
smaller radii of the stars, too. For strange quark stars, the
mass-radius relation is qualitatively different from neutron
and hybrid stars. In particular, strange quark stars are much
more compact than their neutron or hybrid counterparts
since they are mainly composed of self-bound matter. Thus,
observing a pulsar with a very small radius would be a
strong indication for a strange quark star. However, radii are
difficult to measure and the extracted values are model
dependent. Presently, they have been essentially estimated
from x-ray observations, see [12] for a recent review, and
from the tidal deformability of GW170817 measured by the
LIGO-Virgo collaboration [13–17]. The obtained values lie
in the range of 10–14 km for a fiducial 1.4 M⊙ star and are
perfectly compatible with neutron or hybrid stars. In the
near future further precise radius determinations are to be
expected from the NICER mission and additional binary
NS merger data from LIGO-Virgo detectors.
From a theoretical point of view, it is not possible up to

now to derive the dense matter EoS from first principles
over the entire range necessary for describing compact
stars, neither on the hadronic nor on the quark side.
Therefore simplified EoS at finite densities need to be
constructed. Currently two main strategies are pursued. The
first one consists in parametrizing the EoS in the unknown
density domains, putting the least possible number of
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model assumptions. The parameters are then adjusted to
existing constraints from nuclear experiments, observations
and/or theoretical calculations, including attempts to
extract the density dependence of the EoS directly from
NS mass and radius data. Examples are the EoS by [18,19].
The second, more traditional strategy is based on modeling
dense matter. It is less flexible than the aforementioned but
has the advantage of allowing to track among others the
matter’s particle content. Although some points remain
open, for instance on inhomogeneous matter in the crust,
decades of considerable effort together with constraints
from experimental data and theoretical calculations have
led to reliable models for nuclear matter up to roughly twice
the saturation density. Above this density, not only the
models are less under control, but non-nucleonic degrees of
freedom might appear and the situation becomes more
complicated.
Hybrid EoS thereby include both hadronic as well as

quark matter and are usually obtained by a combination of
the corresponding EoS for both sides. The quark matter part
is subject to even larger uncertainties than the hadronic one,
being per se a nonperturbative QCD issue. It is still under
development in particular at high baryonic densities and
small temperatures appropriate for NS. Examples are based
on perturbative QCD [20], density-dependent quark-mass
models [21], Nambu–Jona-Lasinio (NJL)-models [22],
quark-meson model investigations [23], Dyson-Schwinger
type approaches [24], holographic [25], or quasiparticle
models [26]. Lattice QCD calculations, which have allowed
us to considerably improve our understanding of the EoS at
low baryon chemical potentials, are afflicted by the sign
problem at finite density and can thus not directly be applied
to neutron stars. For the moment some models include
constraints from lattice results at low chemical potentials,
see, e.g., [27] or use QCD-like theories not subject to the
sign problem, for instance G2-QCD [28], but much effort is
still needed.
In this work an EoS for quark matter within a model

based on the underlying chiral symmetry breaking of QCD
is derived and the consequences for the structure of a
nonrotating star are analyzed. In contrast to many previous
works using the mean-field approximation, the functional
renormalization group (FRG) approach is employed here
to incorporate additional nonperturbative effects via quark
and meson fluctuations. The considered quantum and
density fluctuations are of particular importance in the
vicinity of phase transitions and are usually ignored in
mean-field approximations. These might be some reasons
for the recent growing interest in the application of the FRG
method to neutron star matter [29,30].
Moreover, a phase transition from hadronic matter to

quark matter can be modeled which might be of relevance
for hybrid stars. In the quark matter core of a hybrid star,
strange quarks might be suppressed due to their relatively
large effective mass [22,31–33]. In addition, large effective

strange quark masses often destabilize hybrid stars with a
strange quark matter core, leading to gravitational collapse
[22,32], such that we consider the two- and three-flavor
cases separately here.
With our approach it becomes feasible to investigate the

influence of quantum as well as density fluctuations on
observables for neutron stars such as the mass-radius
relation in a systematic manner. We will consider here
nonmagnetized matter, since magnetic effects on the EoS
are expected to play a minor role for pulsars [34].
The paper is organized as follows: after a brief setup of the

used effective quark-meson model for quark matter, in
Sec. II, three different approximations of the grand potential
are presented which incorporate various contributions of
certain quantum, thermal and density fluctuations. The
numerical results of the phase structure are summarized in
Sec. III. As input for the analysis of the mass-radius relation
of a neutron star the EoS is needed. In Sec. IV various EoS
for symmetric as well as for β-equilibrated and charge
neutral matter are calculated and compared with a non-
perturbative EoS obtained with the FRG with and without
strange quarks. In addition, a phase transition from hadronic
to quark matter is implemented and the parameter indepen-
dent consequences are studied. The speed of sound in quark
matter for various approximations is analyzed in Sec. IVA.
The resulting mass-radius relations for all the used approx-
imations are presented inSec. IV B.Weconclude inSec.Vand
summarize our findings. Parameter choices and numerical
details can be found in the Appendixes A and B.

II. CONSTRUCTING A NONPERTURBATIVE EOS

As mentioned above, we will be mainly concerned with
determining the EoS of the quark core of a hybrid star or
that of a strange star. To that end, we will consider a quark
part and a leptonic part. The latter will be treated as a
relativistic noninteracting Fermi gas. In the following, we
focus on the quark part which will be calculated within an
effective two- and three-quark flavor quark-meson model
framework and we will investigate different approxima-
tions. The quark-meson model has been widely used as an
effective model of low-energy QCD since it successfully
incorporates dynamical chiral symmetry breaking and
the generation of constituent quark masses. In contrast
to NJL-type models often employed in this context, the
quark-meson model used here does not implement a
repulsive vector interaction channel which would stiffen
the EoS [35]. We confront two different mean-field
approximations of the effective potential with the results
obtained within the functional renormalization group. This
comparison enables a systematic and parameter indepen-
dent analysis of the influence of certain quantum and
density fluctuations on the EoS for vanishing temperature.
Within this first study, we neglect the possibility of

diquark pairing and do not enter the discussion of the
extremely rich phase structure of color superconducting
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matter in the density range of neutron stars. Diquark pairing
is important for transport properties, but, being a Fermi
surface phenomenon, has only little influence on the
equation of state we are focusing on here.

A. Quark-meson models

The quark-meson model consists of Nf flavors of
constituent quarks q and dynamical (pseudo-)scalar meson
fields ϕa encoded in the meson matrix

Φ ≔ Taϕa; a ¼ 0;…; N2
f − 1 ð1Þ

with ϕa ≔ σa þ iπa and the generators Ta of the UðNfÞ
group transformations. The model features besides the
usual kinetic terms for all involved fields a Yukawa-type
interaction between the quarks and mesons as well as
mesonic self-interactions through the chirally invariant
potential

Uðρ1;…; ρNf
Þ; ð2Þ

which is in general a function of Nf independent chiral
invariants

ρn ¼ Tr½ðΦ†ΦÞn�; n ¼ 1;…; Nf: ð3Þ

For two light and one heavy quark flavors, Nf ¼ 2þ 1, the
generators of the corresponding Uð3Þ transformations in
flavor space can be chosen as the usual Gell-Mann matrices
λ̂a, i.e., Ta ¼ λ̂a=2. Omitting in the effective potential the
highest chiral invariant ρ3 whose associated coupling
constant is of negative mass dimension, the three-quark
flavor Euclidean Lagrangian reads

Lð2þ1Þ
qm ¼ q̄ð∂ þ gTaðσa þ iγ5πaÞÞqþ Trð∂μΦ†∂μΦÞ

þUðρ1; ρ2Þ − cAξ − clσl − csσs ð4Þ

wherein additionally the lowest order axial Uð1ÞA sym-
metry breaking term

ξ ≔ detΦþ detΦ† ð5Þ

and two explicit chiral symmetry breaking terms −clσl −
csσs have been added. We assume here a perfect SUð2Þ
isospin symmetry, such that the two lightest quark flavors
up and down can be replaced by one index l ¼ u ¼ d while
the strange quark flavor is denoted by the index s. The
relation of the singlet-octet basis (σ0, σ8) and the non-
strange-strange basis (σl, σs) in the scalar meson sector is
governed by a rotation

�
σl

σs

�
¼ 1ffiffiffi

3
p

� ffiffiffi
2

p
1

1 −
ffiffiffi
2

p
��

σ0

σ8

�
ð6Þ

such that the isospin-symmetric vacuum condensate eval-
uates to

hΦi ¼ T0σ0 þ T8σ8 ¼ diag

�
σl
2
;
σl
2
;
σsffiffiffi
2

p
�
: ð7Þ

For only two quark flavors,Nf ¼ 2, the model simplifies to

Lð2Þ
qm ¼ q̄

�
∂ þ g

2
ðσ þ iγ5τ⃗ · π⃗Þ

�
qþ 1

2
ð∂μφÞ2 þ UðρÞ − cσ

ð8Þ

with the three Pauli matrices τ⃗ as generators and only one
independent chiral invariant

ρ≡ ρ1 ¼
1

2
ðσ2 þ π⃗2Þ ð9Þ

in the mesonic chiral effective potential U with one scalar
field σ and three pseudoscalar pions π⃗ summarized in
φT ≔ ðσ; π⃗Þ. Implicitly a maximal Uð1ÞA-symmetry break-
ing is assumed in this representation since the remaining
chiral (pseudo)scalar multiplets, the η and a⃗ fields, are
neglected. For more details see, e.g., [36].
The grand partition function Z in thermal equilibrium is

defined by a path integral over the quark/antiquark and
meson fields wherein the temperature is introduced via the
Matsubara formalism. The Euclidean Lagrangian generally
contains Nf independent quark chemical potentials μf
which are added to the quark-meson Lagrangian in stan-
dard thermodynamic manner

LðNfÞ ¼ L
ðNfÞ
qm þ

XNf

f

μfq
†
fqf: ð10Þ

The three quark flavor chemical potentials are not
independent. Since we are interested in cold neutron
star matter, we assume weak equilibrium including β-
equilibrium with neutrinos freely leaving the star,

μu ¼ μ −
2

3
μe

μd ¼ μs ¼ μþ 1

3
μe; ð11Þ

where μ denotes the quark chemical potential related to
baryon number, μ ¼ μB=3, and μe the electron chemical
potential which in the present case is the negative charge
chemical potential. In addition, electrical charge neutrality
has to be fulfilled,

2

3
nu −

1

3
nd −

1

3
ns − ne ¼ 0; ð12Þ

such that only one independent chemical potential remains.
We choose μ as such. Note that even though the chemical
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potentials introduced in Eq. (11) break isospin symmetry,
we still assume only one light condensate σl as an
approximation. This leads to equal masses mu¼md¼ml
even in isospin asymmetric matter.
Finally, the logarithm of the grand partition function

yields the total grand potential which in general incorpo-
rates the thermal, density and quantum fluctuations of the
quark and meson fields

ΩðT; μÞ ¼ −T lnZ
V

: ð13Þ

B. Mean-field approximation

In mean-field approximation (MFA) the grand potential
for the quark-meson model basically splits into a quark
loop and a static meson contribution

ΩðT; μÞ ¼ Ωq þ Ωm: ð14Þ

For Nf ¼ 2þ 1 quark flavors the meson contribution Ωm,
ignoring the ρ3 invariant, reads

Ωð2þ1Þ
m ¼ Uχðρ1; ρ2Þ − cAξ − clσl − csσs ð15Þ

with the chirally symmetric meson potential Uχðρ1; ρ2Þ ¼
m2ρ1 þ λ1ρ

2
1 þ λ2ρ2 introducing in this manner a mass

parameter m2 and two quartic couplings λi.
For only two quark flavors the chiral potential

simplifies to

UχðρÞ ¼ m2ρþ λρ2: ð16Þ

The employed input parameters can be found in
Appendix A.
The integration over the quark loop yields a UV finite

and explicitly temperature dependent contribution

Ωð2þ1Þ
q ¼ Nc

π2
T

X
f¼u;d;s

Z
∞

0

dpp2½lnð1 − nfðEf; μf; TÞÞ

þ lnð1 − nfðEf;−μf; TÞÞ� ð17Þ

with the usual Fermi-Dirac distribution functions
nfðEf; μf; TÞ ¼ 1=½1þ expððEf − μfÞ=TÞ�, the quark

energies Ef ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

f

q
and corresponding light, ml ¼

gσl=2, and strange quark masses ms ¼ gσs=
ffiffiffi
2

p
. The light

and the strange condensates σl and σs are the temperature
and quark chemical potential dependent minima of the
full thermodynamic potential. Again, for only two quark
flavors the strange quark contribution in this expression is
simply dropped and the light quark mass is replaced by
ml ¼ gσ=2 with one chiral order parameter σ.

In general, the UV divergent vacuum contribution of the
quark loop to the potential can be completely absorbed in
the model parameters because the quark-meson model is
renormalizable. Ignoring this divergent zero point part
yields the standard MFA (sMFA). However, this vacuum
contribution is automatically included in the fully renor-
malized quark flow equation,

Ωð2þ1Þ
rMFA;q ¼

Nc

6π2
X

f¼u;d;s

Z
Λ

0

dk
k4

Ef

×

�
tanh

�
Ef − μf

2T

�
þ tanh

�
Ef þ μf

2T

��
: ð18Þ

In this way important vacuum fluctuations in addition to the
thermal and density fluctuations from the quark loops are
included in the grand potential [37]. In the following, we
denote this approach by renormalized MFA (rMFA). In
both mean-field approximations the fluctuations and back-
reactions on the mesonic sector are completely left out
and the same static (tree-level) meson potential is used.
However, all quark and meson fluctuations can finally be
considered by applying the functional renormalization
group method.

C. Functional renormalization group

As mentioned in the Introduction a suitable framework to
incorporate quantum fluctuations in a consistent way is
based on the nonperturbative functional renormalization
group in terms of the Wetterich equation [38]

∂tΓk ¼
1

2
Tr½∂tRkðΓð2Þ

k þ RkÞ−1� ð19Þ

with the RG time t ¼ lnðk=ΛÞ. The effective average action
Γk interpolates between a microscopic or bare UV action
SΛ ¼ Γk→Λ and the full quantum effective action Γ ¼ Γk→0

in the infrared and governs the dynamics of the field
expectation values after the integration of quantum fluctu-
ations from the UV scale Λ down to the infrared scale kIR.
The infrared regulator Rk specifies the regularization of
quantum fluctuations near an infrared momentum shell

with momentum k and Γð2Þ
k denotes the second functional

derivative of the effective average action with respect to the
fields of the given theory. The trace represents a summation
and integration over all discrete and continuous indices.
The highly nonlinear Wetterich equation has a simple one-
loop structure but includes higher loop contributions in
perturbation theory since the full nonperturbative propa-
gator enters the loop diagram. One advantage of this
approach is that it does not rely on the existence of a
small expansion parameter and thus is applicable in the
nonperturbative regime. QCD-related reviews on the func-
tional RG approach can be found in [39].
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In order to solve the functional equation numerically
some truncations are required that turn it into a finite-
dimensional partial differential equation. This truncation
might induce a certain dependence of physical observables
on the regulator, but this can be minimized by choosing
optimized regulators or by implementation of RG consis-
tency [40]. In this work, a modified three-dimensional flat
regulator has been used [41].
The flow equation for Γk must be supplemented with an

initial condition at k ¼ Λ which according to Eq. (4) reads
for three flavors

Γk¼Λ ¼
Z

d4xq̄ð∂ þ gTaðσa þ iγ5πaÞÞq

þ Trð∂μΦ†∂μΦÞ þ Ωð2þ1Þ
k¼Λ ðρ1; ρ̃2Þ ð20Þ

with ρ̃2 ≔ ρ2 − ρ21=3. This truncation for the effective
action corresponds to a leading-order derivative expansion
with standard kinetic terms for the meson fields. Note that
in this local potential approximation (LPA) no scalar wave
function renormalizations and no scale-dependence in the
Yukawa couplings between quarks and mesons are taken
into account. However, in this truncation the important
dynamical backreaction of the mesons on the quark sector
of the model is already included. For more details see [36].
Finally, this yields for three quark flavors the IR and UV

finite flow equation for the effective potential

∂Ωð2þ1Þ
k

∂k ¼ k4

12π2

�X
b

1

Eb
coth

�
Eb

2T

�
− 2Nc

X
f¼u;d;s

1

Ef

×

�
tanh

�
Ef − μf
2T

�
þ tanh

�
Ef þ μf

2T

���
; ð21Þ

where now the flow of the mesonic degrees of freedom is

taken into account. The meson energies Eb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

b

q
include the RG scale dependent meson masses mb which
are obtained by diagonalizing the mass entries of the matrix

M2
k;ab ≔

∂2Ωk

∂ϕa∂ϕb
: ð22Þ

Details and the lengthy explicit expressions of the eigen-
values can be found in [36]. Evolving the system toward the
infrared yields the full thermodynamic potential evaluated
at the solution of the gap equation, i.e., the minimum of the
grand potential.
As initial UV condition for the flow Eq. (21) the meson

potential is parametrized as

Ωð2þ1Þ
k¼Λ ¼ Uχ;k¼Λðρ1; ρ̃2Þ − cAξ − clσl − csσs ð23Þ

with the scale-dependent chiral potential

Uχ;k¼Λðρ1; ρ̃2Þ ¼ a10ρ1 þ
a20
2

ρ21 þ a01ρ̃2 ð24Þ

which differs only in the second argument ρ̃2 from the
corresponding chiral potential in mean-field approximation
Eq. (15). Note that only the expansion coefficients aij in the
potential are scale dependent while all remaining param-
eters are kept constant. See Appendix A for the initial
parameter fixing.
For two quark flavors the flow, Eq. (21), simplifies to

∂Ωð2Þ
k

∂k ¼ k4

12π2

�
1

Eσ
coth

�
Eσ

2T

�
þ 3

Eπ
coth

�
Eπ

2T

�

−
2Nc

Eq

X
f¼u;d

�
tanh

�
Eq − μf
2T

�
þ tanh

�
Eqþ μf

2T

���
;

ð25Þ

with only one scalar σ and three pion degrees of freedom.
Moreover, for T ¼ 0 and Nf generic quark flavors the

flow reduces to

∂Ωk

∂k
				
T¼0

¼ k4

12π2

�X
b

1

Eb
− 4Nc

X
f

1

Ef
θðEf − μfÞ

�
: ð26Þ

In this limit the Fermi-Dirac distributions of the fermionic
threshold functions in Eq. (21) or in Eq. (25) become a
sharp Heaviside function. Hence, for μ2f > m2

f, only scales
above the Fermi sea k2 > k2f;sea with k2f;sea ≡ μ2f −m2

f

contribute to the corresponding quark loop and are inte-
grated out yielding a finite quark density. Hence, increasing
the chemical potential suppresses more and more the quark
dynamics of the model. The μf independence below the
onset chemical potential for the density is related to the so-
called “Silver Blaze property” [42]. In the following we
will refer to this phenomenon in that manner.
Note that at vanishing temperature the quark-meson

model is equivalent to its Polyakov-loop extended version,
the Polyakov-quark-meson (PQM) model [43]. In such
PQM models the deconfinement phase transition is cap-
tured statistically by including an effective potential for the
gluon background field in terms of the order parameter
fields for deconfinement, the Polyakov loops. There are
basically two major modifications by the Polyakov loops
which vanish in the zero temperature limit exactly: all
known variants of the effective Polyakov loop potential
[44–47] are proportional to the temperature and the
implicit dependence of the Polyakov-loop variables on
the quark loop dynamics degenerate to a standard Fermi-
Dirac distribution without a Polyakov-loop contribution.
Hence, exactly at T ¼ 0 the Polyakov-loop in this context
is irrelevant for the thermodynamics at μ > 0. However,
a phenomenological finite density generalization of the
Polyakov loop potential at zero temperature can stiffen the
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EoS [48]. For a recent review see, e.g., [49] and for recent
(P)QM phase structure investigations with the FRG see
e.g., [50].

III. PHASE STRUCTURE

The bulk thermodynamics of the system is determined
by the effective potential which depends in the case of two
flavors on one (nonstrange) condensate and for three or,
more precisely, (2þ 1) flavors on two (one nonstrange and
one strange) condensates. The condensates are determined
by minimizing the total effective potential with respect to
the corresponding fields, here generically denoted by Φ,

∂Ω
∂Φ

				
Φ¼hΦi

¼ 0: ð27Þ

This yields the chiral nonstrange σl and strange σs con-
densates or expectation values as functions of the external
parameters, i.e., the temperature and the quark chemical
potentials. The thermodynamic pressure is just the negative
of the effective potential evaluated at the minimum and
normalized in vacuum

p ¼ −ðΩ −Ω0ÞjΦ¼hΦi: ð28Þ

In the FRG case, the infrared-evolved potentialΩk¼0 −Ω0
k¼0

has to be used.
By varying the external parameters the phase structure of

the chiral transition can now be analyzed. For simplicity,
we consider here a common chemical potential for all quark
flavors, i.e., we set μe ¼ 0 in Eq. (11). Our numerical
findings are collected in Fig. 1 where the phase diagrams
for two quark flavors (dotted/solid lines) and for three

flavors (dashed line) are shown. The numerical input
parameters and contingent cutoff dependency are collected
in Appendix A; details on the numerical implementation
can be found in Appendix B.
Typical for the phase structure obtained with the FRG is

the back-bending behavior of the chiral phase transition
line (blue lines) for small temperatures characterized by a
positive slope of the critical chemical potential as a function
of temperature. The critical endpoints (CEPs) are denoted
as dots in the figure and the crossover regions/first-order
transitions as dotted and solid lines, respectively. The origin
of this back-bending phenomenon is not yet completely
clarified. It might be related to the fact that additional
interaction channels should be considered, see [51] for a
detailed discussion. For the chosen vacuum input param-
eters and in the LPA truncation of the FRG equation,
see Appendix A, the CEP is located at very small temper-
atures, around T ∼ 10 MeV for two and three quark
flavors. In mean-field approximations the thermodynamical
behavior at small temperatures is different and the first-
order transition line hits the chemical potential axis
perpendicularly [51].
Furthermore, since the inclusion of fluctuations generi-

cally smoothes the chiral phase transition, the crossover
transition line is shifted to higher temperatures if more
fluctuations in the thermodynamic potential are taken into
account [50], except at very low temperatures where the
back-bending phenomenon takes over. This is nicely
demonstrated in Fig. 2(a) where both the light (solid lines)
and the strange (dashed lines) chiral condensates are shown
as a function of temperature for vanishing quark chemical
potential.
In sMFAwhere only the thermal quark loop contribution is

considered, the pseudocritical crossover temperature Tc ≈
140 MeV at μ ¼ 0 is smallest. Already the inclusion of the
vacuumquantum fluctuations of the quarks, labeled as rMFA
in the figures, lifts the pseudocritical temperature by about
30 MeV. Interestingly, the whole chiral phase transition is
shifted constantly toward higher temperatures by roughly
this amount for all chemical potentials, cf. Fig. 1. As
a consequence, the first-order transition at T ¼ 0 is also
pushed to higher chemical potentials as visible in Fig. 2(b).
This trend is continued at least for moderate chemical
potentials when additionally meson fluctuations with the
FRG are taken into account. However, for smaller temper-
atures and due to the back-bending of the transition line, see.
Fig. 1, the critical chemical potential is pushed to smaller
values in contrast to the previous argument. This will later be
of relevance for the EoS.
All condensates exhibit for T ¼ 0 a first-order phase

transition close to μ ≈ 300 MeV corresponding to the
light quark mass in the vacuum. In sMFA, the first-order
transition is strongest, in FRG weakest. Hence, the gap in
the FRG light condensate is quite small and melts only
moderately after the transition, still signaling a chirally

FIG. 1. Phase diagrams of the Nf ¼ 2 quark-meson model in
three different approximations (sMFA, rMFA, and FRG). The
dots are critical endpoints. Dotted lines are smooth crossovers
and solid lines first-order phase transitions. In addition, the
corresponding Nf ¼ 2þ 1 flavor phase structure obtained with
the FRG is also shown (dashed line).
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broken phase in this density regime of the phase diagram
[52]. In rMFA the light condensate is constant until μ ¼
300 MeV and melts down before the first-order jump
which is consistent with the Silver Blaze property. It is
likely that for a sigma mass below 560 MeV the rMFA
condensates immediately jump at the light quark masses
as well.
Just below a quark chemical potential of about 430 MeV,

the value that coincides with the strange quark mass in the
vacuum, a further decrease is seen in all three strange
condensates and a smooth chiral phase transition takes place.
However, when strange quarks are added to the system

an opposite behavior is found for vanishing and moderate
chemical potentials and the three-flavor crossover line is
pushed down again, see the dashed line in Fig. 1. The
difference to the two-flavor phase structure shrinks for

decreasing temperatures. Below T < 50 MeV almost no
influence of the strange quark on the transition line is
observed where the dashed line merges with the solid two-
quark flavor line.

IV. EOS FOR QUARK AND HYBRID STARS

The equations of state (EoS) for symmetric quark matter,
i.e., for equal chemical potentials, obtained in MFAs and
with the FRG, are compared to each other in Fig. 3(a). Solid
lines are the two-quark flavor findings and the dashed lines
the corresponding three-flavor calculations. The numerical
results are almost insensitive to the strange quark before the
onset of the strange chiral phase transition around energy
densities ε ≈ 550 MeV=fm3 but start to deviate thereafter,
see Fig. 3(a). In MFAs the transition is more gradually

FIG. 2. Chiral condensates in the Nf ¼ 2þ 1 flavor quark-meson model in three different approximations (FRG, rMFA and sMFA).
The light condensates σl (solid) are the lower lines and the strange condensates σs (dashed) the upper lines.

FIG. 3. Three different EoS of the Nf ¼ 2 (solid) and Nf ¼ 2þ 1 (dashed) quark-meson model at T ¼ 0 for ml ≈ 300 MeV,
ms ≈ 430 MeV and mσ ¼ 560 MeV.
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realized and the deviation is less pronounced than within
the FRG. This can already be seen in Fig. 2(b) where the
strange condensate in MFA decreases moderately for
chemical potentials smaller than the strange quark mass
ms ≈ 430 MeV. In the FRG curve there is a more rapid
onset with a steeper slope around the strange quark mass.
Note that this behavior could also be related to a second
phase transition in the light quark sector as has been found
in [52].
Furthermore, it is obvious that vacuum fluctuations

reduce the slope of the EoS, i.e., the sound speed, and
over most of the shown density range the EoS obtained in
FRG has still a smaller slope, see Sec. IVA.
With the inclusion of a free relativistic electron gas and

the conditions for weak equilibrium and charge neutrality,
cf. Eqs. (11) and (12), we obtain slightly modified EoS.
The results for β-stable and neutral matter are presented in
Fig. 3(b). Differences to the result for symmetric quark
matter are visible almost exclusively for Nf ¼ 2þ 1 where
the weak equilibrium and charge neutrality conditions
render the population of strange quarks more favorable.
Hence, the onset of strangeness is pushed to smaller energy
densities, leading to a pressure reduction for a given energy
density beyond the onset.
Note that in charge neutral and β-equilibrated matter

isospin symmetry is broken and the chemical potentials of
the up and down quarks split. However, our approximation
with only one chiral light condensate σl for both up and
down quark flavors yields in all cases degenerated up- and
down-quark masses. For large μ the restoration of chiral
symmetry in the light quark sector suppresses both quark
masses such that only small mass differences are expected
there in contrast to the behavior in the vicinity of the chiral
transition. The impact on the EoS might be more pro-
nounced, and the small difference between symmetric and
charge neutral matter in the two-flavor case might be an
artefact of this approximation. For a more complete
analysis including isospin symmetry breaking the intro-
duction of an additional third chiral condensate is necessary
which is, however, beyond the scope of the present work.
In order to allow for a description of hybrid stars with a

phase transition from hadronic to quark matter in the
interior of the star we combine the quark matter EoS with
a nuclear one. The transition is achieved with a standard
Maxwell construction1 that maximizes the pressure for a
given chemical potential. For the nuclear EoS we consider
some representative models compatible with several
nuclear physics constraints as well as the maximum neutron
star mass and the GW170817 tidal deformability. Three of
them are energy density functional models, one is based on
a nonrelativistic Skyrme parameterization, RG(SLy4) [54],

and two are relativistic mean field models, HS(DD2) [55]
and SFHo [56]. The BL EoS [57] is formulated in the
framework of the Brueckner-Bethe-Goldstone many-body
theory with chiral nuclear forces.
In Fig. 4 a comparison of different nuclear EoS (dash-

dotted lines) with the Nf ¼ 2 (solid) and Nf ¼ 2þ 1
(dashed) EoSs evaluated with the FRG respecting β-
equilibrium and charge neutrality is given. We do not
consider the FRG results as very realistic at low densities
below μB=mn ≲ 1.2, where a hadronic phase is expected. In
addition, the attractive meson interactions in the QM
model, lead to a very high pressure for a given chemical
potential in this range. We only present it for completeness.
Disregarding the unphysical part of the QM EoS obviously
all nuclear EoS except the HS(DD2) EoS produce higher
pressure than the QM one at a given baryon chemical
potential (μB ¼ 3μ) for the entire range of interest for
compact stars. Hence, no hybrid stars could exist with these
model combinations. The pressure of the HS(DD2) EoS
intersects the two-flavor FRG pressure curve around
μB=mn ≈ 1.38 corresponding to the appropriate physical
transition from nuclear to quark matter.
By construction, the combination of the two-flavor QM

EoS from the FRG with the HS(DD2) EoS leads to a first-
order phase transition between the confined nuclear matter
and the deconfined quark matter which is characterized by
a discontinuity in the energy density. This can be observed
in Fig. 5 which depicts the constructed hybrid Nf ¼ 2
(DD2þ QM2) and Nf ¼ 2þ 1 (DD2þ QM2þ 1) EoSs
in comparison to the hybrid EoS QHC19 [58] and a

FIG. 4. Pressure as a function of the baryon chemical potential
in units of the neutron mass for various hadronic RMF models
(dash-dotted) compared to the Nf ¼ 2 (solid) and Nf ¼ 2þ 1
(dashed) QM EoS in FRG (β-equilibrated and neutral quark
matter). Intersections (black dots) of the quark-matter pressure
with the HS(DD2) model at higher pressure are found while
(unphysical) intersections at lower pressure are ignored, see text
for details.

1This assumes a high surface tension at the hadron-quark
interface, see e.g., [53] for a discussion of this point in the context
of a potential hadron-quark transition within hybrid stars.
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parametrized EoS [59].2 The QHC19 EoS features a
smooth crossover quark-hadron transition. For the para-
metrized EoS the HS(DD2) EoS is used for the hadronic
regime and the quark matter side is parametrized as

pðεÞ ¼
(
pc; εc < ε < εc þ Δε
pc þ s½ε − ðεc þ ΔεÞ�; ε > εc þ Δε;

ð29Þ

which describes a first-order transition at fεc; pcg with
energy gap Δε and a constant slope s ¼ ∂p=∂ε, i.e., a
constant quark matter sound speed squared, thereafter.
Following the idea of Ref. [59], we choose pc ¼ 1.89 ×
1035 dyn cm−2 and εc ¼ 9.02 × 1014 g cm−3 which corre-
sponds to nc ≈ 3n0 and Δε=εc ¼ 0.6. For the slope, we
consider two extreme parameterizations, one with s ¼ 1=3
corresponding to the asymptotical QCD value, and one
with s ¼ 1 corresponding to the maximally allowed sound
speed by causality. This ensures the onset of the phase
transition at similar densities to those found in our hybrid
construction with two-flavor QM. The large gap in the
energy density has been chosen to produce twin stars, i.e.,
an additional branch of hybrid stars with the same mass
but different radius than their nuclear counterpart [61].
Such twin star configurations are found, for example,
in studies with NJL quark matter including additional
repulsive 8-quark interactions [62]. A comparison of that

parameterization to the FRG calculation in Fig. 5 reveals
that the energy gaps in our construction are much too small
to produce a disconnected second branch but favor a single
connected hybrid-nuclear branch. In fact, our two-flavor
hybrid model is well reproduced by values of Δε=εc ¼
0.18 and pc=εc ¼ 0.23 and a constant c2s ¼ 1=3 on the
quark matter side. These values lie well in between the
region identified in [61] as that giving rise to a connected
branch. Similar arguments show that the hybrid model with
2þ 1 flavors on the quark side again leads to a connected
branch.

A. Sound speed

More information on dense matter can be gained through
a detailed investigation of the speed of sound [63]. It
measures the stiffness of the EoS for a one fluid flow by the
thermodynamic derivative of the pressure with respect to
the energy density at constant entropy and particle numbers

c2s ≡ ∂pðεÞ
∂ε

				
S;Ni

ð30Þ

and can be identified as the speed of propagation of sound
waves. Causality implies an upper bound c2s ≤ 1 and
thermodynamic stability a lower bound c2s > 0. For an
ideal gas composed of pointlike ultrarelativistic (massless)
components the squared speed of sound is equal to one
third, c2s ¼ 1=3. This is common to all systems with
conformal symmetry of which an ideal massless gas is
just an example. Even for any strongly interacting system
the vanishing of the trace of the energy-momentum tensor,
a feature of conformal theories, implies that the energy
density is connected to the pressure by ε ¼ 3p hence
yielding c2s ¼ 1=3 independently of density, temperature,
or interactions. The speed of sound is decreased such that
c2s < 1=3 when a mass for the components is included or
when (perturbative) interactions among the components
take place. In the case of QCD at asymptotically high
densities or temperatures, far exceeding the densities in the
core of compact stars, a weak coupling expansion is valid
(pQCD) such that c2s is expected to reach the conformal
limit with increasing density from below [64]. This
behavior is confirmed in QCD lattice calculations at finite
temperature as well as at zero and small baryon chemical
potentials [65].
The speed of sound has also been investigated in

alternative theories for which for example the AdS=CFT
correspondence holds where calculations in the strong
coupling limit are feasible, see, e.g., [66]. It has been
conjectured that c2s is always bounded from above in such
classes of strongly coupled field theories by the conformal
value of 1=3 [67] although recently counterexamples have
been presented [68]. For more details of this conjecture
see [64].

FIG. 5. Composite EoS for the QM and DD2 nuclear model,
cf. Fig. 4, compared with the hadron quark EoS QHC19 [58] and
a combination of the HS(DD2) EoS with a parametrized quark
matter EoS [59] for c2s ≡ s ¼ 1 or 1=3, respectively. While the
QHC19 model features a continuous quark-hadron transition, the
others employ a Maxwell-constructed first-order transition and a
discontinuity in the energy density ε.

2Note that all employed nuclear EoSs, the QHC19 EoS as well
as our hybrid star EoSs with the FRG are available online in the
CompStar Online Supernovae Equations of State (CompOSE)
database [60], see https://compose.obspm.fr/.
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The speed of sound of the QM model in both mean-field
approximations and the FRG calculation is found generally
to be always smaller than c2s ¼ 1=3. An alternative scenario
could be the presence of a bump in c2s at intermediate
densities before approaching the upper bound from below
asymptotically and thus implying the existence of a
maximum and a local minimum of c2s as a function of
the chemical potential. This scenario is supported by
another recent FRG analysis including diquark condensa-
tion [29] where a maximum in c2s above 1=3 is found. The
additional inclusion of vector interactions in the quark-
meson model [69] is also expected to stiffen the EoS.
Our result for the speed of sound of quark matter with a

flavor-symmetric chemical potential is shown in Fig. 6(a).
In the Nf ¼ 2 mean-field approximation (solid lines) the
speed of sound converges to the limit c2s ¼ 1=3 while the
addition of strange quarks (dashed lines) leads to a
reduction of c2s around scales of the strange chiral phase
transition. This behavior has already been observed in
Fig. 3(a) and is expected due to the additionally populated
strange quark states softening the EoS. In the FRG solution,
the speed of sound is generally smaller than the asymptotic
mean-field values beyond the transition which can be
attributed to the quantum fluctuations captured within
the FRG approach.
Furthermore, the strength of the first-order chiral phase

transition, i.e., the gap in the order parameter, is found to
correlate with the size of the jump in the speed of sound.
Hence, the strong first-order transition in sMFA leads to a
jump of c2s close to its asymptotic Stefan-Boltzmann value
c2s ¼ 1=3 which leads to the almost linear behavior of the
EoS even at low pressure, see Fig. 3(a). The more washed-
out transition in rMFA induces an initially smaller slope of

the EoS. This becomes more significant in the FRG
calculation: due to an even smoother transition a compa-
rably small gap Δε is found in Fig. 3(a). In agreement with
Fig. 6(a) the slope is consistently smaller than that of the
mean-field calculations.
For Nf ¼ 2þ 1, c2s is found to be sensitive to the

numerical error caused by the employed solution method
of the flow equation which leads to visible fluctuations at
high μ. Therefore, Fig. 6(a) depicts for μ > 350 MeV
averaged values in conjunction with error intervals displayed
as blue band. For more technical details see Appendix B.
The speed of sound for β-stable and charge-neutral quark

matter is displayed in Fig. 6(b). Note that due to the usage
of only one light condensate, the first-order transition
cannot be resolved exactly in this approximation and hence
the drop of the speed of sound to zero at low chemical
potential is not shown. Due to the numerical uncertainties
mentioned above, we postpone a careful Nf ¼ 2þ 1

analysis to a future work. Qualitatively, we observe the
same behavior as for a flavor-symmetric chemical potential.
However, in mean-field approximation we find that the
reduction of the speed of sound due to the onset of
strangeness takes place at lower chemical potentials and
more gradually than in symmetric quark matter. This is in
agreement with the onset of strangeness already at small
energy density, see Fig. 3(b) and the discussion in the
previous section. In Fig. 6(b) we also show the speed of
sound for the HS(DD2) nuclear EoS and indicate the
transition point to quark matter in the DD2þ QM2 EoS
by a vertical line. As suggested in [70], this discontinuity in
the speed of sound can be related to a δ-function singularity
in the fundamental derivative, leading to possibly non-
convex thermodynamics.

FIG. 6. Sound speed squared c2s at zero temperature as a function of μ for three different quark matter EoS and the hadronic DD2 EoS
(solid Nf ¼ 2, dashed Nf ¼ 2þ 1; left panel: flavor symmetric matter, right panel: β-equilibrated neutral matter). The thin horizontal
lines indicate the Stefan-Boltzmann limit c2s ¼ 1=3. The vertical black-dotted line in the right panel illustrates the first-order transition
from the hadronic HS(DD2) to the QM2 EoS, cf. Fig. 5. The metastable phases are extrapolated in gray color. For the blue error in the
left panel band see Appendix B.
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B. Neutron star models

In order to determine the influence of fluctuations on the
mass-radius relation of a neutron star, we employ hydro-
static equilibrium solutions for a relativistic spherically
symmetric compact star composed of a perfect fluid, which
have been derived from Einstein’s equations by Tolman,
Oppenheimer and Volkoff (TOV) [71]. In Schwarzschild
coordinates the corresponding equations determining the
pressure p and the enclosed gravitational massM of the star
as a function of the radius r read3

dpðrÞ
dr

¼ −
G
r
½pðrÞ þ εðrÞ�½MðrÞ þ 4πr3pðrÞ�

ðr − 2GMðrÞÞ ð31Þ

dMðrÞ
dr

¼ 4πr2εðrÞ; ð32Þ

wherein ε denotes the energy density and G the gravita-
tional constant. For a given EoS in terms of pðεÞ as input
these equations can be integrated from the origin for a given
choice of a central pressure p0, i.e., pðr ¼ 0Þ ¼ p0 and
Mðr ¼ 0Þ ¼ 0. The value of the radius where the pressure
vanishes, i.e., pðr ¼ RÞ ¼ 0, defines the surface and thus
the gravitational mass MðRÞ and radius R of the star.
Varying the unknown central pressure p0 yields the mass-
radius relation.
The mass-radius relations for the pure β-stable and

charge-neutral quark matter EoS are shown in Fig. 7(a)
for three different approximations. Please keep in mind
that quark matter is not absolutely stable within our setup
and that thus such pure quark stars could not exist. We,

nevertheless, show the mass-radius relations, since they are
instructive to understand the impact of the fluctuations.
Solid lines are the solutions for a two-flavor EoS and
dashed lines the three-flavor results. In general, all three-
flavor calculations yield a smaller maximum mass than the
corresponding two-flavor results, which can be understood
by the softening of the EoS due to the additional strange
degrees of freedom. Only the two-flavor sMFA and both
the two- and three-flavor FRG results yield a maximum
mass above 2 M⊙. Furthermore, the inclusion of the
renormalized vacuum fluctuations in the rMFA in contrast
to the sMFA leads to smaller masses and radii. The
additional consideration of mesonic fluctuations via the
full FRG computation increases the maximum mass even
slightly beyond the sMFA result but also leads to signifi-
cantly larger radii. The reason is that within the present
FRG setup, the density jump at the surface is much smaller
than in the MFA calculations, see Fig. 3(b), such that the
star becomes much less compact and can accumulate more
mass. For the sake of completeness the causality constraint
R ≤ 2.87GM [4] is also displayed in the figure.
The mass-radius relations from the combined EoSs for a

hybrid star with the Nf ¼ 2 or Nf ¼ 2þ 1 quark-meson
matter side employing the FRG, respectively, and a
hadronic phase parametrized by the HS(DD2) EoS are
presented in Fig. 7(b), labeled again as DD2þ QM2 and
DD2þ QM2þ 1. For Nf ¼ 2, the onset of quark matter
leads to the visible separation of the DD2 and the DD2þ
QM2 curve slightly below M ¼ 2 M⊙ corresponding to a
central baryon number density of approximately 0.47 fm−3.
Below this value, the hybrid star mass-radius-relation
coincides with the nuclear HS(DD2) one as it should.
For Nf ¼ 2þ 1, the DD2þ QM2þ 1 curve exhibits a
similar behavior, but the onset of quark matter occurs at a

FIG. 7. Neutron star mass-radius relations for β-equilibrated and neutral matter. Left: pure quark stars for Nf ¼ 2 (solid) and
Nf ¼ 2þ 1 (dashed). Right: purely hadronic stars (dash-dotted) obtained from various nuclear model EoS, cf. Figs. 4 and 5. Hybrid
stars from the combined HS(DD2) model with the FRG solutions for QM (solid, dashed). Horizontal bands: PSR J1614 − 2230 (yellow)
and PSR J0348þ 0432 (green) mass measurements [1]. See text for details.

3In this work we employ natural units c ¼ ℏ ¼ 1.
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smaller baryon number density of approximately
0.43 fm−3. Thus, since the transition occurs well above
nuclear saturation density, both hybrid EoSs satisfy con-
straints from nuclear physics as implemented in the HS
(DD2) EoS. The maximum hybrid star mass of about
2.1 M⊙ for Nf ¼ 2 complies well with current observa-
tions, whereas the Nf ¼ 2þ 1 curve does not satisfy the
2 M⊙ limit. Since the quark matter onset occurs only for
masses slightly below 1.8 M⊙ and higher, the value of the
GW170817 tidal deformability obtained from both hybrid
EoS does not change significantly with respect to the HS
(DD2) value Λ̃ ≈ 795 for a mass ratio of 0.8 of the two
coalescing stars. It is in slight tension with recent LIGO/
Virgo data [13,14] but in agreement with the observation
that the HS(DD2) EoS leads to a relatively large radius for
intermediate mass stars. The QHC19 model leads to a
radius smaller by almost 2 km. For comparison, the M-R
relations for four different pure nuclear RMF models (dash-
dotted lines) are also shown in Fig. 7(b). As mentioned
above, due to the small stiffness of the FRG quark matter
EoS at high densities, a hybrid star construction with these
nuclear EoS is not possible within the present setup.
As expected from Fig. 5, the parametrized EoS leads to a

kink in the mass-radius relation at a mass slightly above the
DD2þ QM2 curve. Contrary to the connected hadronic
and hybrid branches in the latter, the large energy gap of the
s ¼ 1 parametrized EoS leads to a disconnected hybrid
branch and therefore twin stars at masses of about 2 M⊙.
For s ¼ 1=3, the pressure in the quark matter phase is not
sufficient to counteract the strong gravitational pull due to
the large energy density of the quark core, cf. Ref. [59], and
thus does not support a stable hybrid star branch. Hence, we
can rule out the occurrence of twin stars in our model due to
the small energy gap at the phase transition from nuclear
matter to quark matter and due to the small stiffness of the
quark matter EoS. In case of a Maxwell construction with
parameters that feature a larger energy gap, there might not
even be any stable hybrid stars with a QM model quark
matter description.
In summary we found that it is feasible to construct a

hybrid nuclear-quark EoS where the quark matter part is
obtained from an effective theory within the functional
renormalization group approach. In particular, we would
expect that the inclusion of repulsive interaction channels
suspected to play a significant role might stiffen the quark
matter EoS to a degree that allows for a realistic description
of combined hadronic and quark matter with other hadronic
models. Furthermore, it might deepen our understanding
of the role and possible abundance of strange matter in
compact stars.

V. SUMMARY AND CONCLUSIONS

The core of neutron stars contains strongly interacting
matter at extreme densities, reaching several times nuclear

matter saturation density for the most massive ones.
Observations of neutron star properties, in particular
precise high mass determinations [1] and the GW170817
tidal deformability [13,14], thereby put constraints on the
equation of state for conditions not accessible to experi-
ments. Although much recent progress has been achieved
to pin down the EoS, many questions remain open, in
particular on the composition of the inner core: does it
contain non-nucleonic degrees of freedom? In addition to
hyperons, nuclear resonances or mesons, a quark matter
core might appear. In this paper we have performed a
nonperturbative study of the quark matter EoS. We have
considered a two- and three flavor quark-meson model,
employing different approximations from mean-field to the
functional renormalization group. Apart from including
fluctuations in a nonperturbative way, the FRG has the
potential power to generate the coupling parameters at low-
energy scales from the underlying fundamental QCD at the
UV, which would otherwise be just model parameters.
The quark-meson model fully incorporates chiral sym-

metry breaking and we have performed a first study of the
impact of quantum and density fluctuations on the EoS for
vanishing temperature. Since the different approximations of
the grand potential were fixed to the same input parameters,
our numerical findings are solely attributed to the impact of
the fluctuations. As anticipated from studies of the phase
diagram and confirmed by our investigations, fluctuations
tend to smoothen the chiral phase transition, see, e.g., [36].
Within the EoS, the softening due to the appearance of
strangequarks is therefore pushed to higher densities because
the strange quarks are still heavier than the light quarks at
higher densities. Quark stars obtained from the FRG,
including fluctuations in the quark matter EoS, have higher
maximum masses and radii compared with their mean-field
counterparts. Furthermore, we have constructed a hybrid star
EoS, combining our FRG quark matter EoS with a nuclear
one via a Maxwell construction. The results for hybrid stars
with a two-flavor quark matter core are in reasonable
agreement with existing constraints. In contrast to many
studies within the mean-field NJL model, see, e.g., [32], our
FRGEoS allows for gravitationally stable hybrid stars with a
three-flavor core, which however leads to a maximum mass
below the highest observed pulsar masses. We notice that
the inclusion of a repulsive vector interaction in the quark-
meson model is expected to additionally stiffen the quark
matter EoS and allow for constructing hybrid stars with
nuclear EoS with smaller radii and tidal deformabilities.
We have presented here one of the first constructions of a

nonperturbative EoS for high densities within the FRG that
is a very promising nonperturbative method for computing
the EoS directly from quark-gluon degrees of freedom,
cf. [29,30]. Several approximations have been made, in
particular:

(i) We have employed a quark-meson truncation of the
effective action as a low-energy effective model for
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QCD and solved the corresponding flow equation
for the effective potential in lowest order of a
derivative expansion. The quark-meson truncation
comprises (pseudo-)scalar interaction channels
which are the most dominant channels for chiral
symmetry breaking at low temperatures and den-
sities [72] but they might become insufficient at
densities relevant for NSs such that in addition
further channels like (axial-)vector ones should be
taken into account.

(ii) For small temperatures and densities relevant for the
NS interior dynamical baryonic correlations, i.e., the
dynamical interrelation of three-quark states and
baryonic degrees of freedom with confined quarks,
become an increasingly important issue. This is
obvious within the hadronic phase, where baryons
and not quarks are the relevant degrees of freedom.
Such correlations remain important at small temper-
atures within a deconfined phase, too. Within the
FRG framework, the elaboration of the clustering
of quarks into baryons as well as the emergence of
long-range correlations between baryons is in prin-
ciple straightforward. First successes could in
parts already be achieved in a similar QCD related
context [73]. This makes the QCD-based FRG
approach toward lower densities very promising
for future investigations. It should, however, be
stressed that the computations becomes much more
involved and much work is still necessary to
technically cope with this issue.

(iii) Furthermore, the phase structure in this area of the
QCD phase diagram is expected to be extremely rich
with a wealth of possible different color super-
conducting phases [74,75]. Future work should
address the inclusion of additional interaction chan-
nels like, for example, diquark-quark channels
which allow for color superconductivity and the
already mentioned repulsive (axial-)vector channels.
Work along these lines is ongoing.
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APPENDIX A: INPUT PARAMETERS

In this appendix the input parameters for the FRG
and mean-field evaluations are summarized. In all Nf ¼
2þ 1 calculations we fix the axial Uð1ÞA and chiral sym-
metry breaking parameters to cA ¼ 4807.84 MeV, cl ¼
ð120.73 MeVÞ3 and cs ¼ ð336.41 MeVÞ3 to reproduce
the summed squares of the η and η0 masses m2

η þm2
η0 ¼

ð1103.2 MeVÞ2, the pion mass mπ ¼ 138 MeV, and the
kaon mass mK ¼ 496 MeV, respectively, in the vacuum.
With the three input parameters for the chiral potential, the
sigma mass in the infrared has been set to mσ ¼ 560 MeV
and the vacuum minima to σl;0 ¼ 92.4 MeV and σs;0 ¼
94.5 MeV to yield the corresponding pion and kaon decay
constants, fπ ¼ 92.4 MeV and fK ¼ 113 MeV. With a
Yukawa coupling of g ¼ 6.5 the corresponding constituent
quark masses are ml ¼ gσl;0=2 ≈ 300 MeV and ms ¼
gσs;0=

ffiffiffi
2

p
≈ 434 MeV. For Nf ¼ 2, all strange quantities

are omitted. g, cl and the remaining two input parameters
for the chiral potential are set to reproduce the subset
ml, mπ , mσ and σk;0 in the same fashion as above.
The parameter set for the FRG and rMFA flow equations

have been optimized by a global differential evolution
algorithm [76] with an initial UV cutoff of Λ ¼ 1 GeV. In
the full FRG case we stopped the evolution around kIR ¼
80 MeV where the condensates are already frozen and in
the rMFA case we stop at kIR ¼ 1 MeV. Note that all
obtained numerical results are insensitive to IR values
when chosen in this region while a UV cutoff dependence
for the rMFA results can still be seen. However, when
choosing a UV cutoff larger than Λ > 2 GeV for the rMFA
results any cutoff dependence disappears [77].
The used input parameters for the mean-field potentials

can be found in Table I. The UV coefficients aij for the
chiral potentials in the FRG calculations are listed in
Table II. Further details on the input parameters can be
found in Refs. [36].

TABLE I. Input parameters for the Nf ¼ 2 and Nf ¼ 2þ 1
quark-meson model for the sMFA and rMFA approximations.
The Yukawa coupling is fixed at g ¼ 6.5 and the sigma mass at
mσ ¼ 560 MeV. For Nf ¼ 2þ 1 flavor the Uð1ÞA-symmetry is
explicitly broken by the parameter cA.

Nf Approximations m2½MeV2� λ1 λ2

2 sMFA −ð358.1Þ2 17.25
2 rMFA 901.092 −5.38
2þ 1 sMFA 384.712 −0.36 46.48
2þ 1 rMFA 1040.942 −2.65 11.73
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APPENDIX B: NUMERICAL
SOLUTION TECHNIQUES

The numerical methods employed for the solution of the
FRG flow equations and for the TOVequations are outlined
in this appendix.
The FRG flow equations (21) and (25) are partial

differential equations (PDEs) including a partial derivative
with respect to the RG scale k and field derivatives encoded
in the mass terms. Several global as well as local solution
schemes based on pseudo-spectral, finite volume, Taylor
expansion or discontinuous Galerkin ideas are known, see
[78] for some recent developments. Setting up a two-
dimensional grid for the chiral potential in the variables

x ¼ σ2l and y ¼ 2σ2s − σ2l ; ðB1Þ

cf. [36], and interpolating the derivatives from the discrete
grid points, it is possible to reduce the PDE to a set of
coupled ordinary differential equations (ODEs). For the
interpolation, we use cubic splines in each of the two grid
directions, respectively. The ODE solution is obtained from
an explicit Runge-Kutta type step algorithm. For Nf ¼ 2,
the grid reduces to one dimension.
In the context of this work, the T ¼ 0 limit of the flow

equation, Eq. (26), is utilized wherein the fermionic
threshold function reduces to a Heaviside function. This
also encodes the Silver Blaze property of the theory
because

El ≥ ml ¼ gσl;0=2 ðB2Þ

implies that θðEf − μÞ ¼ 1 for all μ < mf and hence the
flow at the IR minimum σl;0 does not change with respect to
the vacuum flow. Here we have assumed for simplicity
a flavor-independent chemical potential. Of course, this
property only holds for μ < μc where μc signifies the chiral
first-order transition. In both the sMFA and FRG solutions,

we observe μc < ml, cf. Fig. 2(b). Unfortunately, due to the
utilized grid method the Silver Blaze property is subject to a
numerical error. For any chemical potential, all grid points
located at σl < 2μ=g display a different running than in
vacuum. Since the bosonic energies incorporate field
derivatives that are approximated from an interpolation
of all grid points, the flow experiences small modifications
at the IR minimum even if μ < ml. This effect aggravates
when μ approaches ml from below, μ ≲ml. It leads to
fluctuations of the chiral condensate around the vacuum IR
value. Those fluctuations are small and hardly visible in
Fig. 2(b). However, they lead to an unphysical phase of
very small but nonzero pressure. Furthermore, for a flavor-
dependent chemical potential the first-order transition is
additionally distorted by the error of our approximation, see
Sec. IV. Thus, in the numerical treatment of the FRG EoS,
data points close to the phase transition are omitted and the
EoS from the physical phase with restored chiral symmetry
is polynomially extrapolated down to p ¼ 0. This pro-
cedure only affects the low-pressure outer region of the
calculated pure quark stars. The dependence of the star
radius on the extrapolation error has been checked and
found to be negligible.
For Nf ¼ 2þ 1, similar numerical fluctuations as dis-

cussed above are also found when μs approaches the order
of the strange quark mass ms at the current IR minimum.
They are most prevalent in the determination of the speed of
sound. A strong dependence of these fluctuations on the
exact grid point configuration is observed and gives strong
evidence for the claim as a numerical artifact. Therefore, in
Fig. 6(a) for μ > 350 MeV only the average derivative
c̄2s ≔ Δp=Δε is shown as dots, uniformly spaced at a
distance of 15 MeV. For each dot, c̄2s has been calculated
from the ðp; εÞ tuples at the dot to its left, itself, and the dot
to its right. Furthermore, the highest deviation of the
microscopically calculated, fluctuating speed of sound c2s
from c̄2s in the respective interval is indicated by the border
points of the shaded region such that all c2s data points lie
within this region.
In the pure quark matter star calculations, the TOV

equation is solved with an explicit Runge-Kutta algorithm.
The evolution is stopped when the radial pressure pðrÞ
reaches a value of 10−5 relative to the central pressure. The
EoS data points are interpolated with cubic splines, utiliz-
ing two separate splines in case of a discontinuity due to a
first-order transition such as observed in the rMFA EoS.

TABLE II. FRG input parameters similar to Table I. Addition-
ally, the utilized Yukawa coupling g and sigma mass mσ are also
quoted. The parameter a01 corresponds to the modified invariant
ρ̃2 by analogy with the mean-field parameter λ2 in Table I.

Nf g mσ ½MeV� a10½MeV2� a20 a01

2 6.5 560 706.312 21.16
2þ 1 6.5 560 515.702 37.45 47.68
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