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We study the thermodynamic history of composite dark matter models. We start with classifying the
models by means of the symmetries partially protecting the composite dark matter decays and constrain
their lifetimes. For each model, we determine the impact of number-changing and number-conserving
operators on its thermal history. We also develop the analytic formalism to calculate the asymptotic
abundance of stable relics. We show how the relative strength between number- changing and number-
conserving interactions together with the dark plasma lifetime affect the thermal fate of the various
composite models. Additionally, we show that the final dark relic density of composite particles can be
diluted due to an entropy increase stemming from dark plasma decay. Finally, we confront the models with
experimental bounds. We find that indirect detection experiments are most promising in testing this large
class of models.
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I. INTRODUCTION

The nature of dark matter (DM) is one of the most
fascinating questions that remains to be addressed in
particle physics. Several ideas have been put forward that
can be broadly classified according to whether dark matter
emerges as an elementary particle or a composite one made
up of more fundamental matter. Both possibilities have
been explored in the literature [1–18].
Among the proposed models, one class is unique in the

following sense. In a model in which the dark matter
particle is in thermal equilibrium in the early Universe, the
asymptotic relic abundance is uniquely determined by its
decoupling process from the thermal plasma. The best-
studied scenario is based on the process DMþ DM →
SMþ SM: weakly interacting massive particle (WIMP)
annihilation [19,20]. This process also provides us with a
target annihilation cross section, which can be searched for
in indirect detection experiments. However, other processes
for dark matter decoupling have been considered as well.
Number-changing interactions among dark matter particles
only (DMþ DMþ DM → DMþ DM) lead to strongly
interacting massive particle (SIMP) freeze-out [21], and a
mixed topology (DMþ DMþ SM → DMþ SM) leads to

Co-SIMP freeze-out [22]. The advantage of the thermal
models is their predictivity, which gives us guidelines for
testing those hypotheses.
In this paper, we focus on the thermal history and

ultimate fate of some of the prime candidates of composite
dark matter. A generic property of composite models of
dark matter is that, at low energies, they feature a complex
multicomponent structure [23]. In particular, in the con-
fined phase the lightest composite particles can kinetically
decouple from the StandardModel (SM) plasma and evolve
as an independent dark thermal bath. This can significantly
affect the relic abundance and late-time target cross section
and we will elucidate this issue in several scenarios arising
from a dark composite model. Our analysis is based on
features of the low-energy theory common to many con-
fining models, attaining a certain level of generality. In
some explicit examples, we will, however, employ a
minimal setting consisting of SUðNÞ gauge theories with
fundamental fermions.
Composite dark matter arising in confining gauge

theories is a well-motivated particle physics scenario to
explain the observed missing mass problem. Its particular
advantage lies in the fact, that it provides an explanation for
the long dark matter lifetime. The explanation is analogous
to the Standard Model proton stability, which can be
understood in terms of an accidental global symmetry—
the baryon number. In the confining gauge theories, new
accidental global symmetries arise and lead to long-lived
relic particles [24–26].
The paper is structured as follows. In Sec. II we give a

brief summary of our philosophy and main findings. In
Sec. III we identify the composite dark matter candidates
arising in gauge theories. We classify them according to the
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symmetries protecting their decays, as suggested in
Refs. [23,24,26,27]. We further discuss higher-dimensional
operators inducing composite dark matter decay that can
emerge in a full ultraviolet theory including gravity, as
suggested in Ref. [24]. We use these operators to estimate
the composite dark matter candidates’ lifetime.
Section IV is devoted to the thermal history of the

composite dark sector. For each model, we elucidate the
impact of both number-changing and number-conserving
operators [28,29]. In Sec. V we construct solutions to the
Boltzmann equations allowing us to determine the asymp-
totic abundance of stable relics.
This preparatory phase is then exploited in Sec. VI to

determine the relic abundance in each model. Here we
provide analytic expressions for the asymptotic relic
abundance stemming from each scenario. We observe that
the relative strength between number-changing and -con-
serving interactions determines the thermal fate of the
various composite models and further depends on the dark
plasma lifetime.
We find that the final composite dark relic density can be

diluted due to an increase in entropy stemming from dark
plasma decay, as pointed out in Refs. [26,30]. We constrain
the models with strongly coupled bound states [24] and
weakly coupled bound states [30] via the experimentally
observed relic density. The entropy ratio between the
Standard Model and the dark sector is another parameter
affecting the ultimate relic abundance which we fix by
assuming the two plasmas to be in thermal equilibrium in
the early Universe.
Section VII confronts the model predictions with experi-

ments such as H. E. S. S. and Fermi-LAT. The details of the
experimental signatures depend on the concrete Standard
Model quantum numbers chosen for the dark quarks; a
classification of viable quantum number assignments can
be found in Ref. [24]. Finally, we offer our conclusions in
Sec. VIII.
In Appendices A and B we offer a glossary of multifluid

thermodynamics and in Appendix C we summarize the
Boltzmann equation for number-changing processes.

II. EXECUTIVE SUMMARY FOR
THE BUSY READER

As we will show in this work, confining dark sectors
provide a very rich and interesting phenomenology and
phase structure, despite being based on models with only a
few ingredients and parameters. Those parameters are, in
the UV regime, the number of gluons, based on the chosen
confining gauge group, the number, mass and quantum
number assignments of dark quarks and the strength of the
dark gauge coupling. This coupling strength can be related
to the confinement temperature scale, the relation of which
to the quark masses determines the dynamics of the system.
One central question of any dark matter model-building

endeavor is dark matter stability. This question, can be

naturally addressed in a confining dark sector, since it has
particles which are protected by accidental global sym-
metries, just like the proton in the Standard Model.
Generically, as we will discuss, the considered theories
have light particles with lifetimes shorter than the age of the
Universe and long-lived heavier states. For this reason,
thermal freeze-out in such a dark sector shows interesting
complex phenomena. In particular, the bath of the lighter
dark particles, which we also call the dark plasma, can
undergo self-heating effects and significantly change the
freeze-out of the heavier long-lived dark matter candidates.
Note that from now on, we denote by freeze-out the
deviation of interaction rates from the thermal interaction
rate, leading to particle number conservation by the
considered process.
As a template model, we will focus on the SUðNDCÞ

theory with vector-like fermions in the fundamental rep-
resentation. We additionally assume that there is at least
one dark quark in the spectrum, which carries both dark
sector and Standard Model quantum numbers. This setup
provides a thermal-contact bridge between the sectors at
large temperatures. It thus unavoidably sets an upper bound
on the entropy ratio between the Standard Model sector and
the dark sector ζ ¼ sSM=sD < gSM ≈ 106.
We demonstrate the freeze-out in different mass hier-

archies of the model. It is particularly interesting that larger
target cross sections, compared to the standard scenario
with hσvrel:i ∼ 10−26 cm3=s, are expected. Furthermore,
decreasing the ζ parameter introduced above by postulating
dark sectors with more degrees of freedom, increases the
expected late-time annihilation cross sections, making the
scenarios more easily accessible. This allows to system-
atically test the dark sectors with thermal dark matter in
indirect detection experiments.
Very broadly the systems can be classified in the

following way:
(1) Strongly coupled dark baryons as dark matter can-

didates, with light dark pions comprising the dark
plasma.

(2) Weakly coupled dark baryons as dark matter can-
didates, with light dark glueballs being the dark
plasma particles.

Last, we also discuss the possibility of long-lived dark
plasma particles. It appears that to be consistent with
existing experimental limits, they should comprise a
subdominant dark matter fraction. This naturally leads to
multicomponent dark matter sectors with possible impli-
cations for structure formation in the dark sector.

III. COMPOSITE DARK MATTER CANDIDATES

A particle description of DM requires a lifetime above
τ > 1026–1028 s [31,32] which is orders of magnitude times
the age of the universe (1017 s). A near-exact symmetry is
a time-honored way to ensure long lifetimes. A famous
example is the baryon symmetry that protects the proton
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from decaying. For this reason, we investigate here models of
composite DM stemming from the dynamics of Yang-Mills
gauge theories featuring fermionic matter. In these models,
we identify potentially long-lived composite relics and
systematically investigate their cosmological consequences.
Historically, models of composite DM, such as the ones

inspired by technicolor [7,33–35], linked the baryon asym-
metry to a potential DM asymmetry in order to achieve the
experimentally observed dark relic density. Another class
of composite DM models was introduced to generate the
desired relic density via number-changing operators in the
dark-pion sector [36]. Here we consider composite DM
models in which the primary source for the observed relic
density is due to a thermal production mechanism.

A. The composite framework

As an illustrative example we consider a SUðNDCÞ gauge
theory with Nf fundamental Dirac fermions χ and Nf

antifundamental Weyl fermions ψ , with NDC being the
number of dark colors. The Lagrangian is

L ¼ −
1

4
GμνGμν þ

XNf

i¼1

Q̄iðiγμDμ −MQÞQi: ð1Þ

The well-known local and global symmetries of the dark
quarks are summarized in Table I. For sufficiently small Nf

this model confines at a scaleΛD and the chiral symmetry is
spontaneously broken. The breaking pattern SUðNfÞL ⊗
SUðNfÞR → SUðNfÞV has an order parameter

hQ̄iQji ¼ Λ3
Dδij: ð2Þ

If we assume a hierarchy of scales as

ΛD ¼ 4πfπ ≫ MQ; ∀ i; ð3Þ

the effective low-energy theory is described in terms of a
unitary matrix UðxÞ ¼ exp iΠðxÞ=fπ where Π ¼Pa T

aπa

are Goldstone bosons associated with the breaking
patterns. Their dynamics at lowest order in derivatives is
described by

L ¼ f2π
8
Tr½∂μU∂μU†� þ f3πMQ

4
Tr½U† þU�; ð4Þ

where M is a matrix in flavor space that parametrizes the
explicit breaking of chiral symmetry due to quark masses.

The lowest-order operator providing number-changing
processes is a five-point interaction, the so-called Wess-
Zumino-Witten (WZW) term, present for specific breaking
patterns [36]. In our case this reads

LWZW ¼ NDC

240π2f5π
ϵμνρσTr½Π∂μΠ∂νΠ∂ρΠ∂σΠ�: ð5Þ

Because much is known for NDC ¼ 3 either via experi-
ments or via lattice simulations we use it as our bench-
mark model.
On general grounds, part of the dark building blocks will

carry SM quantum numbers that can bring into thermal
equilibrium the dark and the SM sectors.
Depending on whether MQ ≪ ΛD (strongly coupled

regime) or MQ ≫ ΛD (weakly coupled regime) the
composite states will behave differently. In the latter case
the low-energy theory is a pure Yang-Mills with the
confinement scale that can be estimated to be

ΛD

MQ
≈ exp

�
−

6π

11NDCαDðMQÞ
�
; ð6Þ

where αDðMQÞ ¼ g2D=4π is the dark coupling strength.
Because of either the presence of dark fermion mass or

the generation of the Yang-Mills confining scale none
of the lightest composite particles (LCPs) are massless.
Respectively for MQ ≪ ΛD and MQ ≫ ΛD the LCPs are:
(1) The near Nambu-Goldstone bosons of the broken

global symmetry (pions), with the dynamics de-
scribed above.

(2) The dark gluon bound states (glueballs), with the
lightest state being a scalar singlet.

Another class of interesting composite states is con-
stituted by composite baryons, the reason being that, even
though they are not LCPs, the dark baryon number is
protected. As a teaser, we notice that in both limits the
LCPs will feature number-changing operators generating
intriguing thermodynamics.

B. Composite particles and their lifetimes

Here we summarize the composite particle spectra and
discuss their lifetimes due to the possible breaking of the
accidental global symmetries via higher-order operators
[24]. The spectrum and operators are summarized for the
reader’s convenience in Table II.
As mentioned above, among the composite particles we

have dark baryons QNDC ∼ Λ
3
2
ðNDC−1Þ
D B (for this case we

consider NDC odd), dark mesons Q̄Q ∼ Λ2
Dπ and last but

not the least dark glueballs GμνGμν ∼ Λ3
DS. Their decays

can occur via higher-dimensional operators such as the
ones envisioned in Table II and generated by new dynamics
or gravitational interactions. We also introduced the

TABLE I. Field content of the lightest fermions in the model.

[SUðNDCÞ] SUðNfÞL SUðNfÞR Uð1ÞV
Q □ □ 1 1
Q̄ □̄ 1 □ −1
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interpolating low-energy fields with the help of dimen-
sional analysis.
Due to the dark flavor structure of the models, the

mesons can carry further accidental symmetries as well.
Some examples include the species number, which would
make π� stable in the SM were it not for the presence of
weak interactions that violate this symmetry, and general-
izedG-parity [37], which would stabilize π0 but it is broken
by the chiral anomaly that induces its decay into photons.
Additionally, new physics can lead to induced higher-
dimensional operators that further break these symmetries.
These, however, are suppressed by the scale of the new
physics. Using dimensional analysis for the dark sector and
constraining ourselves to dimension-five operators we
naively estimate the decay rates to scale as Γ ∝ m3

π=Λ2
NP

for the dark mesons in terms of the new physics scale ΛNP.
Intriguingly even for ΛNP ≈MPl one discovers that the
experimentally required lower bound on the dark lifetime
induces an upper bound [31,32] of mπ ⪅ 10 MeV for this
type of DM.
In general, within this framework, several relics can be

long-lived on cosmic scales. Their abundances have to
satisfy the overclosure bound

P
i Ωi ≤ ΩDM. Particles

with lifetimes shorter than the current lifetime bound on
DM (≈1028 s) must decay before the production of light
elements in the early Universe i.e., τ < 1 s as constrained
by successful big bang nucleosynthesis (BBN) [38] (for the
annihilation limits see Ref. [39]).
We find four interesting scenarios:
(1) IfMQ ≫ ΛD the glueball is the LCP and we take it to

be the DM candidate. The dark baryon mass is
independent of the glueball mass mB ≈ NDCMQ.
The dark baryons can be made heavy and decay
before BBN. If the dark baryons are long-lived a
multicomponent dark matter scenario will arise.

(2) Within the above mass hierarchy one can find a
parameter space of the theory where dark baryons
are the DM candidate. Here the glueballs will have to
decay before BBN via, for example, SM residual
interactions. Nevertheless as they are still the LCPs

they now provide a thermal bath of massive particles
with a finite lifetime.

(3) If there are light fermions in the spectrum with
MQ ≪ ΛD, the LCPs are dark pions, which generi-
cally will not be long-lived on cosmological time
scales. Thus the pions have to decay before BBN and
provide a plasma with a finite lifetime as well, taking
the role of glueballs. Here the dark baryons are
strongly coupled states that we take to be the DM
candidate with a mass of the order of NDCΛD.

(4) A small fraction of the above parameter space can
exhibit long-lived pions when their masses are below
the GeV scale. This is indeed the case of the simplest
miracle [36] where the baryons, however, are not
present in the spectrum of the theory because of the
choice of the underlying dynamics. If dark baryons
are present one will have to consider the presence of
additional stable relic states.

As sketched in Fig. 1, we observe that the ingredient
which is common to all scenarios, is the existence of an
LCP plasma made of massive particles (glueballs/pions).
This plasma will generically lose thermal contact with the
SM and undergo a distinct thermal history once the LCPs
become nonrelativistic [28,29]. In particular number-
changing interactions among the LCPs will lead to unusual
phenomena in the dark plasma. The relevant quantity we
will excessively use, is the cross section, which controls
the relevant number-changing process. In particular for the
3 → 2 process, it can be found from the matrix element of
the underlying process that [40]

hσv2i123→45 ¼
g4g5

64πSfm1m2m3

× λ1=2ðm1 þm2 þm3; m4; m5ÞjM2j; ð7Þ

where gi are the number of degrees of freedom of the
final-state particles, Sf is the symmetry factor, mi are
the corresponding particle masses and λðx; y; zÞ ¼
ð1 − ðzþ yÞ2=x2Þð1 − ðz − yÞ2=x2Þ. Matrix elements for

TABLE II. Composite particles and their maximal masses, compatible with DM lifetime limits. We list the decay operators which lead
to the decay of the DM candidates to SM fields with the lowest possible dimension, as they will be most efficient. Fμν is the
electromagnetic field-strength tensor of Uð1Þ, while f are SM matter fields. It is assumed that the symmetry violation scale associated
with the decay operators is at most Λ ≈MPl, since the global symmetries are expected to break down at least at the quantum gravity
scale. Here Λ=B;Λ=G and Λ=S are the scales at which baryon number, G-parity and species number are violated, respectively.

State Symmetry (if applicable) Decay operator (fundamental fields) Decay operator (on EFT level) Allowed mass Mmax

QNDC Dark baryon number QNDCf

Λ3=2ðNDC−5=3Þ
B

ΛBðΛD
ΛB
Þ3=2ðNDC−1ÞBf ⪆300 TeV

Q̄Q G-parity αEMcijQ̄iFμνσ
μνQj

ΛG

Λ2
D

ΛG
αEMcijMijFμνσ

μν ≈10 MeV

Q̄iQj Species number cijQ̄iQjH†H
ΛS

Λ2
D

ΛS
cijMijH†H ≈5 MeV

GμνGμν � � � GμνGμνH†H
Λ2

Λ3
D

Λ2 SH†H ≈50 TeV
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the number-changing processes for many symmetry-
breaking patterns can be found in Ref. [41].
Finally, due to the finite lifetime of the LCPs, their decay

will partially restore the thermal contact with the SM at late
times. To investigate the resulting intriguing phenomenol-
ogy, we will briefly review the unusual thermodynamics of
a nonrelativistic dark plasma.

IV. DARK THERMODYNAMICS

In DM theories with a nontrivial spectrum with a mass
gap, the freeze-out will show strong deviations from the
standard scenario, as discussed in Refs. [28,29]. The
qualitative picture one has to have in mind is the following.
Dark matter freeze-out happens when the dark sector has
already confined, and it mainly consists of dark baryons, as
they are guaranteed to be long-lived thanks to dark baryon-
number conservation. The light part of the spectrum (pions
or in suitable cases glueballs) are relativistic and can
influence the Universe’s expansion leading to a freeze-
out process for B þ B̄ → LCPs which is nonstandard.

Especially in the cases of heavy glueballs, however, no
clear hierarchy between scales is present and they might
contribute to the relic abundance. Despite the fact that LCP
decay is not symmetry protected, they could be long-lived
on cosmic scales, if sufficiently light. We will come back to
this possibility in Sec. V C. Here we will summarize the
conditions which lead to nonstandard freeze-out and that
have to be satisfied before the DM (dark baryon) annihi-
lation reactions decouple.
(1) First of all dark sector particles must not be in kinetic

equilibrium with SM particles at the freeze-out
temperature, meaning that at that temperature scale
the reactions χSM → χSM have to be weak. This
condition is generically satisfied if the lightest
composite particles are SM singlets. This is realized
when the lightest dark quarks in the spectra are SM
singlets and heavier dark quarks establish the ther-
mal link at higher temperatures. We will also discuss
a few exceptions to this scenario.

(2) Furthermore, the lightest particle of the dark sector
(here the LCPs) is stable on cosmological scales
i.e., ΓLCP ≪ HðTÞ.

(3) The freeze-out temperature is below the LCP mass
so that the LCP is nonrelativistic.

(4) If the number-changing processes 3LCP → 2LCP
are strong enough to maintain chemical equilibrium
at freeze-out i.e., hσv2i3→2n

2
LCP ≫ HðTÞ, the result-

ing hotter dark plasma leads to a nonstandard freeze-
out. Here and in the following, we denote with v the
relative velocity between initial particles in a 2 → 2
process; this normalization is also used in multi-
particle processes with the appropriate power for
dimensional reasons. The hσv2i3→2 is the cross
section of the 3 → 2 process, which we defined in
the previous section.

(5) If number-changing processes are inefficient at the
dark freeze-out, a chemical potential develops in the
dark sector. This is a new phenomenon that must be
taken into account for the proper determination of
the DM relic abundance since the dark sector
temperature has a nonstandard scaling as a function
of the scale factor of the Universe in this case.

The most natural realization of such a thermally secluded
dark plasma arises in models, where the DM is made up of
SM singlet dark quarks and the thermal link is established by
a heavier bridge dark quark. A minimal setup of this type is a
singlet plus doublet construction, where the doublet estab-
lishes the thermal link at higher temperatures. For a complete
list of viable quantum numbers see Ref. [24].
Thermodynamics will be extremely helpful to describe

the evolution of these systems; for a summary of multifluid
thermodynamics, see Appendix B. In particular, entropy
conservation plays an important role since the dark sector
entropy is dominated by the lightest dark degrees of
freedom comprising the dark plasma. The ratio of the

FIG. 1. Schematic overview of the thermal history, of a non-
Abelian dark sector. At high temperatures, we expect the systems
to be in thermal contact. After this connection is lost, the dark
force confines and forces the dark quarks in dark-color neutral
bound states. Baryons (B) and glueballs (S) are nonrelativistic at
confinement; pions (πD) on the other hand become nonrelativistic
substantially later. Relativistic particles are denoted by red ovals,
while nonrelativistic particles are represented by purple ovals.
The number-changing interactions can heat up the LCP plasma,
but eventually, they decouple at Tc and a phase begins, where the
dark particle number in the plasma is conserved. Dark baryon
freeze-out can happen in the number-changing and number-
conserving eras of the dark (or LCP) plasma and the freeze-out
process will be different. Finally, the decay of the dark plasma to
SM final states partially reintroduces a thermal link of the systems
at Tdecay. The decay of the LCPs can furthermore lead to entropy
injection into the SM bath and dilute the dark baryon relics.
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entropy densities is fixed ζ ¼ sSM=sD, and generically set by
weak interactions that keep the SM and the dark sector in
kinetic equilibrium at high temperatures. After those inter-
actions decouple the entropies are separately conserved, as
we assume both sectors to evolve adiabatically. While this
assumption is justified for the SM, for the dark sector one has
to be more careful. For example within the scenario in which
MQ ≫ Λ the pure dark Yang-Mills theory at low energies
undergoes a first-order phase transition as a function of the
temperature when NDC ≥ 3. In this case the entropy ratio
established at high temperature only provides an upper
bound ζ < sSM=sDjThigh

.
We can now differentiate two profoundly different

regimes depending on the relative strength of the num-
ber-changing process.
In the following, we will refer to the generic LCP as πD

(keeping the subscript D implicit) although the formalism
applies to dark LCP glueballs as well.

A. Nonconserved dark particle number

Generically at large temperatures, the number-changing
processes will maintain chemical equilibrium in the dark
sector and enforce a vanishing chemical potential. The
crucial feature of this regime is that while the temperature
in the SM sector scales as TSM ∝ 1=a the dark sector
temperature scales as TD ∝ 1= logðaÞ, which leads to a
large temperature difference between the two sectors; see
for example Ref. [28]. This is in strong contrast to the case
where the dark sector is dominated by relativistic degrees of
freedom (say a dark photon) and the temperatures are
linearly dependent. We thus refer to the above possibility as
the hot dark plasma phase.
The relevant thermodynamic features follow from

entropy conservation. Since the LCPs are a nonrelativistic
fluid with zero pressure P ¼ 0, we have sD ¼ ρD=TD≈
mπnπ=TD. At the same time the SM entropy density is
sSM ¼ 2π2=45gSMT3

SM. Now, from sSM ¼ ζsD we get the
relation

T3
SM ¼

�
45ffiffiffiffiffiffiffiffiffiffi
32π7

p
��

ζgπ
gSM

� ffiffiffiffiffiffiffiffiffiffiffiffi
m5

πTD

q
e−

mπ
TD: ð8Þ

This shows that the dark sector gets significantly hotter than
the SM at scales where the relevant degrees of freedom
are the LCPs counted by gπ, which is clearly a dramatic
feature of the hot dark plasma era.
An important quantity we will need is the Hubble rate as

a function of the dark sector temperature. Solving the

Friedmann equation we obtain

HðzπÞ ≈

8>><
>>:
�

3
ffiffi
5

p
4π5=2

ζ2g2πffiffiffiffiffiffi
gSM

p
�
1=3 m2

π
MPl

z−1=3π e−
2zπ
3 for ðρSM > ρDÞ;ffiffiffiffiffiffiffiffi

gπ
ffiffi
8

p
3
ffiffi
π

p
q

m2
π

MPl
z−3=4π e−

zπ
2 for ðρD > ρSMÞ;

ð9Þ

with zπ ¼ mπ=TD.
The Hubble rate is an essential ingredient for the DM

freeze-out computation, we are ultimately interested in. We
now discuss what happens at temperatures at which the
number-changing processes cannot maintain the chemical
equilibrium in the plasma and 3LCP → 2LCP interactions
freeze out.

B. Conserved dark particle number

The number-changing operators are bound to switch off
when the reaction rate drops below the Hubble rate. This
happens at a critical temperature of Tc. Below this temper-
ature, the dark particle number is conserved along with its
entropy.
Keeping into account the conservation of the comoving

entropy for a nonrelativistic pressureless gas we have the
following conservation law:

0 ¼ d
dt

�
m − μ

TD
n
�
þ 3H

�
m − μ

TD

�
n

⇒ _μþ ðm − μÞ
_TD

TD
¼ 0: ð10Þ

Here μ is the chemical potential for the LCP. Solving the
first-order differential equation we obtain

μðTDÞ ¼ mπ

�
1 −

TD

Tc

�
¼ mπ

�
1 −

zπc
zπ

�
; ð11Þ

where we used as an initial condition μðTcÞ ¼ 0.
Furthermore, using ρD ∝ T3=2

D in the first Friedmann
equation (H2 ∝ ρD þ ρSM) together with H2 ∼ 1=a3, we
verify that the dark temperature quickly drops as a function
of the scale factor: TD ∝ 1=a2. This scaling holds inde-
pendently of whether the SM or dark sector dominates.
The critical temperature, at which the number-changing

processes decouple is found by solving HðTDÞ ¼
hσ3→2v2in2π , which is equivalent to

zπc ¼
�
−14.5þ log ðζ−1=2g1=8SMgπÞ þ 1

4
log ðm4

πMPlhσ3→2v2iÞ − 2 logðzπcÞ ðρSM > ρDÞ;
−17.4þ logðgπÞ þ 2

3
log ðm4

πMPlhσ3→2v2iÞ − 3
2
logðzπcÞ ðρD > ρSMÞ;

ð12Þ

where we defined zπc ¼ mπ=Tc.
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Given that the dark sector entropy is dominated by the LCP, by imposing entropy conservation ζ ¼ sSM=sπ and taking
into account the chemical potential one derives the new relation between the SM temperature and the dark temperature of
the two fluids:

T3
SM ¼

�
45ffiffiffiffiffiffiffiffiffiffi
32π7

p
��

ζgπ
gSM

� ffiffiffiffiffiffiffiffiffiffiffiffi
m5

πT3
D

T2
c

s
e−

mπ
Tc : ð13Þ

The interesting feature is that now the two temperatures are no longer exponentially related. Furthermore, we have the
following expression for the Hubble rate as a function of dark temperature, expressed in terms of zπ , in this regime:

HðzπÞ ≈
8<
:
�

45
16π5

�
1=6
�

ζ2g2πffiffiffiffiffiffi
gSM

p
�
1=3
�

m8
π

M3
PlT

2
c

�
1=3

z−1π e−
2mπ
3Tc for ðρD < ρSMÞ;�

8
9π

�
1=4 m2

π
MPl

ffiffiffiffiffi
gπ

p
z−3=4π e−

mπ
2Tc for ðρD > ρSMÞ:

ð14Þ

Finally, to determine when either of the two fluids
dominates the energy budget of the Universe we first note
that the SM is always relativistic, as it contains massless
particles, and thus sSM¼ðρSMþpSMÞ=TSM≈4=3ρSMTSM.
The temperature Te

D (and the corresponding SM temper-
ature Te

SM) for which the two energy densities are equal is
defined by ρSMðTe

SMÞ ¼ ρDðTe
DÞ. With the definition ζ ¼

sSM=sD we obtain the equation 4=3ζ−1 ¼ Te
SM=T

e
D. This

can be expressed in terms of the dark sector inverse
temperature zeπ ¼ mπ=Te

D using Eq. (8) or Eq. (13),

90
ð2πÞ7=2

ζgπ
gSM

ðzeπÞ5=2e−zeπ ¼
�

4
3ζ

�
3

for ðzπc > zeπÞ;
90

ð2πÞ7=2
ζgπ
gSM

ðzeπÞ3=2zπce−zπc ¼
�

4
3ζ

�
3

for ðzπc < zeπÞ;
ð15Þ

which defines the temperature at which the dark sector
starts to dominate the energy budget of the Universe. In the
case in which number-changing LCP processes are active,
this is given by the solution to

zeπ ≈ 5=2 logðzeπÞ þ log ðζ4gπ=gSMÞ − 2.8; ð16Þ

while if the LCP number is conserved

zeπ ≈ 0.64

�
ezπcgSM
gπzπcζ4

�
2=3

: ð17Þ

For all zπ > zeπ the dark sector dominates the energy budget
of the Universe. This will be crucially important, when
possible entropy dilution of frozen-out relics will be
considered [42].
In Fig. 2 we show schematically the evolution of the

temperature [Fig. 2(a)] and energy [Fig. 2(b)] of the dark
sector for the number-changing and number-conserving
phases and compare them to the SM temperature and
relativistic and nonrelativistic matter respectively. The
results of this section are summarized in Appendix C.

V. DARK FREEZE-OUT

We are now ready to discuss the dark freeze-out following
Ref. [29]. One can envision the following possibilities:
(1) If the SM energy density dominates the Universe at

the freeze-out of B þ B̄ → LCPs, the DM relic
density is enhanced by a factor proportional to
TD=TSM ≫ 1. Depending on whether the dark
sector particle number is conserved or not the actual
functional dependence of TD on TSM changes.

(2) If the dark sector dominates the Universe’s energy
density at the freeze-out of B þ B̄ → LCPs, the
corresponding DM relic density is enhanced by
ðTD=TSMÞ3=2 ≫ 1. As for the point above the actual
functional dependence of TD on TSM depends on
whether the dark sector particle number is conserved
at freeze-out.

(3) If the LCPs dominate the Universe’s energy budget
and decay after the freeze-out of B þ B̄ → LCPs,
the entropy injection dilutes dark baryon DM and
suppresses it by a factor D ∝ Te

SM=TRH, where Te
SM

is the SM temperature at which LCPs start domi-
nating and TRH ≈ 0.55g�SM

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ΓπMpl

p
is the generated

reheating temperature; see Sec. V D 2 for the der-
ivation of this analytic estimate.

The dark baryons annihilate in a rearrangement process. As
discussed in Ref. [43], the direct annihilation process is
exponentially suppressed by e−cNDC, in contrast to the
rearrangement processes. Qualitatively, the situation can
be described in the following way. Since a baryon in an
SUðNDCÞ theory is a QNDC object it carries baryon number
one or equivalently fermion number NDC. If a baryon
and antibaryon collide they can rearrange into a state with
NDC − 1 quark-antiquark pairs by meson emission. The
remaining multiquark state has baryon and fermion number
zero and thus consequently annihilates via sequential meson
emission.
The process with the maximal cross section allowed by

unitarity is a geometrical interaction. The cross section is
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geometric when all partial waves, up to the maximally
allowed value of l ∼ RB × p contribute. Here the baryon
radius is RB and p is the relative momentum. In the sum
over partial waves, the largest contributions come from the
partial waves with large angular momenta. For this excited
state to decay it needs to get rid of the angular momentum,
as discussed in Ref. [44]. An efficient way is the emission
of mesons. This explains why the process with only two
final-state pions, B þ B̄ → 2πD, has a lower rate compared
to states with higher pion multiplicity. The emission of
multiple pions allows a more efficient deexcitation of the
higher-l states; on the other hand, energy conservation
limits the number of emitted pions. In the SM the branching
ratio to three mesons dominates over the two-meson
annihilation for proton-antiproton annihilation at low
energies [45]. Furthermore, as discussed in Ref. [46], the
five-pion annihilation has the largest branching fraction,
which seems to be an efficient trade-off between energy
conservation and efficient decay of large angular momen-
tum states.
In the confining dark sector, the exact multiplicity of the

final-state mesons cannot be predicted from first principles;
however, the same logic suggests that multimeson final
states will be favored. Adding this word of caution, we note
that the exact number of mesons in the final state does not
strongly affect our results. In particular, the strongly
coupled regime of the considered system does not allow
to perform precise calculations, but rather order of magni-
tude estimates. Finally, since the dark mesons annihilate to
multiple SM particles, the resulting phenomenology is a
deep cascade reaction, and as shown in Ref. [47] cascades

with more than a few steps lead to similar indirect detection
signals. Those will be relevant for our phenomenological
discussion later. For the calculation of the annihilation rate
for the freeze-out process the important assumption is that
the cross section is geometrical, an assumption that is
supported by studies of the proton-antiproton annihilation.
Note that the calculation of the asymptotic DM abundance
does not strongly depend on the final-state pion multiplic-
ity. We, thus, restrict ourselves to final states with NDC
pions, since in this case helpful analytical expressions can
be found. The analytical treatment of the Boltzmann
equations will be sufficient for our order-of-magnitude
calculations; more accuracy could be reached numerically,
but that goes beyond the scope of our work.
In Refs. [28,29] the sudden freeze-out approximation

was adopted in order to obtain analytical results for the DM
relic abundance. Here we will demonstrate that the sudden
freeze-out approximation is not accurate because it does not
take into account the late-time annihilation processes which
count here.
We start with the full Boltzmann equation for the DM

baryons which reads

1

a3
dða3nBÞ

dt
¼ −2γ

�
n2B
neq2B

−
nNDC
π

neqNDC
π

�
: ð18Þ

Here the space-time interaction density is 2γ ≈ hσannvineq2B
and further assumes that the baryon-antibaryon annihilation
takes place via a rearrangement of the underlying degrees
of freedom into NDC pions [43].

(a) (b)

FIG. 2. Slow temperature decrease for the dark sector in the number-changing phase is due to rest-mass conversion of the particles into
kinetic energy (a), and at the same time the energy density drops faster (b). In the number-conserving phase however, the chemical
potential leads to a rapid temperature decrease in the dark sector to maintain constant particle number density.
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It is convenient to rewrite the left-hand side in terms of a
dimensionless quantity as

1

a3
dða3nBÞ

dt
¼ dYB

dz

�
dH
dz

�
−1
�
dH
dt

�
sD

¼ dYB

dz

�
dH
dz

�
−1
�
−
1

m
H2

�
sD|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

≔JðzÞ

; ð19Þ

with YB¼nB=sD≈nB=sπ, z¼mB=TD¼ zπmB=mπ¼ zπ=r
and the scale factor evolves as a ∝ tm. The Jacobian factor
in Eq. (19) contains most of the thermodynamic informa-
tion. We now move to systematically solve the Boltzmann
equations for the different cases.

A. Boundary layer solution of the Boltzmann equations

A direct application of the general formula (C13),
derived in Appendix C, gives the Boltzmann equation
for dark baryons and LCP abundances:

_YB ¼ −
1

2

sΓ1

JðzÞ
	
Y2
B −

�
Yπ

Yeq
π

�
w
ðYeq

B Þ2


; ð20Þ

_Yπ ¼ −w
sw−1Γ1

JðzÞ
	
Yw
π −

�
YB

yeqB

�
2

ðYeq
π Þw




−
s2Γ32

JðzÞ ½Y3
π − Y2

πY
eq
π �: ð21Þ

Moreover, we parametrized the rearrangement process of
baryons into LCPs with the parameter w, with w ¼ NDC for
pions and w ¼ 2 for glueballs.
The composite-model dependence enters in the quan-

tities Γ1, Γ32 defined according to Eq. (C14). These
interactions freeze out respectively at zf, zc, and we will
assume zf ≪ zc. This approximation allows us to study the
system in terms of a decoupled Boltzmann equation: the
baryons freeze out when μπ ¼ 0 and the (relativistic) LCPs
do not deviate from the equilibrium distribution. Afterward,
the 3 → 2 process among the LCPs can freeze out.
We now discuss boundary layer solutions to the

Boltzmann equation following Ref. [48]. Given a general
differential equation, a boundary-layer-type solution is a
solution that satisfies _YðzÞ ≪ YðzÞ everywhere apart from a
finite number of narrow regions in which the opposite is
true. These narrow regions are called boundary layers, and
the size is typically controlled by a small parameter in the
differential equation. A boundary layer solution is found by
matching solutions in the regions outside the layers with
solutions found inside the layers.

1. Baryon freeze-out

The general template for the baryon freeze-out
equation is

_Y ¼ −λfðzÞ½Y2 − ðYeqÞ2�; ð22Þ

where we kept a general z-dependent function. In the case
in which the LCP is the most abundant species and drives
the expansion of the Universe we have the ordinary result
fðzÞ ¼ Az−2, with A constant for s-wave processes only.
We will find a solution with a boundary layer at a value of
z ¼ zf to be determined. For 1=λ ≪ 1 and z < zf we have

YðzÞ ¼ YeqðzÞ − 1

2λfðzÞ
�
_Y
Y

�
eq
þOðλ−2Þ: ð23Þ

The position of the boundary layer can be estimated by
finding the value of z for which the leading-order approxi-
mation in 1=λ breaks down:

1

2λfðzfÞ
_YeqðzfÞ ¼ YeqðzfÞ2: ð24Þ

On the other side of the boundary layer, z > zf the
inhomogeneous term can be dropped and the equation
reads

_Y ¼ −λfðzÞY2 ⇒ YðzÞ ¼ 1
1
Y∞
B
− λ
R∞
z dxfðxÞ : ð25Þ

These two solutions have to be matched inside the
boundary layer, where we can change the variable to z ¼
zf þ κZ with κ ≪ 1. Defining YðZÞ ¼ YðzÞ the equation
now becomes

_Y ¼ −λκfðzf þ κZÞ½YðZÞ2 − Yeqðzf þ κZÞ2� ⇒
_Y ¼ −YðZÞ þOðκÞ ð26Þ

where we used the consistent balance κ ¼ 1=ðλfðzfÞÞ and
dropped higher orders. The solution is easily found and
matched with the z > zf patch,

YðZÞ ¼ 1

Dþ Z
¼ 1

1
Y∞
B
− λ
R
∞
zfþκZ dxfðxÞ

⇒

D ¼ 1

Y∞
B
− λ

Z
∞

zf

dxfðxÞ ð27Þ

as well as with the z < zf patch,

YðZÞ¼ 1

DþZ
∼2YeqðzfÞ∼κþOðκ2ZÞ⇒D¼1

κ
: ð28Þ

Finally, the asymptotic relic density is calculated as

Y∞
B ¼ 1

λ

�
fðzfÞ þ

Z
∞

zf

dxfðxÞ
�

−1
: ð29Þ
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2. Number-changing process freeze-out

We now apply the boundary layer method to the freeze-
out of particles interacting with number-changing operators
among themselves. First let us assume that the pions are
relativistic. The corresponding Boltzmann equation is

_Yπ ¼ −
	ð1þ ζÞ2π2gπM3

HðMÞ1=2


2

Γ32z−5½Y3
π − Y2

πY
eq
π �; ð30Þ

with the general structure

_Yπ ¼ −λz−5Y2
πðYπ − YeqÞ; Yeq ¼ const: ð31Þ

Taking in the outer region z < zf (with z ≫ 1) an ansatz of
the form Y ¼ Y0 þ

P
n¼1 λ

−nYn we immediately obtain
Yn ¼ 0 and Y0 ¼ Yeq. This trivially implies that the freeze-
out cannot happen while the pions are relativistic, con-
sistently with the Γ32=H estimate.
Freeze-out happens when pions become nonrelativistic,

and the general equation is then

_Y ¼ −λfðzÞ½Y3 − Y2Yeq�: ð32Þ

In the outer region z < zf (z ≫ 1), we proceed as in the
previous section with the ansatz Y ¼ Y0 þ 1

λ Y1 and get

Y1 ¼ −
1

fðzÞ
_Yeq

Y2
eq
¼ 1

fðzÞ
d
dz

�
1

Yeq

�

∼
A

fðzÞ z
−3=2ez ∼

1

fðzÞYeqðzÞ
: ð33Þ

The freeze-out temperature is determined as

YeqðzfÞ ∼
1

λfðzfÞYeqðzfÞ
⇒ Y2

eqðzfÞ ∼
1

λfðzfÞ
: ð34Þ

In the post-freeze-out region the equation reduces to

_Y ¼ −λfðzÞY3 ⇒ Y ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

ðY∞
π Þ2 − 2λ

R∞
z fðxÞdx

q : ð35Þ

Inside the boundary layer, by choosing κ ¼ 1=ðλfðzfÞÞ the
solution reads

YðZÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dþ 2Z

p ⇒ D ¼ 1

ðY∞
π Þ2

− 2λ

Z
∞

zf

dxfðxÞ: ð36Þ

Matching in the pre-freeze-out region instead, we have

YðZÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dþ 2Z

p ∼ 2YeqðzfÞ ∼ 2
ffiffiffi
κ

p þ � � � ⇒ D ¼ 1

4κ
;

ð37Þ

leading to the following asymptotic relic abundance:

Y∞
π ¼ 2

λ1=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

fðzfÞ þ 8
R∞
zf
dxfðxÞ

s
: ð38Þ

Equipped with the general analytic or semianalytic
solution for the Boltzmann equations, we will study the
asymptotic solutions for baryons and pions/glueballs in
concrete regimes, assuming different hierarchies between
zf and zc.

B. Application to freeze-out in
the number-changing era

In the following sections, we will discuss the baryon
freeze-out and consider stable LCPs in Sec. VI A 4.
First, we assume that the dark freeze-out temperature Tf

(due to dark baryon annihilation processes) is higher than
the temperature Tc at which the dark number-changing
operators freeze out. Here the number-changing processes
keep the chemical potential at zero while heating up the
dark plasma. Furthermore, we assume that the plasma
degrees of freedom do not decay in this era i.e., Γπ ≈HðT0Þ
and Tf > Tc > T0.
We use Eq. (9) to evaluate the Jacobian factor and the

fact that the LCPs are in thermal equilibrium with vanishing
chemical potential. These assumptions yield

1

λ

dYB

dz
¼ −fðzÞðY2

B − Y2
B;eqÞ: ð39Þ

The large constant in front of the derivative ensures that
asymptotic methods will give good results and is given by

λ ¼ αhσann:viMPlmB; ð40Þ

with

α ¼

8>><
>>:

1
6

�
gπ

12π2ζ2

ffiffiffiffiffiffi
gSM
10r

q �
1=3

for ðρSM > ρDÞ;
r1=4

ffiffiffiffiffi
3gπ

p
821=4π5=4

for ðρD > ρSMÞ:

The temperature-dependent function is given by

fðzÞ ¼
8<
:

1þ2rz
z7=6

e−zr=3 for ðρSM > ρDÞ;
1þ2=3rz

z3=4
e−zr=2 for ðρD > ρSMÞ;

with r ¼ mπ=mB being the ratio of LCP and dark baryon
masses. The explicit form of the equilibrium baryon
number density, normalized to dark entropy is

YB;eq ¼
gBeðr−1Þz

gπr5=2z
: ð41Þ
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We determine the freeze-out temperature by expanding the
solution of the Boltzmann equation in powers of 1=λ. The
freeze-out is defined as the temperature at which the next-
to-leading order in 1=λ is of the same size as the leading-
order contribution. Thus defining YB ≈ Y0

B þ Y1
B=λ ¼

YB;eq þ Y1
B=λ we can insert this ansatz into Eq. (39) and

by solving YB;eq ¼ Y1
B=λ, we obtain for the case that the

SM dominates the energy budget

zf ≈
log
h
gπr5=3

gBλ

i
þ log

h
z7=6f ð1−ðr−1ÞzfÞ

1þ2rzf

i
ð2
3
r − 1Þ ; ð42Þ

and for the case when the dark sector dominates we have

zf ≈
log
h
g5=6π g5=6SMr9=4

gBζ2=3λ

i
þ log

h
z3=4f ð1−ðr−1ÞzfÞ

1þ2
3
rzf

i
ðr
2
− 1Þ : ð43Þ

Following the boundary layer method suggested in
Ref. [48] we find the asymptotic solution to Eq. (39) to be

YBð∞Þ ≈
�
λfðzfÞ þ

Z
zc

zf

λfðzÞdz
�

−1
: ð44Þ

In the case of hσann:vi ≈ const the integral can be found
analytically (assuming zc ≫ zf)

R∞
zf

fðzÞdz
fðzfÞ

≈

8>>><
>>>:

6zf
1þ2rzf

for ðρSM > ρDÞ;

4zf

�
e
rzf
2 E3

4
ðrzf

2
Þþ1

�
2rzfþ3

for ðρD > ρSMÞ;

where EnðxÞ is the nth exponential integral. We see at this
point again that the post-freeze-out regime dominates over
the standard scenario where

R∞
zf
fðzÞdz=fðzfÞ ≈ zf.

C. Application to freeze-out in the
number-conserving era

Next, we consider the case Tc > Tf such that freeze-out
occurs when number-changing processes are inactive and a
chemical potential leads to conservation of dark particle
number. We still assume that the plasma degrees of freedom
do not decay in this era i.e., Tc > Tf > T0.
There will still be two possibilities, depending on

whether the SM or the dark sector dominates the
Universe at DM freeze-out. We use Eq. (14) to evaluate
the Jacobian factor together with the chemical potential
μ ¼ mπð1 − TD=TcÞ, which implies nπ ≈ neqπ eμ=TD . The
Boltzmann equation (18) reads now

1

λ

dYB

dz
¼ −f̃ðzÞðY2

B − Ỹ2
B;eqe

NDCμ=TDÞ: ð45Þ

The equilibrium baryon number, normalized to dark
entropy, reads

ỸB;eq ¼
gBe−zþrzc

gπr5=2zc
with zc ¼

mB

Tc
: ð46Þ

The temperature-dependent function reads

f̃ðzÞ ¼
8<
:

3z1=3c e−zcr=3

z3=2
for ðρSM > ρDÞ;

zce−zcr=2

z7=4
for ðρD > ρSMÞ:

Following the procedure outlined in the previous subsec-
tion the freeze-out temperature is

zf ≈
log
h
gπð2−rNDCÞr8=3

12gBλz
1=3
c

i
þ zcrðNDC

2
þ 1

3
Þ þ 5

2
log½zf�

ððNDC
2

þ 1Þr − 1Þ ; ð47Þ

in the regime where the SM dominates the energy budget.
The case in which the dark sector dominates the energy
density gives

zf≈
log
h
g5=6π g5=6SMð2−rNDCÞr9=4z11=4f

gBλzcζ2=3

i
þzcrðNDC

2
þ1Þ−2.1

ððNDC
2
þ2Þr−2Þ : ð48Þ

The boundary layer method leads to the following asymp-
totic solution for Eq. (45):

YBð∞Þ ≈
�
λf̃ðzfÞ þ

Z
∞

zf

λf̃ðzÞdz
�

−1
: ð49Þ

In the case of hσann:vi ≈ const the integral can be solved
analytically (assuming zc ≪ zf)R

∞
zf
f̃ðzÞdz
f̃ðzfÞ

≈
�
2zf for ðρSM > ρDÞ;
4
3
zf for ðρD > ρSMÞ:

We find that also in this scenario, the late-time annihilations
play a significant role and corrections to the sudden freeze-
out approximation are substantial. These solutions are
applicable if freeze-out happens on time scales on which
the LCPs are stable.

D. Application to freeze-out with decaying LCPs

Here we consider the decay of the LCPs and consider
two scenarios, with different effects on the asymptotic dark
baryon abundance.

1. LCP decay before baryon decoupling

Here we assume that the lifetime of the Universe
becomes larger than the LCP lifetime, while dark baryons
are still in chemical equilibrium with the LCP plasma.
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In this case the set of Boltzmann equations governing the
system reads

dYB

dt
¼ −2γ

�
Y2
B

Y2
B;eq

−
�

Yπ

Yπeq

�
NDC
�
; ð50Þ

dYπ

dt
¼ 2γ

�
Y2
B

Y2
Beq

−
�

Yπ

Yπeq

�
NDC
�
− 3γ32

�
Y3
π

Y3
πeq

−
Y2
π

Y2
πeq

�

− γann

�
Yπ

Yπeq
− 1

�
; ð51Þ

where the space-time interaction densities are given by
2γ ≈ hσvin2Beq and γann≈Γannnπeq and 3γ32 ≈ hσ3→2v2in3πeq.
Here we allow for the annihilation rate of the LCPs into SM
particles.
The LCP plasma begins to decay away once the Hubble

rate drops below the annihilation rate HðTDecayÞ < Γann,
which defines the decay temperature TDecay. The dimen-
sionless number densities are now conveniently defined
with respect to the SM entropy density Y ¼ n=sSM during
the radiation-dominated era.
As discussed in Ref. [49], once the annihilation rate is

faster than the Hubble rate, the left-hand side of Eq. (51)
can be neglected at leading order and the equation becomes
algebraic. Now, the effective equation for the DM number
density can be obtained by inserting the solution of Eq. (51)
into Eq. (50). We obtain

dYB

dt
¼ dYB

dz
HðzÞzsSM ¼ −2γeff

�
Y2
B

Y2
Beq

− 1

�
; ð52Þ

where the effective interaction density is for NDC ¼ 3

2γeff ≈ 2γ
γannð1þ NDCγann2γ3γ32

ðγannþNDC2γÞ3Þ
γann þ NDC2γ

≈ hσvin2BeqBRðzÞ; ð53Þ

with the branching ratio defined as

BRðzÞ ¼ hσvin2Beq
�
1þ NDCΓannn2Beqn

4
πeqhσvihσ3→2v2i

ðΓannnπeq þ NDChσvin2BeqÞ3
�

×

�
1þ NDChσvin2Beq

Γannnπeq

�−1

: ð54Þ

In fact baryons in large color groups can be constructed by
means of the two-index antisymmetric representation [50],
in which case these formulas apply to arbitrary NDC.
This final Boltzmann equation can be integrated and

yields

YBð∞Þ≈
�
λhσviBRðzfÞ

z2f
þ
Z

∞

zf

λhσviBRðzÞ
z2

dz

�−1
: ð55Þ

This effective description clearly shows how the decay
of the LCP generates a thermal link between the SM and
the dark sector. The crucial factor is the interaction
proportional to ΓannðYπ − YπeqÞ in the Boltzmann equation,
which establishes the thermal link, provided that Γann ≫
HðTDecayÞ. Below the temperature TDecay, the LCPs cannot
be regarded as stable any longer, as the Hubble time starts
exceeding their lifetimes.

2. LCP decay after baryon decoupling

If the dark baryons have already decoupled from the dark
plasma at the time of LCP decay, the only effect which can
be relevant is entropy injection and DM dilution [26,51,52].
This is relevant if, at the time of the LCP decay, they are the
dominant energy components of the Universe. The con-
dition for the dominance of LCP energy density has been
discussed in the previous sections. After the LCPs decay
to SM particles the relic abundance of the dark baryons will
be diluted by

Δ ¼ srhSM
sDecayD

: ð56Þ

To find this ratio four facts are crucial:
(1) Before the LCP decay there is a point in the

evolution of the Universe where ρeD ¼ ρeSM.
(2) At the decay of the LCPs their entire energy is

injected in the SM sector and reheats it ρDecayD ¼ ρr:h:SM.
(3) We can equate ratios of covariantly conserved

quantities, since they are just related by the ratio
of the initial and final volumes of the Universe i.e.,
we have ρeD=ρ

Decay
D ¼ seD=s

Decay
D .

(4) Before the decay of the LCPs the SM and dark
entropy ratio remains constant; in particular we
use seSM=s

e
D ¼ ζ.

We therefore, have

ρeSM¼ρeD¼ρDecayD
seD

sDecayD

¼ρDecayD
seDs

e
SM

seSMs
Decay
D

¼ρDecayD
seSM

ζsDecayD

;

ð57Þ

and can rewrite

Δ ¼ sr:h:SM

sDecayD

¼ sr:h:SMρ
e
SMζ

ρr:h:SMs
E
SM

¼ Te
SMζ

Tr:h:
SM

: ð58Þ

The reheating temperature is determined by the
condition that the LCP lifetime equals the Hubble time
τH ¼ Γ−1

ann. Which for a matter-dominated universe is
τH ¼ 2=3H½ρDecayD �−1. We make use of the fact that all of
the dark sector energy density is converted to SM energy
density in the reheating process and rewrite the Friedmann
equation
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H½ρDecayD �2 ¼ 8π

3M2
Pl

ρDecayD ; ð59Þ

to find the reheating energy density

ρDecayD ¼ ðΓannMPlÞ2
6π

¼ ρr:h:SM: ð60Þ

The reheating temperature is therefore given by

Tr:h:
SM ¼

�
5

π3gSM

�
1=4

ðMPlΓannÞ1=2: ð61Þ

The dark baryon relic abundance is then given by
YB ¼ YBð∞Þ=Δ. In the case that the LCP energy is a
subdominant fraction of the total energy density in the
Universe, no dilution takes place.
The questions regarding whether the dark baryon freeze-

out takes place during the number-changing or -preserving
era, as well as what is the actual LCP lifetime can be
answered in a concrete model. Note that the number-
changing interactions are generically present among LCPs
(glueballs or pions) at low energies. We will study the most
economical and appealing models of this type in the
following sections.

VI. WEAK AND STRONG COUPLED REGIMES
OF DARK BOUND STATES

Here we employ the formalism developed in the previous
sections to investigate the asymptotic abundance of stable
relics in different regimes of non-Abelian gauge theories.
First, we focus on the strong coupling regime, where the
gauge coupling at typical momenta inside the bound states
is nonperturbative.

A. The strongly coupled bound-state limit

Here we assume the vector-like fermion masses to be
small compared to the dark confining scale. In this limit, the
dark bound states are relativistic and interact nonperturba-
tively among each other. This situation mirrors ordi-
nary QCD.

1. DM self-annihilation

Because of the QCD resemblance we can use it as a
physical analog to determine DM self-annihilation by
properly rescaling the measured QCD proton-proton anni-
hilation cross section. The annihilation is exothermic since
σv ¼ const and the s-wave contribution dominates. Thus
the dark baryon annihilation cross section is [24]

σvrel: ¼
4π

Λ2
D
≈

4π

M2
DM

: ð62Þ

2. Dark pion interactions

In the current setup the lightest dark particles are
Goldstone bosons described by the chiral Lagrangian;
for details see Appendix A. Because the coset space of
the spontaneously broken global symmetry has a nontrivial
fifth homotopy group we can write, for SUðNfÞR ⊗
SUðNfÞR broken to SUðNfÞV for Nf > 2 the following
term induced by the WZW [53,54] action:

L ⊃
NDC

240π2f5π
εμναβTr½Π∂μΠ∂νΠ∂αΠ∂βΠ�;

with 4πfπ ≈ ΛD and Π ¼
X
a

λaπ
a; ð63Þ

where λa are the broken generators. The resulting cross
section for the 3 → 2 processes is

hσ32v2i ¼
5
ffiffiffi
5

p

211π5f5πz2π

�
mπ

fπ

�
5N2

DC

N3
π

1

5!

X
T2
fijklmg|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

¼t2

; ð64Þ

where Tijklm ¼ Tr½λiλjλkλlλm� and f…g denotes an order-
ing procedure, for example f1; 5; 4; 3; 2g ¼ 1, 2, 3, 4, 5
(also, we changed A → Π in the equation above). For a
breaking pattern of the form SUðNfÞ⊗SUðNfÞ→SUðNfÞ
we have (see Ref. [36]) Nπ ¼ N2

f − 1 and t2 ¼
4=3ðN2

f − 1ÞðN2
f − 4Þ. Within this framework of chiral

perturbation theory the dark baryon abundance and the
effects of the dark plasma can be computed.
In Fig. 3 we show the relic abundance for two selected

dark baryon masses, resulting in annihilation cross sections
of 10−24 and 10−26 cm3=s. Even for the cross section
that is significantly larger than the naively expected target
cross section of Oð1Þ × 10−26 cm3=s the correct dark relic
abundance can be achieved. This effect takes place, as the
self-heating of the dark plasma enhances the dark baryon
relic density when r ≈Oð1Þ. At intermediate values, the
freeze-out happens in the presence of the chemical potential
in the dark sector and suppression of the abundance is
achieved. This behavior leads to multiple solutions with the
correct asymptotic DM relic density, as can be seen from
the red curve in Fig. 3.
At small relative pion masses, the effects do not impact

the DM relic abundance. This can be understood in the
following way: the asymptotic solution of the Boltzmann
equation is dominated by the inverse of the integralR
∞
zf

fðzÞhσvianndz, where fðzÞ falls off with the power

between z−1 and z−2 (as discussed in the previous sections).
Numerically this leads to complete suppression of effects at
z > 104. The pions become nonrelativistic at temperatures
of the order of z ≈ r−1. Thus, it is obvious that at r > 10−4

all the nonstandard thermodynamic effects subside.
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Figure 4(a) shows the dark baryon relic density in the
strongly coupled regime as a function of the dark baryon
and pion masses while neglecting possible dilution due to
pion decay. Depending on the parameter space the resulting
dark baryon density will come from either number-
preserving or number-changing types of interactions out-
lined above. Therefore, the dynamics of the system is
governed by the Boltzmann equations from either Sec. V B
or Sec. V C. The pion lifetime is varied as a model-
independent free parameter and for comparison the two
regimes are contrasted. In the case that the pions are stable
on cosmic time scales during the confinement and freeze-
out process (τπ > τDCH ) the relic abundance depends on the
initial entropy ratio ζ. If the pion decay is significant during
the freeze-out (τπ < τDCH ) the established connection to the
SM plasma erases the ζ dependence. The Boltzmann
equation used for the relic abundance is in this case
described in Sec. V D.

3. Pion decay effects

To discuss the pion lifetime effects more concretely,
we specify a model, by choosing it to contain a dark
quark with SM quantum numbers. The simplest viable
model, as discussed in Ref. [30] contains only one quark
multiplet with mQ < ΛD is the Q ¼ ð3; 1; 3; 0Þ of

SUð3ÞD × SUð3Þc × SUð2ÞL ×Uð1ÞY . Here the dark
diagonal flavor symmetry is SUð3Þ under which we have
eight Goldstones that decompose under SUð2ÞL SM as
a 3 ⊕ 5.
The dark Goldstones enjoy a G-parity symmetry (charge

conjugation followed by a weak isospin flip) that would
stabilize π0. However, the symmetry can be broken by a
dimension-five operator induced by physics at the scaleΛ=G.
This physics may induce, for example, the operator
−κðαEM=Λ=GÞπ0FμνF̃μν enabling the decay with

Γπ0→γγ ¼
κ2α2EM
64π3

m3
π0

Λ2

=G
: ð65Þ

The coefficient κ is Oð1Þ and ΛD < Λ=G < MPl, which

defines the minimal and maximal lifetime of the pions
respectively.
A simple way to UV complete this decay scenario is the

introduction of heavy vector-like dark quarks, which trans-
form as Q2 ¼ ð3; 1; 2; 1=2Þ. Those will allow a Yukawa
mixing with the dark quark which comprises the DM
parametrized by ϵ and induces an anomaly leading to the
above decay process. The decay rate, in this case, would
have an additional suppression factor of ϵ4 and would thus
favor longer pion lifetimes making the pions stable during
the dark baryon freeze-out. Note that this UV completion
is also valid for SM singlet DM component quarks, as a
Yukawa interaction is also allowed in this case [24].
It is obvious, that in order for a pion to be stable on

cosmological scales its mass has to be below the GeV scale.
Thus, we have a severely limited parameter space for a
long-lived pion as a DM candidate. In the generic case, as
mentioned before, the baryon will be the DM candidate and
thus the pions have to decay before BBN i.e., τπ < 1 s. In
the case that the dark pions have such long lifetimes, the
entropy dilution, as discussed in Sec. V D 2, takes place.
The resulting relic abundance is shown in Fig. 4(b). Note
that in this case, the dark baryon mass can be significantly
higher than expected from unitarity considerations [55,56]
or even tighter mass bounds, derived in Ref. [57].

4. Stable pion abundance

As discussed in the Introduction, it is possible to
construct models with global symmetries, in which the
pions are long-lived DM candidates. This implies that the
pion cannot be heavier than a few GeV. In this section, we
predict the relic abundance of the long-lived pions as a
function of the model parameters.
While for the dark baryons, the freeze-out and produc-

tion depend to a lesser degree on the couplings of the
constituent quarks to the SM particles, the situation is
different in the pion case. This is due to the fact that
viable models feature light pions and therefore, depending

FIG. 3. The predicted dark baryon relic density as a function of
the dark pion to dark baryon mass ratio r. Two dark baryon
masses of mB ≈ 10 TeV leading to 10−24 cm3=s and mB ≈
100 TeV leading to 10−26 cm3=s are shown. In the second case
there exist two pion to baryon mass ratios, that lead to the correct
dark baryon relic density. This effect results from the fact, that at
intermediate values of r the relic density is suppressed with
respect to the naive estimated value, while on the other hand an
enhancement takes place when r approaches values of order one.
This enhancement leads to significantly larger target cross
sections for heavy DM candidates. At r values below 10−4 the
pions are relativistic throughout the entire annihilation history of
the dark baryons and no effect is present.
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on the concrete realization of the model, the pion-SM
elastic scattering might be strong enough to maintain
kinetic equilibrium between the sectors, leading to the
equality of TD ¼ TSM. Whether temperature equality is
achieved dramatically changes the resulting freeze-out
phenomenology.

5. Kinetic equilibrium

In Sec. IV, it was shown that a dark pion sector, which is
not in kinetic equilibrium with the SM bath cools slower
than normal nonrelativistic matter. Thus, structure forma-
tion excludes a secluded, self-heating pion sector as the sole
component of the DM fluid in the Universe [58].
Therefore, we first consider a scenario in which the

temperature equality between the dark pion and the SM
sector is maintained throughout the freeze-out process, as
in Ref. [21]. Here the general Boltzmann equation (32)
greatly simplifies and the temperature-dependent function
is just fðzÞ ¼ z−nπ . The WZW interaction cross section
includes the z−2π scaling of the pion scattering cross section
for n ¼ 7.
The asymptotic number density with n ¼ 7 is thus

given by

Y∞
π ¼ n∞π

sSM
≈

2ffiffiffi
λ

p
�

1

ðzπcÞn
þ 8

n − 1

1

ðzπcÞn−1
�

−1=2
≈

ffiffiffi
3

λ

r
ðzπcÞ3;

ð66Þ

where

λ ¼ 2g2πð1þ ζÞ2π5=2
135

ffiffiffi
5

p
g1=2SM

m4
πMPlσ

0
32; ð67Þ

is the large parameter enabling the boundary layer method
to work. Here we have defined σ032 ¼ hσ32v2iz2 and
assumed ζ ≪ 1.
In the case of 3 → 2 freeze-out and equal temperatures in

the SM and dark sectors, the critical temperature at which
the number-changing interactions decouple can be found
analytically to be

zcπ ¼
1

2
ðn − 3ÞW

� ð4π224−n
45λ Þ 1

3−n

π
1

3−nðn − 3Þ

�
; ð68Þ

where WðxÞ is the ProductLog function.

Since the relic density is given by Ωπ ≈ s0SMmπY∞
π =ρc ≈

2.6 × 103ððN2
f − 1Þmπ

ffiffiffiffiffiffiffi
σ032

q
GeV3=2Þ−1 this scenario alone

does not point to a fixed target cross section, as in the case
of the well-known thermal WIMP [59]. Fixing the relic
density to be the maximally allowed relic abundance of DM
we obtain the constraint ðN2

f − 1Þ2m2
πσ

0
32 > 108 GeV−3.

Given the scaling of σ032 ≈ 2.3 × 106N2
DCr

10m−5
π N−1

f ,
we find that the relic density is Ωπ ≈Oð1Þr−5N−1

DCðmπ=

ðNf GeVÞÞ3=2 and mπ ≤ 0.3r10=3N2=3
DCNf GeV. Since at

values of r ≈Oð1Þ the chiral perturbation theory used to
set up the pion Lagrangian breaks down, we find that the

(a) (b)

FIG. 4. The model parameter space allowed by the relic density constraint in the case of ΛD ≫ MQ. So far it is assumed that no
entropy dilution is happening. The model considered has NDC ¼ 3 and Nf ¼ 3. The light green region shows how ignoring the
thermodynamic effects leads to significantly different relic abundance predictions. Note that in the strongly coupled model, the freeze-
out always happens in the regime with conserved dark particle number and an active chemical potential.
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mass ordering scenario of mQ ≪ ΛD provides an upper
mass bound for the pion dark matter of the order of GeV.
Figure 5 shows the numerical result for the stable dark

pion relic density for NDC ¼ 2, Nf ¼ 3 and Nf ¼ 36,
where SUðNfÞR ⊗ SUðNfÞR is broken to a diagonal
SUðNfÞV . The results agree very well with the analytical
estimate.
There is another important point which is crucial and

very general to take into account here. The pion self
scattering cross section is given by [60]

σ2→2 ¼
4π3r4

m2
π

ðNf − 1ÞðNf þ 1Þð3N4
f − 2N2

f þ 6Þ
N2

fðN2
f − 1Þ2

≈ 12π3r4=m2
π: ð69Þ

Note that this cross section only weakly depends on the
number of fermion flavors. Observations of galaxy clusters
provide upper bounds on the DM self-scattering cross
section demanding that σ2→2=mπ< cm2=g≈4.5103 GeV−3

[61–63]. Given the upper bound, we derived on the pion
mass from the relic density constraint, we get a lower bound
on this quantity σ2→2=mπ > 1.8 × 104=ðr6N2

DCN
3
fÞ GeV−3,

which implies that r > 1.25N−1=3
DC N−1=2

f .
This lower bound on r indicates that at low values of

NDC and Nf the viable models are close to the regime
where chiral perturbation theory breaks down. In fact

Ref. [64] demonstrated that at values of r > 0.3 next-to-
leading-order and next-to-next-to-leading-order corrections
increase the self-scattering cross section beyond the exper-
imentally viable values. A possible way to reconcile the
stable pion DM scenario with data is to consider modes
with large numbers of colors or fermion flavors NDC ≥ 20
or Nf ≥ 16, such that r < 0.3 and higher orders of the
chiral expansion are subleading. It is intriguing that the
allowed mass range for stable pions is in the sub-GeV
regime, which is compatible with the pion lifetime esti-
mates we performed in the Introduction. Thus this scenario
is self-consistent.

6. Kinetically decoupled pions

Even though Ref. [58] showed that self-heating secluded
pions cannot be the DM of the Universe, Ref. [65]
discussed the possibility that a subdominant DM fraction
of self-heating light particles is acceptable and might
alleviate the observed tension in the matter power spec-
trum. To this end, the fraction has to be of order 1% of the
total DM relic density.
Figure 5 shows the numeric result for the secluded dark

pion relic density as the green shaded region. Since in
analogy to the baryon freeze-out the Hubble rate has a
complicated dark temperature dependence there is no such
simple analytical expression for the final relic density. It is
interesting to observe, that in this case the mass of the dark
pions is expected to be between 10 and 100 keV, with a
mild dependence on the ratio r ¼ mπ=ΛD ≈mπ=mB, with
the dark baryon mass mB.
As shown above, in order to obtain a symmetric relic

abundance of dark baryons in accordance with the observed
DM relic density, those baryons have to have mass of order
100 TeV, which implies an extremely small value of
r < 10−10, which makes the pion self-scattering cross
section tiny. In the case that dark baryons are produced
with an asymmetry and a smaller mass, the ratio r can be
much larger. However, since the dark pions are a subdomi-
nant DM fraction, the DM self-interaction constraint does
not apply to them.

B. The weakly coupled bound-state limit

In this subsection, we consider the interaction regime, in
which MQ ≫ ΛD, and thus bound states are perturbative
objects similar to heavy quarkonia. In this regime, the
annihilation takes place in two ways.

1. Dark baryon interactions

(1) Constituent annihilation which is dominant when the
length scale corresponding to the baryon momenta is
shorter than the naive size of the colliding baryons
ðmBvrelÞ−1 ¼ p−1

B ≪ RB ≈ ðαDCNmQÞ−1, which im-
plies that vrel ≫ αDCN=NDC with the group factor
CN defined below. The cross section in this case is

FIG. 5. The red shaded region describes the case that dark pions
are in kinetic equilibrium with SM particles. It shows the
parameter space within which the dark pion relic abundance is
below the experimentally observed DM abundance. The region
intersects with the black band, which indicates the breakdown of
chiral perturbation theory at a pion mass of order GeV. The green
shaded region describes the scenario, where the dark pions are
kinetically decoupled from the SM bath and show number-
changing behavior and self-heating. Note that in this case the
dependence on the pion to baryon mass ratio r is much weaker.
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analogous to the free quark case since it is dominated
by direct constituent annihilation and it is given by
σannvrel ≈ κπα2D=m

2
Q [where κ is a model-dependent

number of Oð1Þ].
(2) Rearrangement annihilation, which is effective in

the complementary regime i.e., vrel ≪ αD. The proc-
ess takes place when two baryons rearrange into a
quarkonium state with 2ðNDC − 1Þ quarks emitting a
meson B̄B→Q̄QðNDC−1ÞþQ̄Q. The ðNDC−1ÞQ̄Q
state has baryon number zero and self-annihilates
by stepwise meson emission. The rearrangement
cross section is given by σann≈πR2

B=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ekin=EB

p
and σannvrel ≈ π=ð ffiffiffiffiffiffiffiffiffi

NDC
p

CNαDm2
QÞ, where CN is

the quadratic Casimir of the fundamental representa-
tion of the considered group [30].

The resulting cross section is thus a temperature-dependent
quantity, given by

ðσannvÞ ≈

8>><
>>:

κπα2D
m2

Q
; TD > α2DC

2
NmB

N2
DC

;

πffiffiffiffiffiffiffi
NDC

p
CNαDm2

Q
; TD < α2DC

2
NmB

N2
DC

:
ð70Þ

The group factor can be computed in a given model; for
example for an SUðNDCÞ group it is κ¼ðN4

DC−3N3
DCþ2Þ=

16N3
DC, assuming the quarks are SM singlets [30].

The value of the rearrangement cross section quoted
above can be estimated by numerical simulations of the
classical rearrangement process, where the color charge of
the dark quarks is taken into account. This is done by
augmenting the Maxwell equations, by a classical evolution
equation for the color vectorQaðtÞwith the adjoint index a,
which is constructed from the bilinear Qa ¼ c†i λ

a
ijcj with

the color vectors of the fundamental fields ci and the
corresponding group generators λaij [66]. The parallel
transport equation dictates the evolution of this color
vector v ·DQa ¼ 0 [67,68], where vμ is the four-velocity
of the quark. This equation can be written and approxi-
mated in the nonrelativistic limit as

_Qa
i ðtÞ ¼ gDfabcvμAb

μQc
i ≈ gDfabcAb

0Q
c
i ; ð71Þ

where fabc is the structure coefficient of the gauge group.
At leading order in the gauge coupling the equation for the
potential in the Lorentz gauge is just □Aμ

a ¼ gDJ
μ
a, where

the sources are Jμa ¼
P

i

R
dτQaðτÞvμi δðx − xiðτÞÞ. We can

use the Lienard-Wiechert ansatz and get at leading non-
relativistic order

Ab
0 ¼

gD
4π

X
j≠i

Qb
j

jr⃗i − r⃗jj
: ð72Þ

With the Lorentz force equation mQ
̈x⃗i ¼ gDQa

i ∂⃗Aa
0 for the

positions of the color charges we obtain a closed system of
differential equations. As an example we show a simulated
classical meson-antimeson rearrangement event in Fig. 6.

2. Glueball interactions

The glueball spectrum is well known from lattice studies
[69] and contains the 0þþ ¼ S state as a lightest particle.
The interactions among the glueballs can be described by a
low-energy effective Lagrangian, obtained in the large-NDC
expansion [70–72]

Leff ⊃
1

2
ð∂SÞ2 − a2

2!
Λ2
DS

2 −
a3
3!

�
4π

NDC

�
ΛDS3

−
a4
4!

�
4π

NDC

�
2

S4 þ � � � ; ð73Þ

with ai of order unity. From this Lagrangian the cross
section for the 3 → 2 processes can be computed as

σ3→2v2 ≈
1

ð4πÞ3
�

4π

NDC

�
6 1

m5
GB

: ð74Þ

3. Glueball decay

Glueballs are not protected from decay by any accidental
symmetry. Therefore, generically they will have a limited

FIG. 6. Classical meson rearrangement of weakly coupled
bound states. The quarks are in the fundamental representation
of SUð2Þ. The line color indicates the time evolution of the
bilinear color vector. The numerical study of this system confirms
that the process is s-wave dominated and ðσannvÞ ≈ const, given
by Eq. (70).
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lifetime. If the theory contains quarks, which carry electro-
weak quantum numbers, effective operators will be
induced. If no Yukawa couplings with the Standard
Model fermions are present, the leading operator will be
of dimension eight [30]

O8 ¼ αEMαDGa
μνGμνaFλσFλσ; ð75Þ

with the coefficient induced by the quark loop

c8 ¼
TDðT2 þ d2YÞ

60m4
Q

: ð76Þ

For the simple model, we have introduced in the previous
section, the only quarks in the theory are in the Q ¼
ð3; 1; 3; 0Þ of SUð3ÞD × SUð3Þc × SUð2ÞL × Uð1ÞY and
thus TD ¼ 1=2, T2 ¼ 2, d2 ¼ 3 and Y ¼ 0. The decay
with of the glueballs is therefore

ΓG ¼ α2Dm
3
GBf

2
G

3600πm8
Q

 
α2EM þ 2α2αEMcos2ðθWÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

m2
Z

m2
GB

s

þ α22cos
4ðθWÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
Z

m2
GB

s
þ 2α22

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
W

m2
GB

s !
: ð77Þ

The constant fG can be extracted from lattice data as in
Ref. [73] fG ≔ h0jTrGμνGμνj0þþi ≈ 3m3

GB=4παD. In the
case of heavy glueballs with mGB ≫ mW , the kinematical
bracket separating the γγ, Zγ, ZZ and WW channels
respectively, simplifies to 3α22.

4. Phase transitions

In this section, we will show how a first-order phase
transition can lead to a dilution of frozen-out relic particles
[74]. Numerical simulations of pure gluon dynamics
indicate the presence of a first-order confinement phase
transition for NDC larger than two. We can use this analogy
for the dark scenario with heavy vector-like quarks. Here
we are interested in the discontinuity of entropy density,
which would affect the abundance of frozen-out relics.
The entropy of the Yang-mills sector just above the

critical confinement temperature is given by sD ¼
4π2=90ggT3

D − ∂B0=∂TD, where gg is the number of
gluons. The nonperturbative contribution is encoded in
the factor B0. This factor can be modeled with the MIT bag
model [75] and ascribes constant vacuum energy density to
the interior of hadrons. However, just above the phase
transition, the plasma can be considered as so dense, that B0

is a universal global vacuum energy and thus does not affect
the entropy function. The entropy density before the phase
transition is thus sþ ≈ sg ≈ 4π2=90ggT3

D.
After the confinement, the lightest degree of freedom is

the 0þþ glueball with a mass of mGB ≈ 7ΛD. Therefore,

at TD < ΛD the glueballs are nonrelativistic and have
an exponentially suppressed contribution to the entropy
density

sG ¼
e−

mGB
TD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m5

GBTD

q
2
ffiffiffi
2

p
π3=2

≈ s−: ð78Þ

If the dark sector dominates the energy budget of the
Universe at the phase transition i.e., if ΛD < TE a dilution
effect will take place. Since we argue that the nonpertur-
bative entropy generating contributions can be neglected
the change in entropy densities is compensated by an
expansion of the Universe i.e., sþa3i ¼ s−a3f. The increase
in the volume leads to a dilution of any relic already frozen
out at the phase transition with the dilution factor given by

D ¼ sþ
s−

≈
4
ffiffiffi
2

p
π7=2

45

ðN2
DC − 1ÞT5=2

conf:e
mGB=Tconf:

m5=2
GB

: ð79Þ

The confinement temperature can be approximated by
Tconf: ≈ ð B090

π2ðN2
DC−1Þ

Þ1=4, where B0 ≈ Λ4
D. For the case of

NDC ¼ 3 the phase transition leads to a dilution fac-
tor D ≈ 400.
A further interesting aspect of this scenario is that during

this first-order phase transition dark baryons will accumu-
late in clusters at the collapse points of the false vacuum.
In the case of an asymmetry in the dark sector, those DM
clusters will persist until the present day.

5. Dark baryon abundance

Equipped with our formalism the relic density of weakly
coupled dark baryons can now be computed. We begin by
exploring the parameter space keeping the SM quantum
numbers general and varying the glueball lifetime as a free
parameter and then focusing on the predictions of a
concrete simple model.
Figure 7(a) shows the relic abundance of dark baryons,

in the case that the dark glueballs are stable at the baryon
freeze-out. The final abundance depends on the initial
entropy ratio ζ, which is bounded from above by the
number of SM degrees of freedom, assuming that the dark
and SM sectors were in thermal contact at some higher
temperature.
Figure 7(b) shows the relic abundance under the

assumption that dark glueballs are not stable at the time
of the dark baryon freeze-out and establish a partial thermal
link between the systems. Furthermore, we show that given
an entropy ratio ζ > 30 at the first-order phase transition in
the case of low-mass dark glueballs additional dilution
takes place and leads to larger dark baryon masses.
Figure 8 shows the allowed parameter space in the

concrete model with only one quark in the adjoint repre-
sentation of the weak SUð2ÞL group. The glueballs decay
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according to Eq. (77). Given the model parameters, the
glueballs decay after dark baryon freeze-out and strong
entropy dilution takes place. This is indicated by the purple
contour which goes up to dark baryon masses, which are
much larger than the expected unitarity bound [55]. The
maximal entropy diluted relic density is shown by the red
contour. It takes place if the glueball lifetime is assumed
to be τGB ≈ 1 s, so as large as it can get, given the BBN
constraint. For comparison, the dark baryon relic abun-
dance result with short-lived glueballs is shown in green.
Note that the provided upper bounds on the DM mass from
the requirement Ωh2 < 0.12 also apply if a DM asymmetry
is present. In that case, the symmetric component has to
annihilate away to at least that value in order not to
overclose the Universe.

6. Stable glueball abundance

When dark glueballs are long lived on cosmic time
scales, they can be DM candidates as well. The effective
Lagrangian for the glueball interactions is not based on
approximate global symmetry but it is a result of a 1=NDC
expansion and works best for a large number of colors [70].
The glueball self-scattering cross section can be computed
from Eq. (73) and is directly related to the 3 → 2 reaction
cross section

σ2→2 ≈
1

16π

�
4π

NDC

�
4 1

m2
GB

≈
�
NDC

8π

�
2

m3
GBσ3→2v2: ð80Þ

(a) (b)

FIG. 7. The model parameter space allowed by the relic density constraint in the case of ΛD ≪ MQ. So far it is assumed that no
entropy dilution is happening. The model considered has NDC ¼ 3. The left panel shows the relic abundance in the case that τGB < τΛ
i.e., that glueballs decay immediately at formation. This leads to an effective thermalization of the system and is the most predictive
scenario. In the right panel the situation is considered, that glueballs are stable during the freeze-out process and the final relic abundance
is sensitive to the entropy ratio at high temperatures ζ.

FIG. 8. The model parameter space allowed by the relic
density constraint in the case of ΛD ≪ MQ. The figure con-
siders the entropy dilution, which results from the nonrelativ-
istic glueball decay. This dilution takes place if the glueballs
dominate the energy budget of the Universe. The contours show
the extreme cases of A) the glueball lifetime being the
maximum allowed by BBN i.e., τG ≈ 1 s, and B) the minimal
scenario, in which the only quark that is present in the model
and forms baryons is in the 3 representation of SUð2ÞL, which
leads to the glueball decay S → γγ, shown in Eq. (77). The
allowed parameter space for τGB < τΛ is shown for comparison.
The model considered has NDC ¼ 3.
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The associated relic abundance can be computed in two
distinct regimes.

7. Dark glueballs in kinetic equilibrium

The same logic concerning kinetic equilibrium used
earlier for dark pions applies also to dark glueballs, and
thus the stable glueball is only a good DM candidate if
kinetic equilibrium is maintained [76].
The structure of the Boltzmann equation is given by

Eq. (32) and thus identical to the dark pion freeze-out case.
The only difference is that the 3 → 2 annihilation cross
section for glueballs is temperature independent. Therefore,
the function in Eq. (32) is fðzÞ ¼ z−5 and hence the
asymptotic number density is given by (n ¼ 5)

Y∞
GB ¼ nGB

sSM
≈

2ffiffiffi
λ

p
�

1

ðzGBc Þn þ
8

n − 1

1

ðzGBc Þn−1
�

−1=2

≈
ffiffiffi
2

λ

r
ðzGBc Þ2 and ΩGB ≈

s0SMmGBY∞
GB

ρc
: ð81Þ

Given the strict relations between the glueball mass
and the number-changing 3 → 2 cross section (74), we
have a concrete prediction ΩGB ≈ 8.1ðmGB=GeVÞ3=2N3

DC.
This implies an upper bound on the glueball mass mGB <
0.1=N2

DC GeV translating into σ2→2 > 5 × 104 GeV−2 or
equivalently σ2→2=mGB > 5 × 105N2

DCGeV
−3. This self-

scattering cross section violates the observational bound
of σ2→2=mGB < 4.5 × 103 GeV−3 by more than 2 orders of
magnitude. Therefore, stable dark glueballs in kinetic
equilibrium with the SM plasma cannot be the dominant
DM component.

8. Decoupled dark glueballs and
multicomponent dark matter

The other DM avenue for dark glueballs is that they are
not in kinetic equilibrium with the SM plasma and have
their temperature evolution, which leads to a prolonged
phase with nonvanishing pressure. The only phenomeno-
logically viable scenario, in this case, is a multicomponent
dark sector [77,78]. The glueballs comprise in this case
only a subdominant DM fraction with a much larger free-
streaming length than the dominating DM candidates. This
phenomenon could resolve some large-scale structure
problems if the glueballs make up for about 1% of the
total DM relic abundance [65].
The explicit numerical solution of the Boltzmann equa-

tions leads to a dark glueball mass between 100 keV and
10 MeV, depending on the initial entropy ratio ζ. A few
comments are in order.
(1) The low-mass glueballs are expected to have sizable

self-scattering cross sections. However, the cluster
constraints do not exclude them, since they are a
subdominant DM component.

(2) Such low masses indicate a dark confinement scale
close to or even below ΛQCD.

(3) In contrast to previous scenarios, the low confine-
ment scale is phenomenologically acceptable, since
the dark glueballs do not decay and do not affect
BBN in this scenario.

(4) If dark glueballs constitute 1% of the DM abun-
dance, this motivates a low confinement scale and
simultaneously predicts a mass range of a few TeV
for the dark baryons emerging as bound states of
heavy dark quarks; see Fig. 9.

This scenario is special from an experimental point of
view since glueballs are produced during annihilation of
dark baryons. Since the glueballs are long-lived and feebly
interacting with SM matter those decay channels are
experimentally invisible. Therefore, the detectability in
this scenario depends strongly on the specific SM quantum
numbers of the dark quarks that will lead to subdominant
annihilations of dark baryons into SM final states. Another
possibility is that the dark glueballs, despite being long-
lived, slowly decay leading to detectable signals in indirect
detection experiments. We will now come to the discussion
of experimental signatures of composite DM models.

VII. EXPERIMENTAL CONSTRAINTS

The composite DM models we discussed here can be
very broadly divided into two classes:
(1) Type I: Theories with composite DM particles that

carry residual SM interactions. This is the case, for
example, of one weakly charged dark quark in which

FIG. 9. The model parameter space allowed by the relic density
and structure formation constraint in the case of ΛD ≪ MQ and
long-lived glueballs. The resulting model features are a two-
component DM system with TeV scale dark baryons, which make
up about 99% of the DM and a subdominant keV scale glueball
population (about 1% DM abundance). This self-heating glueball
component can help to resolve observational tension in the matter
power spectrum [65]. The model considered has NDC ¼ 3.
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the lightest baryon is by construction a multiplet of
the weak force [24] but still neutral under QCD.
Another possibility are models featuring dark quarks
charged under QCD, which lead to residual induced
chromoelectric interactions [25,44]. Another time-
honored example is a dark technibaryon [79] which
still has residual SM interactions due to its SM
charged constituents.

(2) Type II: Theories with composite DM particles, are
total SM singlets. This can be realized in a model
where the lightest dark quarks are SM singlets and
heavier ones carry SM quantum numbers leading to
LCP decays.

Here we focus on the indirect detection experiments
since the dark-baryon-matter interactions, important for
direct searches, are only present in models of type I and
are highly model dependent [30]. In general, viable SM
quantum numbers for dark baryon systems were classified
in Ref. [24].
In both type I and II models the LCPs are unstable

and therefore we expect annihilation processes of BB̄ →
LCPs → several SM particles. The cascade depth and the
type of final-state SM particles are model dependent.
However, since photons will be present for any SM
final-state experiments such as Fermi-LAT [80] and
H. E. S. S. [81], as well as the Planck satellite [82]
observations of the CMB [83] play an important role in
discovering these models [84]. Shortly, the upcoming CTA
experiment will probe the target cross section regions very
efficiently already with the data of a single dwarf galaxy

[85]. Furthermore, the details of the spectral shape are less
relevant for an order-of-magnitude limit, because the
spectrum is sufficiently softened by cascade decays [86].
In Fig. 10, we present the limits for the minimal SM

charge assignment of the dark quarks. Here, the spectrum
of dark quarks contains a multiplet which transforms
according to the adjoint representation of SUð2ÞL. As
discussed above this allows the dark glueballs or dark
pions to decay to photons or heavy SUð2ÞL gauge bosons,
if kinematically allowed. Note that the limits on the dark
baryon annihilation cross section will be in the same
ballpark, even if the DM candidate baryon itself is a SM
singlet given that the LCPs decay into photons.
In Fig. 11 we show the expected annihilation cross

section in the strongly coupled baryon model with SM
singlet pions. This way of presenting the data is convenient
to investigate the experimental reach into the model
parameter space. We point out that at larger pion masses
the expected cross section is significantly larger than the
typically expected benchmark target value of hσvi≈
10−26 cm3=s. This makes this region of parameter space
particularly interesting from the point of view of detect-
ability. Furthermore, we observe that decreasing the
entropy ratio ζ results in larger late-time annihilation cross
sections, which means the cross section parameter space is
bounded from below and can be tested entirely given the
necessary experimental sensitivity.
Besides the pure dark sector effects in models of type I

we also have residual interactions with SM particles that
will generically lead to additional nonperturbative effects in

FIG. 10. The experimental limits on a dark-gauge sector with minimal charge assignment. The dark quarks are in the adjoint
representation of SUð2ÞL. In the left panel, we show the expected relic abundance for the weakly coupled baryons [30]. In the right
panel, we show the parameters expected for thermal production when the dark baryons are strongly coupled bound states. The most
stringent limits for light LCPs are inferred from the Fermi-LAT experiment and Planck observations of the CMB [87]. Those limits are
particularly insensitive to the cascade details and DM distribution, as only the total energy deposit matters. For heavier LCPs the H. E. S.
S. limits are dominant; however, those limits are obtained under the assumption of an Einasto DM profile and would become weaker
with a strongly cored DM profile.
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the annihilation processes such as the Sommerfeld enhance-
ment [88–92] and bound-state formation [49,93–100].
The above scenario does not apply when considering

long-lived glueballs yielding invisible dark baryon annihi-
lation processes. Depending on the lifetime one could hope
to experimentally test this scenario via the dark glueball
decays into SM particles. Furthermore, since dark baryons
keep annihilating into dark glueballs, which have consid-
erable self-interactions, the dark matter self-interactions
evolve with time. This could be an intriguing feature for
late-time dynamics of galaxies and galaxy clusters. We
postpone a detailed study of this scenario to a later endeavor.

VIII. CONCLUSIONS

We investigated the thermodynamic history of confining
dark sectors that can feature global accidental symmetries,
leading to long-lived particles such as the proton for the
Standard Model.
Dark sectors can generically decouple from kinetic

equilibrium with the Standard Model plasma and undergo
a separate thermal evolution. Since the lightest composite
particles being pions or glueballs unavoidably feature
number-changing interactions, the secluded sector plasma
heats up until the number-changing processes decouple.
This behavior leads to a nonstandard dependence of the
Hubble rate and the entropy evolution on the dark sector
temperature. Thus to find the relic abundance, we have
set up new Boltzmann equations, taking this atypical
thermodynamical behavior into account.
We adopted our formalism to investigate two regimes of

confining dark sectors: the strongly coupled bound-state

regime, and the weakly coupled bound-state regime. We
found several viable dark matter scenarios:
(1) Stable dark baryons, strongly coupled with masses

around the 100 TeV scale.
(2) Stable dark baryons, weakly coupled with masses

between a few and 100 TeV.
(3) Stable dark pions around the GeV scale and con-

siderable self-scattering cross sections.
(4) Multicomponent dark matter scenarios with dark

baryons at the TeV scale and a subdominant self-
interacting glueball dark matter component at the
1% level of the relic density with keV scale masses.

Interestingly models featuring long-lived or stable light-
dark particles can address issues related to the local
dark-matter halos. Dark light glueballs and pions have
considerably large self-interactions. Furthermore, in the
case of a kinetically decoupled subdominant dark pion
or glueball population, the self-heating due to number-
changing processes in the dark plasma can resolve some
experimental tension in the matter power spectrum.
Finally, we discussed how to experimentally test these

models of composite dark matter. We argued that the most
promising search strategy is indirect detection via space- or
ground-based experiments. The crucial point is that these
experiments are sensitive to the total annihilation cross
section of dark matter particles into Standard Model final
states via intermediate LCPs. We derived stringent limits
from CMB observables, based on the total power injection.
Furthermore, we showed the sensitivity of experiments
aimed at the Galactic Center. Remarkably, current indirect
detection experiments can place bounds on the considered
models, given the fact that the typical mass range of the
dark baryons is mostly in the multi-TeV regime. This lucky
coincidence is related to the fact, that at the large dark
baryon mass, effects of the dark plasma enhance the dark
baryon production efficiency, which results in larger target
cross sections. Thus we can hope that upcoming experi-
ments, such as CTA, will be able to cut deeply into the
composite dark matter parameter space.
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APPENDIX A: SUMMARY OF DARK
THERMODYNAMICS

1. The background evolution

We present the main formulas concerning the evolution
of the Friedman-Robertson-Walker (FRW) universe, speci-
fied by the metric

FIG. 11. The target cross section expected from the thermal
freeze-out in the strongly coupled baryon model as a function of
the pion mass. While in the low-pion-mass regime the standard
value of the annihilation cross section is recovered, larger pion
masses lead to an enhanced annihilation cross section, increasing
the detectability of this scenario.
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ds2 ¼ −dt2 þ aðtÞ
	

dr2

1 − kr2
þ r2dΩ2



: ðA1Þ

The source of space-time expansion (or contraction)
described by the scale factor aðtÞ is taken to be a perfect
fluid. This is described by the particle current Nμ and
stress-energy tensor Tμν satisfying continuity equations:

Nμ ¼ nUμ;

∇μNμ ¼ 0 ⇒
1

a3
d
dt

ðna3Þ ¼ 0 or _nþ 3Hn ¼ 0;

Tμν ¼ ðρþ PÞUμUν − Pgμν;

∇μT
μ
ν ¼ 0 ⇒ _ρþ 3Hðρþ PÞ ¼ 0: ðA2Þ

We denote by nðtÞ the particle number density and by
Uμ ¼ ð1; 0; 0; 0Þ the fluid four-velocity in the comoving
frame. HðtÞ ¼ _a=a is the Hubble parameter. In general a
relation between pressure P and energy density ρ of the
fluid is required, for example

P ¼ wρ

8<
:

w ¼ 0 nonrelativistic matter;

w ¼ 1
3

radiation;

w ¼ −1 vacuum energy:

ðA3Þ

Plugging the FRW ansatz into the Einstein equations one
finds

H2 ¼ 8π

3M2
p
ρ −

k
a2

;

_H ¼ −H −
4π

3M2
p
ðρþ 3PÞ: ðA4Þ

We will consider exclusively the case in which k ¼ 0.
These equations uniquely determine the Universe’s scale
factor aðtÞ with its own matter content.

2. General multifluid thermodynamics

In this section, we provide a compendium of formulas for
equilibrium multifluid systems. Considering first a single-
component fluid of particles, this is in kinetic equilibrium
if kinetic energy exchange through particle collision is
efficient. In this case, the phase-space distribution is a
Bose-Einstein (BE) or Fermi-Dirac (FD) distribution:

fðpÞ ¼ 1

eβðE−μÞ � 1
∼ e−βðE−μÞ when βðE − μÞ ≫ 1:

ðA5Þ

Relativistic particles have the dispersion relation E ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
and β ¼ 1=T. The pressure, energy and particle

density are obtained by

n ¼ g
Z

d3p
ð2πÞ3 fðpÞ; ρ ¼ g

Z
d3p
ð2πÞ3 EðpÞfðpÞ;

P ¼ g
Z

d3p
ð2πÞ3

p2

3EðpÞ fðpÞ; ðA6Þ

with g being the number of discrete degrees of freedom
(spin, flavor, etc.). The entropy density of the system is
obtained from

dS ¼ βðdU þ PdV − μdNÞ ⇒ s ¼ βðρþ P − μnÞ: ðA7Þ

Useful expressions are obtained in the relativistic βm ∼
βμ ≪ 1 limit:

n ¼ ζð3Þ
π2

gT3

�
1 BE;
3
4

FD;
ρ ¼ π2

30
gT4

�
1 BE;
7
8

FD;

P ¼ 1

3
ρ; s ¼ 4

3T
ρ: ðA8Þ

For simplicity we will include the BE/FD factors in the
definition of g.
In the nonrelativistic regime βm ∼ βμ ≫ 1 we have

instead

n ¼ g

�
mT
2π

�
3=2

e−βðm−μÞ; ρ ¼ mnþ 3

2
nT ∼mn;

P ¼ nT ∼ 0; s ¼ ðm − μÞ n
T
: ðA9Þ

Although we include the chemical potential in our treat-
ment due to the presence of number-changing interactions,
we will always assume to be far from the degenerate phase.
In general as a consequence of continuity equations we
have μ ¼ μðTÞ.
Suppose now that the ensemble contains many species

of particles, and interspecies interactions are absent. Then
every species thermalizes separately, each one with its
temperature and chemical potential ðTi; μiÞ.
In our treatment, it is convenient to work with dimen-

sionless quantities, defined with respect to a given scaleM.
In terms of z ¼ M=T; zμi ¼ μi=T. The entropy density in
relativistic and nonrelativistic regimes are, respectively

si ¼
�
2π2

45

�
giM3z−3;

si ¼
giM3ffiffiffiffiffiffiffi
8π3

p r3=2i ðriz − zμiÞz−3=2e−ðriz−zμi Þ; ðA10Þ

where we introduced the mass ratios ri ¼ mi=M. If
interspecies interactions are switched on, these can provide
extra channels for thermalization (elastic processes) or
species-changing interactions (inelastic processes). The
balancing of the latter reactions for the time-reversed
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processes is governed by the chemical potentials. When the
sums of chemical potentials of reacting particles are equal
on both sides of the reaction the system reaches chemical
equilibrium, and the fraction of each species is then
determined and not evolving in time.
A multifluid system that is both in kinetic and chemical

equilibrium is said to be in thermal equilibrium. In this
case, every species follows the equilibrium distribution
with a common temperature of Ti ¼ T.
When all the species are in thermal equilibrium the total

entropy density is

stot ¼
�
2π2

45

�
M3z−3

	X
riz≪1

gi þ
45ffiffiffiffiffiffiffiffiffiffi
32π7

p
X
riz≫1

giðriz − zμiÞ

× ðrizÞ3=2e−ðriz−zμi Þ



≡
�
2π2

45

�
M3z−3g�SðzÞ: ðA11Þ

In square brackets one can read the effective entropy
degrees of freedom g�SðzÞ. For all practical purposes, the
entropy of the nonrelativistic sector can be neglected
compared to the relativistic one, and away from mass
thresholds g�SðzÞ ∼

P
riz≪1 gi ∼ const.

Studying departure from thermal equilibrium it is useful
to introduce the particle number per comoving volume
Yi ¼ ni=s, which evaluates to

Yi¼

8>><
>>:

45ζð3Þgi
2π4g�Sð∞Þ∼const if T≫mi;μi;

45ffiffiffiffiffiffiffi
32π7

p gi
g�SðzÞ

�
ri
z

�
3=2

e−ðriz−zμi Þ if T≪mi;μi:
ðA12Þ

As a case of interest, let us discuss the relation μ ¼ μðTÞ
that arises when the Universe’s expansion forces a species
out of chemical equilibrium. This arises when the temper-
ature drops below the species mass threshold. If only self-
interactions are freezing out at the scale of interest, then the
entropy of the species is conserved:

d
dt

ðsia3Þ ¼ 0 ¼ d
dt

�
mi − μi

T
ni

�
þ 3H

�
mi − μi

T

�
ni

⇒ _μi þ ðmi − μiÞ
_T
T
¼ 0: ðA13Þ

The above equation is solved by specifying an initial
condition, which can be fixed at the decoupling temper-
ature Tc as μiðTcÞ ¼ μeqi . Thus we get

μiðTÞ ¼ μeqi θðT − TcÞ þmi

�
1 −

T
Tc

�
θðTc − TÞ; ðA14Þ

or, equivalently, in terms of z variables

μiðzÞ ¼ μeqi θðzc − zÞ þmi

�
1 −

zc
z

�
θðz − zcÞ: ðA15Þ

Assigning a specific temperature to the decoupling is an
approximation since the freeze-out happens in a range of
temperatures. As we are mostly interested in the asymptotic
values of μ far from tc this approximation is reasonable.

APPENDIX B: RELATION BETWEEN DARK
AND VISIBLE SECTORS

We assume the SM and dark sector to be efficiently
coupled when the latter is deconfined, possibly due to weak
interactions. After these interactions freeze out the two
sectors decouple and entropies are separately conserved.
After this point, their ratio becomes a time-independent
constant as well as a measure of relative abundances:

ζ ¼ sSM
sD

: ðB1Þ

After this point, the temperatures of the two sectors
evolve differently depending on the degrees of freedom
of each sector. We will describe the different phases the
system evolves into as the Universe expands.

1. Deconfined phase

As initial conditions, when the dark sector (DS) is
deconfined, TD ≫ ΛD as well as TSM ≫ mH the entropies
are dominated by relativistic species, so in order to keep ζ
constant, temperatures are linearly related:

TD ¼
�
gSM�S
ζgDS

�S

�
1=3

TSM; ðB2Þ

where gDS
�S is now comprised of dark quarks and gluons.

The total energy density driving the Universe’s expansion is

ρtot ¼ ρD þ ρSM ¼ 3

4
½ζTSM þ TD�sD

¼
	
1þ ζ4=3

�
gD
gSM

�
1=3


π2

30
gDT4

D: ðB3Þ

As a consequence, the Universe expands as if only the dark
quark-gluon plasma is present, the presence of the SM is
reflected in a modification of the effective degrees of
freedom, and H ∼ ffiffiffi

ρ
p ∼ T2

D.

2. Confinement during baryon freeze-out

When TD ∼ ΛD the dark sector confines breaking chiral
symmetry. In this scenario, the dark quark mass is much
lower than the confining scale. The dark sector entropy is
dominated by relativistic pions. If we assume the SM to be
relativistic as well, then the temperatures of the two sectors
are related by
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TD ¼
�
gSM�S
ζgπ�S

�
1=3

TSM: ðB4Þ

This is self-consistent as long as ΛD ≫ mH as expected
from a new physics scale. The total energy density is found
analogously as in the previous case and the scale factor
evolves as

HðzDÞ ¼ HðΛDÞ
�
TD

ΛD

�
2

¼ HðΛDÞ
1

r2Λz
2
D
; ðB5Þ

where we introduced rΛ ¼ ΛD=M, with M being the mass
scale of the dark matter candidate, in our case the dark
baryons. This is the regime in which the dark baryons
freeze out and the Universe’s expansion is driven by SM
and dark pions. For notational convenience we assume
rΛ ∼ 1. This is in general not the case, and reintroducing
the factors of rΛ is straightforward in what follows. As a
concluding remark, number-changing interactions in the
pion sector are always active during the baryon freeze-out,
due to the significant scale hierarchy.

3. Freeze-out of number-changing interactions

In this regime, the number-changing interactions in
the pion sector become relevant for the dark sector
thermodynamics. We will restrict our attention to 3 → 2
processes. Once the expansion of the Universe makes the
temperature in the dark sector drop below the pion mass
TD < mπ , the 3 → 2 process can freeze out. As long as they
are active (μπi ¼ 0) the entropy of the dark sector will
simply be

sD ¼ gπM3ffiffiffiffiffiffiffi
8π3

p r5=2π z−1=2D e−zD : ðB6Þ

Because of total entropy conservation, integrating from
t0 (time at which TD ¼ mπ) and arbitrary time, we have
now�
a
a0

�
3

¼ ðrπzDÞ1=2ezD−
1
rπ ⇒ TD ∼

mπ

3 log ða=a0Þ
; ðB7Þ

in which we assumed zD ≫ 1. As the Standard Model is
relativistic, it has instead a standard scaling:

TSM ¼ T0

�
a0
a

�
; ðB8Þ

where T0 is the SM at time t0, when TD ¼ mπ . The two
temperatures can still be related by the constancy of the
entropy ratio: �

TSM

TD

�
3

∼ z5=2D e−zD: ðB9Þ

It is then evident that the dark sector is exponentially
hotter than the Standard Model in this phase. To study the
Universe’s expansion, it is easier to consider separately
the cases in which one sector dominates over the other. The
Hubble rate can be computed in this phase to be

HðTDÞ ¼
�
HðmπÞðzDrπÞ−3=2e−zDþ

1
rπ if ρD > ρSM;

HðmπÞðzDrπÞ−1=3e−
2
3
ðzD− 1

rπ
Þ ρD < ρSM:

ðB10Þ

If the 3 → 2 processes are frozen out, one needs to
consider the effect of the chemical potential in Eq. (A15).
We then have

sD ¼ gπM3zcffiffiffiffiffiffiffi
8π3

p e−rπzcr5=2π z−3=2D ;

⇒ TD ¼ mπ

�
a0
a

�
2

⇒ TD ∼ T2
SM; ðB11Þ

where zc corresponds to the 3 → 2 freeze-out temperature,
Tc. The Hubble rate can be computed in this regime:

HðTDÞ ¼
8<
:

HðTcÞ
�
zc
zD

�
3=2

if ρD > ρSM;

HðTcÞ
�
zc
zD

�
if ρD < ρSM:

ðB12Þ

APPENDIX C: BOLTZMANN EQUATION FOR
NUMBER-CHANGING PROCESSES

In this section we review the derivation of the Boltzmann
equation for number-changing multiparticle processes.
The phase space density for a particle species is fiðEÞ;
it represents the average number of particles in the unit
element of phase space. The Boltzmann equation then reads
schematically as

L½f� ¼ C½f�; L ¼ E
∂
∂t −Hp2

∂
∂E ðC1Þ

where we used the form of the Liouville operator for
the FRW metric, with H being the Hubble rate. The phase
space volume element in the box normalization is
d3pgVc=ð2πÞ3, where Vc ¼ a3V. Integrating the
Liouville operator on all phase space including the rela-
tivistic factor 1=ð2EÞ we get

Z
d3p
ð2πÞ3

g
2E

	
E
∂f
∂t −Hp2

∂f
∂E


¼ 1

2
½ _nþ 3Hn� ðC2Þ

so that the Boltzmann equation takes the form
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_nþ 3Hn ¼ 2g
Z

d3p
ð2πÞ3

1

2E
C½f�: ðC3Þ

To understand what the rhs represents, we can see that the
lhs is written as

1

a3V
d
dt

ðna3VÞ ¼ 1

Vc

dN
dt

; ðC4Þ

which is the change in unit time of the number of particles
per unit of comoving volume. This is a Lorentz-invariant
quantity, and the goal is now to write the general collision
term for a generic interaction among particle species.
All of the states participating in the scattering are

multiparticle states with occupation number

jfiðEiÞ; fjðEjÞ;…i: ðC5Þ

If the transition operator allows a transition from a particle i
to a particle j then it will contain the operator a†jai. This

will produce a factor
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� fj

p ffiffiffiffi
fi

p
depending on j being a

fermion or boson. Wewill factor these out explicitly, so that
our matrix element is between single-particle states only.
We will also approximate the ensemble to be sufficiently
diluted so that 1� fi ∼ 1 and for equilibrium distributions
feqi ∼ e−βðEi−μ

eq
i Þ. Consider the following generic structure

of the reaction:

Nin
ψ ×ψþ

X
i∈I

Nin
i ×ϕi→Nout

ψ ×ψþ
X
i∈O

Nout
i ×ϕi: ðC6Þ

The set I, O consists of particle species that can appear at
each side of the reaction, with multiplicity Nin=out

i . As an
illustrative example consider a Yukawa-ϕ4 theory in which
we want to study the number changing of fermionic
particles ψ due to the reaction

ψ þ ψ̄ þ 3ϕ → 27ϕ: ðC7Þ

We then have Nin
ψ ¼ 1, I ¼ fψ̄ ;ϕg; Nin

ψ̄ ¼ 1; Nin
ϕ ¼ 3 and

O ¼ fϕg; Nout
ϕ ¼ 27. Back to our general reaction, this will

correspond to the following collision term for the ψ :

_nψ þ 3Hnψ ¼ −ðNin
ψ − Nout

ψ Þ
XZ

dΦjMfij2

×

	
ðfψ ÞNin

ψ

Y
i∈I

ðfiÞNin
i − ðfψÞNout

ψ

Y
i∈O

ðfiÞNout
i



;

ðC8Þ

where we introduced a shorthand notation for the phase
space element

dΦ ¼ ð2πÞ4δðpin
tot − pout

tot Þ
	Y
i∈I;ψ

1

Nin
i !

1

2Ei

d3pi

ð2πÞ3



×

	 Y
i∈O;ψ

1

Nout
i !

1

2Ei

d3pi

ð2πÞ3


: ðC9Þ

To avoid further complication, we adopted a slight abuse of
notation: same-species particles either in the initial or final
state have different momenta. The above definition takes
this fact into account implicitly. A few comments are
in order:
(1) The factor of NI

ψ − NO
ψ counts how many ψ are lost

in a reaction.
(2) We included factors of 1=Nout

i ! in the normalization
of final states with identical particles. For notational
convenience we included them in the definition of
the phase space element. This factor is included in
the typical cross-section computation in quantum
field theory (QFT).

(3) The factor 1=Nin
i ! is necessary as we are integrating

over the whole initial phase space, where states with
identical particles are present. This is not included in
the typical QFT cross section computation.

To simplify the expression further we use the fact that
during the evolution kinetic equilibrium is always main-
tained (the elastic processes are efficient, the expansion is
adiabatic) so that

fi
feqi

¼ constant independent of pi ¼
ni
neqi

: ðC10Þ

In what follows we will take feqi ¼ e−βEi and incorporate
the μi-dependent part in the out-of-chemical-equilibrium
distributions ni. The QFT matrix element includes a delta
function enforcing energy conservation, which enforces
detailed balance:

ðfeqψ ÞNin
ψ

Y
i∈I

ðfeqi ÞNin
i ¼ ðfeqψ ÞNout

ψ

Y
i∈O

ðfeqi ÞNout
i : ðC11Þ

Using these facts, the Boltzmann equation takes the form

_nψ þ3Hnψ ¼−ðNin
ψ −Nout

ψ Þ
XZ

dΦjMfij2ðfeqψ ÞNin
ψ

Y
i∈I

ðfeqi ÞNin
i

×

	�
nψ
neqψ

�
Nin

ψY
i∈I

�
ni
neqi

�
Nin

i

−
�
nψ
neqψ

�
Nout

ψ Y
i∈O

�
ni
neqi

�
Nout

i


: ðC12Þ

Switching to the commonly used variables Yi ¼ ni=s this is
recast in the more familiar form
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_Yψ ¼ −ðNin
ψ − Nout

ψ ÞΓijðzÞ
JðzÞ sN

in
ψþ
P

i∈I
Nin

i −1

×

�
Y
Nin

ψ
ψ

Y
i∈I

Y
Nin

i
i −

	�
Yψ

Yeq
ψ

�
Nout

ψ Y
i∈O

�
Yi

Yeq
i

�
Nout

i



×

	
ðYeq

ψ ÞNin
i

Y
I

ðYeq
i ÞNin

i


�
: ðC13Þ

The decay factor is

ΓijðzÞ ¼
1

ðneqψ ÞNin
ψ
Q

i∈Iðneqi ÞNin
i

XZ
dΦjMfij2ðfeqψ ÞNin

ψ

×
Y
i∈I

ðfeqi ÞNin
i : ðC14Þ

The function JðzÞ ¼ dz=dt is the Jacobian factor coming
from the variable change t → z.

1. Calculation of Jacobian factors

In this section we compute the Jacobian factor that
appears in the Boltzmann equation expressed in terms of
dark temperature:

JðzDÞ ¼
dzD
dt

¼ −
1

TD

dTD

dt
zD: ðC15Þ

In the regime in which the two sector temperatures are
linearly related and the dark sector is dominated by
relativistic pions, we have

0 ¼ d
dt

ðT3
Da

3Þ ⇒ 1

TD

dTD

dt
¼ −HðTDÞ; ðC16Þ

so that JðzDÞ ¼ HðzDÞzD. When the pions are nonrelativ-
istic and number-changing processes are active, we have
instead

0 ¼ d
dt

ða3z−1=2D e−zDÞ ⇒ JðzDÞ ¼
dzD
dt

¼ 6zDHðzDÞ
1þ 2zD

:

ðC17Þ

Finally, once these processes are decoupled we get

0 ¼ d
dt

ða3z−3=2D Þ ⇒ JðzDÞ ¼
dzD
dt

¼ 2zDHðzDÞ: ðC18Þ
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