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Reliable description of the radial oscillations of compact stars
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We develop a numerical algorithm for the solution of the Sturm-Liouville differential equation governing
the stationary radial oscillations of nonrotating compact stars. Our algorithm is based on the Numerov’s
method that turns the Sturm-Liouville differential equation in an eigenvalue problem. In our development,
we provide a strategy to correctly deal with the star boundaries and the interfaces between layers with
different mechanical properties. Assuming that the fluctuations obey the same equation of state of the
background, we analyze various different stellar models and we precisely determine hundreds of
eigenfrequencies and of eigenmodes. If the equation of state does not present an interface discontinuity,
the fundamental radial eigenmode becomes unstable exactly at the critical central energy density
corresponding to the largest gravitational mass. However, in the presence of an interface discontinuity,
there exist stable configurations with a central density exceeding the critical one and with a smaller

gravitational mass.
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I. INTRODUCTION

The relativistic equilibrium of nonrotating stars can
be determined solving the Tolman-Oppenheimer-Volkoff
(TOV) equation [1,2] that expresses the balance between
the internal hydrostatic pressure and the gravitational pull.
Actually, the TOV’s equation provides stationary hydro-
static solutions which may or may not correspond to stable
configurations. Starting from a stellar configuration with a
small baryonic mass, by increasing the central matter
density, one obtains a sequence of TOV’s stationary stellar
solutions with increasing gravitational mass. However, at a
critical central energy density, the gravitational mass
reaches a maximum and then further increasing the central
energy density the stellar mass starts to decrease because
the gravitational binding energy dominates. The configu-
ration with the largest gravitational mass is typically
identified with the last stable configuration; indeed, for
larger values of the central energy density, one expects the
system to collapse [3]. The stellar collapse should be driven
by growing radial oscillations: standing radial waves with
an imaginary frequency; see [4] for a general discussion.
Therefore, it is more appropriate to define the last stable
configuration as the one characterized by a null (or neutral)
radial frequency. From the analysis of the spectrum of the
radial oscillations one can determine whether the maximum
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mass configuration and the last stable configuration
coincide. This is of a certain interest because if the last
stable configuration has a central density exceeding the one
of the maximum mass, then twin stars, having the same
gravitational mass but different radii, may exist.

The equations governing the dynamical stability of the
radial mode oscillations were derived by Chandrasekhar in
[5,6] by a linear response expansion. Then, they have been
applied to various stellar models built using different
equation of states (EOSs); see, for example, [7-13]. In
these analyses, based on an infinitesimal adiabatic pertur-
bation of the star, the maximum mass and the last stable
configuration coincide. However, the inclusion of non-
linearities [14,15], as well as damping by nonequilibrium
processes [ 16—18], may qualitatively change the picture with
a much richer dynamics and the possible stabilization of
modes that are linearly unstable. In these cases, the maxi-
mum mass and the last stable configuration do not coincide.

In the study of radial oscillations, one has to take into
account that since in the interior of compact stars the matter
density is extremely high, some exotic phases can be
realized, including meson condensation [19-21] or quark
deconfinement; see [22-24] for reviews. Compacts stars
composed of a deconfined quark core surrounded by an
envelope of nuclear matter are typically called hybrid stars;
see, for example, [25]. Compact stars entirely composed of
deconfined quark matter are instead called strange stars
[26,27]. The analyses of the radial oscillations of strange
stars [28-32] and hybrid stars [33—-37] have shown that
the typical oscillation frequencies are similar to those of
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standard neutron stars, reaching the kHz range, although
the high frequency mode may be damped due to non-
equilibrium weak process in the core [33].

The analysis of the radial oscillations of hybrid stars, or
of any compact star with an exotic core, is more challeng-
ing than for standard neutron stars because the properties of
hadronic matter could rapidly change at the interface
between the nuclear envelope and the core. In this case,
the Sturm-Liouville differential equation, see, for example,
[38,39], describing the linear radial oscillations [4,40]
should satisfy appropriate boundary and interface condi-
tions [33]. The main difficulty is to find a proper numerical
procedure that takes into account that the coefficients of the
Sturm-Liouville differential equation can be discontinuous
at the interface between nuclear and quark matter. This
problem has been discussed in general relativity (GR)
in [35,37] for a hybrid stellar model with an envelope
described by a Walecka model and the interior by quark
matter. In this case, there exists a baryon density and speed
of sound discontinuity at the interface between nuclear
and quark matter. Remarkably, the authors find that the last
stable configuration does not coincide with the maximum
stellar mass: the null frequency of radial oscillations
appears at central matter densities exceeding the central
density of the maximum star. This difference is not due to
nonequilibrium processes, but it instead depends on the
discontinuous behavior at the interface. Motivated by
these results, we started to analyze the properties of radial
oscillations, in particular the effect of boundaries and
interface discontinuities.

In the present paper, we propose a numerical algorithm
based on an extension of the discretized Numerov’s method
that allows us to properly describe the radial oscillations in
GR, including the effect of boundaries and discontinuous
interfaces. We have considered five different EOSs: three of
them are based on microscopic physical models, while two
EOSs are built to test the reliability of the numerical method
in the presence of tunable interface discontinuities. Our
extended Numerov’s method works with any considered
background EOS and does not only provide precise eigen-
frequencies but also precise radial eigenfunctions. We
believe that our results can be of a certain interest because
we precisely deal with discontinuities and because we obtain
hundreds of radial eigenfrequencies and eigenmodes with a
very high precision using an algorithm that works on a
laptop computer for just few tens of seconds. To show the
reliability of the method, we show the radial eigenmodes,
finding that close to the boundaries they have exactly the
behavior that can be inferred by expanding the Sturm-
Liouville equation. Moreover, we display the pressure
oscillations, which in any considered case turn to be
continuous functions of the radial coordinate. Regarding
the interface discontinuities, we first consider stellar con-
figurations with a speed of sound discontinuity and then with
both a matter density and speed of sound discontinuity.

In both cases, we find that the null mode appears at a central
density exceeding the one corresponding to the maximum
mass. In other words, the last stable and the maximum stellar
mass configurations do not coincide and therefore twin
configurations may be realized. Note that we assume that the
radial fluctuations obey the same equation of state of the
background and we do not include nonlinear effects nor
damping processes. Therefore, the effect is solely due to the
interface discontinuity.

The present paper is organized as follows. In Sec. II, we
recall and discuss the equation for the hydrostatic stellar
equilibrium and we introduce the five EOSs that will be
analyzed. In Sec. III, we revisit the equations of standing
radial oscillations, focusing on boundaries and interfaces.
In Sec. IV, we present our extended Numerov’s method to
readily obtain the eigenfrequencies and the eigenmodes of
the standing radial oscillations. The numerical results are
shown in Sec. V, where we perform as well a number of
checks. We draw our conclusions in Sec. VI We briefly
discuss the effect of damping in the Appendix.

II. BACKGROUND CONFIGURATION

We assume a nonrotating spherically symmetric star with
a Schwarzschild’s line element

ds> = e*di* — e**dr* — r*(d0* + sin®> 8d¢?), (1)

where the metric potentials ¢ = ¢(r) and 1 = A(r) depend
only on the radial coordinate. The matter content is treated
as a perfect fluid with a barotropic EOS, p = p(p), where p
and p are, respectively, pressure and energy density. For
the radially symmetric time independent case, the hydro-
static equilibrium is determined by the TOV’s differential
equation

m+ dnpr’

P =(p+p) 5 (2)

2mr —r

where the prime denotes the radial derivative and

m(r) = 47[Arp(x)x2dx (3)

is the gravitational mass within the spherical volume of
radius r. For a given EOS and central matter density, p..,
one can numerically integrate the TOV’s equation and
determine the stationary configuration. The numerical
integration begins at a small internal coordinate, ry,,
and ends at the stellar radius, R, corresponding to the
radial coordinate where the pressure vanishes. The total
gravitational mass is then M = m(R).

Once the TOV’s equation have been solved, the metric
functions are readily determined by

e =1-2" (4)
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and by integrating

/

p
f=— . 5
v=-" )

We also define the adiabatic speed of sound squared,
the adiabatic index, and the adiabatic compressibility,
respectively, by

op p+p 1
2= Az'v By = 7 (6)
pes

which determine the mechanical properties of matter. In
particular, the adiabatic compressibility indicates how stiff is
the EOS, that is how difficult is to compress matter. In any
microscopic EOS, f(r) is a monotonically increasing
function; however, we shall also consider stellar models with
a nonmonotonically decreasing adiabatic compressibility.

A. Some general aspects of the TOV’s configurations

We remark some important aspects of the solutions of the
TOV’s equation. First of all, the TOV’s equation determines
the stationary stellar configurations, but to establish the
stability toward collapse or explosion one has to perturb the
system by radial fluctuations. The second point is that by
expanding the TOV’s equation close to the stellar center
one finds that at the O(r?),

p(r):pc_apr27 (7)
p(l") :pc_a/)rzv (8)
¢(r) = =l + ayr, )

where the subscript ¢ indicates that the quantity is evaluated
at the stellar center and a,, a,, and a, are three positive
quantities. Finally, although p(r) and ¢(r) must be
continuous functions, the energy density and the speed
of sound can be discontinuous. A discontinuity in p is a
possible consequence of a stellar onion structure where two
subsequent layers have different chemical composition; for
example, in the crust of standard neutron stars, the matter
density changes in a slightly discontinuous way due to the
fact that different nuclei are energetically favored. The
discontinuity in ¢? is instead characteristic of an interface
between materials with different mechanical properties; for
example, the speed of sound can abruptly change because
of the presence of a crystalline phase. Large matter density
and speed of sound discontinuities can be realized in hybrid
stars at the interface between nuclear and deconfined quark
matter or within quark matter at the interface between the
color-flavor locked phase and the crystalline color super-
conducting phase; see [24] for a review.

From Egs. (2)—(6), it follows that

p’  discontinuous
m’  discontinuous

discontinuous p = ¢ ¢’  continuous (10)

A discontinuous

p'  delta function,

while a discontinuous speed of sound implies that only the
derivative of the energy density is discontinuous; more
precisely

p’  continuous
m’ continuous

discontinuous ¢; = < ¢’ continuous (11)

A continuous

p'  discontinuous.

Therefore, loosely speaking, an EOS with a discontinuous
speed of sound has a mild discontinuity. Clearly, these are
not real discontinuities: they should be understood as rapid
radial variations on a length scale much smaller than R.

B. The equations of state

The EOS is a necessary ingredient for the determination
of the equilibrium stellar configuration and should be
determined microscopically, taking into account the relevant
degrees of freedom and interactions. However, nuclear
interactions above the nuclear saturation density are not
well known and therefore the EOSs at large densities are
obtained by extrapolation. For this reason, there is a large
number of possible EOSs. We shall restrict to five different
cases: we will consider three EOSs that have been derived by
some plausible microscopic modeling: the SLy4 [41], the
BL [42], and the MS1 [43] EOSs, a piecewise polytropic and
a hybrid EOS. Upon inserting each of these EOSs in Eq. (2),
one obtains the mass radius diagram reported in Fig. 1,
which represents the gravitational mass versus radius
obtained by changing the central density. The solid red line
corresponds to the results obtained with SLy4, the dashed
blue line to BL, and the black dash-dotted line to MS1. All of
these three EOSs have a maximum mass exceeding the
observational bound [44,45], see also [46], of 2 M, where
M, is the solar mass.

Next, we consider two EOSs built to study the effect of
thermodynamic discontinuities. The piecewise polytropic
EOS is defined as

for p < p, (12)
for p > pt’

and we assume a transition density p, ~ 2.98p,,, where
the saturation density and pressure are, respectively,
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FIG. 1.

Mass-radius diagram obtained with five different EOSs.
The solid red line corresponds to SLy4 [41], the dashed blue line
to BL [42], and the black dash-dotted line to MS1 [43] EOSs. The
brown dotted line corresponds to the piecewise polytropic
defined in Eq. (12); see also the discussion below; the orange
dash-dotted line corresponds to the hybrid star model defined
in Eq. (16).

P = 2.7 x 10 gem™ and pg ~ 4 x 10°? dynecm™2. In
principle, K, and K, as well as I'| and I';, are the parameters
describing the properties of matter in two different phases;
see, for example, [3]. Here we employ a simplified
approach aimed to reproduce the nuclear saturation point
and based on the assumption that the matter density is
continuous. In this way, we obtain that

Kl = p;-a]lt s and K2 = plijt . (13)
sat Psat

At the interface, the speed of sound and the compressibility
discontinuities can be expressed as

P

AC%:(C?Z_C?1)|t: (T =Ty)—, (14)
Pt
ry-1,1
AL, = .y = 2—, 15
ﬂA ( s2 Sl)|1 Flrz pt ( )

where ¢, and ¢, are the speeds of sound in the two phases.
In this case, one can even probe configurations with a
nonmonotonic compressibility. In particular, we considered
two models one characterized by I'y = 2, I, = 3, and thus
a monotonic increasing compressibility as well as the
model with I'; = 3, I, = 2 that has nonmonotonic com-
pressibility. The TOV’s solutions for the latter case corre-
spond to the dotted brown line in Fig. 1. In this case, the
maximum mass is M ~1.24 M and the corresponding
radius R ~ 6.6 km for a central density p,. ~25.4p,,. The
small values of mass and radius and the large value of
the critical density are due to the fact in this model part of
the inner part is softer than the outer part.

Finally, we consider the hybrid star model with quark
matter in the interior and an envelope described by a

polytrope,
Kp"
PZ e 0-4B) for p > p,,

for p < p, (16)

where c, is the speed of sound of quark matter and we take
the bag constant B = (165 MeV)*. Unless differently
stated, we use cgq = 1/3. For the envelope, we take K =
Psat/Phae (We tried different values of K obtaining similar
results), with I' = 4 /3, as appropriate for a nonrelativistic

electron gas. At the transition point,
Kp} = ci4(p2 — 4B). (17)
and the energy density discontinuity can be expressed as

Kpt
Dp,=pr—p1 =—5
qu

and therefore

0Ap, _ c2, - ch _ Ac? (19)
8ﬂ1 c%q C%q '

where ¢2, = 'p/p is the speed of sound squared in the
envelope. In this case, both Ap, and Ac, are nonzero. The
corresponding TOV’s solution is reported in Fig. 1 by an
orange dash-dotted line for p, = p;.

We notice that both the piecewise polytrope model and
the hybrid star model have a maximum mass that is below
the observed 2 M bound [44—46]. In principle, one may
consider more refined piecewise polytropes, see [3], or
hybrid star models, see, for example, [25,47,48], having a
maximum mass exceeding the 2 M bound. However, for
our purposes, it is enough to consider these relatively
simple stellar models. Indeed, these models have the basic
ingredients to test the properties of radial fluctuations in the
presence of tunable speed of sound and/or energy density
discontinuities.

III. STANDING RADIAL OSCILLATIONS

Once the TOV’s stationary configuration has been
determined, one can probe its stability toward collapse
or explosion by considering a small harmonic radial
perturbation of the form

or = X(r)e™", (20)

where X(r) and w are, respectively, the amplitude and the
frequency of the standing wave. The TOV’s stationary
configuration is unstable if some stellar mode has an
imaginary frequency. The conditions for the existence of
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standing waves are discussed in [4]; here we shall restrict to
adiabatic oscillations that conserve the total baryonic
number and that are slow with respect to the microscopic
dynamics; see the discussion in [33]. Within these restric-
tions, the linearized perturbation equations can be written
as a second order homogenous differential equation,

w?e? X = —2X" — ((2) = Z+dnrype® — ') X'
2
- <2(¢’)2 —|——r3ne2’1 -7 —|—4fr(p+w)Zrez’1) X,
r
(21)

where

z=¢ <¢’ - %) , (22)

while y and ¢, have been defined in Eq. (6) and therefore
have the same value determined for the background.
Following [40], we redefine the radial displacement as

E=Xrte . (23)

In this way, the differential Eq. (21) can be rewritten as a
Sturm-Liouville differential equation,

(HY) = (W + Q)¢ (24)

where

2 (p+ p)ette]
r2(p + p)et (¢ +4r7 g — Brep)
2+ p)e (25)

H
Q
14

are the relevant background functions. This is a particularly
convenient expression because the Lagrangian fluctuation
of the pressure takes the simple expression

AP = —ci(p +p)re?t, (26)

and because the solution of Eq. (24) is known to be discrete,
we will indicate with &, the eigenmode with n nodes and
with w,, the corresponding frequency.

A. Boundary conditions and interfaces
The solution of the Sturm-Liouville equation requires the
definition of the appropriate boundary conditions. The
differential equation (24) with the boundary conditions

a1E(0) + a,&€'(0) =0 a} +a3 >0, (27)

BiE(R)+ P8 (R)=0  pi+p>0 (28

forms a Sturmian system and it can be proved, see, for
instance, [38], that w? are real and ordered,

wl <ol (29)
meaning that the fundamental Oth mode has the lowest

frequency. For radial oscillations, the boundary condition at
the stellar center is

£(0) =0, (30)

because the stellar center cannot be displaced; therefore, it
is equivalent to the condition in Eq. (27) with a, = 0.
However, the boundary condition at the stellar surface is
not in general as in Eq. (28). The reason is that expanding
the Sturm-Liouville equation close to the stellar surface one
obtains, see, for example, [40],

& =7 'R (4+ ' M/R + wpe (R/M))E,.  (31)

which is similar to Eq. (28), but with the important
difference that the Sturmian boundary condition does not
depend on w,. The only case in which Eq. (31) turns in
Eq. (28) with f, =0 is when y diverges at the stellar
surface, as for strange stars. In this case, r = R is a regular
point and all the solutions of Eq. (24) are regular at the
stellar surface. If y is finite, then » = R is a regular singular
point and there is an unphysical diverging solution.

These considerations led us to quest what are the general
boundary conditions to be used for the regular solution of
Eq. (24). Certainly, since it is a homogeneous differential
equation, the absolute value of the eigenfunction is irrel-
evant. As usual, we will use this freedom to set £(R) = 1 in
arbitrary units. To eliminate the diverging solution, we
show that it is enough to specify the boundary condition
close to the stellar center where Eq. (24) admits two
possible solutions,

E=C(P+0(r)+ C(1+br2+0()).  (32)

where C| and C, are integration constants and b depends
on the background. Since the fluid at the stellar center
cannot be displaced by a radial oscillation, it follows that
one has to take C, = 0 to eliminate the unphysical solution.
In our numerical solution, we will require that

én x 77, (33)

and technically this will be done imposing the boundary
conditions

and 5/(rmin) = 3C1r2 (34)

é(rmin) = Cl r?nin min’

where r;, is the smallest radial distance considered in the
integration of the TOV’s equation. Therefore, we take both
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boundary conditions close to the origin and we do not need
an extra boundary condition at the surface. Let us insist on
this aspect: the only boundary conditions that we impose to
solve the differential equation are close to the stellar center.
It is sometimes stated that one should impose a boundary
condition at the stellar surface to avoid the unphysical
diverging solution and thus enforce AP(R) = 0. Instead, in
our approach, the vanishing of the pressure fluctuations
at the stellar surface is a consequence of the boundary
conditions at the origin. In other words, any physical
solution of the Sturm-Liouville differential equation with
the correct boundary condition at r = r,,;, does automati-
cally satisfy the requirement that AP(R) = 0. Regarding
the radial dependence of AP, it is maybe interesting to add
few remarks. Since close to the stellar center the displace-
ment behaves as in Eq. (32), the pressure oscillation at the
stellar center is well defined and given by

AP, = =3azct (p. +p.)e’, (35)

where, as in Eq. (9), we have indicated with the subscript ¢
the values of the functions at the stellar center. Clearly, AP,
is extremely small, because ¢, is large and negative. By
increasing r, we know that the various quantities change as
in Eq. (9), in particular ¢(r) increases and the pressure
oscillation exponentially grows. We also know that the
pressure fluctuation vanishes at the stellar surface; this
means that AP(r) has at least a maximum, or a minimum.
In Sec. IV, we shall see that our numerical procedure is in
agreement with this outlined behavior and the extremum of
AP(r) is located very close to the stellar center.

We now turn to the interface between different stellar
layers. The continuity of AP ensures that the system is
always close to equilibrium. Since AP is a function of p and
2, it seems that any discontinuity of these quantities could
produce a pressure jump. But this is unphysical, unless
the perturbation arises in a timescale much shorter than the
typical equilibrium timescale, which is not the case for the
slow oscillations considered in the present paper. Since ¢ is
always a continuous function, from Eq. (26) we have that
the continuity of the pressure perturbation implies that if
c2(p + p) is discontinuous at a radial coordinate 7, then &
is discontinuous in 7. More precisely, we can say that if
there is a shell of negligible depth, &, centered at 7 where
c2(p + p) abruptly changes, then labeling with the I (E) the
quantities evaluated at the internal (respectively external)
side of the boundary, the continuity of the displacement and
of the pressure imply that

& =&(r—06) = &(rF+6) = &
cip+ )&l =i+ p)¢lE. (36)
meaning that &£ is a continuous function and although & is

discontinuous in 7, the combination c¢2(p + p)¢& is always a
continuous function.

IV. THE NUMERICAL METHOD

We have developed an extended Numerov’s discretiza-
tion method for the solution of the Sturm-Liouville equa-
tion (24). The Numerov’s method consists in discretizing
the radial coordinate in N steps transforming the Sturm-
Liouville differential equation in an eigenvalue problem
[9]. The advantage with respect to other methods, see,
for example, [40], is that it simultaneously provides many
radial frequencies and eigenmodes, and no unphysical
solution appears if one properly imposes the boundary
conditions in Eq. (34). Moreover, there are a number of
checks that can be used to test the convergence of the
method. The Numerov’s method has already been used to
study the radial oscillation of neutron stars; see [9,12]. Here
we propose an extension that takes into account the
boundary conditions in Eq. (34) as well as the possible
speed of sound and density discontinuities in Eq. (36).

The proposed extended Numerov’s method works as
follows. The Sturm-Liouville differential equation, see
Eq. (24), can be written as

A"+ A + Ay = 0%, (37)

where A, A,, and A; can be obtained by expanding
Eq. (24) using the coefficients in Eq. (25). Then, we
discretize the radial coordinate as

ry = e, (38)

where e = R/Nandn = 1, ..., N. We define &(r;) = &; and
Aln = Al(rn)’ Ay, = A2(rn) and A3n = A3(rn) in such a
way that Eq. (37) turns in

Alnf% + A2n§;1 + A3n§n = w2§n’ (39)
and then we can cast Eq. (39) as the eigenvalue problem,
AE = o€, (40)

where & = (&1, ...,&y) and A is the matrix obtained by
expressing the radial derivatives as finite differences. We
can discretize the radial derivatives at any desired order; we
checked that the method already works considering the
lowest order expansion of the derivatives. Nonetheless, we
used

Enn =881 +88 1= 4
e +0O(e)

_én—Z + l6€n—1 - 30511 + 16§n+1 - §n+2
12¢?

=

&= +0(e%).  (41)

where &, = &(r,) and &, = &' (r,,). The discretized version
of Eq. 37) for2 <n<N-21is
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A A 4A 2A
2 o 2n _ “ln In 2n
@n = é"_2<12€ 12&) -t < 3¢ 3¢ )
SAln 4A1n 2A2n
A — n
+ ‘fn( 3n 26‘2 ) + §n+1 < 362 + 3¢ )

A ) A . n+2
+§n+2 <_ L 2 > = Z anin§m7 (42)

122 12¢) =,

which defines the matrix entries a,, for 2 <n <N —2
and 2 < m < N — 2. All the other matrix elements are, for
the time being, zero; indeed, one cannot use the above
definitions for the first two and last two rows of A.

A. Boundaries

We first discuss how to implement the boundary con-
dition close to the stellar center, properly defining the first
two rows of the matrix A to impose Eq. (34). We recall that
the implementation of these condition is extremely impor-
tant to avoid the unphysical solution, which is proportional
to C, in Eq. (32), and to quantize the eigenfrequencies. In
agreement with Eq. (34), close to the stellar center, the first
two discretized values of any eigenmode should be

& =Ciryyy and & = Cy(rp +€)°, (43)

where ry;, is the minimum value considered in the
numerical integration of the TOV’s equation. Then, we
require that

0*é) = apb, 0*& = ay &y, (44)
which is the simpler way to link the first two values of the
displacement close to the stellar center. Obviously, we do
not know w; therefore, it seems that we cannot fix the
values of a;, and a,;. However, from the above equations,
we obtain that a;,a,, = »* and

6
a V'mi
bl <7‘m“ ) , (45)
as; Tmin T €
which determines the ratio between these two matrix

elements. Suppose we fix the eigenmode, for simplicity
®* = 1, then we have

1 . 3
ap = —= <£> ] (46)
as) T'min +e€

and thus these matrix elements are now fixed. Now, if we
define the top-left corner of A using Eq. (44), therefore as

the block matrix
0 a
( 12 > ’ (47)
asy 0

we are actually imposing that any eigenfunctions has the
boundary conditions of Eq. (43). This will result in two
spurious eigenvalues w®> = +1 in the spectrum. In the end,
since we know the values of these two spurious eigenval-
ues, we can easily identify and remove them as well as the
corresponding eigenvectors.

Regarding the stellar surface, we do not impose any
boundary condition. To define the matrix elements at the
stellar surface, or more precisely the rows N — 1 and N of
the matrix A in Eq. (40), we cannot use the discretization of
the first and second derivatives of Eq. (41). The reason is
that the background quantities are not defined for » > R
and therefore the &y, and £y, elements are unphysical.
We tried different extrapolation method, which however
lead us to different results. Thus, we redefine the derivatives
close to the » = R boundary as

=N+ 68y 3 — 188y 5 + 38y + 108y

/
-1 = 12¢
g = Enoa — 16/3EN_3 + 128y 5 — 168y +25/3&y
4e
g —Sn—a H 4S5+ 68y + 11y — 208y
N=1 12¢
g — 11Ey_4 =568y 3 + 1145y o — 1048y + 358y
N 12¢ '

(48)

meaning that for n = N — 1 and n = N, we have that

w2§n =

m

4

-

where a,,, coefficients for N—1<n <N and N -4 <
m < N can be determined inserting Eq. (48) in Eq. (39).

B. Interfaces

We now consider how to discretize the differential
equation close to 7, corresponding to the interface where
the speed of sound and/or the matter density are discon-
tinuous. The continuity of the pressure oscillation in
Eq. (26) implies that &'(7) is discontinuous and that
&"(7) is a Dirac delta function. One therefore needs to
isolate the discontinuity and properly expand on the left and
on the right of 7. We remark that in any case it is important
to obtain an expression that is “symmetric” around the
discontinuity. In principle, one is tempted to define the left
derivative for » < 7 and the right derivative for r > 7, but
this method does not work with the Numerov’s discretiza-
tion. The reason is that in this way one would obtain a block
diagonal matrix, with a separation between interior modes
and exterior modes. One could connect the left and right
derivatives by inserting an additional intermediate point;
however, we found a better and faster way to deal with the
discontinuity.
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First, we isolate the discontinuous point: for any N, we
build the set ry, ..., ry according to Eq. (38) and we select k
such that 7 — r; > 0 is a minimum and we define 6 < ¢
asking that r, + 6 > 7 and r;, | — 6 < F. Then, we use the
fact that ¢2(p + p)& is a continuous function of r; see
Eq. (36). It follows that for any r in the neighborhood of 7
defined as |r —7| < 4,

aSlr—ﬁ :5/S|r 15/S|r+5’ (50)
where the scaling function is defined as
S(r)=ci(p+p). (51)

and the value of the sound speed and of the energy density
in r depend on whether r is smaller or bigger than 7. By
expanding the displacement function on the left and on the
right of 7, multiplying by the scaling function and taking
into account Eq. (50), we can express the first and second
derivatives in the symmetric forms

|

S(ri + 6)(&xp1 — &) + S(ri = 8) (& — &)

S = 2¢S(r)
g = S(ry + 6)(Sxy1 — szgs—(ri(rk —0) (& — 1) . (52)

where &, = &(ry), &, = &' (r), and & = &"(r,) and we have
used the leading order expansion of the symmetric deriva-
tive. As a check, if S(r) is continuous in r, the above
expressions give the standard discretized definition of the
first and second derivatives. Upon substituting Eq. (52) in
Eq. (37), one obtains the matrix elements a;, with [ = k,
k+1andm =1—-1,1,1+ 1. Therefore, around the discon-
tinuous interface, the matrix equation (40) can be written as

I+1

w2§l = Z Apm&ms

m=I[-1

(53)

and thus, taking into account all the above discussion, the
form of the A matrix in Eq. (40) turns to

0 ap O 0 0 0 0 0 0 0 0 0 0

a; 0 0 0 0 0 0 0 0 0 0 0 0

az; az aszy azy aszs 0 0 0 0 0 0 0 0
0 agp agz agy ags  Agg 0 0 0 0 0 0 0

A Q-1 Qg Ak+1 ’
A1k Qktik+l Qkyikt2

0 0 0 0 0 0 0 aN-3N-5 A4N-3N-4 dN-3N-3 dN-3N-—2 AN-3N-I 0
0 0 0 0 0 0 0 0 aN-oN-4 A4N-N-3 dN-ON-2 AN-2N-1 AN-2N
0 0 0 0 0 0 0 0 aAN-IN-4 A4N-IN-3 dN-IN-2 AN-IN-1 AN-IN
0 0 0 0 0 0 0 0 ANN—4 aNN-3 aANN-2 AaANN-1 AanN

where the first two lines and the last two lines have the
peculiar form determined in Sec. IV A to describe the stellar
center and surface, respectively. The two central lines have
to be inserted to take into account the interface disconti-
nuities. In principle, one can consider an EOS with an
arbitrary number of discontinuities: the corresponding A
matrix would then be a generalization of the one shown
above, with two additional rows for each interface dis-
continuity.

V. NUMERICAL RESULTS AND CHECKS

Here we report the results obtained with the extended
Numerov’s method presented in the previous section and

the EOSs discussed in Sec. II. We will first analyze the
microscopic EOSs, characterizing the radial displacement
and pressure and doing a number of numerical checks.
Then, we turn to the EOSs with tunable parameters.

A. Microscopic equations of state

In Fig. 2, we show the mass and the fundamental
eigenfrequency as a function of the central energy density
for the three microscopic EOSs discussed in Sec. II. For
these three cases, the last stable configuration, correspond-
ing to the null mode, coincides with the maximum mass.
Note that in Fig. 2 we only show the fundamental mode
frequency close to the maximum mass configuration;
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FIG. 2. Masses and fundamental eigenfrequencies as a function
of the stellar central density for three different EOSs, from top to
bottom: SLy4, BL, MS1; see Sec. II for more details. The solid
red lines correspond to the mass, in units of the solar mass, and
the dashed blue lines correspond to the frequency squared of the
fundamental mode. The null mode appears when the dashed blue
line intersects the horizontal axis, which is exactly the same
central density where the gravitational mass reaches the maxi-
mum value. The vertical dashed line indicates the null mode,
while the solid vertical line indicates the maximum stellar mass.
These two lines perfectly overlap.

however, we find that the frequency curves of any con-
sidered radial mode are a smooth function in any range of
the central energy density.

Regarding the radial eigenfunctions, we find that those
obtained with the microscopic EOSs are similar; thus, in
Fig. 3, we only show the results obtained with the SLy4
EOS. In particular, we report the first three radial eigenm-
odes obtained for p, = 0.98 x 10! g/cm?, corresponding

11—
0.8; [4
0'6; 1:5
>~ 0.4; ,A
s

0.0f

-
-
B

0.0 0.2 0.4 0.6 0.8 1.0
/R

FIG. 3. First three radial eigenmodes as a function of the radial
coordinate obtained using the SLy4 EoS at p, =0.98 x 10'° g/cm?
by the extended Numerov’s method with N = 500 discretized
points. The displacement has been normalized to 1, in arbitrary
units, at the stellar surface. In agreement with Eq. (54), close to
the stellar center the displacements are linearly dependent on the
radial coordinate. In agreement with Eq. (55), close to the stellar
surface the derivative of the displacement increases with n.

to a star with mass M ~ 1.4 M, and radius R ~ 11.4 km,
obtained with N = 1500 discretized points. The obtained
curves are smooth and we checked that the interpolated
functions and the corresponding eigenfrequencies are
solutions of the differential equation governing the radial
fluctuations with an error of the order of few percent. An
important nontrivial check is that the numerically obtained
radial displacements have the correct behavior at the
boundaries, that is close to the stellar center and the stellar
surface. Sufficiently close to the stellar center the radial
displacement of any mode should behave as

A

X,(r) = r2&,(re’ «r, (54)
which follows from Egs. (23) and (33). Since in the
numerical procedure we impose Eq. (43), this is a test
that we correctly implemented this condition; in other
words, that adding the block matrix in Eq. (47) to the top-
left corner of the matrix A does provide the correct behavior
close to the stellar center. On the other hand, from Eq. (31),
we have that
X, =a+w2R*/Me™??X, atr=R, (55)
where a is a constant that does not depend on n. Note that in
the numerical procedure we have not imposed this con-
dition; indeed, we have discretized close to the right
boundary using the discretized left derivatives in Eq. (48).
From the plot reported in Fig. 3, one can qualitatively see
that the correct linear behavior is reproduced close to the
stellar center, as in Eq. (54). Moreover, close to the stellar
surface, the derivative of the radial displacement increases
with increasing n, as in Eq. (55); indeed, we recall that
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, < w,,, and we fixed £,(R) = 1 for any mode. More
precisely, we find that close to the stellar center the linear
behavior and the relation in Eq. (31) are satisfied with great
accuracy; for instance, with the piecewise polytropic,
we have an error less than ~0.1 already with N = 500
discretized steps. Note that close to the stellar surface the
radial displacement steeply increases: this is due to the fact
that this region corresponds to the crust, that is light as
compared to the stellar interior.

In Fig. 4, we show how the displacement of the Oth
radial mode (top panel) and the corresponding pressure
oscillations (bottom panel) change for the stellar configu-
rations obtained by the SLy4 EOS at different central
densities. In particular, we show the results obtained with
three different values of the central density corresponding
to stellar configurations with mass M ~ 1 M (solid line),

/R

FIG. 4. Displacement of the fundamental mode (top) and
corresponding Lagrangian fluctuations of the pressure (bottom)
obtained with the SLy4 EOS. The dashed line corresponds to the
case p, = 0.73 x 10 g/cm?, mass M ~ 1 M, and radius R ~
11.3 km, the solid line corresponds to p, = 0.98 x 10" g/cm?,
mass M ~ 1.4 Mg, and radius R ~ 11.4 km, and the dotted red
line to the last stable configuration with p, =2.846 x 10" g/cm?,
mass M ~2.05 My, and radius R~9.9 km. The numerical
algorithm correctly reproduces the linear behavior close to the
stellar center. The pressure oscillations are normalized to the
value at the peak.

M ~ 1.4 M (dashed line), and to the maximum mass M =~
2.05 M (dotted line). The extended Numerov’s method
correctly reproduces the linear behavior close to the
boundaries. For small central densities, the displacement
is peaked at the stellar surface, but with increasing central
density it tends to become smoother because more massive
stars have a smaller crust. The profiles of the Lagrangian
oscillations of the pressure shown in the bottom panel of
Fig. 4 are obtained by Eq. (26). They reach an extremely
small value at the stellar center, in agreement with Eq. (35),
and then they exponentially increase with r, due to the e?
term in Eq. (26), reaching a maximum at a short radial
distance from the stellar center. The position of the peak is
almost insensitive to the stellar configuration considered:
the maximum pressure is always located close to the stellar
center. The only difference is that with increasing central
density the peak becomes slightly narrower. In all the
considered case, the pressure oscillation vanishes at the
stellar surface. Unfortunately, it does not seem to be
possible to infer from this plot that the red dotted line
corresponds to the last stable configuration.

B. Piecewise polytropic and hybrid
equations of state

In Fig. 5, we report the mass and the fundamental
eigenfrequency as a function of the central density for
the piecewise polytropic and the hybrid EOSs discussed in
Sec. II. The first has a speed of sound discontinuity,
while the second has a speed of sound as well as a matter
density discontinuity. Although it is a small effect, we find
that in both cases the last stable configurations, corre-
sponding to the null mode, have a central density exceeding
the one corresponding to the maximum mass, meaning
that there may exist twin stellar configurations with the
same gravitational mass but different radii. The results
shown for the piecewise polytropic have been obtained
with I'y = 3 and ', = 2, but swapping the two values we
do not find any appreciable increase of the central energy
differences. Note that in Fig. 5 we have only shown
the fundamental frequency; however, we obtain smooth
curves for any radial mode in any central energy density
interval.

The profiles of the radial displacement and of the
Lagrangian pressure oscillation obtained with the piecewise
polytrope of Eq. (12) are shown in Fig. 6. In this case, the
derivative of the radial displacement is discontinuous at the
interface where the speed of sound is discontinuous, which
is in agreement with Eq. (36). Notice that the interior
solution tends to grow more steeply than the external one,
which is due to the fact that the derivatives of the
displacement at the interface are related by Eq. (36) and
the speed of sound on the left of the interface is smaller than
the speed of sound on the right of the interface. Basically, at
the interface, the interior radial displacement bends to cope
with the rapid crust displacement. We checked that the kink
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FIG. 5. Mass and fundamental frequency as a function of the
stellar central density for the piecewise polytope of Eq. (12), top
panel, and the hybrid EOS in Eq. (16), bottom panel. The solid
line corresponds to the mass, in units of the solar mass, and the
dashed line corresponds to the frequency squared of the funda-
mental mode. In both cases, the null mode appears at a central
density exceeding the value for which the gravitational mass
reaches the maximum value; therefore, the last stable configu-
ration is not the one with the maximum mass. The vertical dashed
line indicate to the null mode, while the solid vertical line
indicates the maximum stellar mass.

of & at the interface agrees with Eq. (50) with great
accuracy (the error is at the level of the used numerical
accuracy). Notice that the pressure oscillation shown in the
bottom panel of Fig. 6 is continuous and differentiable at
any point. It is indeed very similar to the one obtained with
the microscopic EoSs discussed above.

Then we turn to the stellar model described by the hybrid
EOS in Eq. (16). We show in Fig. 7 the displacement and
the pressure oscillation. Both are continuous and have a
kink at the interface between the core and the envelope, but
the pressure kink is extremely small and not visible. Note
that the displacement of the interior solution tends to
become flat, as for self-bound objects; see the discussion
after Eq. (31). As in the previous case at the interface, the
displacement bends to cope with the crust displacement.

In our simple model, we can tune the interface energy
density jump Ap, defined in Eq. (18) to emphasize the
effect. By changing p,, which is the largest possible density
of the envelope, we can explore how large the energy
density difference,

0.0 0.2 0.4 0.6 0.8 1.0

0.2 0.4 0.6 0.8 1.0
/R

FIG. 6. Radial profile of the displacement of the fundamental
mode (top panel) and of the Lagrangian pressure fluctuation
induced by the fundamental mode (bottom panel) for the piece-
wise polytropic EOS, see Eq. (12), for p. = 6.5 x 10 g cm™3.
The displacement has a small kink at the interface where the
speed of sound is discontinuous. The pressure oscillations are
normalized to the value at the peak. The pressure is continuous
and differentiable at any point.

Apc =Pc0 = PcMm> (56)
can be, where p,,, is central energy density corresponding
to the maximum gravitational mass and p is the central
energy density corresponding to the appearance of the null
mode. In Fig. 8, we report the plot of Ap,. as a function of
Ap, for the hybrid stellar model defined in Eq. (16) with
¢sg=0.28 and I' = 4/3. The small value of the speed of
sound has been chosen to further emphasize the effect of
the interface energy density jump. The resulting maximum
mass is My ~ 0.5151 M, it has a radius Ry ~ 8.66 km,
and the corresponding fundamental frequency is @y =
0.86 kHz. This is indeed a small mass compact star, due to
the fact that a small speed of sound implies a large
compressibility. If one considers different values of ¢,
or I', one obtains similar results, but the effect is even less
visible. To further quantify the effect of the discontinuity,
we report in Table I the variation of the radii and
fundamental mode oscillation frequencies for various twin
stars with respect to the maximum mass configuration.
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FIG. 7. Radial profile of the displacement of the first three
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discontinuous. The pressure oscillations are normalized to the
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FIG. 8. Difference between the central energy densities of the
last stable configuration and of the maximum stellar mass,
Eq. (56), as a function of the energy density discontinuity at
the interface between strange quark matter and the external
envelope; see Eq. (18).

TABLE 1. Relative variation of the radii and of the fundamental
radial frequencies of twin hybrid stars with respect to the
maximum mass configuration. We have considered the model
with maximum mass My ~ 0.5151 M, radius Ry ~ 8.66 km,
and wy g~ 0.86 kHz. Regarding the twin stars, we have in-
dicated with the index 1 the star with the smaller radius and with 2
the star with the larger radius. Then, M; = M, = M is the mass
of the twin stars, AR, = (R, —Ry)/Ry and AR, =
(R, — Ry)/Ry, are the relative radius variations and Aw; =
((1_)1’0 — wM,O)/wM,O and ALUZ = (wZ,O - wM,O)/wM,O are the rel-
ative variations of the fundamental frequencies.

M (M) AR, (%) AR, (%) Aw, (%) Aw, (%)
0.514848 1.28 —1.26 37.43 —80.75
0.514861 1.24 —1.23 36.94 -70.17
0.514873 1.21 -1.19 36.51 —67.66
0.514896 1.16 —1.13 34.01 —63.24
0.514927 1.06 —1.04 32.77 -52.78
0.514965 0.94 -0.92 29.32 —43.16
0.514997 0.82 —-0.80 26.00 -35.17
0.515004 0.78 -0.78 25.50 —33.65
0.515031 0.66 —0.66 22.01 —29.48
0.515042 0.61 -0.61 19.49 —24.86
0.515052 0.56 -0.55 18.38 -23.33
0.515061 0.49 —0.49 17.48 -19.16
0.515073 0.43 -0.41 14.16 —16.77
0.515080 0.36 —-0.36 13.04 —13.02
0.515082 0.34 -0.34 10.91 —12.05
0.515090 0.26 -0.26 9.10 —10.04
0.515095 0.19 -0.19 6.00 -5.84
0.515096 0.15 -0.15 5.72 -5.39
0.515097 0.14 -0.14 5.11 —4.58
0.515098 0.09 -0.10 4.17 —4.15
0.515099 0.03 -0.05 1.40 -1.11

In the first column, we indicate the mass of the twin stars
(that by definition are equal); in the second and third
columns, we report the percentage radius difference
between the two twin stars and the maximum mass star;
in the fourth and fifth columns, we report the percentage
difference of the oscillation frequencies with respect to
wy - Although hardly observable, we note that the
frequency oscillation differences can be large, while the
radii differences are always tiny.

Finally, in Fig. 9, we report the radial profile of the
energy density and of the pressure for twin hybrid stars
having the same gravitational mass M ~0.5149 M, but
different radii R; ~ 8.55 km, solid line, and R ~ 8.76 km,
dashed line. From this figure, it is clear that these twin
stars have a similar envelope, but the more compact one
accommodates more hadronic matter in the interior. We
emphasize that both twins are hybrid stars, but the more
compact one has more strange matter than the other. We
tried several different hybrid star configurations, finding
that in any case the radius difference between the twin stars
is of the order of hundreds of meters; therefore, it will be
hardly observable.
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FIG. 9. Radial profile of the energy density (top panel) and of
the pressure (lower panel) for twin hybrid stars having the
same gravitational mass M ~0.5149 M but different central
densities: The dashed lines have been obtained considering
central densities p, ~ 5.6 x 10'> g cm™ while for the solid lines
p.=49x 10 gecm™3. The stellar radii are, respectively,
Ry ~8.55 km, solid line, and R, ~ 8.76 km, dashed line.

VI. CONCLUSIONS

We have developed an algorithm to quickly determine
the eigenfrequencies and the eigenmodes of the stellar
radial oscillations by discretizing the pertinent Sturm-
Liouville differential equation. Our method is an extension
of the Numerov’s method that takes into account the
boundary conditions and the possible discontinuous inter-
faces. We find that the method is fast and precise for any
considered EoS. Indeed, it gives radial displacements and
pressure fluctuations that are smooth functions of the radial
coordinate and that are in agreement with the foreseen
behavior at the boundaries. Moreover, it allows us to
reliably describe the interfaces between different states
of matter.

An important aspect is that the extended Numerov’s
method efficiently works for many different stellar
models; as an example, we considered three microscopic
EOSs, a joined polytrope, and a hybrid stellar model.
In any considered case, we find that the algorithm is very
fast and the results are extremely stable for N = 1000
discretized points. Taking N = 1500 points, we do not

find any appreciable change in the eigenfrequencies
or in the eigenmodes. Then, the diagonalization of the
N x N matrix A in Eq. (40) only requires few seconds on a
laptop computer. The remarkable point is that in this
way one obtains N eigenfrequencies and eigenmodes,
meaning that one can model with great accuracy any
stellar radial oscillation by a Fourier decomposition.
In the presence of an interface discontinuity, the
algorithm isolates the singular point and properly expands
the displacement on the left and on the right of the
discontinuity.

We find that with any speed of sound and/or matter
density discontinuity the last stable configuration is
realized at a central energy density exceeding that of
the maximum mass configuration. This allows the exist-
ence of twin compact stars, that is stars with the same mass
but different radii. Therefore, we confirm the results of
[35,37] for hybrid stars and extend it to any piecewise
polytropic solutions, even in the presence of only a speed
of sound discontinuity. For hybrid stars, we have tuned the
density discontinuity to study how large can be the
difference between the two critical densities finding that
this difference tends to grow as depicted in Fig. 8. In any
considered case, the radius difference between twin
partners is small, of few hundred meters, at most; there-
fore, they can be hardly discriminated by observation, if
they exist.

In the present work, we focused on the linear response
analysis of radial oscillations of standard models of
compact stars. Our work can be improved and extended
in various different ways. For instance, one can introduce
nonlinear effects, which may qualitatively change the
picture [14,15] with a much richer dynamics. It would
be interesting to analyze the behavior of nonlinear effects in
the presence of interface discontinuities. The composition
of compact stars may also be such that the adiabatic index
has a maximum at the transition point between two stellar
layers. In this case, the frequencies of different modes
display the avoided crossing mechanism discussed in [30].
In our models, the adiabatic index is monotonic; therefore,
we did not observe that phenomenon. However, we believe
that the modified Numerov ‘s method can also be applied to
this more complicated case. Finally, although we restricted
ourselves to isotropic systems, compact stars may be
anisotropic [49], for instance, if they have a crystalline
color superconducting core [24]. In this case, the study of
radial oscillations is nontrivial because one should figure
out how the anisotropic phase responds to a radial fluc-
tuation, which maybe can be done using the methods
developed in [50,51].
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APPENDIX: DAMPING

The interface conditions allow us to explore the possible
effect of wave damping in a certain region of the star. In the
following, we focus on the discontinuity in ¢, keeping p
continuous, but the procedure can be extended to the case
with both discontinuous ¢, and p. Since W, Q, and ¢ are
continuous functions, we have from Eq. (24) that

(HE)y = (HE )R, (A1)
and we notice that HE = —APe**??%; therefore, we can
rewrite the above equation as

(APL) + AP (A +2¢'),
~ (APg) + APR(X +2¢')g. (A2)

where both ¢’ and A’ are continuous functions; see Eq. (11).
It follows that if AP is continuous, then AP’ is also
continuous (this will not be the case when p is discon-
tinuous). Therefore, even in the presence of a speed of
sound discontinuity, AP is a smooth function of r.

If we define a = c2£, then the interface condition in
Eq. (A1) can be written as

a/L + KLaL = a/R + KRaR, (A3)

where
K= (B+E)/D (A4)

and

B = log(r 23’ (A5)

D = 44 (A6)
pl + W/

E=D : (A7)
p+p

The continuity of the pressure implies that a is a
continuous function, but K is discontinuous and this means
that the relation between the second order derivatives of the
displacement at the interface is nontrivial. However, in the
special cases, in which one phase is characterized by a large
bulk viscosity, the pressure perturbation vanishes at the
interface meaning that ¢ is stationary (it has a maximum or
a minimum) and then a; = ap = 0. From Eq. (A3), it
follows that @) = a%. This special boundary condition is
therefore

(A8)

el = ckéh (49)

If we further assume that &/ = & = 0, we obtain that

E(F) =0. (A10)
Since the fundamental mode cannot have a node, it follows
that in this particular case one can really separate the
modes as core modes and surface modes [30], depending
on whether the internal or external displacement is
nonvanishing.
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