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The LIGO observatories detect gravitational waves through monitoring changes in the detectors’ length
down to below 10−19 m=

ffiffiffiffiffiffi
Hz

p
variations—a small fraction of the size of the atoms that make up the

detector. To achieve this sensitivity, the detector and its environment need to be closely monitored. Beyond
the gravitational-wave data stream, LIGO continuously records hundreds of thousands of channels of
environmental and instrumental data in order to monitor for possibly minuscule variations that contribute to
the detector noise. A particularly challenging issue is the appearance in the gravitational wave signal of
brief, loud noise artifacts called “glitches,”which are environmental or instrumental in origin but can mimic
true gravitational waves and therefore hinder sensitivity. Currently, they are primarily identified by analysis
of the gravitational-wave data stream, and auxiliary data channels often provide corroborating evidence.
Here we present a machine learning approach that can identify glitches by considering all environmental
and detector data channels, a task that has not previously been pursued due to its scale and the number of
degrees of freedom within gravitational-wave detectors. The presented method is capable of reducing the
gravitational-wave detector network’s false alarm rate and improving the LIGO instruments, consequently
enhancing detection confidence.

DOI: 10.1103/PhysRevD.101.102003

I. INTRODUCTION

Modern interferometric gravitational-wave (GW) detec-
tors [1,2] are highly complex and sensitive instruments.
Each detector is sensitive not only to gravitational radia-
tion, but also to noise from sources including the physical
environment, seismic activity, and complications in the
detector itself. The output data of these detectors are
therefore also highly complex. In addition to the desired
signal, the GW data stream contains sharp lines in its noise
spectrum and non-Gaussian transients, or “glitches,” that
are not astrophysical in origin.
Instrumental artifacts in the GW data stream can be

mistaken for short-duration, unmodeled GW events, and
such non-Gaussian noise can also decrease the confidence
in compact binary detections, sometimes by orders of
magnitude [3]. We show an example of the similarity
between a glitch and a GW signal in Fig. 1 to illustrate the

difficulty in searching for GW signals with glitches present.
Thus, it is important to identify and flag GW data containing
glitches. Flagged instrumental glitches can then be addressed
in many ways, from graceful modeling followed by sub-
traction to the cruder approach of so-called “vetoes” that
unnecessarily waste data. Understanding the origin of
instrumental glitches is also important for diagnosing their
causes and improving the quality of the detector and its data.
The primary pipeline currently used to identify and

characterize glitches in the Advanced LIGO and Virgo
detectors is Omicron [7] (see also Refs. [4,5]). Omicron
identifies glitches by searching the GW strain data from a
single detector for events of excess power. It characterizes
their properties, such as amplitude, duration, and frequency,
by comparing the event to a sine-Gaussian waveform.
In addition to the GW data stream, each detector records

hundreds of thousands of “channels” of auxiliary data, each
channelmeasuring some aspect of the detector’s components
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or physical environment [8]. These channels provide impor-
tant information about the state of the detector that can be
useful for diagnosing glitches, but monitoring all of them is a
difficult task.
When identifying and flagging potential glitches, it is

important to ensure that the event is indeed a glitch of
instrumental origin, rather than an unmodeled GW event.
By considering only LIGO’s auxiliary channels, rather than
the GW data stream, we can be more confident that glitches
we flag are indeed not from gravitational events, since the
auxiliary channels are generally not sensitive to GWs
[9,10]. An additional benefit of studying glitches with
auxiliary channels is that correlations with specific chan-
nels can help identify the source of detector issues.
Current work to veto glitch segments includes

UsedPercentageVeto [10], HierarchicalVeto [11], Bilinear
Coupling Veto [12], iDQ [13–15], and GravitySpy’s [6]
classification information can also be used in offline veto
studies. Cavaglià et al. [16] use a dual approach of random
forests combined with genetic programming in order to
identify instrumental artifacts from a subset of auxiliary
channels. Additionally, there is work to study data quality
by correlating auxiliary channels with the GW detector’s
astronomical range [17]. Our method is complementary to
these approaches; we consider all auxiliary channels and
use them to identify segments containing glitches, both to
flag these segments and to identify detector issues.
Machine learning techniques have proved to be powerful

tools in analyzing complex problems by learning from large
example datasets. They have been applied in GW science
from as early as 2006 [18] to the study of glitches
[6,13,14,16,19–23] and other problems, such as real-time
signal detection [24], signal characterization [25–31], and
parameter estimation [32–34].
Classification is a fundamental problem in machine

learning in which a machine learning model is trained to

consider a set of measured characteristics, or “features,” of
data samples belonging to one of at least two categories. By
providing the model with a set of samples whose categories
are known, we can train it to predict the category of samples
whose true category is unknown.
We pose the problem of detecting whether a glitch is

occurring at a given time based on LIGO auxiliary channels
as a simple two-class classification problem (as in previous
work [14,16]) and apply a well-understood, efficient, and
commonly used machine learning method to this problem,
with promising results.
We train a classification model to predict whether a

glitch is occurring at a given time using features derived
from the GW detector’s auxiliary channels at that time.
Because the data on which the classification is performed
are derived only from the auxiliary channels, our method is
able to provide corroboration of the presence or absence of
glitches without using strain data, independently of existing
methods that analyze the strain.
Below, we describe a variant of the method, called

Elastic-net-based Machine learning for Understanding
(EMU method or method hereafter). We describe the
method in detail and how we use it to identify glitches
in Sec. II; we show the results of testing this method on
recent LIGO data in Sec. III; and we discuss the results in
Sec. IV. We developed and tested the method with recent
data from LIGO Livingston Observatory (LLO) and glitch
information reported by Omicron, but the method is
applicable to any current and future observatories that
record comprehensive auxiliary data. Furthermore, the
method might also be applicable to diagnostics of complex
systems outside of gravitational-wave science. Note that
because the performance measure examples presented here
rely on Omicron during training to learn characteristics
associated with glitches, they contain an implicit depend-
ence on Omicron’s extremely broad determination of what

FIG. 1. Comparison of the omegagrams [4,5]—a Gabor-wavelet time-frequency representation of the strain data—of a glitch event
(left) and a GW event (right) in LIGO O2 data. Glitches can be mistaken for unmodeled GW events and also trigger modeled searches.
Images obtained from GravitySpy [6] database.
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constitutes a glitch. However, the use of Omicron can easily
be replaced or complemented with any other event trigger
generator that reports glitch time information.

II. METHODS

To predict the presence of a glitch in a GW data stream
using auxiliary information, we need a method that extracts
useful information from the auxiliary channels and uses this
information to make a decision.
In considering all of the auxiliary channels, we must

generate and process a large, high-dimensional dataset for
classification. We choose as the feature set a group of
representative statistics for each auxiliary channel to
capture properties of the channel’s behavior in the vicinity
of a glitch (or absence of one). Linear models are simple
and effective on this type of large dataset, and they are
straightforward to train.
We use logistic regression, a standard model for binary

classification. It is a member of the family of generalized
linear models, which are efficient to train and test: the
number of trained parameters is equal to the dimension of
the input, unlike models such as neural networks, and the
optimization problem is convex, lending itself to efficient
iterative methods [35,36]. Additionally, the sparsity of the
trained model caused by the use of elastic net regularization
[37] results in an even more efficient model during testing,
where the number of multiplications required is only the
number of nonzero coefficients in the model (less than 100
in our case—see Sec. II E).
If we hope to also diagnose detector issues, it is

important that we can interpret the output of the algorithm.
Logistic regression provides a simple method for this:
during training, each feature is given a weight; higher-
magnitude weights indicate features that are more relevant
in deciding whether a glitch is present in a sample. A model
with fewer large weights is intuitively more easily inter-
pretable. To encourage this property, we use elastic net
regularization to penalize the weights such that only the
most relevant features are selected by the model, and those
corresponding to uninformative features become 0. This
also allows us to train with smaller datasets than would
otherwise be required if we did not impose sparse
regularization.
Below, we describe the preliminary step of identifying

irrelevant data in Sec. II A, the extraction of features from
the remaining data in Sec. II B, preconditioning of the
data in Sec. II C, the machine learning model we employ
in Sec. II D, the selection of model hyperparameters in
Sec. II E, and an analysis of how much training data is
sufficient in Sec. II F.

A. Preliminary data reduction

There are approximately 250 000 auxiliary channels in
each LIGO detector, with sample rates of 16 Hz and higher.

Many of these channels are constant or always change in a
consistent pattern (e.g., tracking the time or counting
CPU cycles) and contribute no actionable information to
the classification model. To improve the efficiency of the
training process, the first step of our method is to identify
such uninformative channels so we may ignore them in the
subsequent training step. (If they had been included, the
training process would learn to set all of their associated
coefficients to zero because they contain no actionable
information, so they would subsequently be ignored any-
way, and it would cost us carbon credits due to wasted CPU
cycles.)
Auxiliary channel time-series data is encoded in a

custom format [38] and stored in files each containing
64 consecutive seconds of data for each channel; we refer to
these files as “raw frame files.” To identify uninformative
channels, we choose a few raw frame files from the training
period of each analysis and compare the channels across
those frames. For each channel in each of the selected
frames, we subtract the channel’s first raw value from the
following values in that frame, and compare the resulting
time series to the corresponding one from each of the other
selected frames. If all are identical, the channel is ignored
for the rest of the analysis. After this procedure, approx-
imately 40 000 channels remain for our further analysis.
Some auxiliary channels are directly coupledwith theGW

strain channel, or are contaminated in other ways by the GW
signal. Many of these channels have been identified in
internal LIGO “channel safety” studies [9,10]. We removed
all such known channels. Additionally, after a preliminary
training run, we consulted with site experts to identify
whether any of the channels selected by the model might
be contaminated by the strain but not yet considered in safety
studies. In an effort to be conservative and demonstrate that
our performancewas not influenced by channels that may be
coupled to the strain, we removed all such channels from
further analyses.

B. Feature extraction

We use the Omicron [7] event trigger generator to
identify glitch times for training and testing our model.
(Once trained, our model is fully independent of Omicron
and the strain data; it considers only parameters computed
from auxiliary channels, as described below.) Omicron
analyzes low-latency strain data to find events of excess
power and reports parameters of these glitches, including
start time, peak time, and duration.
For our training, we gather points in time (i) drawn from

the peak times of glitches (“glitchy” times), and (ii) drawn
from stretches of at least four seconds with no recorded
glitches (“glitch-free” times). For the glitch-free samples,
we select times such that no part of any glitch (accounting
for its full duration) falls within 2 seconds before or after
the sample time. (We note that this does not mean we veto
4 seconds of data for each potential glitch our method flags;
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it simply means that during the training process, we require
the time segment around our glitch-free training examples
to be sufficiently clean.)
For each glitchy or glitch-free point in time, we generate

an array of ten statistical quantities (described in the
following paragraphs) for each channel to characterize
the channel’s behavior around that time. These quantities
become the features for our analysis.
Let us denote a given glitch peak time or glitch-free

sample time as t0 and the times 1 second before and
1 second after as t−1 and t1, respectively. We consider three
time windows of 0.5 seconds duration centered at t−1, t0,
and t1, denoted w−1, w0, and w1. This is illustrated in Fig. 2.
Note that the lowest-frequency channels in LLO at the time
of our experiments have a sample rate of 16 Hz, so each
window contains a minimum of eight samples.
For a given sample time t0, for each channel we construct

the following ten-dimensional vector based on the three
time windows:

v ¼ ðμ−1; μ0; μ1; σ−1; σ0; σ1; ð1aÞ

μ1 − μ−1; σ1 − σ−1; ð1bÞ

μ0 −
μ1 þ μ−1

2
; σ0 −

σ1 þ σ−1
2

Þ; ð1cÞ

where μi and σi are the mean and standard deviation,
respectively, of the channel’s raw value over the time
window wi, with i ∈ f−1; 0; 1g. (We note that this does not
mean we veto 2.5 seconds of data for each potential glitch
our method flags; it simply means that for a given channel
and sample time, we consider the surrounding time period
so we can identify deviations from the channel’s behavior
in its local environment, as implied in the definition of the
features.) The time and duration of the transient can be
extracted as the feature definition is known.
In contrast to Ref. [14], which considers auxiliary data in

a 100 millisecond window around glitch transients, our
method considers data from a span of 2.5 seconds, enabling
longer-timescale couplings to be addressed. We also con-
sider many more channels in our analysis.
Each feature was chosen with the intent of capturing

certain properties of a channel’s behavior in the vicinity of a
glitch or the absence of one. The features in Eq. (1a) were
chosen to capture the mean and standard deviation of the
channel’s raw value shortly before, during, and shortly

after t0. Those in Eq. (1b) were chosen to identify step
changes occurring near t0. Those in Eq. (1c) were chosen to
identify short, temporary changes occurring near t0.
It should be noted that these features and the lengths of

the time windows were chosen ad hoc based on intuition of
what properties of channels’ behavior might be informa-
tive. We acknowledge that this choice may limit the ability
of this method to uncover glitches which have significantly
different timescales. However, compared to extracting
features from nearby auxiliary transients in various wavelet
domains (see, e.g., Refs. [14,16]), the method presented
here is simpler and requires fewer computational resources,
especially when considering the significantly increased
dimensionality of the problem addressed here. We believe
the simplicity of these features is an advantage of our
method, but it is otherwise essentially agnostic to the
features chosen here; more descriptive features could
potentially improve its performance. We leave this explo-
ration to future work.
We construct the vector v for each of the approximately

40 000 channels in consideration, resulting in approxi-
mately 400 000 features for each glitchy or glitch-free point
in time.

C. Data preconditioning

Most machine learning techniques assume that each
feature is on approximately the same scale; otherwise,
features whose raw values are large in magnitude would
dominate the others. A standard normalization procedure is
to replace raw values with their standard score (i.e., the
number of standard deviations away from the training mean
that the raw value falls), so each feature has zero mean and
unit standard deviation over the training set [35,36]. For
each analysis under consideration, we compute the mean
and standard deviation over the training set; then, for every
point in the training, validation, and test sets, we subtract
the mean and divide by the standard deviation of that
feature in the training set.
Occasionally, the raw channel data contain missing or

invalid values, resulting in invalid entries in our feature
matrix. When this occurs, as is standard practice [39], we
simply replace the entry with the mean of the valid entries
for that feature in the training set prior to performing the
normalization described above. Because the data are
normalized to zero mean, this effectively results in that
entry subsequently being ignored by the model. (The
alternative of discarding the entire entry or channel would
unnecessarily waste potentially valuable data.)

D. Glitch classification via logistic regression

We formulate the problem of identifying glitches as a
basic statistical classification problem, where instances in
which a glitch is present are classified as 1 (“glitchy”), and
instances where no glitch is present are classified as 0
(“glitch-free”).

FIG. 2. Illustration of the time intervals considered in statistical
feature array.
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We use logistic regression with elastic net regularization
to perform this classification using the features derived
from auxiliary channel data described in Sec. II B.
Logistic regression is a well-established linear classifi-

cation method in statistics and machine learning [35,36]. It
is related to classical linear regression, but rather than
predicting a continuous unbounded variable, a logistic
function is applied to the output to restrict it between 0
and 1.
Given a set of n training data points in p dimensions (i.e.,

each data point has p features) and n corresponding binary
labels (the ground truth), a logistic regression model is
trained by iteratively minimizing the residual error between
the predicted class probability of the training data and
ground truth. The trained model consists of a set of p
coefficients (or “weights”) w and a bias term b; the dot
product of these coefficients and a test data point plus the
bias term is passed through a logistic function to obtain an
estimate of the probability that the point should be
classified 0 or 1.
Let σð·Þ denote the logistic function

σðaÞ ¼ 1

1þ expð−aÞ : ð2Þ

Then, the probability estimated by the model that a test data
point x belongs to the class 1 is

Pðx ¼ 1Þ ¼ σðwTxþ bÞ: ð3Þ

This value may be thresholded to produce a binary output.
The threshold is commonly 0.5 but may be chosen as
desired to adjust the ratio of false positives and false
negatives.
During training, a measure of the error between the

known ground truth label yi ∈ f0; 1g and the current
model’s prediction σðwTxi þ bÞ for a training point xi ∈
Rp can be quantified:

Ew;bðyi;xiÞ ¼ −ðyi logðσðwTxi þ bÞÞ
þ ð1 − yiÞ logð1 − σðwTxi þ bÞÞÞ: ð4Þ

Known as the cross-entropy error, this is a convex function
that can be minimized over w and b by gradient descent or
other iterative methods [35,36].
Various regularization terms may be applied to the

coefficients and added to the residual error during training
as a penalty, to reduce overfitting and induce desired
properties in the trained model [35,36]. Let RðwÞ be some
regularization function for the coefficients w. The com-
bined cost (or “loss”) function that is iteratively minimized
during training is given by

Lðw; bÞ ¼ 1

n

Xn

i¼1

Ew;bðyi;xiÞ þ αRðwÞ; ð5Þ

where α is a hyperparameter controlling the overall
regularization strength relative to the error term E.
Common choices of regularization functions with logis-

tic regression are the L2 norm (also known as ridge
regression or Tikhonov regularization) and the L1 norm
(the same penalty used in the LASSO [40]). In addition to
mitigating overfitting by penalizing the overall magnitude
of the coefficient vector, the L1 norm also induces sparsity
in the coefficients (i.e., many of them will be zero). This is
often desirable for scalability and interpretability when the
dimension p of the input data is high, as is the case with our
dataset. After training, the nonzero coefficients suggest
which of the input features are most important in determin-
ing the classification result [36].
The elastic net [37] is a weighted sum of the L1 and L2

norms:

RðwÞ ¼ λ

2

Xp

j¼1

w2
j þ ð1 − λÞ

Xp

j¼1

jwjj; ð6Þ

where λ is a hyperparameter controlling the relative
strengths of the L1 and L2 regularizations. The elastic
net also induces sparsity, but less strongly than L1. It also
has the desirable advantage over L1 of being more likely to
select correlated features together rather than arbitrarily
choosing only one of them [37]. In our application, if
features from many channels are correlated, it may be
useful for diagnostic purposes to consider all of them rather
than only one.

E. Hyperparameter optimization

Elastic net logistic regression has two hyperparameters
that must be tuned to achieve the best result: overall
regularization strength α, in Eq. (5), and the ratio λ of
the strengths of L1 and L2 regularization, in Eq. (6).
We performed a grid search across a range of both

parameters using data from LLO during ER14 and evalu-
ated the results on a held-out validation dataset drawn from
a separate period of time (see Fig. 3). Using a validation
dataset separate from both the training set and the test set on
which we report our results allows us to choose hyper-
parameters that will generalize well to unseen data without
overfitting to our training or test data [35,36].
We trained models over a grid of α and λ values on a

dataset drawn from 30 000 seconds during a lock segment
on 6 March 2019 (GPS time 1 235 870 000 to 1 235 900
000). To create the training dataset, we randomly sampled
7500 glitch-free points in time (as described in Sec. II B)
and 7500 of the 30 141 Omicron glitches during that
period. This subsampling was performed to allow the
dataset to fit in available memory. For both datasets, we
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also ignored any samples falling too close to the beginning
or end of a 64-second raw frame file. (This represents less
than 4% of the data, and was done for technical conven-
ience; it is not inherent to the method.) After preliminary
data reduction as described in Sec. II A, the number of
channels considered was 38 235. We then generated the
382 350 statistical features for each point, as described in
Sec. II B. We then trained an elastic net logistic regression
model independently for each α, λ pair on this training set.
Training was performed using the Scikit-learn pack-
age [39].
We evaluated each trained model on a validation dataset

drawn from the 10 000 seconds immediately following the
training period (GPS time 1 235 910 000 to 1 235 920 000).
Figure 3 illustrates the times these ER14 datasets are drawn
from. The validation dataset was created similarly to the
training set, by sampling 2500 glitch-free points and 2500
of the 7222 Omicron glitches during that period. We chose
the α, λ pair that gave the best accuracy on the validation
dataset and fixed the values of those hyperparameters based
on these results for all further training. (Although a small
fraction of the channels were removed and others added

between ER14 and O3, the hyperparameters do not depend
specifically on the channels and generalize well.)
Varying the α and λ hyperparameters effectively tunes

the strength with which the model’s coefficients wj are
driven to zero by regularization during training. After
training with many pairs of these parameters, we can
evaluate the relationship between the number of nonzero
coefficients and the model’s predictive accuracy on the
validation data. One would expect that a model with too
many zero coefficients would not be able to consider
enough features to make accurate predictions, while a
model with too many nonzero coefficients would become
overfit to the training data and not generalize well to
separate data. Figure 4 demonstrates that this is the case
with our data.
The model that achieves the highest accuracy on our

validation dataset, at 84.1%, contains only 87 (0.02%)
nonzero coefficients. These coefficients correspond to
features from only 56 distinct channels, indicating specific
channels of potential detector issues at training time. None
of these 56 channels are known to be coupled with or
contaminated by the GW strain. This demonstrates that a
small subset of the features and channels is sufficient to
consider for effective glitch identification performance. It
also demonstrates that elastic net regularization is benefi-
cial not only to interpretability but also to prediction
accuracy, and that the method is robust to uninformative,
unactionable, and faulty channels. Note that we do not
claim that these are the only channels associated with
glitches—merely that these are the ones for which the
association is strong enough in this dataset to be discovered
by this model, and that they are sufficient to achieve a
useful level of performance. Training on different segments
of data will naturally produce different numbers of sig-
nificant channels, potentially with some overlap, as we
observed with the ER14 and O3 results described in
Sec. III.

F. Amount of training data

We also investigated how much training data was
sufficient for good performance, using the ER14 training
and validation data. For this experiment, we trained a new
classifier using data drawn from time periods of varying

FIG. 3. Time periods used to create training, validation, and test datasets. The ER14 analysis includes a validation dataset for tuning
hyperparameters, which were fixed for all subsequent tests, so there is no validation period for the O3 analysis.

FIG. 4. ER14 validation accuracy vs fraction of nonzero
coefficients in the trained model. The models have approximately
p ¼ 400 000 coefficients, so a model with 10−3p nonzeros
contains only 400 nonzero coefficients.
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lengths. Each of these time periods was a subset of the
original training data period, ending at the end of the
original training period and starting between 500 and
30 000 seconds earlier. We show the accuracy of the
classifier on the validation dataset (described in Sec. II E)
for these varying training lengths in Fig. 5. The results
indicate that 10 000 seconds is a sufficient length of time
from which to draw training data. They also suggest that
using too long of an interval of training data may actually
hurt performance, likely because the detector’s state drifts
over time and themodel is not flexible enough to account for
this behavior while maintaining fine-grained accuracy for
more specific instances in time.

III. RESULTS

We use the EMU method described above to classify
glitchy and glitch-free times for several recent segments of
data from LLO. We show two test cases from different,
recent runs: one from a lock segment during ER14, and a
second from a lock segment during O3.
The classifier model for each analysis was trained

independently using data drawn from a time period close
to but not overlapping with the time period from which
the test dataset for that analysis was drawn. We do not
perform hyperparameter optimization as we did for ER14
in Sec. II E again for O3, because the procedure is
computationally intensive, and the similar nature of the
data means the optimal hyperparameters would likely not
be significantly different.
For each analysis, we create a test dataset drawn from a

period of time separate from the training dataset (and, in the
case of ER14, separate from the validation dataset as well),
as illustrated in Fig. 3. We standardize the test dataset
according to the means and standard deviations of the
features in the training dataset. We then pass the test dataset
through the classifier without labels and compare the
predictions to the known ground truth for each point.

For each incorrect classification, we can specify whether
the result is a false positive (a glitch-free time classified as
glitchy) or a false negative (a glitchy time classified as
glitch-free).
Note that the actual output of the classifier is the

predicted probability of a glitch, which ranges between
0 and 1. Prior to calculating all reported accuracies, we
threshold this value at 0.5, so values at or above are
considered predictions of glitches and values below are
considered predictions of the absence of a glitch. We can
adjust this threshold to control the ratio of true positives and
false positives as necessary for different applications, which
might call for a lower false negative rate at the expense of a
higher false positive rate or vice versa. The trade-off is
illustrated for both analyses in the Receiver Operating
Characteristic (ROC) curve in Fig. 6.
At the default decision threshold of 0.5, the accuracy on

the ER14 test dataset is 83.8%, with a true positive rate of
73.0% and a true negative rate of 94.6%. The accuracy on
the O3 test dataset is 79.9%, with a true positive rate of
62.1% and a true negative rate of 97.7%. We also show the
overall accuracy, true positive rate, and true negative rate
over time during the test periods for each analysis in Figs. 7
and 8.
If we restrict our analysis in training and testing to

glitches with a signal-to-noise ratio (SNR) at or above 6, we
achieve an overall accuracy of 88.2% for ER14 and 90.3%
for O3, with true positive rates of 80.8% and 86.7% and
true negative rates of 95.4% and 93.8%, respectively. (The
minimum SNR reported by Omicron is 5; roughly 30% of
glitches have an SNR at or above 6.) The corresponding
ROC curves are displayed in Fig. 6.

FIG. 5. Classifier’s accuracy vs length of training period.

FIG. 6. Overall ROC curves for ER14 and O3 test segments,
and corresponding ROC curves for only high-SNR glitches.

EFFICIENT GRAVITATIONAL-WAVE GLITCH … PHYS. REV. D 101, 102003 (2020)

102003-7



A. ER14

For the ER14 test analysis, we use the trained classifier
model that performed best on the ER14 validation dataset
used for hyperparameter optimization, as described in
Sec. II E. The training dataset is therefore the same as
described there. Recall that to create this dataset, we
sampled 7500 glitch-free points in time (as described in
Sec. II B) and 7500 of the 30 141 Omicron glitches during
the period between GPS times 1 235 870 000 and 1 235
900 000. After preliminary data reduction as described in
Sec. II A, the number of channels considered was 38 235,
so the training and test datasets have 382 350 features.
The nonzero coefficients of a trained classifier indicate

which features the classifier considers when making
decisions. As discussed in Sec. II E, the classifier that
performed best on the ER14 validation data had 87 nonzero
coefficients corresponding to features from 56 different
channels.
The test data are drawn from 9616 seconds between GPS

times 1 235 910 000 and 1 235 919 616. We sampled 2500
glitch-free points in time and 2500 of the 6479 Omicron
glitches during that period, chosen at random. As with the
training, we also ignored any samples falling too close to
the beginning or end of a 64-second raw frame file. The
classifier achieves an accuracy of 83.8% on this test dataset,
with a true positive rate of 73.0% and a true negative rate
of 94.6%.
The classifier’s accuracy, true positive rate, and true

negative rate over time in the test period is shown in
Fig. 7. This result indicates that the performance is relatively
consistent over time, but may be affected by transient
changes in the state of the detector that were not seen during
training.

B. O3

For the O3 analysis, we trained a new classifier on a
training dataset drawn from 10 000 seconds during 10 April
2019 (GPS times 1 238 900 000 to 1 238 910 000). We used
a smaller amount of time for the training period for this
analysis because the results shown in Fig. 5 indicate that
10 000 seconds of training data is sufficient for good
performance. Similarly to the ER14 training dataset, we
sampled 2500 glitch-free points in time and 2500 of the
8098 Omicron glitches during that period, chosen at
random, and we ignored any samples falling too close to
the beginning or end of a 64-second raw frame file. After
preliminary data reduction as described in Sec. II A, the
number of channels considered is 38 327, so the training
and test datasets have 383 270 features.
After training, the O3 classifier had 55 nonzero coeffi-

cients corresponding to features from 46 distinct channels.
The test data are drawn from 30 000 seconds between

GPS times 1 238 910 000 and 1 238 940 000. We sampled
7500 glitch-free points in time and 7500 of the 24 243
Omicron glitches during that period, chosen at random, and
we ignored any samples falling too close to the beginning
or end of a 64-second raw frame file. The classifier achieves
an accuracy of 79.9% on this test dataset, with a true
positive rate of 62.1% and a true negative rate of 97.7%.
The accuracy, true positive rate, and true negative rate over

time during the test period are shown inFig. 8.AswithER14,
this result indicates that the performance is relatively con-
sistent over time, but there is a visible dip in true negative rate
and a corresponding dip in accuracy soon after the beginning
of the test period, suggesting some nonstationarity in the data
or the state of the detector. This is not surprising, especially
since the model was trained on only about 3 hours of data; it
should be taken into account that this method would likely
become increasingly susceptible to such issues the less
training data it sees and the more time has passed since
training. One simple way to mitigate this would be to
periodically retrain the model on recent data.
To illustrate one way this method might be used in

practice, we also performed an experiment in which we
recorded our model’s estimate of glitch probability over a
continuous segment of time and compared the output to the
actual locations of glitches during that segment. For this
experiment, we used 64 seconds of data during O3
beginning at GPS time 1 238 900 480. The results of this
experiment are shown in Fig. 9, illustrating that the
classifier’s output largely does correctly indicate the pres-
ence or absence of a glitch over time. If the trained classifier
were fed the auxiliary channel data continuously in this
fashion, it could potentially be used in near real time to
corroborate the likelihood that a potential event appearing
in the strain at any given time is astrophysical or instru-
mental in origin, independently of other existing two-class
glitch classification systems used as an automatic, low-
latency response to candidate events [15]. By considering

FIG. 7. Accuracy, true positive rate, and true negative rate over
time during the ER14 test period. For stability, these quantities
are computed over rolling windows of length 2000 s beginning at
the indicated time. The x axis begins at 10 000 s, because the 0 to
10 000 s period is used for validation (see Fig. 3).
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more auxiliary channels and decoupling glitch identifica-
tion from the GW strain, our EMU method provides
important independent verification of glitches, as well as
more information about the detector state.

C. Astrophysical implications

We illustrate the implications of these results in an
astrophysical setting with the following examples:
In a use-case scenario where we aim to recover so-called

subthreshold events that are lost by traditional GW search
methods because they are not classified as detections, it is
admissible to have a sizeable false dismissal rate of real

signals, but it is desired to have a high glitch rejection
rate. We find that typically a ∼65% glitch rejection rate
(i.e., a 35% false negative rate) in individual detectors can
be assumed at the cost of ≲0.3% false positives for the
high-SNR case (see, e.g., high-SNR O3 curve in Fig. 6).
The proposed method considers data from individual
detectors independently, so with such a threshold the
chance of a coincident false negative at all three sites is
less than 5%, and the chance of a false positive at one or
more sites is ∼1%. Therefore, a ∼95% reduction in triple-
detector coincident glitches corresponds to a negligible
chance [i.e., ∼Oð1%Þ] to miss a true GW signal (i.e., the
false positive rate of the glitch rejection is small).
Since in this scenario it is sufficient to flag any of the

glitches contributing to the triple coincidence, the method
can lead to approximately an order-of-magnitude reduction
in glitch-dominated false alarm rates (FARs) for triple-
detector events. Let us consider a fiducial subthreshold
FAR of 10−7 Hz for a transient event candidate that is not
sufficient for detection claims, and assume that the FAR is
only determined by the triple-detector glitch rate from these
glitches. If we decrease the triple-detector glitch rate by
over an order of magnitude, then the hypothetical GWevent
candidate events moves to the detectable FAR region of
10−8 Hz.
In an another use case scenario, we can consider all

transients detected. It is then imperative to have a very low
false dismissal possibility for real signal, so we can choose
a different strategy and operate at a different set point on the
ROC curves displayed on Fig. 6. For example, considering
that current observation runs produce ∼Oð100Þ discoveries,
one might require that the false dismissal probability to

FIG. 8. Accuracy, true positive rate, and true negative rate over
time during the O3 test period. For stability, these quantities are
computed over rolling windows of length 2000 s beginning at the
indicated time. Note that the scale of the x axis is different
from Fig. 7.

FIG. 9. Visualization of estimated glitch probability (blue) and true glitch density (red) over time during a 64-second segment from
early O3. (Glitch density was calculated by checking whether Omicron reported a glitch of any SNR during each sample time, then
smoothing the resulting binary vector by convolving it with a Gaussian with σ ¼ 0.2 s. As a result, very short-duration glitches
surrounded by longer glitch-free periods appear as low spikes of the red line—for example, around 9 s, the model correctly identifies the
presence of a very short glitch, which is not obvious in the red line because of the glitch’s short duration.)
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accidentally miss a true GW signal be less than ∼Oð0.1%Þ.
We can then require that all three detectors’ glitches be
flagged to have a triple coincident glitch flagged. Con-
sequently, we need to operate at or below the ∼Oð10%Þ
false dismissal rate. This corresponds to ∼90% individual
true positive rate on the ROC curves displayed on Fig. 6,
resulting in a factor-of-several reduction in the triple-detector
glitch rate.
These examples indicate some of the astrophysical

opportunities presented by the results here.

D. Glitch subsets

For all of the results presented previously, we considered
all triggers recovered by Omicron together without regard
to any of their parameters (except for the high-SNR subsets
illustrated in Fig. 6). However, the EMU method could also
be used independently on subsets of glitches, which could
be defined according to any desired criteria, such as
frequency, duration, or other Omicron parameters; by
suspected origin; or by using any of the existing methods
that attempt to identify groups of related glitches [6]. One
would expect that some groups of glitches might be easier
to classify than others; for example, we noticed that glitches
with higher peak frequency or longer duration were
generally easier to classify than those with lower peak
frequency or shorter duration.
To illustrate this, we performed an experiment in which,

prior to training ourmodel, we performed k-means clustering
[35,36] on the (log) duration, peak frequency, bandwidth,
and (log) SNR (each as reported by Omicron) of glitches in
our ER14 training dataset. k-means is a standard clustering
algorithm that attempts to identify clusters of related points in
a provided dataset. It outputs the centroid of each cluster and
the assignment of each data point to a cluster.
We divided the ER14 training dataset into 10 subsets (10

was chosen arbitrarily) identified by k-means and trained
10 elastic net logistic regression classifiers, using one of the
glitch subsets as the positive class and all glitch-free
samples as the negative class for each classifier. For testing,
we then used the cluster centroids computed on the training
set to assign each data point of the ER14 validation dataset
to one of the 10 classes and evaluated the performance of
each classifier on its corresponding validation subset. The
results are shown in Fig. 10.
We note that the best performing cluster corresponded to

glitches with relatively high bandwidth, signal-to-noise
ratio, and peak frequency, and relatively long duration.
While several works have attempted to identify auxiliary
channels correlated with groups of glitches determined by
various means [6,11], none of them has considered the full
set of auxiliary channels; our EMU method would enable
them to do so, agnostic to the grouping method used.
We leave further exploration of this method and phenome-
non to future work.

IV. CONCLUSIONS

We have presented a method for flagging potentially
glitchy segments of LIGO data using only auxiliary channel
data. It is the firstmethod that considersall auxiliary channels
to identify glitches without directly using theGWstrain data.
As such, it can provide independent corroboration that an
event of interest is likely to be astrophysical in origin or not. It
uses a well-established, easily interpretable, and efficient
machine learning method.
We report a typical overall accuracy of approximately

80%, tested on segments fromLLOduringER14andO3, and
find that the performance can be improved for certain subsets
of glitches. We also show that this method is capable of
reducing glitch-related false detections with negligible false
dismissal for a detector network. The method also provides
interpretable results, indicating specific auxiliary channel
behavior associated with glitches and its predictions, which
could facilitate detector improvements.
We note that the performance characteristics of the

method are adjustable and can be modified to suit the
requirements of a given study. Because the method outputs
a probability estimate on a continuous scale for each time
sample, one can vary the threshold used to classify a sample
as glitchy or clean as necessary to achieve a desired balance
between false positive and false negative rates.
The method can also be trained on a subset of glitches

chosen based on characteristics such as SNR, frequency, or
time duration—or any other desired criteria—to target its
performance toward similar glitches. We can also specify a
subset of the channels to consider in the feature set. This can

FIG. 10. ROC curves for 10 subsets of glitches from the ER14
dataset, pregrouped by k-means clustering on their Omicron
parameters. We find best performance (the pink curve) on a
cluster of high duration, bandwidth, signal-to-noise ratio, and
peak frequency; the worse performing clusters (e.g., orange) have
very short duration (order of milliseconds) and low SNR.
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be used to focus on a specific detector subsystem or specific
application. We leave the investigation of these applications
to future work. We also note that the goal of identifying
glitches using auxiliary channels is method independent, and
other algorithms can be tested and compared to these results.
The classificationmodel considers a set of features derived

from the raw auxiliary channel data at and around a given
time. The feature set was chosen in an ad hocmanner based
on intuition, and we did not significantly attempt to engineer
it for performance.We believe the simplicity of the features is
an advantage considering the size of our dataset and
illustrates the robustness of the machine learning model
we employ. We note, however, that the model is agnostic to
the features used—exactly the same type of model could be
employed on top of more advanced, better optimized
features. Considering the engineering of features more
carefully represents a worthwhile direction for future work.
Finally, the method presented is not limited to GW

detectors, and represents a general approach to analysis of
the status of a complex system using large numbers of
features as input. It could also be employed in studying
other complex machines, experiments, or applications
involving similarly high-dimensional data.
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