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We study the basic integral equation in Lindhard’s theory describing the energy given to atomic motion
by nuclear recoils in a pure material when the atomic binding energy is taken into account. The numerical
solution, which depends only on the slope of the velocity-proportional electronic stopping power and the
binding energy, leads to an estimation of the ionization efficiency which is in good agreement with the
available experimental measurements for Si and Ge. In this model, the quenching factor for nuclear recoils
features a cutoff at an energy equal to twice the assumed binding energy. We argue that the model is a
reasonable approximation for Ge even for energies close to the cutoff, while for Si is valid up to recoil
energies greater than ∼500 eV.
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I. INTRODUCTION

In experiments dedicated to the detection of rare events
producing low energy depositions (∼10 keV or less), e.g.,
direct dark matter (DM) searches or the detection of
coherent neutrino-nucleus scattering (CENνS), the exper-
imental signal generally entails the detection of the
recoiling target ions following a scattering event. The
amount of electronic excitation produced by a recoiling
ion is typically smaller than that produced by a recoiling
electron of the same energy, this has been commonly
referred to as quenching. The usage of this term may not be
in general well justified, since no loss of the elementary
electronic excitations (total quanta) is required to occur in
order to explain this difference in all cases. Nonetheless, for
simplicity and consistency with current literature, hereafter
in this work, we will use the term quenching factor (QF) to
refer to the ionization efficiency for pure crystals, like Si
and Ge.
In 1963, Lindhard et al. [1] developed a theoretical

model that has been used to explain this quenching, aimed
at describing energy depositions of the order of a few keV
or higher, when atomic binding energies can be safely
neglected. After more than 50 years, the original formu-
lation by Lindhard and collaborators (hereafter referred to
as Lindhard’s, in short) remains widely in use, and has
shown to be successful at describing measurements in this
energy regime. As experiments have lowered their detec-
tion thresholds reliably observing energy depositions well

below 1 keV, understanding the QF at those low energies
has become crucial to estimate their sensitivities to the
physical models they aim to test.
Recent measurements of the QF for nuclear recoils in

silicon (Si) [2,3] exhibit a clear deviation from the Lindhard
model for energies below 4 keV, while data for germanium
(Ge) [4–9] are in good agreement.
In a recent article, Sorensen [10] aimed to obtain a QF

valid at lower energies by bringing back the atomic binding
energy into Lindhard’s original simplified equation. He
estimated this binding to be of the order of the electron-hole
pair creation energy (∼3 eV for Si and Ge), and his
solutions exhibit a cutoff of the order of one to a few
hundred eV. This result is troublesome [11], since it is not
obvious how a low binding energy could produce such a
high threshold in the QF. The present work was partially
motivated by this observation, and will show that, when
properly incorporated into the model, a constant binding
energy results in a cutoff in the QF at a value of the same
order of magnitude.
This paper is organized as follows. In Sec. II we give a

brief summary of the ideas in Lindhard’s theory arriving at
the simplified integral equation describing the energy given
to ions by a recoiling ion in a homogeneous medium,
and his equation for the QF, when the binding energy is
neglected. In Sec. III we discuss the changes that are needed
in order to maintain the binding energy in the model to the
lowest order, arriving at a modified version of the simplified
integral equation. We propose a simple ansatz for the
solution depending on two new parameters, besides the
electronic stopping constant k already introduced by
Lindhard. We end this section with a description of the
numerical solution which depends only on k and the binding
energy, which works well in the low energy regime for Ge
and Si, most relevant for current and future low-threshold
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DM (e.g., [12–16]) and CEνNS (e.g., [17–19]) experiments.
In Sec. IV we fit the QF obtained from both, the approximate
and numerical solutions, to experimental measurements
for Si and Ge to find the relevant parameters in each case.
The conclusions are presented in Sec. V.

II. THE LINDHARD MODEL

When an ion in a homogeneous substance moves with a
kinetic energy E, heading toward the collision with another
ion in the material, after recoiling off an interaction with an
incident particle (e.g., the coherent scattering of a neutrino
or a DM particle), is sets off a cascade of slowing-down
processes that dissipate this energy throughout the medium.
If the ion recoils from the interaction with the incident
particle with an energy ER and the energy U is lost to
disruption of atomic bonding, then ER ¼ EþU. Note that,
under the assumption of an elastic collision, ER corre-
sponds to the kinetic energy transferred by the incident
particle to the struck ion in the material. A sudden
approximation is made for the collision, where the time-
scale of elastic collision is much smaller than timescale of
atomic processes. Lindhard’s theory [1] concerns with
determining the fraction of ER which is given to electrons,
H, and that which is given to translational motion of ions,
N, assuming ER ¼ H þ N. This separation can be written
in terms of reduced dimensionless quantities as

εR ¼ ηþ ν; ð1Þ

where εR ¼ cZER, η ¼ cZH, and ν ¼ cZN, and the scaling
factor cZ ¼ 11.5=Z7=3 keV−1 is defined for a medium with
a single atomic species of atomic number Z.
The model is simplified by considering the equations

obeyed by the average quantities η̄ and ν̄, for which
appropriate probability distributions are assumed to exist,
and such that εR ¼ η̄þ ν̄.
It is reasonable to assume that η̄ represents an upper

limit to the available signal in a detector operating in
ionization-only mode, such as those used for extreme low-
mass WIMP searches and CEνNS detection. The nuclear
quenching factor is defined as the fraction of the total
energy deposited by the incident particle which is trans-
ferred to the electrons

fn ¼
η̄

εR
¼ εþ u − ν̄

εþ u
; ð2Þ

where u ¼ cZU.
Lindhard considered any physical quantity φ (of which η

and ν are examples) that is additive over the individual
slowing-down processes spawned by the initial scattering.
Suppose that a recoiling ion, with kinetic energy E, strikes
an ion in the medium transferring the energy Tn to its
center of mass, and the energy Tei to each ionized electron.
If U, in Lindhard’s own words, is the energy spent in

“disrupting the atomic binding", then the additivity of φ is
encoded in the basic integral equation

Z
dσn;e½φ̄ðE − Tn − ΣiTeiÞ þ φ̄ðTn −UÞ − φ̄ðEÞ

þ Σiφ̄eðTei − UeiÞ� ¼ 0; ð3Þ

where σn;e is the effective cross section for the interaction
of the recoiling ion with the ions or electrons in the medium
and integration over

R
dσn;e represents the sum over all

possible interactions (impact parameters). In the last
term, φ̄e is the function describing the contribution of
ejected electrons to φ̄, each with ionization energy Uei.
Equation (3) states that the average physical effect caused
by the initial recoiling ion before the collision, φ̄ðEÞ, equals
the sum of the average physical effects caused by the ion,
the struck ion, and the ejected electrons after the collision.
This situation is depicted in Fig. 1. In general, U is not
limited to the energy needed to remove the ion from its site,
but it can also include contributions to excitation or
ionization of bound atomic electrons, and therefore incor-
porates the Migdal effect [20,21] into the model. In
scintillating materials, electronic excitation can be a very
significant component of the total signal. In principle, an
additional term for the contribution of excited electronic
states could be added to Eq. (3), but we will not consider it
in the treatment presented here.
Lindhard used five basic approximations in order to

cast Eq. (3), for φ̄ðEÞ ¼ ν̄ðEÞ, in a simplified form for
which he found an approximate numerical solution,
expected to be valid for sufficiently large energies:
(A) ionized electrons do not produce atomic recoils with
appreciable energy, hence the term

P
i φ̄eðTei −UeiÞ can

FIG. 1. Scattering of a recoiling ion in the lab frame. The
average physical effect of the recoiling ion φ̄ðEÞ equals the sum
of the average physical effects of the struck ion, the ejected
electrons, and itself, after the collision.Ui is the ionization energy
to free electron i. The other quantities are described in the text.
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be dropped; (B) neglect the atomic binding U under the
assumption that it is in general smaller than the energy
transferred to the recoiling ions, hence εR ≈ ε; (C) the
energy transferred to ionized electrons is also small
compared to that transferred to recoiling ions; (D) the
effects of electronic and atomic collisions can be treated
separately; (E) Tn is also small compared to the energy E.
The interactions between recoiling ions are modeled as

two-body elastic scatterings of identical particles in a
screened Coulomb potential VðrÞ ¼ ðe2Z2=rÞϕ0ðr=aÞ.
Here, ϕ0ðr=aÞ is the single atom Thomas-Fermi screening
function [22] with a corrected length scale a ¼ 0.8853a0=
ðZ1=3

ffiffiffi
2

p Þ, and a0 is the Bohr radius. With this model
Lindhard found that the atomic scattering cross section
could be written as dσn ¼ dtfðt1=2Þ=2t3=2, where t ¼
ε2 sin2ðθ=2Þ, θ is the scattering angle in the center of
mass, and fðt1=2Þ is a function only of t.
The electronic stopping power can be expressed as

1=NeðdE=dRÞe ¼
R
dσeðΣiTeiÞ [23], where Ne is the

electron number density and R is the distance travelled
by an ionizing projectile. It appears naturally as a conse-
quence of approximations (C) and (D), and in terms of the
reduced quantities ε and ρ ¼ πa2NeR, can be written as

SeðεÞ ¼ dε=dρ ¼ kε1=2; ð4Þ

where k ¼ 0.133Z2=3A−1=2. This velocity proportionality of
the electronic stopping power appears to hold in a variety of
substances, from gaseous to semiconductor targets,
although indications of a threshold velocity below which
a projectile loses no energy to electrons are known to
exist [24].
Putting all these approximations together, including

u ¼ 0 (approximation B), Lindhard arrived at his simplified
integral equation for the average energy given to atomic
motion

kε1=2ν̄0ðεÞ ¼
Z

ε2

0

dt
fðt1=2Þ
2t3=2

× ½ν̄ðε − t=εÞ þ ν̄ðt=εÞ − ν̄ðεÞ�:

ð5Þ

He found an approximate numerical solution of Eq. (5)
imposing the boundary condition that ν̄ðεÞ → ε when
ε → 0 (and noting that ν̄00ðεÞ < 0), from where the QF
in Eq. (2) can be calculated as

fn ≈
η̄ðεÞ
ε

¼ ε − ν̄ðεÞ
ε

; ð6Þ

which he parametrized in the following way

ν̄LðεÞ ¼
ε

1þ kgðεÞ ; ν̄ðεÞ≡ ν̄LðεÞ

gðεÞ ¼ 3ε0.15 þ 0.7ε0.6 þ ε: ð7Þ

The last expression is well known to the experimental
community studying low energy depositions by nuclear
recoils.
It is interesting to note that there is an inconsistency with

the boundary condition imposed by Lindhard which, on
one hand implies that ν̄0LðεÞ → 1 when ε → 0, as stated
above, while on the other, by applying L’Hopital’s rule
directly to Eq. (5) it can be shown that limε→0 ν̄

0
LðεÞ ¼ 0,

hinting at the existence of a discontinuity in the first
derivative at zero. Despite its limitations, Lindhard’s model
has been very successful in describing the QF for nuclear
recoils in Si up to ε≳ 0.1 (4 keV), and so far all available
data for Ge, corresponding to ε≳ 0.00088 (250 eV).

III. SIMPLIFIED INTEGRAL EQUATION
WITH BINDING ENERGY

We wish to find a version of the simplified integral
equation, Eq. (5), where approximation (B) has been
removed in a mathematically consistent way. In Ref. [10]
this approximation was relaxed by replacing the term ν̄ðt=εÞ
with ν̄ðt=ε − uÞ. While this is certainly part of the required
modifications, attention must be paid to the lower limit
of integration on the right-hand side of Eq. (5), which should
be set to εu, as is suggested by not allowing the argument
of ν̄ðt=ε − uÞ to become negative. The same lower limit can
be recovered by modeling the atomic scattering as the
collision of semihard spheres, as is shown in Appendix A.
In addition to bringing back the binding energy, in going

from Eq. (3) to Eq. (5), the term φ̄ðE − Tn − ΣiTeiÞ has
been expanded to first order in ΣiTei=ðE − TnÞ ≪ 1, but, it
has also been assumed that Tn=E is small to some extent
(approximation E). In the interest of finding a solution valid
for lower energies (e.g., ε > 0.01 in Si) we will perform a
similar expansion, but keeping a term of order TnðΣiTeiÞ,
namely

ν̄ðE − Tn − ΣiTeiÞ ≈ ν̄ðE − TnÞ − ν̄0ðEÞðΣiTeiÞ
þ ν̄00ðEÞTnðΣiTeiÞ; ð8Þ

where terms of order ðΣiTeiÞ2 or higher, have been dropped.
The additional term proportional to ν̄00ðEÞ will have an
important effect when assessing the accuracy of our approxi-
mate solution, and will be key to the implementation of the
numerical solution. Substituting Eq. (8) into Eq. (3), and
integrating over the nuclear and electronic cross sections,
putting also in effect approximation (D), we arrive at our
proposed form of the modified simplified integral equation

kε1=2ν̄0ðεÞ − 1

2
kε3=2ν̄00ðεÞ

¼
Z

ε2

εu
dt

fðt1=2Þ
2t3=2

× ½ν̄ðε − t=εÞ þ ν̄ðt=ε − uÞ − ν̄ðεÞ�;

ð9Þ
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where we have considered a mean value of the energy
transferred to the struck ion t̄n ≈ htni ¼ hε sin2 θ=2i ¼ 1

2
ε,

(where tn ¼ cZTn ¼ t=ε) in order to recover the electronic
stopping power from the integration of the second order term
(see Appendix B).
In what follows we will use the “average” Molière-like

screening function given in [23] for the determination of
fðt1=2Þ. Other screening functions are available [25,26],
and the differences between them can affect the determi-
nation of the constant k, but are expected to be constrained
to the interval 0.1–0.2.
The model depicted in Fig. 1 requires that prior to

producing any effect the struck ion must recoil with a
kinetic energy larger than U, otherwise the argument in
φ̄ðTn −UÞ becomes negative. Modeling the process as
the collision of semi-hard spheres (see Appendix A), we
recognize U as the depth of the soft part of the potential,
and can be associated with the energy given to the electrons
occupying the shells above the inner noblelike nonvalence
shells of the ion. If sufficient energy is available the
collision can induce excitation of electrons from these
shells, as well as from the valence to the conduction band,
producing a number of electron-hole (e–h) pairs, and
possibly also create a vacancy and self-intersticial
(Frenkel) pair [27,28] in the lattice. In general U will
depend on the kinetic energy of the recoiling ion E.
Table I shows the values of the binding energies, relative

to the top of the valence band, for electrons occupying
inner shells above the ½Ne�2 or ½Ar�18 cores in Si and Ge,
respectively [29,30]. The table also lists the average e–h
production energy and the dislocation energy (average
energy to create a FrenkelFig. pair) for each element
[27,28]. In Si, a recoiling ion (labeled 1 in Fig. 1) moving
through the lattice with, say ε=cZ ¼ 350 eV of kinetic
energy, could strike an ion (labeled 2 in Fig. 1) and cause an
electron from its 2p shell to reach the conduction band
(100 eV þ a fraction of 3.7 eV), in addition to causing a
handful more to reach it from the valence band. Depending
on the number of excited electrons and their energies, the
struck ion could also become dislocated from the lattice.
Similarly, in Ge, an ion moving with ε=cZ ¼ 50 eV of
kinetic energy could strike an ion and excite an electron

from its 3d shell plus a few more from the valence band to
the conduction band, or dislocate the ion. Note that the ion
that initiates the cascade will also have lost, to atomic
processes, some of the recoil energy with which it emerged
from the interaction with the incoming particle εR (Migdal
effect [20,21]).
In the remainder of this work we will take uðεÞ ¼ u, a

constant value, and explore its implications for the QF for
nuclear recoils at low energies.

A. Model with a constant u

When u is constant, Eq. (9) is only applicable for ε ≥ u,
otherwise the lower limit of integration derived from
the semi-hard sphere model becomes ill-defined (see
Appendix A). Furthermore, since the right-hand side
(r.h.s.) of Eq. (9) is the contribution to ν̄ from the recoiling
ion (labeled 1 in Fig. 1), it must be non-negative for any
ε ≥ u. Defining the quantity in square brackets in the
integrand as

Iðε; tÞ ¼ ν̄ðε − t=εÞ þ ν̄ðt=ε − uÞ − ν̄ðεÞ; ð10Þ

two observations are in order: (1) at ε ¼ u the r.h.s. of
Eq. (9) is equal to zero, since the upper and lower limits of
integration are equal, therefore, Iðε; tÞ ≥ 0 (must be non-
negative) for any ε ≥ u, and (2) evaluating the r.h.s. at any
value of ε > u requires knowledge of the function ν̄ðεÞ for
values of ε < u. Note that observation (1) further implies
that ν̄ðεÞ has the following linear form in the region below u

ν̄ðεÞ ¼ εþ u ¼ εR; for ε ≤ u: ð11Þ

We now use Eq. (2) to calculate the QF with ν̄ðεÞ as the
solution to the problem posed in Eq. (9). From the
requirement in Eq. (11), it is clear that the QF will vanish
for ε ≤ u, or equivalently, for εR ≤ 2u. In the limit u ¼ 0
we recover Lindhard’s model and QF. The constant u
model is one in which no energy will go into the motion of
ions unless the initial ion recoils with an energy εR > 2u.
From the values in Table I we can expect that this model

will produce a cutoff in the QF for Si at recoil energies of
the order of 200–400 eV, while for Ge it can be expected at
energies of the order of 30–60 eV.

B. Interpolation from low to high ε behavior

It has been noted by some authors [10,11] that in
Lindhard’s original model the energy transferred to elec-
trons is slightly overestimated. This is so because it
primarily originates from the electronic stopping power
of ions, assumed to be given by Eq. (4), which vanishes
at ε ¼ 0. However, if we consider that the effect of the
binding energy is to suppress the energy transferred to
electrons when the recoiling ion has energies below u, we
can argue that η̄ needs to be corrected by a certain amount.
If the correction is taken to be proportional to the electronic

TABLE I. Binding energies, relative to the top of the valence
band, for atomic shells between the noble core and the outer
valence orbitals [29,30], average e–h creation energies, and
dislocation energies [27,28] in Si and Ge.

Silicon Germanium

Shell U (eV) #e Shell U (eV) #e

½Ne�4 4 ½Ar�18 18
2p 100 6 3d 30 10

Average e–h 3.7 4 Average e–h 3.0 4
Dislocation 36 Dislocation 23
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stopping power at energy ε itself, plus a possible offset,
we can write

η̄ ¼ η̄L − C0ðdε=dρÞ − C1; ð12Þ

where η̄L is the average energy transferred to electrons
according to the Lindhard model. Since ε ¼ η̄L þ ν̄L, the
corrected average energy transferred to atomic motion is

ν̄ ¼ ν̄L þ C0ε
1
2 þ C1 þ u; ð13Þ

Notice that the model used in [10] is equivalent to
correcting η̄ by a constant value, however, it is tested
against Lindhard’s basic integral equation, Eq. (5). The
general form in Eq. (13) can be made to approximately
follow the required linear behavior expected near and
below u, posited in Eq. (11), while at the same time
coincide with Lindhard’s solution at high ε, as can be seen
in Fig. 2. Such solution will produce a cutoff in the QF
defined in Eq. (2) at ε ¼ u, provided that ν̄ðuÞ ¼ 2u, and
that ν̄ðεÞ > εþ u for ε < u. One could also device a
solution for ν̄ðεÞ that equals εþ u once ε falls below u
by allowing it to have a discontinuity on the first derivative
(a kink) at this value.
As a way to measure the quality of our proposed solution

we will follow [10] and define the error

Error ¼
���� r:h:s − l:h:s
r:h:sþ l:h:s

����; ð14Þ

comparing the left-hand-side (l.h.s) and the right-hand-side
(r.h.s.) of the modified integral equation, Eq. (9). As noted

in [10] evaluation of the r.h.s. requires knowledge of the
function fðt1=2Þ to lower energies than considered by
Lindhard. Therefore, we follow the useful prescription
given therein and use the parametrization for the reduced
nuclear stopping power SnðεÞ, Eq. (15) of [23], to calculate
fðt1=2Þ by differentiation of εSnðεÞ.

C. Numerical solution

From the observations in Sec. III Awe write the solution
in the form:

ν̄ðεÞ ¼
�
εþ u; ε < u;

εþ u − λðεÞ; ε ≥ u;
ð15Þ

where λðεÞ is a continuous function satisfying λðuÞ ¼ 0. In
order for Eq. (15) to be a solution to the integral equation,
Eq. (9), λðεÞ must have a discontinuity in its first (and
therefore also in its second) derivative at ε ¼ u. This is
reminiscent of what happens in Lindhard’s equation at
ε ¼ 0, as mentioned at the end of Sec. II. Defining these
discontinuities as

lim
ζ→0

λ0ðuþ ζÞ ¼ α1; lim
ζ→0

λ00ðuþ ζÞ ¼ α2;

lim
ζ→0

λ0ðu − ζÞ ¼ 0; lim
ζ→0

λ00ðu − ζÞ ¼ 0; ð16Þ

with α1 ≠ 0 and α2 ≠ 0, consistently the condition to make
the l.h.s. in Eq. (9) vanish at ε ¼ u is given by

α1 ¼ 1þ 1

2
uα2: ð17Þ

Therefore it is only necessary to determine one of the two
parameters (e.g., α2). In order for ν̄ðεÞ to remain physical,
its second and first derivatives must satisfy the conditions

lim
ε→∞

ν̄00ðεÞ ¼ 0− ðfrom belowÞ; and ð18Þ

0 ≤ ν̄0ðεÞ ≤ 1 for ε ≥ u; ð19Þ

otherwise ν̄ will not match Lindhard’s solution at high
energies, if Eq. (18) is not satisfied, or the QF could
become, either negative or greater than 1, if Eq. (19) is not
satisfied.
For ε ¼ u the first condition, Eq. (18), restricts the

possible values of α2 to lie in the interval

−2=u ≤ α2 ≤ 0: ð20Þ

Given u ≠ 0, and small values of the step size h, and
tolerance δ, (both ≪ 1), we find a solution to Eq. (9) in the
interval u ≤ ε ≤ εmax by means of the following shooting
method:

�
3�10 2�10 1�10 1

�

3�10

2�10

1�10

1

 Corrected�

 Lindhard only�

+u�=�

FIG. 2. The function ν̄ðεÞ from Eq. (13) fitted to the Si
experimental data interpolates between the Lindhard solution
at high energies, and the expected εþ u (approximately) below u.
A cutoff in the QF occurs at the crossing between ν̄ðεÞ and εþ u
at ε ¼ u (vertical line).
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(1) Set εmax to a large initial value εmax
0 ¼ 500 u, and the

limits αlo2 ¼ −2=u, and αhi2 ¼ 0.
(2) Sample a random value of α2 in the interval

αlo2 ≤ α2 ≤ αhi2 , calculate the corresponding value
of α1 from Eq. (17), and set the starting values

εt¼u; λðuÞ¼0; λ0ðuÞ¼α1; λ00ðuÞ¼α2: ð21Þ

(3) If εt ¼ εmax, skip to step 8. Else, use Eq. (15) to
calculate ν̄ðεtÞ, ν̄0ðεtÞ, and ν̄00ðεtÞ.

(4) If the condition in Eq. (19) is satisfied, continue.
Else, if it fails because ν̄0ðεtÞ < 0, set αhi2 ¼ α2, and
return to 2. Else, if it fails because ν̄0ðεtÞ > 1, set
αlo2 ¼ α2, and return to 2.

(5) Calculate λðεt þ hÞ and λ0ðεt þ hÞ using a second
order expansion of λ about εt

λðεt þ hÞ ≈ λðεtÞ þ λ0ðεtÞhþ 1

2
λ00ðεtÞh2;

λ0ðεt þ hÞ ≈ λ0ðεtÞ þ λ00ðεtÞh; ð22Þ

and calculate ν̄ðεt þ hÞ and ν̄0ðεt þ hÞ.
(6) Use Eq. (9) to solve for ν̄00ðεt þ hÞ, evaluating the

integral in the r.h.s. numerically by interpolating the
behavior of ν̄ðεÞ between u and εt þ h with cubic
splines passing through all previous points.

(7) Set εt to εt þ h and return to 3.
(8) If the second derivative condition in Eq. (18) at εmax

is satisfied within a tolerance δ, stop. Else, increment
εmax ¼ εmax þ Δ and return to 2.

An example of the application of this method to the case
of Si with u ¼ 3.7 × 10−3, and 1000 steps uniformly
spaced in logarithmic scale in the interval 150 eV < Er <
100 keV is illustrated in Fig. 3. The second derivative
condition in Eq. (18) is well satisfied at ε corresponding to
100 keV, although for some values of u and k, the condition
is satisfied at lower energies, for those cases Eq. (9) in
step 6 can be used without the second derivative term.

The solutions from 61 random shots failing to satisfy the
conditions in Eqs. (19) and (18) are shown as the black
curves. The successful final shot satisfying the conditions
in the interval of interest is shown in red.

IV. FITS TO DATA

The QF data sets used in this study are summarized in
Table II. For Si, four data sets have been considered: Zech
[31], with 8 points in the energy range from 4.30 to
53.7 keV; Brian [32], with 4 points in the energy range from
4.15 to 75.7 keV; CHICAGO [2] with 12 points in the
energy range from 0.68 to 2.28 keV; ANTONELLA [3]
with 14 points in the energy range from 1.79 to 20.67 keV.
The last two are the lowest energy measurements available
to date. For Ge, six data sets have been considered: Jones
(75) [7], with 1 point at 0.254 keV; COGENT [33] with 4
points in the energy range from 0.65 to 1.22 keV;
TEXONO [9] with 3 points in the energy range from
1.25 to 3.61 keV; Messous [34] with 3 points in the energy
range from 2.71 to 8.72 keV; Shutt [35] with 7 points in the
energy range from 17.50 to 70.05 keV; Chassman [5] with
16 points in the energy range from 10.04 to 73.17 keV.
The ansatz, Eq. (13), with ε ¼ εR − u, was fit to the data

for each target ion allowing C0, C1, and u to vary freely,
with the constraint that the QF displays a cutoff in a positive
value of ER. The numerical solution was also fit to the data
varying the parameters k and u. The results of the fits are
summarized in Table III for the ansatz, and Table IV for
the numerical solution, as well as in Fig. 4 for Si and Fig. 5
for Ge. Additionally, we tabulated the numerical solution
for the function fn against the recoil energy for Si and Ge in
Supplemental Tables I and II [36]. The top panel in these
figures shows the error calculated using Eq. (14) for the
ansatz, and compares it with the error for Lindhard’s model
tested against his original integral equation, Eq. (5). By
construction the error of the numerical solution is negli-
gible (<0.5%) and is not shown.

�
3�10 2�10 1�10 1

)�(�

3�10

2�10

1�10

1

u

+u�

FIG. 3. Shooting method for Si. The red curve is the only one
satisfying the boundary conditions in Eqs. (19) and (18).

TABLE II. Summary of the data sets used in this study.

Data set Energy range (keV) # points

Silicon
Zech [31] 4.30–53.7 8
Brian [32] 4.15–75.7 4
CHICAGO [2] 0.68–2.28 12
ANTONELLA [3] 1.79–20.67 14

Germanium
Jones (75) [7] 0.254 1
COGENT [33] 0.65–1.22 4
TEXONO [9] 1.25–3.61 3
Messous [34] 2.71–8.72 3
Shutt [35] 17.50–70.05 7
Chassman [5] 10.04–73.17 16
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The fits of the ansatz and the numerical solution give
high values of χ2 per degree of freedom for Si and Ge,
which are indicative of the tension among the different data
sets. The uncertainties that we report in Tables III and IV
were estimated so as to approximately cover the variation
among the different measurements, and in the case of Xe, to
cover the large uncertainties reported. This is shown in the
error bands in Figs. 4 and 5.
For Si data, the ansatz fit (see Table III) gives a value

of the binding energy of U ¼ 0.15� 0.06 keV, while
the fit of the numerical solution (see Table IV) gives
k ¼ 0.145þ0.029

−0.020 , and U ¼ 0.15þ0.10
−0.05 keV. The fitted value

of k is well within the expected values extracted from the
older data in the range from 10–100 keV fitted to
Lindhard’s model. On the other hand, the fitted binding

energy is consistent with a picture where the recoiling ion
causes, on average, the ionization of one electron from the
2p shell, as well as the creation of several e − h pairs and
Frenkel pair defects. The cutoff of the QF at Er ≈ 300 eV is
an artifact of the constant u model arising from the
relatively high value of the binding energy, compared
to the energy required to produce e − h pairs or lattice
defects in Si, which limits the applicability of the model
to Er ≳ 500 eV.
For the Ge data, the ansatz fit gives a value of

U ¼ 0.02� 0.01 keV, and the fitted numerical solution
gives k¼0.188þ0.017

−0.024 , andU ¼ 0.02þ0.015
−0.010 keV. Once more,

the fitted value of k agrees well with previous estimates,
since the available data can be described reasonably well by
Lindhard’s original model. Interestingly, since in this case
the binding energy is of the same order of magnitude as the
energy required to create lattice defects, a naive picture can
be considered. The recoiling ion can cause, either the
ionization of one electron from the 3d shell, as well as a few
e − h pairs, or instead, the creation of one Frenkel-pair
and several e − h pairs. The cutoff of the QF from the
numerical solution appears at Er ≈ 40 eV, which is likely
closer to the physical threshold for this target atom. In this
case, our constant u model is expected to give a reasonable
description all the way down to recoil energies of
Er ≳ 50 eV, much closer to the physical threshold, which
can be safely expected to lie somewhere between a few eV
and a few tens of eV.
Although the ansatz gives a reasonable description of the

data, the numerical solution does so too using only two
parameters, and is therefore preferred. Figure 6 shows a
comparison of the numerical solutions obtained for the
three targets considered in this work. In this figure, we have
modified the numerical solution for Si to provide a good
match to the data below 40 keV, which follows very closely

TABLE III. Fitted parameters for the ansatz in Eq. (13) for the
different data sets. We report the binding energy U ¼ u=cZ. High
χ2=ndf reflect the tension among the data sets given the reported
errors. The uncertainties are estimated so as to cover the
variations among the data sets.

C0 C1 (×10−5) U (keV) χ2=ndf

Si ð9.1� 4.4Þ × 10−3 3.33� 1.2 0.15� 0.06 224=40
Ge ð3.0� 1.3Þ × 10−4 0.62� 0.12 0.02� 0.01 56=35

TABLE IV. Fitted parameters for the numerical solution to the
different data sets. We report the binding energy U ¼ u=cZ. High
χ2=ndf reflect the tension among the data sets given the reported
errors. The uncertainties are estimated so as to cover the
variations among the data sets.

k U (keV) χ2=ndf

Si 0.161þ0.029
−0.020 0.15þ0.10

−0.05 349.2=40

Ge 0.162þ0.028
−0.021 0.02þ0.015

−0.010 52.3=35
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FIG. 4. (Lower panel) Measurements of the QF in Si (points
with error bars) compared to the Lindhard model (dot-dashed
line), the ansatz of Eq. (13), and the numerical solution with
U ¼ 0.15 keV and k ¼ 0.161. (Upper panel) Error in the ansatz
and the Lindhard original model.
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FIG. 5. (Lower panel) Measurements of the QF in Ge (points
with error bars) compared to the Lindhard model (dot-dashed
line), the fitted ansatz of Eq. (13), and the numerical solution with
U ¼ 0.02 keV and k ¼ 0.162. (Upper panel) Error in the ansatz
and the Lindhard original model.
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the phenomenological fit reported by the Super-CDMS
Collaboration [14], shown in the solid red line in the figure.
The three Si measurements above this energy are likely
affected by nuclear charge screening effects, as is suggested
by the change in behavior already seen in the Super-
CDMS fit.

V. CONCLUSIONS

We found an appropriate form for the basic integrodif-
ferential equation describing the energy given to atomic
motion by nuclear recoils in a homogeneous medium, such
as pure crystals, when the binding energy is taken into
account. Assuming a constant average binding energy,
u ≠ 0, we give approximate semianalytical solutions,
motivated by the analysis of the integro-differential equa-
tion, that are in reasonable agreement with the available
experimental measuremens of the QF for nuclear recoils in
Si and Ge. Numerical solutions depending only on the
constant binding energy and the electronic stopping power
factor k were calculated and found to be also consistent
with the data. As expected, our solutions for the QF display
a cutoff at a value equal to twice the binding energy, 2u.
This cutoff is a feature due to the threshold of the cascading
process built into the model.
Measurements of QF in Ge detectors are well described

by the our model, with k within the expected range
(0.1 < k < 0.2). We predict that the QF cutoff in this
material is in the range between 20–70 eVof nuclear recoil
energy, corresponding to a binding energy of 10–35 eV.
The Frenkel pair dislocation energy in Ge falls well within
this interval, and is expected to be an upper limit close to
the physical cutoff, believed to be of the order of only a few
eV. In a more realistic scenario, where the ion is only
required to acquire sufficient motion to generate phonon
excitations that can then take an electron from the valence
to the conduction band, such a low physical cutoff could be
explained.

In the case of Si, the QF measurements are well
described by our model with k within the expected limits,
only if the binding energy is in the range 100–250 eV. Now,
the predicted cutoff is much larger than the Frenkel energy
of about 36 eV, and therefore also greater than the physical
cutoff. Hence, the model should be valid only for nuclear
recoil energies above 500 eV. A more accurate description,
considering the variation of the binding energy and stop-
ping power with the recoiling ion energy could be con-
sidered. In addition, effects appearing at higher energies,
such as ion charge screening (e.g., Bohr stripping [38])
could manifest as a change in the value of k at recoil
energies of a few tens of keV.
In summary, themodel describedhere, dependingonly ona

constant binding energy and a slope of the velocity-propor-
tional electronic energy loss in the range 0.1 < k < 0.2, can
explain the behavior of the QF measured to date in pure
element targets of Si and Ge. We expect the model to give a
reasonable approximation to the physical cutoff in cases
where the binding energy is lower than or comparable to the
Frenkel-pair energy, as it is the case for Ge.
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APPENDIX A: SEMIHARD SPHERES COLLISION

The semihard sphere model can be used to calculate the
minimum scattering angle, and hence the minimum value
of t. Taking into account the binding energy u, the total
energy is εþ v, where v is

v ¼

8>><
>>:

0 for r ∈ ½R;∞�
−u for r ∈ ½R0; R�
∞ for r ∈ ½0; R0�:

ðA1Þ

In order to estimate the minimum scattering angle for this
scenario we use as an approximation the classical formula
for the scattering angle from a potential

θmin ¼ π − 2b
Z

∞

rmin

dr

r2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðb=rÞ2 − v=ðεþ vÞ

p ; ðA2Þ

where b is the impact parameter (set to R0, as shown in
Fig. 7), rmin is the turning point of the potential, and v is
given in Eq. (A1).
For the potential in Eq. (A1) we can split the integral

(A2) in three parts: one from zero to R0, another form R0 to
R, and the third from R to ∞. The first integral is zero, so
the minimum angle is given by
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FIG. 6. Comparison of the numerical solutions for Si, Ge, with
data. The Si curve has been changed from that in Fig. 4 to fit only
the data <40 keV (k ¼ 0.169 and U ¼ 0.2 keV). Also shown is
the phenomenological fit by Super-CDMS [37] (red solid line).
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θmin ¼ π −
Z

R

R0

2R0dr

r2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðR0=rÞ2 þ u=ðε − uÞ

p
−
Z

∞

R

2R0dr

r2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðR0=rÞ2

p ; ðA3Þ

Assuming that R0 ∝ a0=Z, where a0 is the Bohr radius and
R ∝ 2a0, for Z > 5 we have R ≫ R0, so we can approxi-
mate Eq. (A3) by

θmin ≅ π −
Z

∞

R0

2R0dr

r2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðR0=rÞ2 þ u=ðε − uÞ

p : ðA4Þ

Calculating the integral (A4) we arrive at

sin2ðθmin=2Þ ¼
u
ε
; ðA5Þ

which in terms of the variable t has a minimum at
tmin ¼ uε, as is used in Eq. (9). The same result can be
derived from the model in Ref. [39] (page 131) adapted to
the collision of semihard spheres.

APPENDIX B: SECOND ORDER TERM IN THE
MODIFIED SIMPLIFIED INTEGRAL EQUATION

Substitution of Eq. (8) in Eq. (3) and integration over the
nuclear and electronic cross sections, putting also in effect
approximation (D), leads to the appearance of the electronic
stopping power

Z
dσn;eν̄0ðEÞðΣiTeiÞ ¼ ν0ðEÞ

Z
dσeðΣiTeiÞ

∝ ν0ðεÞSeðεÞ ðB1Þ

in the first derivative term, as in the original formulation by
Lindhard. In the second derivative term, we can apply the
integral mean value theorem to write

Z
dσn;eν̄00ðEÞTnðΣiTeiÞ ¼ ν00ðEÞT̄n

Z
dσeðΣiTeiÞ

∝ ν00ðεÞt̄nSeðεÞ; ðB2Þ

where t̄n ¼ cT̄n is a suitable average value of the energy
transfer tn ¼ ε sin2ðθ=2Þ, which we will approximate by
t̄n ≈ htni ¼ 1

2
ε, leading to the final form of our proposed

modified simplified integral equation Eq. (9).
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