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We present a new effective-one-body (EOB) model for eccentric binary coalescences. The model stems
from the state-of-the-art model TEOBiResumS_SM for circularized coalescing black-hole binaries, that is
modified to explicitly incorporate eccentricity effects both in the radiation reaction and in the waveform.
Using Regge-Wheeler-Zerilli-type calculations of the gravitational wave losses as benchmarks, we find
that a rather accurate (∼1%) expression for the radiation reaction along mildly eccentric orbits (e ∼ 0.3) is
given by dressing the current, EOB-resummed, circularized angular momentum flux, with a leading-order
(Newtonian-like) prefactor valid along general orbits. An analogous approach is implemented for the
waveform multipoles. The model is then completed by the usual merger-ringdown part informed by
circularized numerical relativity (NR) simulations. The model is validated against the 22, publicly
available, NR simulations calculated by the Simulating eXtreme Spacetime (SXS) Collaboration, with mild
eccentricities, mass ratios between 1 and 3, and up to rather large dimensionless spin values (�0.7). The
maximum EOB/NR unfaithfulness, calculated with Advanced LIGO noise, is at most of order 3%. The
analytical framework presented here should be seen as a promising starting point for developing highly
faithful waveform templates driven by eccentric dynamics for present, and possibly future, gravitational
wave detectors.
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I. INTRODUCTION

Parameter estimates of all gravitational wave (GW)
signals from coalescing binaries are done under the
assumption that the inspiral is quasicircular [1]. This is
motivated by the efficient circularization of the inspiral due
to gravitational wave emission. In addition, no explicit
evidence for eccentricity for some events was found [2–4].
However, recent population synthesis studies [5–8] suggest
that active galactic nuclei and globular clusters may host a
population of eccentric binaries. Currently, there are no
ready-to-use waveform models that accurately combine
both eccentricity and spin effects over the entire parameter
space. Recently, numerical relativity (NR) started produc-
ing surveys of eccentric, spinning binary black hole (BBH)
coalescence waveforms [9–11], and a NR-surrogate wave-
form model for nonspinning eccentric binaries up to
mass ratio q ¼ 10 exists [11]. On the analytical side,
Refs. [12,13] provided closed-form eccentric inspiral tem-
plates (based on the quasi-Keplerian approximation).
Similarly, a few exploratory effective-one-body (EOB)-
based [14–17] studies were recently performed [18–20]. In
particular, Refs. [18,20] introduced and tested SEOBNRE,
a way to incorporate eccentricity within the SEOBNRv1
[21] circularized waveform model. However, the
SEOBNRv1 model is outdated now, since it does not

accurately cover high spins or mass ratios up to 10.
This drawback is inherited by the SEOBNRE model [20].
In this article, we modify a highly NR-faithful EOB

multipolar waveform model for circularized coale-
scing BBHs, TEOBiResumS_SM [22,23], to incorporate
eccentricity-dependent effects. The EOB formalism relies
on three building blocks: (i) a Hamiltonian that describes
the conservative part of the relative dynamics, (ii) a
radiation reaction force that accounts for the backreaction
onto the system due to the GW losses of energy and angular
momentum and (iii) a prescription for computing the
waveform. Including eccentricity requires modifications
to blocks (ii) and (iii) with respect to the quasicircular case.

II. RADIATION REACTION AND WAVEFORM
FOR ECCENTRIC INSPIRALS

Within the EOB formalism, we use phase-space variables
ðr;φ; pφ; pr� Þ, related to the physical ones by r ¼ R=ðGMÞ
(relative separation), pr� ¼ PR�=μ (radial momentum),
pφ ¼ Pφ=ðμGMÞ (angular momentum), and t ¼ T=ðGMÞ
(time), where μ≡m1m2=M and M ¼ m1 þm2. The
radial momentum is pr� ≡ ðA=BÞ1=2pr, where A and B
are the EOB potentials. The EOB Hamiltonian is ĤEOB≡
HEOB=μ ¼ ν−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2νðĤeff − 1Þ

q
, with ν≡ μ=M and
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Ĥeff ¼ G̃pφ þ Ĥorb
eff , where G̃pφ incorporates odd-in-spin

(spin-orbit) effects while Ĥorb
eff incorporates even-in-spin

effects [22]. We denote dimensionless spin variables as
χi ≡ Si=m2

i . The TEOBiResumS_SM [23–25] waveform
model is currently the most NR-faithful model versus the
zero_det_highP Advanced LIGO design sensitivity [26].
Reference [23] found that the maximum value of the
EOB/NR unfaithfulness is always below 0.5% [27] all over
the current release of the Simulating eXtreme Spacetime
(SXS) NR waveform catalog [28–40]. This is achieved
by NR informing a 4.5PN spin-orbit effective function
c3ðν; χ1; χ2Þ and an effective 5PN function ac6ðνÞ entering
the Padé resummed radial potential AðrÞ. [See Eqs. (39)
and (33) of Ref. [41].] The two Hamilton’s equations that
take account of GW losses are

_pφ ¼ F̂φ; ð1Þ

_pr� ¼
ffiffiffiffi
A
B

r
ð−∂rĤEOB þ F̂ rÞ; ð2Þ

where ðF̂φ; F̂ rÞ are the two radiation reaction forces. In the
quasicircular case [22,42] one sets F̂ r ¼ 0. Here, we use
F̂ r ≠ 0 and F̂φ explicitly includes noncircular terms. The
main technical issue is to build (resummed) expressions of
ðF̂φ; F̂ rÞ that are reliable and robust up to merger. Building
upon Ref. [43], Ref. [44] derived the 2PN-accurate, generic
expressions of ðF̂φ; F̂ rÞ, which are unsuited to drive the
transition from the EOB inspiral to plunge and merger: they
are nonresummed and generally unreliable in the strong-field
regime (see below). The forces are related to the instanta-
neous losses of energy and angular momentum through
GWs. Following Ref. [44], there exists a gauge choice such
that the balance equations read

− _J∞ ¼ Fφ; ð3Þ

− _E∞ ¼ _rF r þ _φFφ þ _ESchott; ð4Þ

where ESchott is the Schott energy (see Refs. [44,45] and
references therein), ð _E; _JÞ∞ are the energy and angular
momentum fluxes at infinity, while Fφ;r ≡ μF̂φ;r. To build
the resummed expressions of the functions ðFφ;F r; _ESchottÞ
and evaluate their strong-field reliability, we adopt the
procedure that proved fruitful in the circularized case
[24,25,46–49]: any analytical choice for ðFφ;F r; _ESchottÞ
is tested by comparisons with the energy and angular
momentum fluxes emitted by a test particle orbiting a
Schwarzschild black hole on eccentric orbits. We focus first
on Fφ. We start with the 2PN-accurate result of Ref. [44]
[see Eq. (3.70) and Appendix D therein], F 2PN

φ ðr; pr; pφÞ,
reexpress it in terms of pr� , and factor it in a circular

part (defined imposing pr� ¼ _pr� ¼ 0), F 2PNc
φ ðrÞ, and a

noncircular contribution, F 2PNnc
φ ðr; pr� ; pφÞ, so that

F 2PN
φ ðr; pr� ; pφÞ ¼ F 2PNc

φ ðrÞF 2PNnc
φ ðr; pr� ; pφÞ. A route to

improve the strong-field behavior of this expression is to
replace F 2PNc

φ ðrÞ with the corresponding EOB-resummed
expression [47] (notably, in its latest avatar [23–25]). To do
so, the radial EOB coordinate r in F 2PNc

φ ðrÞ is first replaced
by the circularized frequency variable x≡Ω2=3

circ , Eq. (5.22)
of Ref. [44] at 2PN accuracy; then this 2PN-accurate
expression is replaced by FEOBc

φ ðxÞ ¼ −32=5ν2x7=2f̂ðxÞ,
where f̂ ≡ ðFNewt

22 Þ−1 Plm Flm is the factored flux function
[47], with all multipoles (except m ¼ 0 ones) up to l ¼ 8.
Finally, the function FEOBc

φ ðxÞ is computed along the
noncircular dynamics. We do so by using the circular
frequency Ωcirc ≡ ∂pφ

ĤEOBjpφ¼j;pr�¼0, where j
2 ≡ −A0ðuÞ=

ðu2AðuÞÞ0 is the (squared) circular angular momentum,
u≡ r−1 and ð·Þ0 ≡ ∂u. Note that in the resummed flux,
we use fpφ; ĤEOBðr; pr� ; pφÞ; Ĥeffðr; pr� ; pφÞg computed
along the general dynamics. The 2PN-accurate noncircular
contribution F 2PNnc

φ ≡ fNnc
φ þ c−2F 1PNnc

φ þ c−4F 2PNnc
φ is

resummed using a (0,2) Padé approximant. We have

F
EOB2PNnc
φ ≡ FEOBc

φ ðxðrÞÞP0
2½F 2PNnc

φ ðr; pr� ; pφÞ�: ð5Þ

Alternatively, we recall that the force used to drive the EOB
quasicircular inspiral is

F
EOBqc
φ ¼ −

32

5
ν2r4ωΩ5f̂ðΩÞ; ð6Þ

where Ω≡ _φ, which yields a more faithful representation of
GW losses during the plunge [50,51]. This expression is the
leading quasicircular term of the Newtonian angular momen-
tum flux, obtained from Eq. (3.26) of Ref. [44], neglecting
higher-order derivatives of ðr;ΩÞ. We can thus improve
Eq. (6), multiplying it with the Newtonian noncircular factor

f̂Newtncφ ¼ 1þ 3

4

̈r2

r2Ω4
−

Ω̈
4Ω3

þ 3 _r _Ω
rΩ3

þ 4 _r2

r2Ω2
þ Ω̈ _r2

8r2Ω5

þ 3

4

_r3 _Ω
r3Ω5

þ 3

4

_r4

r4Ω4
þ 3

4

_Ω2

Ω4

− ⃛r

�
_r

2r2Ω4
þ

_Ω
8rΩ5

�

þ ̈r
�
−

2

rΩ2
þ Ω̈
8rΩ5

þ 3

8

_r _Ω
r2Ω5

�
; ð7Þ

in order to get

F
EOBNewtnc
φ ¼ −

32

5
ν2r4ωΩ5f̂Newtncφ f̂ðΩÞ: ð8Þ
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Although this expression incorporates formally less non-
circular PN information than Eq. (5), the time derivatives
[and f̂ðΩÞ as well] are obtained from the full EOB
(resummed) equations of motion rather the 2PN ones used
in F 2PNnc

φ . For F r, we build on Ref. [44] and we use
F r ¼ 32=3pr�=r

4P0
2½F̂ 2PN

r �, where P0
2 is the (0,2) Padé

approximant and F̂ 2PN
r ¼ fNr þ c−2f1PNr þ c−4f2PNr is the

2PN-accurate expression calculated from Eqs. (3.70) and
(D9–D11) of Ref. [44]. We adopt an analogous approach
to deal with the Schott energy, as given by Eqs. (3.57)
and (C1–C4) of Ref. [44]. We factorize it in circular
and noncircular parts that are both resummed with the
P0
2 Padé approximant, in order to have ESchott ¼

16=5pr�=r
3P0

2½Ec
Schott�P0

2½Enc
Schott�, where Enc

Schott ¼ Enc;0
Schottþ

c−2Enc;1PN
Schott þ c−4Enc;2PN

Schott . Equations (5)–(8) are specialized
to the test-particle limit (ν ¼ 0) and computed along the
eccentric, conservative, dynamics of a particle orbiting a
Schwarzschild black hole. The result is compared with the
fluxes computed using Regge-Wheeler-Zerilli (RWZ) black
hole perturbation theory [52–54]. To accurately extract
waves at future null infinity, we adopt the hyperboloidal
layer method of [55] and compute the fluxes with the usual
expressions [56] of Ref. [54], including all multipoles up
to l ¼ 8. Figure 1 shows the illustrative case of an orbit
with semilatus rectum p ¼ 9 and eccentricity e ¼ 0.3.
The apastron is r1 ¼ p=ð1 − eÞ, and the periastron is r2 ¼
p=ð1þ eÞ [57]. The figure indicates that FEOBNewtnc

φ delivers
analytical energy and angular momentum fluxes (red lines)

that are, on average, in better agreement with the RWZ ones

than those obtained from F
EOB2PNnc
φ , which increase up to a

10% fractional difference at apastron. We adopt then

F
EOBNewtnc
φ as an analytical representation of the angular

momentum flux along generic orbits. The maximal analyti-
cal/RWZ flux relative differences are ∼10−2. The robustness
of this result is checked by considering several orbits with p
varying from just above the stability threshold (p ¼ 6þ 2e)
up to p ¼ 21, and for each p we consider 0 ≤ e ≤ 0.9.
We then compute the relative flux differences ðδ _E; δ _JÞ at
periastron for each ðp; eÞ. We find that, for each value of p,
ðδ _E; δ _JÞ are at most of the order of 10% for e ¼ 0.9. More
interestingly if e≲ 0.3, the fractional differences do not
exceed the 5% level. Let us consider now the waveform
emitted from the transition from inspiral to plunge, merger,

and ringdown as driven by ðF r;F
EOBNewtnc
φ Þ, focusing on a

test particle (of mass ratio μ=M ¼ 10−3) on a Schwarzschild
background. To efficiently compute, along the relative
dynamics, up to the third time derivative of the phase-space
variables entering Eq. (7), we suitably generalize the iterative
analytical procedure used in Appendix A of Ref. [58] to
calculate ̈r. We checked that two iterations are sufficient to
obtain an excellent approximation ð≃10−3Þ of the derivatives
computed numerically. An illustrative waveform is displayed
in Fig. 2 for p ¼ 8 and e ¼ 0.3 (initial values). The top three
rows of the figure highlight the numerical consistency
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FIG. 1. Test particle orbiting a Schwarzschild black hole with
semilatus rectum p ¼ 9 and eccentricity e ¼ 0.3. Different ana-
lytical representations of the angular momentum and energy fluxes
ð _J∞; _E∞Þ are compared with the numerical ones using the RWZ
formalism (black). Left panels: The nonresummed 2PN-accurate
ones of Ref. [44], (gray); the resummed version via Eq. (5) (light-
blue); the resummed version using the noncircular Newtonian
prefactor (red), Eq. (8). The relative differences in ð _J∞; _E∞Þ are
shown in the bottom-right panel: jδ _J∞= _J∞RWZj (solid) and
jδ _E∞= _E∞

RWZj (dashed), color scheme as above. On average,
Eq. (8) delivers the closest analytical/numerical agreement.

FIG. 2. Test particle (with mass ratio μ=M ¼ 10−3, e ¼ 0.3)
and p ¼ 8) plunging over a Schwarzschild black hole. EOB/
RWZ comparison between energy and angular momentum fluxes
(top three panels) and waveforms (bottom panel). Vertical line:
Crossing of the stability threshold (p ¼ 6þ 2e) and beginning of
the plunge.
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(∼10−2) between the RWZ angular momentum and energy
fluxes and their analytical counterparts. The corresponding
waveform is shown (in black) in the fourth row of the plot.
The gravitational waveform is decomposed in multipoles as
hþ − ih× ¼ D−1

L

P
lm hlm−2Ylm, where DL is the luminos-

ity distance and −2Ylm the s ¼ −2 spin-weighted spherical
harmonics. We use below the RWZ normalized variable
Ψlm ¼ hlm=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðlþ 2Þðlþ 1Þlðl − 1Þp
. A detailed analy-

sis of the properties of the RWZ waveform, such as the
excitation of QNMs, etc., will be presented elsewhere. Here
we employ it as a target, an “exact”waveform to validate the
EOB one. Within the EOB formalism, each multipole is

factorized as hlm ¼ hðN;ϵÞ
lm ĥlm, where hðN;ϵÞ

lm is the
Newtonian (leading-order) prefactor, ĥlm is the resummed
relativistic correction [47] and ϵ the parity of lþm. The

circularized prefactor hðN;ϵÞ
lm is replaced by its general

expression obtained computing the time derivatives of the

Newtonian mass and current multipoles. We have hðN;0Þ
lm ∝

eimφIðlÞlm and hðN;1Þ
lm ∝ eimφSðlÞlm, where ðlÞ indicates the lth

time-derivative and Ilm ≡ rle−imφ and Slm ≡ rlþ1Ωe−imφ

are the Newtonian mass and current multipoles. The l ¼
m ¼ 2 mode of the analytical waveform is superposed, as a
red line, in the bottom row of Fig. 2, showing excellent
agreement with the RWZ one essentially up to merger [59].
A similar agreement is found for subdominant modes.

III. COMPARISON WITH NUMERICAL
RELATIVITY SIMULATIONS

The complete, ν-dependent, radiation reaction of above
replaces now the standard one used in TEOBiResumS_SM
so to consistently drive an eccentric inspiral. Everything is
analogous to the test-particle case, aside from (i) the initial
conditions at the apastron, which are more involved
because of the presence of spin, though they are a
straightforward generalization of those of [19] and (ii) sim-
ilar complications for the time derivatives needed in f̂Newtnc .
The EOB waveform with the noncircular Newtonian
prefactors is completed by next-to-quasi-circular (NQC)
corrections and the NR-informed circularized ringdown
[22,23]. Differently from the circularized case, the NQC
correction factor is smoothly activated in time just when
getting very close to merger, so to avoid spurious con-
taminations during the inspiral. Also, no iteration on the
NQC amplitude parameters is performed [23]. We assess
the quality of the analytic waveforms by comparing them
with the sample of eccentric NR simulations publicly
available in the SXS catalog [28–40] that are listed in
Table I. We carry out both time-domain comparisons and
compute the EOB/NR unfaithfulness. To do so correctly the
EOB evolution should be started in such a way that the
eccentricity-induced frequency oscillations are consistent
with the corresponding ones in the NR simulations. Since
the eccentricities are gauge dependent, their nominal values

are meaningless for this purpose. EOB and NR waveforms
are then aligned in the time domain [58] during the early
inspiral and then we progressively vary the initial GW
frequency at apastron, ωEOB

a , and eccentricity, eEOB, until
we achieve minimal fractional differences (≃10−2) between
the EOB and NR GW frequencies. To facilitate the
parameter choice, we also estimate the initial (at first
apastron) eccentricity of each NR simulation, eNRω , using
the method proposed in Eq. (2.8) of Ref. [10], where eω is
deduced from the frequency oscillations; we here employ,
however, the frequency of the (2,2) mode, as opposed to
the orbital frequency as done in Ref. [10]. The last two
columns of Table I contain the values of ðωEOB

a ; eEOBÞ that
lead to the best agreement between NR and EOB wave-
forms. An illustrative time-domain comparison, for SXS:
BBH:1369 is shown in Fig. 3. Figure 4 shows the EOB/NR
unfaithfulness F̄≡ 1 − F [see Eq. (48) of Ref. [23] ]
computed with the zero_det_highP [26] Advanced-LIGO
power spectral density. Both NR and EOB waveforms
(starting at approximately the same frequency) were
suitably tapered in the early inspiral. From Table I,
maxðF̄Þ is always comfortably below 3% except for the
small-eccentricity dataset SXS:BBH:1149, with maxðF̄Þ ¼
3.16. We believe that this is the effect of the suboptimal
choice of ðac6; c3Þ (see below) and is not related to the

TABLE I. SXS simulations with eccentricity analyzed in this
work. From left to right: The ID of the simulation; the mass ratio
q≡m1=m2 ≥ 1; the individual spins ðχ1; χ2Þ; the estimated NR
eccentricity at first apastron eNRω ; the initial EOB eccentricity
eEOB and apastron frequency ωEOB

a , which allow us to get a good
EOB/NR frequency agreement.

SXS q χ1 χ2 eNRω eEOB ωEOB
a maxðF̄Þ½%�

1355 1 0 0 0.062 0.089 0.0280475 1.30
1356 1 0 0 0.102 0.1503 0.019077 1.03
1359 1 0 0 0.112 0.18 0.021495 1.22
1357 1 0 0 0.114 0.1916 0.019617 1.20
1361 1 0 0 0.160 0.23437 0.02104 1.56
1360 1 0 0 0.161 0.2415 0.019635 1.52
1362 1 0 0 0.217 0.30041 0.0192 0.89
1364 2 0 0 0.049 0.0843 0.025241 0.86
1365 2 0 0 0.067 0.11 0.023987 1.00
1367 2 0 0 0.105 0.1494 0.026078 0.92
1369 2 0 0 0.201 0.309 0.01755 1.38
1371 3 0 0 0.063 0.0913 0.029058 0.57
1372 3 0 0 0.107 0.149 0.026070 0.95
1374 3 0 0 0.208 0.31405 0.016946 0.78

89 1 −0.5 0 0.047 0.071 0.0178279 0.96
1136 1 −0.75 −0.75 0.078 0.121 0.02728 0.58
321 1.22 þ0.33 −0.44 0.048 0.076 0.02694 1.47
322 1.22 þ0.33 −0.44 0.063 0.0984 0.026895 1.18
323 1.22 þ0.33 −0.44 0.104 0.141 0.025965 1.57
324 1.22 þ0.33 −0.44 0.205 0.2915 0.019067 2.25
1149 3 þ0.70 þ0.60 0.037 0.0617 0.0266802 3.16
1169 3 −0.70 −0.60 0.036 0.049 0.024285 0.17
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modelization of eccentricity effects. By contrast, for large
eccentricities the F̄ computation may be influenced by the
accuracy of NR simulations, which get progressively more
noisy increasing eω (see, e.g., the bottom panel of Fig. 3; a
similar behavior is also found for SXS:BBH:324). The
accumulated phase difference at merger (always ∼1 rad) is
mostly due to the previously determined [23] ðac6; c3Þ
values that depend on the circularized waveform and
radiation reaction. Consistently, when our generalized
framework is applied to circularized (nonspinning) bina-
ries, we find that maxðF̄Þ varies between 1.25% (q ¼ 1)
and 0.21% (q ¼ 8). These values are about 1 order of
magnitude larger than those of TEOBiResumS_SM (see

Fig. 13 of [41]). Forthcoming work will present a retuning
of ðac6; c3Þ in order to improve the EOB/NR agreement
further. Some subdominant multipoles are rather robust in
the nonspinning case; see, e.g., Fig. 5. For large spins, we
find the same problems related to the correct determination
of NQC corrections found for TEOBiResumS_SM [23].
Highly accurate NR simulations covering a larger portion
of the parameter space (see, e.g., Ref. [10]) are thus needed
to robustly validate the model when eNRω ≳ 0.2.

IV. CONCLUSIONS

We illustrated that minimal modifications to
TEOBiResumS_SM [23] enabled us to build a (mildly)
eccentric waveform model that is reasonably NR faithful
over a non-negligible portion of the parameter space. This
model could provide new eccentricity measurements on
LIGO-Virgo events. Our approach can be applied also in
the presence of tidal effects. Higher-order corrections in
the waveforms and flux (see Refs. [18,19,60]) should be
included to improve the model for larger eccentricities. In
this respect, with a straightforward modification of the
initial conditions [61], our model can also generate wave-
forms for dynamical captures or hyperbolic encounters
[62], although NR validation is needed [61,63]. Provided
high-order, gravitational-self-force informed, resummed
expressions for the EOB potentials [64–68], as well as
analytically improved fluxes to enhance the analytical/
numerical agreement of Fig. 1 for larger eccentricities, we
believe that our approach can pave the way to the efficient
construction of EOB-based waveform templates for
extreme mass ratio inspirals, as interesting sources for
LISA [69,70].
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