
 

Charm-meson triangle singularity in e+ e− annihilation into D�0D̄0 + γ
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We calculate the cross section for eþe− annihilation into D�0D̄0 þ γ at center-of-mass energies near the
D�0D̄�0 threshold under the assumption that Xð3872Þ is a weakly bound charm-meson molecule. The
Dalitz plot has a D̄�0 resonance band in the squared invariant mass t of D̄0γ. In the limit as the decay width
of theD�0 goes to 0, the Dalitz plot also has a narrow band in the squared invariant mass u ofD�0D̄0 from a
charm-meson triangle singularity. At the physical value of the D�0 width, the narrow band reduces to a
shoulder. Thus, the triangle singularity cannot be observed directly as a peak in a differential cross section
as a function of u. It may however be observed indirectly as a local minimum in the t distribution for events
with u below the triangle singularity. The minimum is produced by the Schmid cancellation between
triangle loop diagrams and a tree diagram. The observation of this minimum would support the
identification of Xð3872Þ as a weakly bound charm-meson molecule.
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I. INTRODUCTION

The Xð3872Þ meson, discovered in 2003 [1], was the
first of the dozens of exotic hadrons whose constituents
include a heavy quark and its antiquark that have been
discovered in high-energy physics experiments [2–6].
Understanding the nature of X may have important impli-
cations for some of these other exotic heavy hadrons. Its
JPC quantum numbers are 1þþ [7]. Its mass is extremely
close to the D�0D̄0 threshold, with the difference being less
than about 0.2 MeV [8]. These results suggest that X is a
weakly bound S-wave charm-meson molecule with the
flavor structure

jXð3872Þi ¼ 1ffiffiffi
2

p ðjD�0D̄0i þ jD0D̄�0iÞ: ð1Þ

Alternative models for X include a compact tetraquark state
with constituents cc̄qq̄ and the χc1ð2PÞ charmonium state
with constituents cc̄ [2–6]. One might have hoped the

nature of X could be revealed by its decays. Despite the
observation of X in seven different decay modes, more than
any other exotic heavy hadrons, a consensus on its nature
has not been achieved.
There may be aspects of the production of X that are

more effective at revealing its nature than its decays. One
way in which the production of a hadron can reveal its
nature is through triangle singularities. Triangle singular-
ities are kinematic singularities that arise if three virtual
particles that form a triangle in a Feynman diagram can all
be on their mass shells simultaneously [9,10]. The effects
of triangle singularities on the production of exotic heavy
mesons have been studied previously [11–13]. Recent
studies have revealed that a charm-meson triangle singu-
larity produces a narrow peak in the production rate of X
accompanied by a pion or photon with invariant mass near a
D�D̄� threshold [14–16]. Any high-energy process that can
create D�0D̄�0, D�0D�−, or D�þD̄�0 at short distances in an
S-wave channel will also produce a narrow peak in the
invariant mass distribution of Xπ0, Xπ−, or Xπþ near the
appropriate D�D̄� threshold [14,15]. Such a narrow peak
arises in the production of Xπ in decays of B mesons into
K þ Xπ [14] and at hadron colliders [15]. Guo pointed out
that any high-energy process that can createD�0D̄�0 at short
distances in an S-wave channel will produce a narrow peak
in the invariant mass distribution of X þ γ near the D�0D̄�0

threshold due to a charm-meson triangle singularity [16]. It
has been suggested that in the decay B → X þ Kπ, X is
simply a peak from a triangle singularity [17]. The effects
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of the triangle singularity on the reaction B− → K− þ Xπ0

have been reexamined [18]. The contribution of a triangle
singularity to the decay X → πþπ−π0 has been studied [19].
Guo et al. have recently presented a review of triangle
singularities in hadronic reactions with an emphasis on
exotic heavy hadrons [20].
The quantum numbers 1þþ of X imply that X þ γ can be

produced by eþe− annihilation into a virtual photon. The
production of X þ γ in eþe− annihilation was first dis-
cussed by Dubynskiy and Voloshin [21]. They calculated
the absorptive contribution to the cross section from eþe−

annihilation into on-shell charm mesons D�0D̄�0 followed
by their rescattering into X þ γ in the limit of zero decay
width of the D�0. Dubynskiy and Voloshin predicted that
the cross section has a narrow peak a few MeV above the
D�0D̄�0 threshold whose position and width depend on the
X binding energy. As pointed out in Ref. [22], the narrow
peak is produced by a triangle singularity. In the limit as the
X binding energy and theD�0 width both go to zero, there is
a term in the matrix element that diverges logarithmically at
a center-of-mass energy near the predicted peak. Thus, the
D�0 width may be as important as the X binding energy in
determining the shape of the narrow peak. The cross section
for eþe− → X þ γ in the energy region near the D�0D̄�0
threshold was calculated in Refs. [22,23], including the
dispersive as well as the absorptive contributions and taking
into account the D�0 width. For the physical D�0 width, the
position of the narrow peak is fairly insensitive to the X
binding energy. The width of the peak is determined by
both the binding energy and the D�0 width.
Since D�0D̄0 are constituents of X, the annihilation of

eþe− can also produce D�0D̄0 þ γ. The matrix element for
this reaction is the sum of a tree diagram and a pair of loop
diagrams with a charm-meson triangle. In the limit of zero
D�0 width, the differential cross section has a double-
logarithmic divergence as a function of theD�0D̄0 invariant
mass in a narrow range of the center-of-mass energy. An
interesting aspect of this reaction is a cancellation pointed
out by Schmid [24]. In the differential cross section
integrated over the D̄0γ invariant mass, the double-loga-
rithmic divergence is canceled by the interference between
the tree diagram and the loop diagrams. Anisovich and
Anisovich showed that the cancellation leaves a single-
logarithmic divergence [25].
In this paper, we calculate the cross section for eþe− →

D�0D̄0 þ γ at center-of-mass energies near the D�0D̄�0
threshold. The Schmid cancellation of the leading diver-
gence from the triangle singularity is most conveniently
revealed by expressing the cross section in a Lorentz-
invariant form. In Sec. II, we repeat the calculation in
Ref. [23] of the cross section for eþe− → D�0D̄�0 near the
threshold using Lorentz-invariant variables. In Sec. III, we
repeat the calculation in Ref. [23] of the cross section
for eþe− → X þ γ near the D�0D̄�0 threshold using

Lorentz-invariant variables. In Sec. IV, we calculate
the cross section for eþe− → D�0D̄0 þ γ and identify the
triangle singularity. In Sec. V, we demonstrate the Schmid
cancellation of the leading logarithm from that singularity.
We point out that the triangle singularity can be observed
indirectly through a local minimum in the differential cross
section produced by interference associated with the
Schmid cancellation. Our results are summarized in
Sec. VI. The nonrelativistic result for the loop amplitude
with the triangle singularity is reproduced in Appendix A.
The loop integral that produces the triangle singularity is
calculated in terms of Lorentz-invariant variables in
Appendix B.

II. PRODUCTION OF D�0D̄�0 NEAR THRESHOLD

A pair of spin-1 charm mesons D�0D̄�0 can be produced
from the annihilation of eþe− into a virtual photon. The
Feynman diagram for this process is shown in Fig. 1. The
cross section for this reaction near the threshold was
calculated in Ref. [23] using nonrelativistic approximations
for the charm mesons. We repeat the calculation here using
a relativistic formalism.
The matrix element for eþe− with total momentum Q to

produceD�0 and D̄�0 with 4-momenta p and p̄ has the form

M ¼ i
e2ð2M�0Þ

s
v̄γμuAðQÞμνλσpνε

�ðpÞλε�ðp̄Þσ; ð2Þ

where
ffiffiffi
s

p
is the center-of-mass energy and v̄ and u are the

spinors for the colliding eþ and e−. The factor of 2M�0,
where M�0 is the mass of the D�0, compensates for the
relativistic normalization of charm-meson states. Near the
threshold s ¼ 4M2

�0 for producing D�0D̄�0, the charm-
meson pair is produced in a P-wave state with total spin
either 0 or 2. At energies close enough to threshold that
higher partial waves can be ignored, the Lorentz tensor
AðQÞμνλσ in Eq. (2) is

AðQÞμνλσ ¼ A0g
μν
Q gλσQ þ 3

2
ffiffiffi
5

p A2

�
gμλQ gνσQ þ gμσQ gνλQ

−
2s2

s2 þ 32M4
�0
gμνQ gλσQ

�
; ð3Þ

FIG. 1. Feynman diagram for eþe− → D�0D̄�0. The spin-1
charm mesons D�0 and D̄�0 are represented by double lines
consisting of a dashed line and a solid line with an arrow.
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where gμνQ ¼ gμν −QμQν=Q2. The coefficients A0 and A2

are the amplitudes for creatingD�0D̄�0 in a P-wave channel
with total spin 0 and 2, respectively. The s dependence of
the last term in Eq. (3) is necessary to eliminate interference
between the two amplitudes in the differential cross section.
The matrix element in Eq. (2) with energy-dependent
amplitudes A0ðsÞ and A2ðsÞ is a good approximation at
energies less than about 100 MeVabove the threshold [23].
That matrix element with constant amplitudes A0 and A2

is a good approximation at energies less than about
10 MeV above the threshold [23]. In this region, s −
4M2

�0 is numerically smaller than 4δ2, where δ ¼
142.0 MeV is the mass difference between D�0 and D0.
We can therefore consider s − 4M2

�0 to be order δ2.
The differential cross section for producing D�0D̄�0 with

scattering angle θ in the center-of-momentum frame is

dσ
dΩ

¼ α2ðs2 þ 32M4
�0Þ

128M2
�0s

�
s − 4M2

�0
s

�
3=2

×

��
jA0j2 þ

288M4
�0s

2

5ðs2 þ 32M4
�0Þ2

jA2j2
�
ð1 − cos2θÞ

þ 18M2
�0s

5ðs2 þ 32M4
�0Þ

jA2j2ð1þ cos2θÞ
�
: ð4Þ

In the region where s − 4M2
�0 is order δ2, we can sim-

plify the cross section with errors of order ðδ=M�0Þ2 by
setting s ¼ 4M2

�0 everywhere except in the factors of
ðs − 4M2

�0Þ=s. The cross section reduces to

dσ
dΩ

¼ 3α2

32

�
s − 4M2

�0
s

�
3=2

��
jA0j2 þ

2

5
jA2j2

�
ð1 − cos2θÞ

þ 3

10
jA2j2ð1þ cos2θÞ

�
: ð5Þ

This agrees with the nonrelativistic cross section calculated
in Ref. [23]. The cross section integrated over angles is

σ½eþe− → D�0D̄�0� ¼ πα2

4

�
s − 4M2

�0
s

�
3=2

½jA0j2 þ jA2j2�:

ð6Þ

The constant factor jA0j2 þ jA2j2 in Eq. (6) can be
determined experimentally by measuring the cross section
at center-of-mass energies

ffiffiffi
s

p
within about 10 MeVof the

D�0D̄�0 threshold at 4013.7 MeV. The values of jA0j and
jA2j can be determined separately by measuring the angular
distribution and fitting it to the expression in Eq. (5).
Estimates of the amplitudes jA0j and jA2j are presented in
Ref. [22],

jA0j ¼ 8 GeV−1; jA2j ¼ 15 GeV−1: ð7Þ

The cross section for D�0D̄�0 predicted using Eq. (6) with
these amplitudes is shown in Fig. 2 for center-of-mass
energies up to about 10 MeVabove the threshold. The cross
section is large enough that it should be relatively easy for
the BESIII Collaboration to measure jA0j and jA2j.
The amplitudes jA0j and jA2j in Eq. (7) were actually

obtained by fitting cross sections for eþe− annihilation into
D�þD�− to Eq. (6) with M�0 replaced by the mass M�þ of
D�þ. The justification for approximating the amplitudes for
producing D�0D̄�0 by those for producing D�þD�− is that
both cross sections are dominated near the threshold by the
isospin-0 charmonium resonance ψð4040Þ. The amplitudes
jA0j and jA2j were determined in Ref. [22] by fitting cross
sections obtained by Uglov et al. [26] by analyzing Belle
data on eþe− annihilation into pairs of charm mesons
[27,28]. The Belle data were also analyzed by Du et al.
[29]. Their fit gives a cross section for D�þD�− at

ffiffiffi
s

p ¼
4.040 GeV that is only 6% smaller than the fit of Uglov
et al. However, their ratio 0.81 of the spin-2 and spin-0
cross sections at that energy is significantly smaller than
the ratio 2.92 from the fit of Uglov et al. This suggests that
the value jA0j2 þ jA2j2 ¼ 290 GeV−2 from Eq. (7) may
be considerably more accurate than the value of the ratio
jA2j=jA0j.

III. PRODUCTION OF X + γ NEAR
THE D�0D̄�0 THRESHOLD

If Xð3872Þ is a weakly bound charm-meson molecule, its
constituents are the superposition of charm mesons in
Eq. (1). The D�0 width gives an important contribution
to the decay width of X. The full decay width ofD�0 has not
been measured. It can be predicted from measurements of
the full decay width Γ�þ of D�þ and the decay branching
fractions ofD�0 andD�þ using chiral symmetry and isospin
symmetry,

FIG. 2. Cross section for producing D�0D̄�0 as a function of the
center-of-mass energy

ffiffiffi
s

p
. The values of jA0j and jA2j are given

in Eq. (7). The vertical line is the D�0D̄�0 threshold.
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Γ�0
Γ�þ

¼ 1

2

�
M�þ
M�0

�
5
�
λðM2

�0;M
2
0;m

2
0Þ

λðM2�þ;M2
0;m

2þÞ
�

3=2Br½D�þ →D0πþ�
Br½D�0 →D0π0� ;

ð8Þ

where M0 is the mass of D0, m0 and mþ are the masses of
π0 and πþ, and λðx; y; zÞ ¼ x2 þ y2 þ z2 − 2ðxyþ yzþ
zxÞ is the Källen function. The resulting prediction is
Γ�0 ¼ ð55.4� 1.5Þ keV, which agrees with the result in
Ref. [16]. It is consistent within errors with the result
in Ref. [30]. The corresponding prediction for the
radiative decay width of the D�0 is Γ½D�0 → D0γ� ¼
ð19.6� 0.9Þ keV. This is consistent within errors with
the result in Ref. [30]. In this paper, we consider the D�0
width to be accurately predicted, and we take its value to
be Γ�0 ¼ 55 keV.
The present value of the difference EX between the mass

of X and the energy of theD�0D̄0 scattering threshold is [8]

EX ≡MX − ðM�0 þM0Þ ¼ ðþ0.01� 0.18Þ MeV: ð9Þ

The central value corresponds to a charm-meson pair just
above the scattering threshold. The value lower by 1σ
corresponds to a bound state with binding energy jEXj ¼
0.17 MeV. The upper bound on jEXj with 90% confidence
level is 0.22 MeV. Since the binding energy is so small, we
will often use MX as a compact expression for M�0 þM0.
We assume in this paper that X is a narrow bound state.

The production of the X resonance feature in the case where
X is instead a virtual state was considered in the Appendix
of Ref. [23] and in Ref. [18]. If X is a narrow bound state,
its energy EX and its decay width ΓX can be expressed in
terms of the complex binding momentum γX as

EX ¼ −
Re½γX�2 − Im½γX�2

2μ
; ð10aÞ

ΓX ¼ Γ�0 þ
2Re½γX�Im½γX�

μ
; ð10bÞ

where μ ¼ M�0M0=ðM�0 þM0Þ is the reduced mass of
D�0D̄0. The energy and decay width of the X bound state
should be distinguished from the energy and width of the X
resonance feature, which has contributions from above the

D�0D̄0 threshold and may depend on the production
process [31]. The first term in ΓX in Eq. (10b) can be
interpreted as the partial decay width of the bound state into
D0D̄0π0 and D0D̄0γ. The second term can be interpreted as
its partial decay width into other decay modes, such as
J=ψπþπ−. To illustrate the possible dependence of pro-
duction rates on the binding energy and decay width of X,
we will consider the following three choices for EX, ΓX

with the physical D�0 width Γ�0 ¼ 55 keV:
(1) EX ¼ −0.05 MeV, ΓX ¼ Γ�0, which corresponds to

the real binding momentum γX ¼ 9.83 MeV.
(2) EX ¼ −0.10 MeV, ΓX ¼ Γ�0, which corresponds to

the real binding momentum γX ¼ 13.90 MeV.
(3) EX ¼ −0.05 MeV, ΓX ¼ 2Γ�0, which corresponds

to the complex binding momentum γX ¼ ð10.17þ
2.61iÞ MeV.

The comparison of the first and second choices shows the
effect of doubling the binding energy of X. The comparison
of the first and third choices shows the effect of doubling
the width of X. We will also sometimes consider zero decay
width for X, which requires the unphysical D�0
width Γ�0 ¼ 0:
(4) EX ¼ −0.05 MeV, ΓX ¼ 0, which corresponds to

γX ¼ 9.83 MeV.
(5) EX ¼ 0, ΓX ¼ 0, which corresponds to γX ¼ 0.
The X can be produced in eþe− annihilation through

the creation of D�0D̄�0 by a virtual photon followed by the
rescattering of the charm-meson pair into X þ γ. The
Feynman diagrams for this process are shown in Fig. 3.
The cross section for this reaction near the D�0D̄�0 thresh-
old is calculated in Ref. [23] using nonrelativistic approx-
imations for the charm mesons. We repeat the calculation
here using a relativistic formalism. We first describe each of
the vertices in Fig. 3 that involves charm mesons.
At center-of-mass energies near theD�0D̄�0 threshold, the

vertex for the virtual photon with momentum Q ¼ pþ p̄
and Lorentz index μ to create D�0 and D̄�0 with momenta p
and p̄ and with Lorentz indices λ and σ is eð2M�0Þ×
AðQÞμνλσpν, where the tensor AðQÞμνλσ is given in Eq. (3).
The vertex for the radiative transition of D�0 with

momentum p and index α to D0 by emitting a photon
with momentum q and index β is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4M�0M0

p
eνϵαβλσ×

ðpλ=M�0Þqσ. The transition magnetic moment eν can be
determined from the radiative decay width of D�0,

FIG. 3. Feynman diagrams for eþe− → X þ γ from rescattering ofD�0D̄�0. The X is represented by a triple line consisting of two solid
lines and a dashed line. The spin-0 charm mesons D0 and D̄0 are represented by solid lines with an arrow.
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Γ½D�0 → D0γ� ¼ αν2M0ðM2
�0 −M2

0Þ3
6M4

�0
: ð11Þ

Using the predicted radiative width Γ½D�0 → D0γ� ¼
ð19.6� 0.9Þ keV, the factor ν in the transition magnetic
moment is determined to be ν ¼ 0.92 GeV−1.
The binding of D�0D̄0 or D0D̄�0 into X can be described

within an effective field theory called XEFT [32,33]. The
relativistic generalization of the vertex for the coupling
of D�0D̄0 or D0D̄�0 to X with momentum P can be
expressed as

−i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8MXM�0M0

p
ðπγX=μ2Þ1=2ðgμν − PμPν=P2Þ; ð12Þ

where μ and ν are the Lorentz indices of the spin-1 charm
meson and X. In the rest frame of X, the vertex in Eq. (12)
reduces to the nonrelativistic vertex iðπγX=μ2Þ1=2δmn [34]
multiplied by a factor ð8MXM�0M0Þ1=2 that compensates
for the relativistic normalization of states.
The matrix element for eþe− → X þ γ is the sum of the

two diagrams with charm-meson loops in Fig. 3. The loop
integral produces a triangle singularity [22]. The singularity
arises from the integration region where the three charm
mesons whose lines form triangles in the diagrams in Fig. 3
are all on their mass shells simultaneously. The two charm
mesons that become constituents of X are both on their
mass shells in the limit where the binding energy is 0. The
two spin-1 charmmesons can be both on their mass shells if
the decay width Γ�0 is 0. The photon energy can be tuned so
that the charm mesons before and after the radiative
transition are both on their mass shells. The matrix element
has a logarithmic branch point from the triangle singularity
at a complex value of s that becomes real in the limit where
EX, ΓX, and Γ�0 are all 0. That real branch point is
determined in Appendix B,

sΔ ¼ 4M2
�0 þ ðM�0=M0ÞðM�0 −M0Þ2: ð13Þ

It can be expressed more concisely as sΔ ¼ ðM�0=M0ÞM2
X.

The predicted center-of-mass energy for the triangle sin-
gularity is

ffiffiffiffiffi
sΔ

p ¼ 4016.4 MeV, which is about 2.7 MeV
above the D�0D̄�0 threshold. A nonrelativistic approxima-
tion for sΔ was obtained in Ref. [23]. If we set M0 ¼
M�0 − δ, sΔ can be expanded in powers of δ. The expansion
of the nonrelativistic approximation for sΔ agrees with the
relativistic result in Eq. (13) through third order in δ, but it
disagrees at fourth order.
The nonrelativistic loop integral from the diagrams in

Fig. 3 was calculated in Ref. [23]. The integral is ultraviolet
convergent, and it can be reduced to a scalar function given
analytically in Appendix A. The relativistic loop integral
from the diagrams in Fig. 3 is quadratically ultraviolet
divergent. The integral depends on the center-of-mass
energy and the invariant mass

ffiffiffi
u

p
of the charm-meson-

pair system that recoils against the photon. In the region

near the triangle singularity where s − 4M2
�0 and u −M2

X

are order δ2, the loop integral can be expanded in powers of
δ=M�0. The leading terms in the expansion are ultraviolet
finite. In Appendix B, the relativistic loop integral is
reduced to the Lorentz-scalar function Fðs; uÞ defined by
the ultraviolet-convergent momentum integral in Eq. (B6).
For s − 4M2

�0 and u −M2
X both of order δ2, the integral is

dominated by momentum scales of order δ and smaller,
and the leading term scales as 1=ðMXδÞ. In the matrix
element for producing X þ γ, Fðs; uÞ is evaluated at
u ¼ M2

X − iMXΓX, which is the position of the complex
pole in the elastic scattering amplitude for the charm
mesons D�0 and D̄0.
The matrix element for eþe− → X þ γ can be calculated

most conveniently by first reducing the charm-meson loops
to an effective vertex for the coupling of the virtual photon
to X and a real photon given in Eq. (B11). The matrix
element for producing X with momentum P and γ with
momentum q is

M ¼ 4e3νð2MXÞ3=2 ffiffiffiffiffiffiffiffi
πγX

p
s

Fðs;M2
X − iMXΓXÞv̄γμu

×AðQÞμνλσqνϵσαβτQαqβε�ðPÞλε�ðqÞτ: ð14Þ

The differential cross section for producing X þ γ with
scattering angle θ is

dσ
dΩ

¼ 8π2α3ν2jγXjM3
Xðs −M2

XÞ5
s4

jFðs;M2
X − iMXΓXÞj2

×

�����A0 −
3s2ffiffiffi

5
p ðs2 þ 32M4

�0Þ
A2

����
2

ð1 − cos2θÞ

þ 9ðsþM2
XÞ2

160sM2
X

jA2j2ð1þ cos2θÞ
�
: ð15Þ

In the region where s − 4M2
�0 is order δ

2, we can simplify
the cross section with errors of order ðδ=M�0Þ2 by setting
s ¼ 4M2

�0 everywhere except in the factors of ðs −M2
XÞ=s

and in the function F. The cross section reduces to

dσ
dΩ

¼ 32π2α3ν2jγXjM3
XM

2
�0

�
s −M2

X

s

�
5

× jFðs;M2
X − iMXΓXÞj2

�����A0 −
1ffiffiffi
5

p A2

����
2

ð1 − cos2θÞ

þ 9

40
jA2j2ð1þ cos2θÞ

�
; ð16Þ

where MX ¼ M�0 þM0 except in the second argument of
the loop amplitude F, which depends sensitively on EX
through that argument. The cross section for producing
X þ γ integrated over angles is
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σ½eþe− → Xγ� ¼ 256π3α3ν2jγXjM2
�0M

3
X

3

�
s −M2

X

s

�
5

× jFðs;M2
X − iMXΓXÞj2

×

�����A0 −
1ffiffiffi
5

p A2

����
2

þ 9

20
jA2j2

�
: ð17Þ

The factor in square brackets in Eq. (17) that depends on
A0 and A2 differs from the factor jA0j2 þ jA2j2 in the cross
section for producing D�0D̄�0 in Eq. (6) by a multiplicative
factor that depends on the complex ratio A2=A0. If jA0j2 þ
jA2j2 has been determined but jA2j=jA0j has not, we should
allow for all possible complex values of A2=A0. For the
value of jA0j2 þ jA2j2 determined by Eq. (7), the multipli-
cative factor can range from 0.34 to 1.31. If jA0j2 and jA2j2
have both been determined, we must still allow for all
possible phases of A2=A0. For the values of jA0j and jA2j in
Eq. (7), the multiplicative factor can range from 0.36 to
1.10, and it is equal to 0.73 if the phase of A2=A0 is �i.
The cross section for X þ γ predicted using Eq. (17) is

shown in Fig. 4 for center-of-mass energies up to about
10 MeV above the D�0D̄�0 threshold. The absolute values
of the amplitudes A0 and A2 are given in Eq. (7). For
purposes of illustration, we choose the complex phase of
A2=A0 to be �i. The cross section is shown for the first
three choices of binding energy and width of X enumerated
after Eq. (10). The cross section has a narrow peak near the
energy for the triangle singularity predicted by Eq. (13). For
jEXj ¼ 0.05 MeV, ΓX ¼ Γ�0, the peak in the cross section
is at 4016.1 MeV, which is only 0.3 MeV lower than the
prediction from Eq. (13). Doubling the binding energy jEXj
has very little effect on the position of the peak in the cross
section, but it increases its height by about 7%. Doubling

the width ΓX moves the peak to an energy higher by
about 0.2 MeV and increases its height by about 10%.
The peak in the cross section in Fig. 4 is large enough that
it may be observable by the BESIII Collaboration. Its
energy is in a range not covered by previous measurements
of the cross section for eþe− → X þ γ by the BESIII
Collaboration [35,36].
In Ref. [23], the cross section for eþe− → X þ γ was

calculated using nonrelativistic approximations. The result
is consistent with that in Eq. (17) to within the accuracy of
the approximations. The prefactors differ by terms sup-
pressed by ðδ=M�0Þ2. The nonrelativistic approximation to
the loop amplitude Fðs; uÞ is a function FðW;UÞ of the
center-of-mass energy W ¼ ffiffiffi

s
p

− 2M�0 relative to the
D�0D̄�0 threshold in the eþe− CM frame and the energy
U ¼ ffiffiffi

u
p

− ðM�0 þM0Þ of the D�0D̄0 pair relative to their
threshold in their CM frame. The function FðW;UÞ is
given analytically in Eq. (A3) of Appendix A. In Ref. [23],
that function was evaluated at the negative energy U ¼ EX.
It should more appropriately be evaluated at the complex
energy U ¼ EX − iΓX=2. The difference has a negligible
effect on the numerical results in Ref. [23].
The origin of the peak in the cross section in Fig. 4 is the

logarithmic branch point of the loop amplitude Fðs;M2
X −

iMXΓXÞ in Eq. (17) at a complex value of s near sΔ in
Eq. (13). An analytic approximation to the logarithmic term
in Fðs; uÞ can be obtained by setting W ¼ ffiffiffi

s
p

− 2M�0 and
U ¼ EX − iΓX=2 in the nonrelativistic loop amplitude
FðW;UÞ in Eq. (A3). In the limit as D�0 width Γ�0, the
binding energy EX, and the width ΓX all go to 0, the branch
point approaches the real s axis and the loop amplitude has
a logarithmic divergence proportional to log js − sΔj.
However, the cross section goes to 0 in this limit because

FIG. 4. Cross section for producing X þ γ as a function of the
center-of-mass energy

ffiffiffi
s

p
. The binding energy and width of X are

jEXj ¼ 0.05 MeV, ΓX ¼ Γ�0 (solid red curve), jEXj ¼ 0.10 MeV,
ΓX ¼ Γ�0 (dashed blue curve), and jEXj ¼ 0.05 MeV, ΓX ¼ 2Γ�0
(dot-dashed purple curve). The two vertical lines are at the
D�0D̄�0 threshold and at the triangle-singularity energy

ffiffiffiffiffi
sΔ

p
.

FIG. 5. Cross section for producing X þ γ divided by jγXj as a
function of the center-of-mass energy

ffiffiffi
s

p
. The binding energy

and width of X are jEXj ¼ 0.05 MeV, ΓX ¼ Γ�0 (solid red curve),
jEXj ¼ 0.05 MeV, ΓX ¼ 0 (dashed purple curve), and jEXj ¼ 0,
ΓX ¼ 0 (dotted blue curve). The two vertical lines are at the
D�0D̄�0 threshold and at the triangle-singularity energy

ffiffiffiffiffi
sΔ

p
.
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of the factor of jγXj in Eq. (17). The divergence from the
triangle singularity is illustrated in Fig. 5, which shows
σ=jγXj as a function of

ffiffiffi
s

p
for the values of EX, ΓX

numbered 1, 4, and 5 after Eq. (10). The curve for jEXj ¼ 0,
ΓX ¼ 0 has a log2ðjs − sΔjÞ divergence. The curve for
jEXj ¼ 0.05 MeV, ΓX ¼ 0 shows that the divergence is
reduced to a narrow peak by the suppression from the
binding energy only. The curve for jEXj ¼ 0.05 MeV,
ΓX ¼ Γ�0 shows that the D�0 width provides some small
additional suppression of the peak.

IV. PRODUCTION OF D�0D̄0 + γ NEAR
THE D�0D̄�0 THRESHOLD

Since eþe− annihilation can produce Xð3872Þ recoiling
against a photon, it can also produce its constituentsD�0D̄0

recoiling against a photon. The virtual photon from eþe−

annihilation creates the charm mesonsD�0 and D̄�0, and the
real photon is produced by a subsequent radiative transition
D̄�0 → D̄0. The final state D�0D̄0 þ γ can be produced
either directly through the tree diagram in Fig. 6 or through
the loop diagrams in Fig. 7. The tree diagram is enhanced
by the D̄�0 resonance. The loop diagrams have a charm-
meson triangle.
The loop diagrams in Fig. 7 involve the amplitudes for

the scattering of D�0D̄0 or D0D̄�0 into D�0D̄0. A Lorentz-
covariant expression for the vertex for either of those
amplitudes is

−ið4M�0M0Þπ=μ
−γX − iλ1=2ðP2;M2

�0 − iM�0Γ�0;M2
0Þ=ð2

ffiffiffiffiffiffi
P2

p
Þ

× ðgμν − PμPν=P2Þ; ð18Þ

where P is the total momentum of the charm-meson pair, μ
and ν are the Lorentz indices of the spin-1 charm mesons,
γX is the X binding momentum, and λðx; y; zÞ is the
Källen function defined after Eq. (8). If we set Γ�0 ¼ 0,
the second term in the denominator reduces to −ikrel, where
krel is the relative 3-momentum of D�0D̄0 in their center-of-
momentumframe. In that frame, thevertex inEq. (18) reduces
to the nonrelativistic scattering amplitude iðπ=μÞδmn=
ð−γX−ikrelÞmultiplied by a factor 4M�0M0 that compensates
for the relativistic normalization of states. Aside from this
normalization factor, the vertex depends on the mass and
decay width of the D�0 only through the argument M2

�0 −
iM�0Γ�0 of the Källen function. The vertex in Eq. (18) is a
good approximation only if u ¼ P2 is close enough to the
D�0D̄0 thresholdM2

X. It should remain a good approximation
up to about the D�þD− threshold, which is higher than MX
by 8.2 MeV.
The loop integrals for the diagrams in Fig. 7 produce a

triangle singularity from the region where the three charm
mesons that form the loop are all on their mass shells. The
triangle singularity produces a logarithmic branch point in
Fðs; uÞ along a line of complex values of s near 4M2

�0 and u
near M2

X. In the limit Γ�0 → 0, the line approaches real
values of s and u. In Appendix B, the condition for the
triangle singularity is deduced from the on-shell conditions
for the three charm mesons in the triangle. The range of s
for the triangle singularity is 4M2

�0 < s ≤ sΔ, where sΔ is
given in Eq. (13). The solution for u as a function of s is

uΔðsÞ ¼ ðM�0 þM0Þ2

þ ½ðM�0 −M0Þ
ffiffiffi
s

p
− ðM�0 þM0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s − 4M2

�0
p

�2
4M2

�0
:

ð19Þ

The function uΔðsÞ is illustrated in Fig. 8. As s increases
from 4M2

�0 to sΔ, uΔ decreases from 2ðM2
�0 þM2

0Þ to
ðM�0 þM0Þ2. Numerically, as

ffiffiffi
s

p
increases from 4013.7 to

4016.4 MeV, uΔ decreases from 15.010 to 14.990 GeV2.
The triangle singularity appears only in narrow intervals of
s and u with lengths ðM�0=M0Þδ2 and δ2, respectively. If
we setM0 ¼ M�0 − δ and take s − 4M2

�0 to be order δ
2, the

solution for u at the triangle singularity in Eq. (19) can beFIG. 6. Tree diagram for eþe− → D�0D̄0 þ γ.

FIG. 7. Feynman diagrams for eþe− → D�0D̄0 þ γ with a charm-meson loop. The grey blob represents the charm-meson elastic
scattering amplitude.
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expanded in powers of δ. The expansion to order δ2 can be
expressed as

uΔðsÞ ≈M2
X þ ðδ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s − 4M2

�0
q

Þ2: ð20Þ

In Fig. 8, this approximation is compared to the exact result
in Eq. (19). The expansion to order δ3 would be difficult to
distinguish from the exact result.
We consider the production of D�0, D̄0, and γ with

4-momenta p1, p0, and q and with total 4-momentum
Q ¼ p1 þ p0 þ q. A convenient set of Lorentz scalars is
the center-of-mass energy squared s ¼ Q2 and the squares
u ¼ ðp1 þ p0Þ2 and t ¼ ðp0 þ qÞ2 of the invariant masses
of D�0D̄0 and D̄0γ, respectively. The matrix element from
the tree diagram in Fig. 6 is

Mtree ¼
2e3ν

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4M�0M0

p
sðt −M2

�0 þ iM�0Γ�0Þ
v̄γμuAðQÞμνλσ

× p1νϵσαβτpα
0q

βε�ðp1Þλε�ðqÞτ: ð21Þ
The loop integral from the loop diagrams in Fig. 7 can be
simplified in the region near the triangle singularity where
s − 4M2

�0 and u −M2
X are both order δ2. In Appendix B, the

leading term in an expansion in powers of δ=M�0 is reduced
to the function Fðs; uÞ defined by the Lorentz-invariant
momentum integral in Eq. (B6). The charm-meson loop
can be reduced to an effective vertex for the coupling of the
virtual photon to D�0, D̄0, and a real photon that is given in
Eq. (B12). The matrix element from the loop diagrams in
Fig. 7 is

Mloop ¼
8πe3νMX

s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4M�0M0

p
−γX − iλ1=2ðu;M2

�0 − iM�0Γ�0;M2
0Þ=ð2

ffiffiffi
u

p ÞFðs; uÞ

× v̄γμuAðQÞμνλσqν
�
gλρ −

PλPρ

u

�
ϵσαβτQαqβε�ðp1Þρε�ðqÞτ; ð22Þ

where P ¼ p0 þ p1. Our matrix elementsMtree in Eq. (21)
and Mloop in Eq. (22) are good approximations only if

ffiffiffi
s

p
is less than about 10 MeV above the D�0D̄�0 threshold at
4013.7 MeV, because this is the region of validity of our
expression for AðQÞμνλσ in Eq. (3) with constant ampli-
tudes A0 and A2. Our expression for Mloop should be a
good approximation for

ffiffiffi
u

p
up to about the D�þD−

threshold at 3879.9 MeV, because this is the region of
validity of the elastic scattering amplitude for the charm-
meson pair in Eq. (18).
At a given center-of-mass energy

ffiffiffi
s

p
, the square of the

matrix element summed over spins is a function of u, t, and
two angles. The differential cross section integrated over
angles and summed over final spins is

dσ
dudt

¼ 1

256π3s2
hjMtree þMloopj2i: ð23Þ

The angular brackets indicate the average over angles. The
matrix elements in Eqs. (21) and (22) both depend on the

amplitudes A0 and A2 in the factorAðQÞμνλσ. Their absolute
values are given in Eq. (7). For purposes of illustration, we
choose the complex phase of A2=A0 to be �i. The matrix
element Mloop also depends on the binding momentum γX
through the denominator in Eq. (22).
The scatter plot for the differential cross section in the

u–t plane is called a Dalitz plot. The boundary of the Dalitz
plot is the curve defined by the equation

0 ¼ tu2 þ t2u − ðsþM2
�0 þM2

0Þtu
−M2

0ðs −M2
�0Þuþ ðM2

�0 −M2
0Þst

þM2
0sðs −M2

�0 þM2
0Þ: ð24Þ

This function of u and t is negative inside the boundaries of
the Dalitz plot. The values of u range from ðM�0 þM0Þ2 to
s. The values of t range from M2

0 to ð ffiffiffi
s

p
−M�0Þ2. Our

matrix elementsMtree in Eq. (21) andMloop in Eq. (22) are
good approximations for

ffiffiffi
s

p
less than about 4.024 GeVand

in the corner of the Dalitz plot with u less than about
15.054 GeV2.

FIG. 8. The charm-meson-pair invariant mass
ffiffiffiffiffiffi
uΔ

p
for the

triangle singularity as a function of the center-of-mass energy
ffiffiffi
s

p
:

the exact result in Eq. (19) (solid red curve) and the ap-
proximation in Eq. (20) (dashed blue curve). The vertical
and horizontal dashed lines are

ffiffiffi
s

p ¼ 2M�0 and
ffiffiffi
u

p ¼ MX,
respectively.
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To illustrate the behavior of the differential cross section
as a function of u and t, we choose the center-of-mass
energy

ffiffiffi
s

p ¼ 4014.7 MeV, which is 1 MeV above the
D�0D̄�0 threshold and near the middle of the triangle-
singularity region. The triangle-singularity line u ¼ uΔðsÞ
has two end points on the boundary of the Dalitz plot. The
upper end point coincides with the point where the
horizontal line t ¼ M2

�0 at the center of the D̄
�0 resonance

band cuts through the boundary of the Dalitz plot. At this
point, the D�0 and D̄0 are moving in the same direction in
the center-of-momentum frame. A blowup of the upper left
corner of the Dalitz plot for

ffiffiffi
s

p ¼ 4014.7 MeV is shown in
Fig. 9. The boundary of the Dalitz plot is actually a little
fuzzy on the scale in Fig. 9, because the D�0 has a nonzero
width. This effect is illustrated by showing three boundaries
corresponding to setting the D�0 mass equal to M�0 − Γ�0,
M�0, and M�0 þ Γ�0.
To generate events populating the Dalitz plot, we first

generate random dots in the region of the u–t plane shown
in Fig. 9. For each point, we generate a random number
between 0 and 1. We keep the dot in the plot if dσ=dudt at
that point is larger than the product of the random number
and the maximum value of dσ=dudt in the region. The
probability of keeping the dot is the ratio of dσ=dudt to its
maximum value. The density of dots is therefore propor-
tional to the differential cross section. The ratio of the
number of dots kept to the number of dots generated is
about 1%. The resulting Dalitz plot at a center-of-mass
energy 1 MeV above the D�0D̄�0 threshold is shown in
Fig. 9. There is an obvious horizontal band near t ¼ M2

�0

from the D̄�0 resonance. The triangle singularity would be
expected to produce a narrow vertical band in the Dalitz
plot near the value uΔ ¼ 14.993 GeV2 predicted by
Eq. (19). There is no narrow vertical band near that value
of u. However, the density of points to the left of uΔ is
significantly larger than that just to the right of uΔ.
The effects of the triangle singularity on the Dalitz plot

would be more distinct if the D�0 width Γ�0 were smaller.
The D̄�0 resonance band would be narrower in proportion
to Γ�0, and the number of events in the resonance band
would be larger in proportion to 1=Γ�0. The Dalitz plot at a
center-of-mass energy 1 MeV above the D�0D̄�0 threshold
is shown in Fig. 10 for the limiting case Γ�0 → 0. Since
dσ=dudt diverges at t ¼ M2

�0, events were generated only
in the region t < 4.026 GeV2. A faint narrow vertical
band is visible along the triangle-singularity line at uΔ ¼
14.993 GeV2 predicted by Eq. (19). A more obvious
feature is that the density of points to the left of uΔ is
much larger than that just to the right of uΔ.
In Fig. 11, we illustrate the differential cross section

dσ=dudt as a function of u in the region near the predicted
triangle singularity at uΔ for

ffiffiffi
s

p ¼ 4014.7 MeV. We
choose the D̄0γ invariant mass squared to be its value at
the leftmost point of the Dalitz plot in Fig. 9:
t ¼ 4.0209 GeV2. We compare dσ=dudt for the values
of EX, ΓX numbered 1, 4, and 5 after Eq. (10). For EX ¼ 0,
Γ�0 ¼ 0, dσ=dudt diverges at u ¼ uΔ, with a shape
consistent with a log2 divergence. For jEXj ¼ 0.05 MeV,
ΓX ¼ 0, dσ=dudt also diverges at u ¼ uΔ but the peak is a
little narrower. For jEXj ¼ 0.05 MeV, ΓX ¼ Γ�0, dσ=dudt
decreases monotonically with u out to beyond the triangle

FIG. 9. Upper left corner of the Dalitz plot for D�0D̄0 þ γ atffiffiffi
s

p ¼ 4014.7 MeV for Γ�0 ¼ 55 keV. The binding energy and
width of X are jEXj ¼ 0.05 MeV, ΓX ¼ Γ�0. The three curves are
the boundaries of the Dalitz plot if the D�0 mass is set equal to
M�0 − Γ�0, M�0, and M�0 þ Γ�0. The horizontal band is from the
D̄�0 resonance. The triangle-singularity line is predicted to be at
uΔ ¼ 14.993 GeV2. This vertical line and the horizontal line at
the center of the resonance band intersect on the boundary of the
Dalitz plot. There are 20,000 events in the Dalitz plot, 97 of
which are to the left of uΔ.

FIG. 10. Upper left corner of the Dalitz plot for D�0D̄0 þ γ atffiffiffi
s

p ¼ 4014.7 MeV for Γ�0 ¼ 0. The binding energy and width of
X are jEXj ¼ 0.05 MeV, ΓX ¼ 0. The horizontal lines are at three
values of the D̄0γ invariant mass squared t: ðM�0 þ Γ�0Þ2, M2

�0,
and ðM�0 − Γ�0Þ2 for Γ�0 ¼ 55 keV. The differential cross
section diverges at t ¼ M2

�0, so events were generated only in
the region t < 4.026 GeV2. There is a narrow vertical band along
the triangle-singularity line at uΔ ¼ 14.993 GeV2. There are
10,000 events in the Dalitz plot, 865 of which are to the left of uΔ.
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singularity. The suppression from the physical D�0 width is
large enough that there is not even a local maximum
near uΔ.

V. SCHMID CANCELLATION

The effects of the triangle singularity on the cross section
for eþe− annihilation intoD�0D̄0 þ γ are not obvious in the
Dalitz plot in Fig. 9 or in the differential cross section in
Fig. 11 for the physical value of the D�0 width. The effects
of a triangle singularity can be suppressed by nonzero
widths of particles in the triangle. They can also be
suppressed by cancellations between diagrams. In the limit
Γ�0 → 0, the triangle singularity in eþe− annihilation into
D�0D̄0 þ γ produces a log2 divergence in the differential
cross section dσ=dudt along the triangle-singularity line
u ¼ uΔðsÞ with t below the D̄�0 resonance. Schmid pointed
out that in the differential cross section dσ=du integrated
over t, the triangle singularity is suppressed by interference
between the loop diagrams in Fig. 7 and the tree diagram in
Fig. 6 [24]. The cancellation is between the loop contri-
bution along the triangle-singularity line in the region of t
below the resonance band and the interference contribu-
tion from the region of t in the resonance band. Anisovich
and Anisovich pointed out that the divergence in dσ=du is
not completely canceled, but the log2 divergence is reduced
to a single logarithm [25]. Dalitz plot distributions in the
presence of triangle singularities have been studied in detail
by Szczepaniak [37]. The effects on the Schmid cancella-
tion from the decay widths of particles in the triangle loop
have been considered by Debastiani et al. [38].
The differential cross section for eþe− annihilation into

D�0D̄0 þ γ averaged over angles is given in Eq. (23). The

matrix elementsMtree andMloop are given in Eqs. (21) and
(22). The full expression for dσ=dudt is very complicated.
To exhibit the Schmid cancellation, it is helpful to simplify
the cross section in the region of s, u, and t near the triangle
singularity. If s − 4M2

�0 and u −M2
X are both order δ2, the

kinematic constraints on the Dalitz plot require t −M2
�0 to

also be order δ2. It is convenient to introduce subtracted
variables,

s− ¼ s − 4M2
�0; u− ¼ u −M2

X; t− ¼ t −M2
�0:

ð25Þ

In the region where s−, u−, and t− are all order δ2, the
equation for the boundary of the Dalitz plot in Eq. (24)
reduces to 0 ¼ Dðs−; u−; t−Þ, where

Dðs−; u−; t−Þ ¼ −δ4 þ 2δ2ðs− þ u− − 2t−Þ
− ðs− − u− − 2t−Þ2: ð26Þ

The functionDðs−; u−; t−Þ is positive inside the boundaries
of the Dalitz plot. The triangle-singularity condition in
Eq. (20) reduces at leading order in δ to

ffiffiffiffiffiffi
u−

p þ ffiffiffiffiffi
s−

p ¼ δ
with 0 < s− < δ2.
To simplify the differential cross section, we set M0 ¼

M�0 − δ and we take s−, u−, and t− to be order δ2. We also
take γX to be order δ and M�0Γ�0 to be order δ2. We then
expand dσ=dudt in powers of δ. The leading terms from the
tree diagram, the interference, and the loop diagrams are

dσtree
dudt

≈
α3ν2

256M2
�0

1

t2− þM2
�0Γ2

�0

�
jA0j2Dðs−; u−; t−Þ

þ 1

3

����A0 −
A2ffiffiffi
5

p
����
2

½8δ2ðs− − 2t−Þ − 3Dðs−; t−; u−Þ�

þ 1

20
jA2j2½24δ2ðs− − 2t−Þ þ 11Dðs−; u−; t−Þ�

�
;

ð27aÞ

dσint
dudt

≈
πα3ν2δ2

6M2
�0

�����A0 −
A2ffiffiffi
5

p
����
2

þ 9

20
jA2j2

�

× ½−δ2 − ðs− − u− − 2t−Þ�

× Re

�
MXFðs; uÞ

−γX − i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u− þ 2iM�0Γ�0

p
=2

×

�
1

t− þ iM�0Γ�0

���
; ð27bÞ

dσloop
dudt

≈
8π2α3ν2δ4

3M2
�0

�����A0 −
A2ffiffiffi
5

p
����
2

þ 9

20
jA2j2

�

×

���� MXFðs; uÞ
−γX − i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u− þ 2iM�0Γ�0

p
=2

����
2

: ð27cÞ

FIG. 11. Differential cross section dσ=dudt for producing
D�0D̄0 þ γ as a function of u at

ffiffiffi
s

p ¼ 4014.7 MeV and t ¼
4.0209 GeV2. The binding energy and width of X are jEXj ¼
0.05 MeV, ΓX ¼ Γ�0 (solid red curve), jEXj ¼ 0.05 MeV,
ΓX ¼ 0 (dashed purple curve), and jEXj ¼ 0, ΓX ¼ 0 (dotted
blue curve). The vertical line is at the predicted value uΔ ¼
14.993 GeV2 for the triangle singularity.
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Given that MXFðs; uÞ is order 1=δ, all three terms are
order δ0. For t− close to 0, the tree contribution is enhanced
by the Breit-Wigner resonance factor. The loop and
interference contributions may be enhanced along the
triangle-singularity line

ffiffiffiffiffiffi
u−

p þ ffiffiffiffiffi
s−

p ¼ δ.

The integrals over t of the terms in Eq. (27) can
be evaluated analytically to obtain the differential
cross section dσ=du. The Schmid cancellation can
be exhibited by adding the interference and loop
contributions,

dσloop
du

þ dσint
du

≈
πα3ν2δ4

6M2
�0

�����A0 −
A2ffiffiffi
5

p
����
2

þ 9

20
jA2j2

�

× Re

�
MXFðs; uÞ

−γX − i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u− þ 2iM�0Γ�0

p
=2

�
32πδMXFðs; uÞ� ffiffiffiffiffiffi

u−
p

−γX þ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u− − 2iM�0Γ�0

p
=2

þ δ2 þ s− − u− − 2iM�0Γ�0
δ2

log
ðδþ ffiffiffiffiffiffi

u−
p Þ2 − s− þ 2iM�0Γ�0

ðδ − ffiffiffiffiffiffi
u−

p Þ2 − s− þ 2iM�0Γ�0
þ 4

ffiffiffiffiffiffi
u−

p
δ

��
: ð28Þ

In the limit Γ�0 → 0 and γX → 0, there is a cancellation
between a logarithm in Fðs; uÞ� whose argument has real
part

ffiffiffiffiffiffi
u−

p þ ffiffiffiffiffi
s−

p − δ and the corresponding explicit loga-
rithm in the second factor inside the real part. This is the
cancellation pointed out by Schmid [24]. The cancellation
leaves a single logarithm of

ffiffiffiffiffiffi
u−

p þ ffiffiffiffiffi
s−

p − δ from the factor
of Fðs; uÞ, in agreement with the analysis of Anisovich and
Anisovich [25]. That logarithm gives a divergence in the
limit Γ�0 → 0.
An expression for the loop amplitude Fðs; uÞ that is

accurate up to corrections of order δ=M�0 is given in
Eq. (B10). The contribution to the differential cross section
from loops plus interference in Eq. (28) can be simplified
by taking the limits Γ�0 → 0 and γX → 0. As

ffiffiffiffiffiffi
u−

p
approaches the triangle singularity at δ − ffiffiffiffiffi

s−
p

, the diverg-
ing term is

dσloop
du

þ dσint
du

→
α3ν2δ2

48M2
�0

�����A0 −
A2ffiffiffi
5

p
����
2

þ 9

20
jA2j2

�

×

�
−
x2 logðð1 − xÞ=xÞ þ x

1 − x

�

× log
2δ

j ffiffiffiffiffiffi
u−

p þ ffiffiffiffiffi
s−

p − δj ; ð29Þ

where x ¼ ffiffiffiffiffi
s−

p
=δ. There is a single logarithm that diverges

at the triangle singularity. Its coefficient is negative for x
between 0 and 0.782 and positive for x between 0.782 and
1. The diverging negative contribution to the cross section
is not a problem, because the tree contribution also has
diverging terms. It has terms that diverge as 1=Γ�0 as Γ�0 →
0 as well as terms that diverge logarithmically as u
approaches the triangle singularity. The integral over t of
the tree contribution to the differential cross section in
Eq. (27a) can be simplified by taking the limit Γ�0 → 0. Asffiffiffiffiffiffi
u−

p
approaches the triangle singularity at δ − ffiffiffiffiffi

s−
p

, the
diverging terms are

dσtree
du

→
α3ν2δ2

48M2
�0

������A0 −
A2ffiffiffi
5

p
����
2

þ 9

20
jA2j2

�
πs−

2M�0Γ�0
× θð ffiffiffiffiffiffi

u−
p þ ffiffiffiffiffi

s−
p

− δÞ

þ 3

2

�
ð1 − xÞjA0j2 −

1 − 3x
3

����A0 −
A2ffiffiffi
5

p
����
2

þ 17 − 11x
20

jA2j2
�
log

2δ

j ffiffiffiffiffiffi
u−

p þ ffiffiffiffiffi
s−

p − δj
�
: ð30Þ

The sum of the two contributions to dσ=du in Eqs. (29) and
(30) is positive definite. Thus the coefficient of the
logarithm in the full cross section is positive.
In Fig. 12, we illustrate the Schmid cancellation by

showing the differential cross section dσ=du integrated
over t as a function of u for the physical D�0 width

FIG. 12. Differential cross section dσ=du for producing
D�0D̄0 þ γ integrated over t as a function of u at

ffiffiffi
s

p ¼
4014.7 MeV: tree (dot-dashed blue curve), loopþ interference
(dashed red curve), and total (solid black curve). The binding
energy and width of X are jEXj ¼ 0.05 MeV, ΓX ¼ Γ�0. The
vertical line is at the predicted value uΔ ¼ 14.993 GeV2 for the
triangle singularity.
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Γ�0 ¼ 55 keV. We choose the center-of-mass energyffiffiffi
s

p ¼ 4014.7 MeV, which is 1 MeV above the D�0D̄�0
threshold and near the middle of the triangle-singularity
region. The triangle singularity is predicted by Eq. (19) to
be at uΔ ¼ 14.993 GeV2. The tree contribution to dσ=du
and the contribution from loops plus interference are
shown in Fig. 12 as well as their sum. The tree contri-
bution is strongly suppressed below uΔ. It is smaller
than the contribution from loops plus interference for
u < 14.9915 GeV2. The tree contribution increases dra-
matically as u increases past uΔ, because the D̄�0 resonance
becomes kinematically accessible. The contribution from
loops plus interference is negative for u > 14.9923 GeV2,
and it has a small peak near the triangle singularity. Sinceffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s − 4M2

�0
p

=δ ¼ 0.631, which is less than 0.782, this
negative peak is qualitatively consistent with our limiting
expression in Eq. (29), which has a negative logarithmic
divergence. Our limiting expression for the tree contribu-
tion in Eq. (30) includes a term with a larger positive
logarithmic divergence. For the physical D�0 width, a term
from the tree contribution with a positive peak whose
height is comparable to that of the negative peak from loops
plus interference in Fig. 12 would not be visible. It would
be completely overwhelmed by the rapidly increasing
contribution from the opening up of the D̄�0 resonance.
In Fig. 13, we show the differential cross section dσ=du

integrated over t as a function of u in the limit Γ�0 → 0 forffiffiffi
s

p ¼ 4014.7 MeV. The tree contribution is infinitely large
for u > uΔ, because it includes an integral over t of a Breit-
Wigner resonance with zero width. The contribution from
loops plus interference is negative near the triangle singu-
larity, in agreement with the limiting expression in Eq. (29).

It diverges at u ¼ uΔ, with a shape consistent with a
negative single log. The limiting expression for the tree
contribution to dσ=du in Eq. (30) suggests that it also has a
term that diverges at u ¼ uΔ, with a shape consistent with a
positive single log. Its effects are not visible for u < uΔ,
because other terms in the tree contribution are growing
even more rapidly.
For the physical value of the D�0 width, the triangle

singularity is not directly observable as a peak in dσ=dudt
at a value of t below the D̄�0 resonance band or as a peak in
dσ=du integrated over t. It is possible however that the
triangle singularity could be observed indirectly in some
other way. In the Dalitz plot in Fig. 9, the density of points
is significantly larger to the left of the triangle-singularity
line than just to the right of that line. However, the density
of points to the left of the triangle-singularity line decreases
as t approaches the D̄�0 resonance band. This decrease in
the density of points for t near the resonance band arises
from an interference effect associated with the triangle
singularity. This effect can be quantified by calculating
dσ=dt integrated over u < uΔðsÞ as a function of t. This
function is shown in Fig. 14 for

ffiffiffi
s

p ¼ 4014.7 MeV. The
tree contribution behaves as jt−j=ðt2− þM2

�0Γ2
�0Þ near the

upper kinematic end point at t ¼ M2
�0, which is the center

of the D̄�0 resonance band. The factor of jt−j comes from
the integration over u. The tree contribution increases to a
sharp peak near t− ¼ −M�0Γ�0, before decreasing to 0 at
t− ¼ 0. The contribution from loops plus interference is
negative for t larger than about 4.024 GeV2. It decreases to
a minimum near 4.027 GeV2, before increasing sharply to
0. The cancellation between the tree contribution and the
contribution from loops plus interference produces a local
minimum near 4.025 GeV2.

FIG. 13. Differential cross section dσ=du for producing
D�0D̄0 þ γ integrated over t as a function of u at

ffiffiffi
s

p ¼
4014.7 MeV: tree (dot-dashed blue curve), loopþ interference
(dashed red curve), and total (solid black curve). The binding
energy and width of X are jEXj ¼ 0.05 MeV, ΓX ¼ 0. The
vertical line is at the predicted value uΔ ¼ 14.993 GeV2 for
the triangle singularity. The tree contribution to dσ=du is
infinitely large for u beyond the triangle singularity.

FIG. 14. Differential cross section dσ=dt for producing
D�0D̄0 þ γ integrated over u < uΔðsÞ as a function of t at

ffiffiffi
s

p ¼
4014.7 MeV: tree (dot-dashed blue curve), loopþ interference
(dashed red curve), and total (solid black curve). The binding
energy and width of X are jEXj ¼ 0.05 MeV, ΓX ¼ Γ�0.
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The local minimum in the differential cross section
dσ=dt integrated over u < uΔðsÞ is insensitive to the
binding energy and the width of X. This is illustrated in
Fig. 15, which shows the cross section for the first three
choices of EX, ΓX enumerated after Eq. (10). For
jEXj ¼ 0.05 MeV, ΓX ¼ Γ�0, the shallow minimum in
dσ=dt is at t ¼ 4.0254 GeV2. The contrast defined by
the ratio of the value at the local maximum at t ¼
4.0206 GeV2 and the value at the local minimum is 5.8.
The narrow peak near the upper end point of t is almost
unaffected by changing either jEXj or ΓX by a factor of 2.
Doubling either jEXj or ΓX decreases the position of the
local minimum in t by 0.0002 GeV2. Doubling jEXj
decreases the contrast between the local maximum and
the local minimum to 5.6, while doubling ΓX decreases the
contrast to 3.9.

VI. SUMMARY

If Xð3872Þ is a weakly bound charm-meson molecule,
a charm-meson triangle singularity produces a narrow
peak in the cross section for eþe− annihilation into
X þ γ just above the D�0D̄�0 threshold [22]. The peak
appears near a value of the center-of-mass energy

ffiffiffi
s

p
given by sΔ in Eq. (13). The cross section is shown as a
function of

ffiffiffi
s

p
in Fig. 4 for several values of the

binding energy jEXj and the width ΓX of X. The
observation of the narrow peak in the cross section
would support the identification of X as a weakly bound
charm-meson molecule.
In this paper, we have studied the effects of the charm-

meson triangle singularity on the cross section for
eþe− annihilation into D�0D̄0 þ γ just above the D�0D̄�0
threshold. The matrix element is the sum of the matrix

element Mtree in Eq. (21) from the tree diagram and the
matrix element Mloop in Eq. (22) from the loop diagrams.
The differential cross section dσ=dudt is a function of the
squared invariant masses u ofD�0D̄0 and t of D̄0γ as well as
the squared center-of-mass energy s. The matrix element
Mloop has a factor of the loop amplitude Fðs; uÞ, which
depends on theD�0 width Γ�0, and it also has a denominator
that depends on the complex binding momentum γX of X.
The loop amplitude Fðs; uÞ is expressed as a Lorentz-
invariant integral in Eq. (B6) of Appendix B. A non-
relativistic approximation to the loop amplitude is given
analytically in Eq. (A3) of Appendix A. If the width Γ�0 of
the D�0 is sufficiently small, the triangle singularity
produces a narrow peak in the differential cross section
dσ=dudt as a function of u near the value uΔðsÞ in Eq. (19),
which requires t to be below the D̄�0 resonance band, for s
in the narrow range between the D�0D̄�0 threshold and sΔ
in Eq. (13).
The effects of the triangle singularity are particularly

dramatic in the limit Γ�0 → 0. The differential cross
section dσ=dudt has a term proportional to log2 ju −
uΔðsÞj that diverges at u ¼ uΔðsÞ. As pointed out by
Schmid, there is a cancellation of the log2 divergence in
dσ=du integrated over t [24]. The cancellation is between
jMloopj2 along the triangle-singularity line and the
interference term 2Re½MloopM�

tree� in the region near
the resonance band. The exact cancellation of the log2

terms requires both Γ�0 → 0 and γX → 0. The Schmid
cancellation leaves a term in dσ=du proportional to
log ju − uΔðsÞj, as pointed out by Anisovich and
Anisovich [25]. The position of that divergence coincides
with the dramatic increase in dσ=du proportional to
1=Γ�0 from the D̄�0 resonance becoming kinematically
accessible.
For the physical value of the D�0 width, the triangle

singularity is not directly observable as a peak in a
differential cross section. It is not observable as a peak
in dσ=dudt, because the suppression from the D�0 width
reduces the peak in u near uΔðsÞ to a shoulder that drops off
beyond uΔðsÞ, as illustrated in Fig. 11. The triangle
singularity is not observable as a peak in dσ=du integrated
over t, because the term with a peak near u ¼ uΔðsÞ is
overwhelmed by the rapidly increasing tree contribution, as
illustrated in Fig. 12.
The effects of the charm-meson triangle singularity

may be observable indirectly as a local minimum in
dσ=dt integrated over u < uΔðsÞ. The differential cross
section is shown as a function of t in Fig. 15 for
several values of jEXj, ΓX. The local minimum comes
from destructive interference between jMloopj2 þ
2Re½MloopM�

tree� and jMtreej2 that is related to the
Schmid cancellation. The observation of this local mini-
mum would provide additional support for the identifica-
tion of X as a weakly bound charm-meson molecule.

FIG. 15. Differential cross section dσ=dt for producing
D�0D̄0 þ γ integrated over u < uΔðsÞ as a function of t at

ffiffiffi
s

p ¼
4014.7 MeV. The binding energy and width of X are jEXj ¼
0.05 MeV, ΓX ¼ Γ�0 (solid red curve), jEXj ¼ 0.10 MeV,
ΓX ¼ Γ�0 (dashed blue curve), and jEXj ¼ 0.05 MeV, ΓX ¼ 2Γ�0
(dot-dashed purple curve).
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APPENDIX A: NONRELATIVISTIC LOOP
INTEGRAL

In Ref. [23], the loop diagrams for eþe− → X þ γ in
Fig. 3 were evaluated in the center-of-momentum (CM)
frame using nonrelativistic charm-meson propagators

and nonrelativistic vertices. The loop amplitude can be
obtained from a more general loop amplitude FðW;UÞ for
the production of D�0D̄0 þ γ through the loop diagrams in
Fig. 7. That amplitude is a function of the total energy
W ¼ ffiffiffi

s
p

− 2M�0 relative to the D�0D̄�0 threshold in the
eþe− CM frame and the energy U ¼ ffiffiffi

u
p

− ðM�0 þM0Þ
of the D�0D̄0 pair relative to their threshold in their
CM frame. These two independent energies are related
by energy conservation to the photon energy q in the
eþe− CM frame,

W ¼ ðq − δÞ þ U þ q2=ð2MXÞ; ðA1Þ
where δ ¼ M�0 −M0. The loop amplitude can be
expressed in terms of a nonrelativistic loop integral that
is ultraviolet convergent,1

FðW;UÞ ¼ −
i

8M2
�0M0

Z
d3k
ð2πÞ3

q · k
q2

Z
dω
2π

1

ω − k2=ð2M�0Þ þ iΓ�0=2

×
1

W − ω − k2=ð2M�0Þ þ iΓ�0=2
1

W − ðjqj − δÞ − ω − ðqþ kÞ2=ð2M0Þ þ iϵ
; ðA2Þ

where q is the 3-momentum of the photon in the eþe− CM frame. The scalar integral in Eq. (A2) was obtained from a vector
integral with a factor of k in the numerator by an angle average that replaces that vector by ðk · q=q2Þq. The loop integral in
Eq. (A2) is evaluated analytically in Ref. [23],

FðW;UÞ ¼ i
64πMXq

�
−
b
c
log

ffiffiffi
a

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ bþ c

p þ ffiffiffi
c

p
ffiffiffi
a

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ bþ c

p
−

ffiffiffi
c

p − 2

ffiffiffi
a

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ bþ c

p
ffiffiffi
c

p
�
; ðA3Þ

where MX ¼ M�0 þM0, q is the function of the difference
W − U determined by Eq. (A1), and the coefficients a, b,
and c are

a ¼ M�0W þ iM�0Γ�0; ðA4aÞ

b ¼ −½ðμ=M0Þ2q2 þM�0W − 2 μU� − iðμ=M0ÞM�0Γ�0;

ðA4bÞ

c ¼ ðμ=M0Þ2q2: ðA4cÞ

Note that the sum of the three coefficients does not
depend on W,

aþ bþ c ¼ 2 μU þ iμΓ�0: ðA5Þ
In the case of production of X þ γ, the energy con-

servation condition is obtained by replacing U in Eq. (A1)
by the negative energy EX of X. In Ref. [23], the loop

amplitude in Eq. (A3) was obtained by setting U ¼ EX in
Eq. (A5). A more accurate result can be obtained by
analytically continuing U to the complex energy EX −
iΓX=2 of X. This changes the imaginary part of aþ bþ c
to −iμðΓX − Γ�0Þ. The change in sign of the imaginary part
requires careful treatment of the branch cuts to ensure the
continuity of FðW;EX − iΓX=2Þ as a function of W. The
factor ΓX − Γ�0 in the imaginary part of aþ bþ c can be
interpreted as the partial width of the X bound state into
decay channels other than D0D̄0π0 and D0D̄0γ.
The triangle singularity arises from the vanishing of the

denominator of the argument of the logarithm in Eq. (A3).
In the limit Γ�0 → 0, this condition reduces to

ffiffiffiffiffiffiffiffiffiffiffiffiffi
M�0W

p
þ

ffiffiffiffiffiffiffiffiffiffiffi
2 μU

p
¼ ðμ=M0Þq: ðA6Þ

We can get an equation relating U and W at the triangle
singularity by solving this equation for q and inserting it
into the energy conservation condition in Eq. (A1). If we set
M0 ¼ M�0 − δ and takeM�0W to be order δ2, this equation
can be solved for 2 μU as an expansion in powers of δ=M�0
beginning at order δ2,

1The normalization of FðW;UÞ differs from that of FðWÞ in
Ref. [23] by a constant factor 1=ð8M�0

ffiffiffiffiffiffiffiffi
πγX

p Þ and by a factor
1=q2 that depends on the photon energy.
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2μUΔðWÞ ¼ 1

4
ð2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
M�0W

p
− δÞ2 þ δ

MX
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
M�0W

p
δ − 2M�0WÞ þ…: ðA7Þ

This expansion agrees with that of the relativistic result for uΔðsÞ in Eq. (19) through order δ3, but it disagrees at order δ4.

APPENDIX B: RELATIVISTIC LOOP INTEGRAL

The loop diagrams for eþe− → D�0D̄0 þ γ are shown in Fig. 7. If these diagrams are evaluated using relativistic charm-
meson propagators and relativistic vertices, the loop integral reduces to

Z
d4k
ð2πÞ4

kνðQ − kÞαðgλρ − kλkρ=M2
�0Þ

ðk2 −M2
�0 þ iϵÞ½ðQ − kÞ2 −M2

�0 þ iϵ�½ðP − kÞ2 −M2
0 þ iϵ� ; ðB1Þ

where Q ¼ Pþ q is the total momentum, P is the
momentum of D�0D̄0, q is the momentum of γ, and k is
the loop momentum of the virtual spin-1 charm-meson line
attached to the elastic scattering vertex. The momentum-
dependent term in the numerator of the propagator for the
other virtual spin-1 charm meson is eliminated by the
contraction with the radiative transition vertex. The decay
width of the D�0 has been set to zero to make the D�0
propagators as simple as possible. The decay width can
be reintroduced by the substitution M2

�0 − iϵ → M2
�0 −

iM�0Γ�0. The loop integral in Eq. (B1) is a four-index
tensor function of Q and q. It is contracted with the tensor
AðQÞμνλσ in Eq. (3) from the γ�-to-D�0D̄�0 vertex, which
sets terms with a factor ofQν orQλ to 0. It is also contracted
with a tensor ϵ αβτ

σ qβ from the D�0-to-D0γ vertex, which
sets terms with a factor of qα to 0.
The loop integral in Eq. (B1) produces a triangle

singularity determined by the following conditions. First,
the three charm mesons that form the loop are all on their
mass shells: k2 ¼ M2

�0, and ðQ − kÞ2 ¼ M2
�0, and

0 ¼ ðP − kÞ2 −M2
0

¼ u − 2½P0k0 − jPjjkj cos θ� þM2
�0 −M2

0; ðB2Þ

where u ¼ P2 and θ is the angle between the 3-momenta P
and k. In the eþe− CM frame, we have P0 ¼ ðsþ uÞ=
ð2 ffiffiffi

s
p Þ, k0 ¼

ffiffiffi
s

p
=2, jPj ¼ ðs − uÞ=ð2 ffiffiffi

s
p Þ, and jkj ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s − 4M2
�0

p
=2, where s ¼ Q2. A second condition is that

the 3-momenta P − k and k of the two charm mesons are
parallel in the eþe− CM frame: cos θ ¼ 1. With this value
of cos θ, Eq. (B2) can be reduced to

−
s − u
2

h
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs − 4M2

�0Þ=s
q i

þ ðM2
�0 −M2

0Þ ¼ 0: ðB3Þ

Solving for u gives the expression for its value uΔðsÞ at the
triangle singularity in Eq. (19). This is a necessary con-
dition for the triangle singularity, but it is not sufficient.
The final condition for the triangle singularity is that the
velocity of the spin-0 charm meson must be greater than or
equal to that of the spin-1 meson in order for it to overtake
that meson so they can scatter:

jP − kj
P0 − k0

≥
jkj
k0

: ðB4Þ

This gives an upper bound on u in terms of s,

u ≤
sð ffiffiffi

s
p

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s − 4M2

�0
p

Þ2
4M2

�0
: ðB5Þ

The minimum value of u is ðM�0 þM0Þ2. Inserting this
value into Eq. (B5) and solving for s give the upper end
point s ≤ sΔ of the triangle-singularity region, where sΔ is
given in Eq. (13).
The differential cross sections for eþe− → X þ γ in

Eq. (15) and eþe− → D�0D̄0 þ γ in Eq. (27) are expressed
in terms of a Lorentz-invariant loop amplitude Fðs; uÞ. The
nonrelativistic approximation to this amplitude is given as a
loop integral in Eq. (A2). A Lorentz-invariant generalization
of that amplitude can be obtained by replacing the non-
relativistic propagators in Eq. (A2) by the appropriate rela-
tivistic propagators and replacing the multiplicative factor of
q · k by the appropriate Lorentz-invariant generalization,

Fðs; uÞ ¼ −
i

ðQ:qÞ2
Z

d4k
ð2πÞ4

Q:qQ:k −Q2q:k
ðk2 −M2

�0 þ iϵÞ½ðQ − kÞ2 −M2
�0 þ iϵ�½ðP − kÞ2 −M2

0 þ iϵ� ; ðB6Þ

where Q2 ¼ s, P2 ¼ u, and Q:q ¼ ðs − uÞ=2. This can be expressed as an integral over two Feynman parameters,

Fðs; uÞ ¼ −
1

16π2

Z
1

0

dx
Z

1−x

0

dy
y

ð1 − x − yÞðxsþ yuÞ − ð1 − yÞM2
�0 − yM2

0 þ iϵ
: ðB7Þ
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The nonrelativistic loop amplitude FðW;UÞ in Eq. (A2),
with W ¼ ffiffiffi

s
p

− 2M�0 and U ¼ ffiffiffi
s

p
− ðM�0 þM0Þ, gives

an excellent approximation to the function Fðs; uÞ in the
triangle-singularity region. In the region where

ffiffiffi
s

p
is less

than 10 MeV above 2M�0 and
ffiffiffi
u

p
is less than 10 MeV

above M�0 þM0, the numerical differences seem to be
consistent with errors of order ðδ=M�0Þ2.
We proceed to verify analytically that the relativistic

loop amplitude Fðs; uÞ in Eq. (B6) can be reduced to
the nonrelativistic loop amplitude FðW;UÞ in Eq. (A2).

We will verify this only up to errors first order in δ=M�0.
It is convenient to change the integration variables in
Eq. (B7) to t and ζ defined by x ¼ 1

2
ð1þ ζÞð1 − tÞ and

y ¼ 1
2
ð1þ ζÞt. In the region where s − 4M2

�0 and u −M2
X

are both order δ2, the leading term in the expansion
of Fðs; uÞ in powers of δ=M�0 comes from the region
where ζMX is order δ. If we keep only the leading terms in
the numerator and in the denominator, the integral
reduces to

Fðs; uÞ ≈ 1

32π2

Z
1

0

dt
Z þ1

−1
dζ

t
ðζMX − tδÞ2 þ tð1 − tÞδ2 − ð1 − tÞðs − 4M2

�0Þ − tðu −M2
XÞ − 2ið2 − tÞM�0Γ�0

; ðB8Þ

where MX ¼ M�0 þM0. We have reintroduced the width of the D�0 through the substitution M2
�0 − iϵ → M2

�0 − iM�0Γ�0
and treatedM�0Γ�0 as order δ2. Since the leading contributions to the integral in Eq. (B8) come from the region whereMXζ
is order δ, the end points of the integral over ζ can be extended to �∞. The analytic result for the integral over ζ then
becomes relatively simple,

Fðs; uÞ ≈ 1

32πMX

Z
1

0

dt
tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tð1 − tÞδ2 − ð1 − tÞðs − s0Þ − tðu − u0Þ
p ; ðB9Þ

where s0 ¼ 4M2
�0 − 4iM�0Γ�0 and u0 ¼ ðM�0 þM0Þ2 − 2iM�0Γ�0. The final integral over t can also be evaluated

analytically,

Fðs; uÞ ≈ i
64πMXδ

�
δ2 þ ðs − s0Þ − ðu − u0Þ

δ2
log

ffiffiffiffiffiffiffiffiffiffiffiffi
s − s0

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffi
u − u0

p þ δffiffiffiffiffiffiffiffiffiffiffiffi
s − s0

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffi
u − u0

p − δ
− 2

ffiffiffiffiffiffiffiffiffiffiffiffi
s − s0

p − ffiffiffiffiffiffiffiffiffiffiffiffiffi
u − u0

p
δ

�
: ðB10Þ

If we make the substitutions s → ð2M�0 þWÞ2 and
u → ðM�0 þM0 þ UÞ2, this agrees to leading order in
δ=M�0 with the nonrelativistic loop amplitude FðW;UÞ in
Eq. (A2) in the region where s − 4M2

�0 and u − ðM�0 þ
M0Þ2 are order δ2. The analytic approximation to Fðs; uÞ in
Eq. (B10) has errors that are first order in δ=M�0, so it is
not useful as a quantitative approximation. The nonrela-
tivistic amplitude FðW;UÞ in Eq. (A3) is a much better
approximation.
We proceed to show that the tensor loop integral in

Eq. (B1) can be reduced to the scalar loop integral in
Eq. (B6) in the region where s − 4M2

�0 and u −M2
X are both

order δ2. We will verify this only to leading order in δ=M�0.
In a frame where qμ is order δ, the tensor loop integral in
Eq. (B1) can be expanded in powers of δ=M�0 with
M0 ¼ M�0 − δ. The loop integral in Eq. (B1) is quadrati-
cally ultraviolet divergent. Up to corrections suppressed by
δ=M�0, the tensor gλρ − kλkρ=M2

�0 in the numerator of
Eq. (B1) can be replaced by gλρ −QλQρ=Q2 and then
pulled outside the loop integral. This reduces the numerator
of the loop integral in Eq. (B1) to kνðQ − kÞα, so the
ultraviolet divergence is only logarithmic. That loop
integral is a tensor function of the 4-momenta Q and q
with indices ν and α. It can be decomposed into a linear

combination of five tensors gνα, QνQα, Qνqα, qνQα, and
qνqα with coefficients that are functions of Q2 and Q:q.
Tensors with a factor of Qν contract to 0 with the γ�-to-
D�0D̄�0 vertex. Tensors with a factor of qα contract to 0
with the D̄�0-to-D̄0γ vertex. The only tensors that remain
are gνα and qνQα. The coefficient of gνα is suppressed
compared to that of qνQα by a factor of order δ2. Since qν is
order δ, the gνα term is suppressed compared to the qνQα

term by a factor of order δ.
The reduction of the tensor loop integral in Eq. (B1) to

the scalar loop integral in Eq. (B6) can be completed by
showing that the numerator factor kνðQ − kÞα can be
replaced by the numerator factor in Eq. (B6) multiplied
by 1

2
qνQα=ðQ:qÞ2 up to corrections suppressed by factors

of δ=M�0. In the tensor reduction of the momentum integral
of the kνðQ − kÞα term, the scalar integral coefficient of
qνQα term is very different from half the scalar momentum
integral in Eq. (B6). For example, its numerator includes
terms quadratic in the loop momentum k. However, after
introducing Feynman parameters and integrating over the
loop momentum k, the Feynman parameter integral differs
from that in Eq. (B7) only by a factor of 1 − x − y in the
numerator. After the change of variables to t and ζ as in
Eq. (B8), that factor becomes 1

2
ð1 − ζÞ. Since the leading
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contribution comes from the region where ζMX is order δ,
that factor reduces to 1

2
. This completes the demonstration

that the tensor loop integral can be reduced to the loop
amplitude Fðs; uÞ in Eq. (B6) up to corrections suppressed
by at least one power of δ=M�0.
In the sum of the two triangle diagrams, the triangle

of charm-meson propagators and the three attached
vertices can be represented by a Lorentz-covariant effec-
tive vertex. The effective vertex for the coupling of
a virtual photon with momentum Q ¼ Pþ q to X
with momentum P and a real photon with momentum
q is

−4ie2νð2MXÞ3=2 ffiffiffiffiffiffiffiffi
πγX

p
FðQ2; P2ÞAðQÞμνλσqνϵσαβτQαqβ;

ðB11Þ

where μ, λ, and τ are the Lorentz indices of the virtual
photon, X, and real photon, respectively. The effective
vertex for the coupling of a virtual photon with momen-
tum Q ¼ Pþ q to D�0 and D̄0 with total momentum P
and a real photon with momentum q is

− 8iπe2νMX

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4M�0M0

p

−γX − iλ1=2ðP2;M2
�0 − iM�0Γ�0;M2

0Þ=ð2
ffiffiffiffiffiffi
P2

p
Þ

×FðQ2;P2ÞAðQÞμνρσqν
�
gρλ −

PρPλ

P2

�
ϵσαβτQαqβ;

ðB12Þ

where μ, λ, and τ are the Lorentz indices of the virtual
photon, D�0, and real photon, respectively.
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