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The structure of the three-boson bound state in Minkowski space is studied for a model with contact
interaction. The Faddeev-Bethe-Salpeter equation is solved both in Minkowski and Euclidean spaces. The
results are in fair agreement for comparable quantities, like the transverse amplitude obtained when
the longitudinal constituent momenta of the light-front valence wave function are integrated out. The
Minkowski space solution is obtained numerically by using a recently proposed method based on the direct
integration over the singularities of the propagators and interaction kernel of the four-dimensional integral
equation. The complex singular structure of the Faddeev components of the Bethe-Salpeter vertex function
for space and timelike momenta in an example of a Borromean system is investigated in detail.
Furthermore, the transverse amplitude is studied as a mean to access the double-parton transverse
momentum distribution. Following that, we show that the two-body short-range correlation contained in
the valence wave function is evidenced when the pair has a large relative momentum in a back-to-back
configuration, where one of the Faddeev components of the Bethe-Salpeter amplitude dominates over the
others. In this situation a power-law behavior is derived and confirmed numerically.
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I. INTRODUCTION

The Bethe-Salpeter (BS) approach is an important and
efficient tool to investigate relativistic few-body systems.
Solving the BS equation with a realistic interaction,
especially for a three-body system, is technically a rather
complicated problem. However, the principal qualitative
properties can be understood through models that retain the
main features of the physical system. One of these models,
fundamental in nuclear physics and described (in the two-
body case) in any textbook, is the zero-range interaction.
The three-body BS equation in Minkowski space with

zero-range interaction was derived in Ref. [1] in 1992.
Later on, in 2017, the equation was solved in Euclidean
space [2] for the first time and then, quite recently, directly
in Minkowski space [3]. Concerning the Euclidean space
solution, the reasons of this time lag was due to the fact
that, though the BS equation was given in Ref. [1] in a
simple and transparent form, as it was there presented the
equation did not allow to make the Wick rotation directly.
Whether the rotating integration contour crosses the

singularities or not, this depends on the point around which
it is rotated. To determine the safe point one must make a
shift of variables in the BS equation [1], as proposed in
Ref. [2]. This was the key to success. As for the Minkowski
space solution [3], the methods were absent until recently.
In Ref. [3] the method developed in Ref. [4] was used.
The aforementioned method is based on the direct inte-

gration of the singularities of the propagators and inter-
action kernel [4]. It does not resort to the Nakanishi integral
representation [5,6] and light-front (LF) projection. In the
present paper we will follow this method and explore it for
obtaining information on the structure of relativistic three-
body systems.
However, the corresponding equation in the light-front

dynamics (LFD) was derived and solved already in Ref. [1].
Then the stability of the solution was thoroughly explored
in Ref. [7]. Finding the solution of the BS equation fully in
Minkowski space is rather important for applications when
used to calculate observables like parton distributions
and electromagnetic form factors (see e.g., Ref. [8]). The
Euclidean solution, though it provides the bound state
spectrum, requires a careful analytical extension of the
Euclidean BS amplitude, and for large enough momentum
transfers overlapping cuts turns the task cumbersome,
preventing to explore the whole range of momentum
transfers. Besides that, the comparison between the BS
and the LFD solutions provides valuable information about
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the structure of the system, i.e., regarding contribution of
the higher Fock components etc.
As it was shown in Ref. [2], the effect coming from

higher Fock components on the binding energy and trans-
verse amplitude is huge, even for weakly bound states. This
is different from the two-body case, where the truncation at
the valence state does not present such a dramatic effect
(see e.g., Refs. [9,10]). This difference in a three-body
system is explained by the contribution of effective three-
body forces of relativistic origin, as investigated in
Ref. [11]. It is noteworthy that the BS equation for three
bosons has a kernel analogous to the contribution provided
by the quark exchange diagrams in quark-diquark models
in the constituent quark picture [12], making even more
appealing the outcomes of the Minkowski space approach
to be presented as follows.
The conclusion that the effect coming from higher

Fock components is sizable leads to raise doubts regarding
the range of validity of valence inspired models, which
are widely applied to hadron physics, as they might be
inappropriate to describe certain features of the bound state
dynamics, particularly for three-body systems. It is worth
mentioning that even for two-boson bound states the
contributions coming from higher Fock components, as
shown by the calculations [9,13], can constitute more than
30% of the normalization. The BS equation and LFD
approaches have already been used as a suitable framework
in phenomenological applications. For instance, the calcu-
lation of the LF amplitudes in a simplified pion model with
strongly bound constituent quarks was done through the
solution of the BS equation directly in Minkowski space
[14] and also the final state interaction in heavy meson
decays was studied using a relativistic LF model [15,16].
As mentioned, the comparison of the binding energies

calculated within LFD and BS equation for a one-boson
exchange kernel presents a significant discordance [11],
unlike what happens for two-body systems [17]. In
Ref. [11] there was found an increasing effect of the
three-body forces as the exchanged boson mass μ grows,
what is relevant for the zero-range case, which corresponds
effectively to μ → ∞. Although that work was quite
instructive, the three-body forces were taken into account
only perturbatively, producing a significant contribution to
the bound state energy, what indicates the necessity to go
beyond perturbation theory. It is essential to obtain the
nonperturbative solution of the three-body BS and LFD
equations, including three-body forces, in order to have a
thorough understanding of the physical system.
In the nonrelativistic approach, within the Schrödinger

equation, it is well known that the binding energy of a
three-boson system with the two-body zero-range inter-
action is not bound from below, what is known as the
Thomas collapse [18]. As shown in Ref. [1], and further
explored numerically in Ref. [7], the relativistic effects
result in an effective repulsion at small distances that

prevents the Thomas collapse in the relativistic case.
This result was found for the valence truncation, within
the LFD framework. Therefore, exploring the complete
amplitude by means of the BS equation, which includes
higher Fock contributions, is necessary to describe such a
relativistic three-body system.
Furthermore, the approach for three-boson systems

allows one to explore within the relativistic context a wide
and important field of research that is already very well
established nonrelativistically, known as the Efimov phys-
ics [19,20]. The three-body approach developed here paves
the way to explore many interesting relativistic phenomena
and it is expected to bring more remarkable outcomes as
further studies are done.
This paper is devoted to a detailed study of the

Minkowski space solution of the three-boson Faddeev-
BS equation in the case of the two-body zero-range inter-
action. As the goal is to address the zero-range interaction
case, a major point is the influence of relativistic effects
on the stability of the three-body system and the impact on
its structure. To accomplish such a goal we focus on
Borromean systems and the Faddeev-BS equation is solved
both in Minkowski and Euclidean spaces. The choice
made for Borromean states simplifies the computations
in Minkowski space, as the bound state pole is absent in the
two-body scattering amplitude, which is an input to the
kernel of the Faddeev-BS equation.
The Minkowski space solution is obtained by the direct

integration of the singularities of the propagators and
interaction kernel [3], what allows us to explore in the
space and timelike momenta regions the complex singular
structure of the Faddeev components of the BS vertex
function of such a Borromean state. We study in detail
the numerical solutions by showing that both methods
produce results in fair agreement for the Faddeev compo-
nent of the transverse amplitude obtained from the corre-
sponding component of the valence wave function, after
integration over the longitudinal LF momentum fractions.
In addition, the double-parton content of the transverse
amplitude is studied, and we evidenced the two-body short-
range correlation contained in the valence wave function.
The kinematical condition to expose the pair short-range
correlation was set for large relative momentum in a back-
to-back configuration, in such situation the Faddeev com-
ponent of the BS amplitude that brings the pair interaction
is the dominant one. We also found, as expected for large
relative momentum, a power-law behavior, that was con-
firmed numerically.
The paper is organized as follows. The theoretical

formalism for the two-body scattering amplitude, 3-body
BS equation and transverse amplitudes is outlined in
Secs. II–VI. In Sec. VII the Wick rotation of the three-
body BS amplitude is revisited to clarify that the transverse
amplitude is independent of that. In Sec. VIII the numerical
results are presented and discussed. The conclusions are
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then drawn in Sec. IX. Some of the more lengthy
derivations, and also a brief summary of the numerical
methods, are available in appendixes.

II. TWO-BODY SCATTERING AMPLITUDE

For the contact interaction (with the four-leg vertex iλ),
the two-body amplitude F ðM2

12Þ is determined by the
equation shown graphically in Fig. 1 (see also Ref. [1]).
Iterating, we find that the first contribution is simply iλ, the
second one is ðiλÞ2B, where B is the amputated from ðiλÞ2
the bubble graph, etc. That is

iF ðM2
12Þ ¼ iλþ ðiλÞ2B þ ðiλÞ3B2 þ…

¼ iλ
1 − ðiλÞBðM2

12Þ
¼ 1

ðiλÞ−1 − BðM2
12Þ

; ð1Þ

or

F ðM2
12Þ ¼

1

i½ðiλÞ−1 − BðM2
12Þ�

; ð2Þ

where

BðM2
12Þ ¼

Z
d4k
ð2πÞ4

i
ðk2 −m2 þ iϵÞ

i
½ðk − PÞ2 −m2 þ iϵ� :

ð3Þ

Here m denotes the boson mass, and P is the total four-
momentum of the two-body system, P2 ≡M2

12, whereM
2
12

denotes the squared effective off-shell mass.
The loop integration (3) has a log-type ultraviolet

divergence that has to be regularized and renormalized
by fixing the scattering amplitude at some physical value,
which will be given by the bound state pole or scattering
length. Although it is a well known and standard procedure,
we will present it in the following for the sake of
completeness as well as to fix our notation.

A. Normalization of the scattering amplitude

In the derivation of the two-body amplitude, we follow
the definitions and normalization of Ref. [21]. According to
it, the partial wave amplitude of angular momentum L is
defined as

FLðkvÞ ¼
1

32π

Z
1

−1
dzPLðzÞFðkv; zÞ; ð4Þ

where kv ¼ jk⃗j is the magnitude of the particle momentum
in the rest-frame, z is the cosine of the center-of-mass (c.m.)
scattering angle and PLðzÞ is the Legendre polynomial. For
a z-independent amplitude (2):

F0ðkvÞ ¼
1

16π
F ðM2

12Þ: ð5Þ

In the given normalization, the scattering amplitude is
related to the phase shift by [4]

F0ðkvÞ ¼
εk
kv

expðiδ0Þ sin δ0 ¼ εkf0ðkvÞ; ð6Þ

with εk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2v þm2

p
. The S-matrix is unitary if the phase-

shift δ0 is real and

f0ðkvÞ ¼
1

kv cot δ0 − ikv
; ð7Þ

is the standard nonrelativistic form of the scattering
amplitude. The expansion in powers of k2v in the low
energy region, gives:

kv cot δ0 ¼ −
1

a
þ 1

2
r0k2v þ � � � ; ð8Þ

where a is the scattering length and r0 the effective range.
The relation to F ðM2

12Þ is

f0ðkvÞ ¼
1

16πεk
F ðM2

12Þ; ð9Þ

and the two renormalization conditions to be used in the
following, are based either on fixing the bound state pole or
the scattering length. The latter condition reads

f0ðkv ¼ 0Þ ¼ 1

16πm
F ð4m2Þ ¼ −a; ð10Þ

that fixes the scattering amplitude at the continuum
branch point.

B. Renormalization via bound state pole

One way to calculate BðM2
12Þ is to use the standard

Feynman parametrization:

1

ab
¼

Z
1

0

du
½uaþ ð1 − uÞb�2 ; ð11Þ

with a ¼ k2 −m2 þ iϵ, b ¼ ðk − PÞ2 −m2 þ iϵ, and then
compute the 4D integral in the Euclidean space. However,
for M2

12 ≥ 4m2, the integrand of this integral becomes
singular and this method is not so convenient.
Therefore, to calculate the amplitude (especially for

M2
12 > 4m2) we use the initial integral (3) (written in the

FIG. 1. Diagrammatic representation of the integral equation
for the two-body scattering amplitude (1) of Ref. [1].
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c.m. frame P⃗ ¼ 0⃗) and start by performing the integration
over k0 by residues, i.e.,

BðM2
12Þ ¼ −

Z
dk0d3k
ð2πÞ4

1

ðk20 − k2v −m2 þ iϵÞ
×

1

½ðk0 −M12Þ2 − k2v −m2 þ iϵ�
¼ 2πiðres1ðM12Þ þ res2ðM12ÞÞ: ð12Þ

Here res1;2 are the residues of the integrand in one of the
two poles in the upper half plane of the complex variable
k0. The positions of the poles are

kð1Þ0 ¼ −εk þ iϵ; kð2Þ0 ¼ M12 − εk þ iϵ;

and the corresponding residues are given by

res1ðM2
12Þ ¼

Z
Λ

0

k2vdkv
ð2πÞ3

1

εk

1

½ðεk þM12Þ2 − ε2k þ iϵ� ; ð13Þ

res2ðM2
12Þ ¼

Z
Λ

0

k2vdkv
ð2πÞ3

1

εk

1

½M12ðM12 − 2εkÞ þ iϵ� ; ð14Þ

where the integrals are regularized by the momentum cut-
off Λ. If −∞ < M2

12 < 4m2, the integrals (13) and (14) are
nonsingular ones. Contrary to this, ifM12 > 2m, the second
residue is represented as a sum of two contributions: the
principal value of the integral over kv and the delta-function
contribution, i.e.,

res2ðM2
12Þ ¼ res2aðM2

12Þ þ res2bðM2
12Þ

¼ PV
Z

Λ

0

k2vdkv
ð2πÞ3

1

εk

1

M12ðM12 − 2εkÞ

þ
Z

Λ

0

k2vdkv
ð2πÞ3

1

εk
ð−iπÞδ½M12ðM12 − 2εkÞ�

¼ res2aðM2
12Þ þ

1

2πi
y00

16π
; ð15Þ

where the delta function is integrated out by taking Λ → ∞
and y00 is defined below, in Eq. (21).
As the contribution res2aðM2

12Þ in (15) is divergent in the
ultraviolet limit, it is necessary to perform a regularization
process. By renormalizing we can express the bare param-
eters (in this work, the coupling constant λ) via observables
(usually, in the field theory, via a “physical” coupling
constant). From the condition that the two-body system has
a bound state with the massM2 and the amplitude (2) has a
pole at M12 ¼ M2, one finds for the coupling constant λ

ðiλÞ−1 ¼ BðM2
2Þ ¼ 2πiðres1ðM2

2Þ þ res2ðM2
2ÞÞ: ð16Þ

The denominator in (2) then becomes

i½ðiλÞ−1 − BðM2
12Þ�

¼ i½BðM2
2BÞ − BðM2

12Þ�

¼ iPV
Z

∞

0

ðM2
2 −M2

12Þ
32π2εk½k2v − ð1

4
M2

12 −m2Þ�

×
k2vdkv

½k2v þ ðm2 − 1
4
M2

2Þ�
−

y00

16π
: ð17Þ

In Eq. (17), the principal value (PV) integral takes into

account the singularity at kv ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
4
M2

12 −m2
q

and the limit

of Λ → ∞ is taken since the integral is ultraviolet finite.
Now the integral (17), (in which the bare coupling

constant λ is expressed via the two-body bound state mass
M2) is finite and its calculation in different domains of the
variable M12 results for F ðM2

12Þ in:
ðiÞ If −∞ < M2

12 ≤ 0 ð1 ≥ y ≥ 0Þ; then∶

F ðM2
12Þ ¼

�
1

16π2y
log

1þ y
1 − y

−
arctan y0M2

8π2y0M2

�−1
: ð18Þ

ðiiÞ If 0 ≤ M2
12 ≤ 4m2 ð0 ≤ y0 < ∞Þ; then∶

F ðM2
12Þ ¼

�
arctan y0

8π2y0
−
arctan y0M2

8π2y0M2

�−1
: ð19Þ

ðiiiÞ If 4m2 ≤M2
12<∞ ð0≤ y00 ≤ 1Þ; then∶

F ðM2
12Þ¼

�
y00

16π2
log

1þy00

1−y00
−
arctany0M2

8π2y0M2

− i
y00

16π

�−1
: ð20Þ

Here y0M2
¼ M2ffiffiffiffiffiffiffiffiffiffiffiffiffi

4m2−M2
2

p and

y ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
−M2

12

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2 −M2

12

p ; y0 ¼ M12ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2 −M2

12

p ;

y00 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

12 − 4m2
p

M12

: ð21Þ

We have not yet introduced the scattering length a in
F ðM2

12Þ instead of the two-body bound state mass, which
will allow to generalize the scattering amplitude for the
case where no bound state exists. This will be discussed in
detail in the next subsection. It should be also noticed that
above the thresholdM12 > 2m, the amplitude obtains in the
denominator an imaginary part −i y00

16π.

C. Renormalization via scattering length

The two-body scattering amplitude (18)–(20) was
obtained by fixing a bound state pole at M12 ¼ M2.
However, it can happen that the two-body bound state is
absent, hence, the two-body scattering amplitude has no
any bound state pole. Besides that, the three-body bound
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state may exist in absence of the two-body one. In this
situation a different condition will be used: the requirement
that the scattering amplitude at zero energy is equal to −a,
where a is the two-body scattering length. The (non-
renormalized) two-body amplitude F ðM2

12Þ still has the
form of Eq. (2). Its argument can be written as M2

12 ¼ 4ε2k.
By using (2) and (10) we obtain

1

16πm
1

i½ðiλÞ−1 − Bð4m2Þ� ¼ −a; ð22Þ

and therefore

ðiλÞ−1 ¼ Bð4m2Þ − 1

16iπma
: ð23Þ

The two-body amplitude is then given by

F ðM2
12Þ ¼

1

i½Bð4m2Þ − BðM2
12Þ� − 1

16πma

: ð24Þ

The two-body scattering amplitude is obtained after
substituting 2m for M2 in Eq. (17), and in the different
regions of M2

12 it reads:

ðiÞ If −∞ < M2
12 ≤ 0 ð1 ≥ y ≥ 0Þ; then∶

F ðM2
12Þ ¼ 16π

�
1

πy
log

1þ y
1 − y

−
1

ma

�
−1
: ð25Þ

ðiiÞ If 0 ≤ M2
12 ≤ 4m2 ð0 ≤ y0 < ∞Þ; then∶

F ðM2
12Þ ¼ 16π

�
2

π

arctan y0

y0
−

1

ma

�
−1
: ð26Þ

ðiiiÞ If 4m2 ≤ M2
12 < ∞ ð0 ≤ y00 ≤ 1Þ; then∶

F ðM2
12Þ ¼ 16π

�
y00

π
log

1þ y00

1 − y00
−

1

ma
− iy00

�
−1
: ð27Þ

For negative scattering length a this amplitude has
no poles.
The two-body amplitude can be written from Eq. (27) in

terms of the c.m. frame momentum as:

F ðM2
12Þ ¼ 16π

�
kv
εkπ

log
εk þ kv
εk − kv

−
1

ma
− i

kv
εk

�
−1
; ð28Þ

and then:

kv cot δ0 ¼
kv
π
log

εk þ kv
εk − kv

−
εk
ma

; ð29Þ

which is real showing the unitarity of the model amplitude.
The power expansion for small kv and comparison with (8)
allows to identify the effective range as

r0 ¼
4

mπ
−

1

m2a
; ð30Þ

which is determined by the terms ∝ 1=m; 1=m2, reflecting
the relativistic origin of the model.
In the case when the bound state exists, one finds that

a ¼ πy0M2

2m arctanðy0M2
Þ ;

r0 ¼
2½2y0M2

− arctanðy0M2
Þ�

πmy0M2

; ð31Þ

and Eqs. (25)–(27) then coincide with (18)–(20).
Furthermore, for small binding energy B ≪ m the variable
y0M2

increases as y0M2
∼

ffiffiffiffiffiffiffiffiffiffi
m=B

p
. The scattering length a also

increases for B → 0 with

a →
1ffiffiffiffiffiffiffi
mB

p and r0 →
4

mπ
; ð32Þ

whereas the effective radius r0 tends to a constant.

III. THREE-BODY BETHE-SALPETER EQUATION

The solution of the zero-range three-body BS equation
for three identical spinless particles using the Faddeev
decomposition of the full BS amplitude can be reduced
to the solution of one single integral equation for the
spectator vertex function vMðq; pÞ (external propagators
are excluded). In the zero-range interaction case vMðq; pÞ
depends upon both the total momentum p and on the
four-momentum of the spectator particle q. The equation
reads [1]:

vMðq; pÞ ¼ 2iF ðM2
12Þ

Z
d4k
ð2πÞ4

i
½k2 −m2 þ iϵ�

×
i

½ðp − q − kÞ2 −m2 þ iϵ� vMðk; pÞ: ð33Þ

Notice that the momentum of the spectator particle, q,
determines the effective mass of the two-boson subsystem,
M12, due to the four-momentum conservation (see below).
Therefore, the vertex function does not depend on other
momenta besides q and the total four-momentum p. The
other two components of the integral equation (33) can be
easily obtained through the cyclic permutation of the
momentum of the constituent particles. The full BS
amplitude in Minkowski space is recovered by multiplying
the vertex function by the three external propagators and
summing up the components, i.e.,
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iΦMðk1;k2;k3;pÞ

¼ i3
vMðk1ÞþvMðk2ÞþvMðk3Þ

ðk21−m2þ iϵÞðk22−m2þ iϵÞðk23−m2þ iϵÞ; ð34Þ

where vMðkÞ≡ vMðk; pÞ (to simplify our notation) and the
four-momenta obey the relation

k1 þ k2 þ k3 ¼ p: ð35Þ

The relativistic two-body zero-range scattering amplitude
F ðM2

12Þ in (33) was derived in Sec. II and, being renor-
malized via scattering length, is given by Eqs. (25), (26)
and (27). Its argument M2

12 is expressed via three-body
momenta as M2

12 ¼ ðp − qÞ2. One major simplification in
Eq. (33) happens due to the fact that the amplitude F ðM2

12Þ
does not depend on the loop integration variable k in the
zero-range case. Due to that the two-body amplitude factors
out in the integral equation, what does not happen for a
finite-range interaction kernel like the one-boson exchange
or the cross-ladder one.
Notice that in Refs. [1,7] the regime M2

12 > 4m2 of
F ðM2

12Þ (27) was not presented, due to the range of the
variables considered in thoseworks. The amplitude in terms
of the bound state mass, as presented in Refs. [1,7], is given
in Eq. (19) (i.e., in the physical domain, 0 ≤ M12 ≤ 2m).
Such a link is very important to understand the range

covered by the results obtained previously, in Refs. [1,7],
by considering only the situation where the two-body state
is bound (i.e., a > 0) producing a realM2 through Eq. (31),
and the full support covered by Eqs. (25), (26) and (27),
including also virtual two-body bound states (i.e., a ∈ R).
In other words, as mentioned, in the region for which a < 0

the amplitude F ðM2
12Þ has no pole in the physical domain

and, therefore, the two-body bound state does not exist.
The three-body system can still be formed though, as a
Borromean bound state.
The goal now is to solve the scalar three-body BS

equation (33), derived in Ref. [1], for the lowest angular
momentum bound state, with zero-range interaction, fully
in Minkowski space and retaining implicitly the Fock-space
composition beyond the valence truncation. The adopted
method is the direct integration of the singularities of the
four-dimensional integral equation, developed recently for
the two-body BS equation in Ref. [4]. The method does not
rely on any ansatz, as e.g., the Nakanishi integral repre-
sentation used for the solution of the two-body equation in
Ref. [9]. No three-dimensional reduction of the covariant
4D equation, as the one done by performing the projection
onto the LF plane, is adopted. Part of what is exposed here
was published in Ref. [3]. Further comparisons with results
obtained in the Euclidean space calculations will be
provided to test the reliability of the method.
One interesting example of a calculation within the

approach used here is the electromagnetic transition form

factor [22], which quantifies the breakup of a two-body
bound state. This highly complex calculation was per-
formed through the direct integration method in Minkowski
space, using as inputs the solutions, obtained by the same
method [4], of the scattering and bound state BS equations.
The transition form factor, including the final state inter-
action, was calculated in the whole kinematical region. It
satisfied the nontrivial condition of current conservation
explicitly verified numerically.
Equation (33) is a singular integral equation and solving

it numerically is a very challenging task. For that reason,
the equation requires a proper treatment to be rewritten in,
at least, a less singular form before its numerical solution in
the c.m. frame, p⃗ ¼ 0⃗. The propagators, containing the
strongest singularities of the BS equation kernel, are
represented in the customary form [4]

1

k2 −m2 þ iϵ
¼ 1

k20 − k2v −m2 þ iϵ

¼ PV
1

k20 − ε2k
−

iπ
2εk

½δðk0 − εkÞ þ δðk0 þ εkÞ�;

ð36Þ

where PV denotes the principal value. The terms like
PV

R
… dk0

k2
0
−ε2k

contain the singularities at k0 ¼ �εk which

are removed by subtracting integrals from the equation,
with appropriate coefficients, in such a way that the final
equation is not affected. For that, the following identities
are used

PV
Z

0

−∞

dk0
k20 − ε2k

¼ PV
Z

∞

0

dk0
k20 − ε2k

¼ 0: ð37Þ

The second propagator in Eq. (33) can be integrated over

the angles analytically. Denoting z ¼ cosð k⃗·q⃗
kvqv

Þ and recall-

ing that d3k ¼ k2vdkvdzdφ, one can write that

Πðq0; qv; k0; kvÞ ¼
Z

idzdφ
½ðp − q − kÞ2 −m2 þ iϵ�

¼ iπ
qvkv

�
log

���� ðηþ 1Þ
ðη − 1Þ

���� − iπIðηÞ
�
; ð38Þ

with

IðηÞ ¼
�
1 if jηj ≤ 1

0 if jηj > 1
; ð39Þ

and

η ¼ ðM3 − q0 − k0Þ2 − k2v − q2v −m2

2qvkv
; ð40Þ

where M3 denotes the bound state mass of the three-body
system. The BS equation (33) turns, after integration over
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the angles, into an integral equation with the kernel (38),
that is still singular. However, these singularities are
weakened by integration and become logarithmic ones
and discontinuities, that will be treated numerically.

Once the propagators are expressed as in Eq. (36), the
principal value singularities are subtracted and the angular
integrations are performed, Eq. (33) acquires the follow-
ing form:

vMðq0; qvÞ ¼
F ðM2

12Þ
ð2πÞ4

Z
∞

0

k2vdkv

�
2πi
2εk

½Πðq0; qv; εk; kvÞvMðεk; kvÞ þ Πðq0; qv;−εk; kvÞvMð−εk; kvÞ�

− 2

Z
0

−∞
dk0

�
Πðq0; qv; k0; kvÞvMðk0; kvÞ − Πðq0; qv;−εk; kvÞvMð−εk; kvÞ

k20 − ε2k

�

− 2

Z
∞

0

dk0

�
Πðq0; qv; k0; kvÞvMðk0; kvÞ − Πðq0; qv; εk; kvÞvMðεk; kvÞ

k20 − ε2k

��
: ð41Þ

This equation has now, besides the unknown analytical
behavior of vMðq0; qvÞ that will be discovered numerically,
only weak singularities and discontinuities, but unlike (33)
the singularities in k0 ¼ �εk no longer exist.
The logarithmic singularities of the kernel (38),

Πðq0; qv; k0; kvÞ, at η ¼ �1 can be found for fixed values
of q0, qv and kv, what makes the numerical treatment in k0
easier. Their positions with respect to the variable k0 are

k0 ¼ ðM3 − q0Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ ðkv � qvÞ2

q
;

k0 ¼ ðM3 − q0Þ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ ðkv � qvÞ2

q
: ð42Þ

Analogously, the position of the singularities can be
found for the variable kv, so that the integration over this
variable can be optimized numerically. The positions of the
singularities of Πðq0; qv;�εk; kvÞ as a function of kv are
given by

kv ¼
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

12ðM2
12 þ q2vÞðM2

12 − 4m2Þ
p

� qvM2
12

2M2
12

; ð43Þ

where M2
12 ¼ ðM3 − q0Þ2 − q2v. The expression under the

square root is non-negative if

M2
12 ≥ 4m2 or M2

12 ≤ 0; ð44Þ

and, therefore, for existing real singularities in kv one needs
to ensure one of the following conditions for q0: q0 <
M3 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2v þ 4m2

p
or M3 − qv < q0 < M3 þ qv or q0 >

M3 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2v þ 4m2

p
. This means that the branching points

that need to be considered while fixing the mesh numeri-
cally to separate the regions with and without singularities
in kv are

qð1Þ0 ¼ M3 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2v þ 4m2

q
;

qð2Þ0 ¼ M3 − qv;

qð3Þ0 ¼ M3 þ qv;

qð4Þ0 ¼ M3 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2v þ 4m2

q
; ð45Þ

with qð1Þ0 < qð2Þ0 < qð3Þ0 < qð4Þ0 . As it can be seen from
Eqs. (18)–(20), these branching points are also present
in the two-body amplitude F ðM2

12Þ. For more details on the
behavior of the F ðM2

12Þ amplitude, see Sec. C 2.

IV. RELATION BETWEEN THE BS AMPLITUDE
AND LF WAVE FUNCTION

In this section and in Appendix A, we establish the
relation between the three-body BS amplitude and the
three-body LF wave function (LFWF). It generalizes to
the three-body system the relation (3.57) or (3.58) from
Ref. [23] for the two-scalar system and can be easily
generalized to the arbitrary n-body case.
The three-body BS amplitude is defined analogously to

the two-body one, namely:

ΦMðx1; x2; x3;pÞ ¼ h0jTðφðx1Þφðx2Þφðx3ÞÞjpi: ð46Þ

As is shown in Appendix A, the three-body LFWF can
be related to the BS amplitude through

ψðk⃗1⊥; ξ1; k⃗2⊥; ξ2; k⃗3⊥; ξ3Þ

¼ ðpþÞ2ffiffiffiffiffiffi
2π

p ξ1ξ2ξ3

Z
dk−1 dk

−
2ΦMðk1; k2; k3;pÞ; ð47Þ

where ξ1 þ ξ2 þ ξ3 ¼ 1 and the plus and minus momentum
components are given by p� ¼ p0 � p3, with analogous
definitions for the other momenta.
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Similarly, one has for the two-body case that

ψðk⃗1⊥; ξ1; k⃗2⊥; ξ2Þ

¼ pþffiffiffiffiffiffi
2π

p ξ1ξ2

Z
dk−1ΦMðk1; k2;pÞ: ð48Þ

By introducing the relative variable k ¼ 1
2
ðk1 − k2Þ,

ΦM ≡ΦMðk; pÞ, Eq. (48) can be written on the form:

ψðk⃗⊥; ξÞ ¼
pþffiffiffiffiffiffi
2π

p ξð1 − ξÞ
Z

dk−ΦMðk⃗⊥; kþ; k−;pÞ: ð49Þ

It differs from Eq. (3.57) of Ref. [23] by the degrees of π
due to the presence of the factor ð2πÞ−3=2 in Eq. (3.53) of
Ref. [23] which we did not introduce above.
Noteworthy that the support of the function ψðk⃗⊥; ξÞ in

the variable ξ, or of the integralZ
dk−ΦMðk⃗⊥; kþ; k−;pÞ;

is 0 < ξ < 1, as it should be. This follows from the fact that
ΦM is not an arbitrary function, but it is defined, in the
coordinate space, by

ΦMðx1; x2;pÞ ¼ h0jTðφðx1Þφðx2ÞÞjpi;

analogously to the three-boson BS amplitude defined in
Eq. (46). This support is also automatically obtained if one
represents the BS amplitude in the Nakanishi form (see
Ref. [24], Appendix D). The same conclusion is also valid
for the three-body case, when using Eq. (47).

V. NONRELATIVISTIC LIMIT

In this section, the nonrelativistic limits of the three-body
Euclidean BS and valence LF equations, i.e., Eqs. (7) and
(10) of Ref. [2], are considered. The Euclidean BS equation
will be first analysed. Representing the three-body massM3

as M3 ¼ 3m − B3, with B3 denoting the three-body bind-
ing energy, and truncating the denominator in Eq. (7) of
Ref. [2], and the terms in the fraction of the argument of the
log in Eq. (8) of the aforementioned reference, to the
leading terms of momenta and the binding energies,
one gets

K ¼ ΠEðq4; qv; k4; kvÞ
ðk4 − i

3
M3Þ2 þ k2v þm2

¼
1
2
log ðk4þq4þi

3
M3Þ2þðqvþkvÞ2þm2

ðk4þq4þi
3
M3Þ2þðqv−kvÞ2þm2

ðk4 − i
3
M3Þ2 þ k2v þm2

⇒ Knr ≈

1
2
log

2
3
B3þðkvþqvÞ2

2m þiðk4þq4Þ
2
3
B3þðkv−qvÞ2

2m þiðk4þq4Þ
2mð1

3
B3 − ik4Þ

: ð50Þ

At first glance, one could neglect the terms ðkv�qvÞ2
2m in

comparison to ðk4 þ q4Þ, however, this would result in
Knr ≡ 0, and therefore it is necessary to keep them.
Following Ref. [1], one can write E2 through M2

12 ¼
ð2m − E2Þ2, the two-body bound state mass asM2 ¼ 2m −
B2 and introduce them in the two-body amplitude F ðM2

12Þ
in the physical domain (0 ≤ M2

12 ≤ 4m2) [see Eq. (19)] to
elaborate the nonrelativistic limit. In such case, m → ∞,
and the F ðM2

12Þ amplitude becomes

F ðM2
12Þ ¼

16π
ffiffiffiffi
m

pffiffiffiffiffiffi
E2

p
−

ffiffiffiffiffiffi
B2

p ; ð51Þ

or, alternatively,

F ð−M2
12Þ ¼

16π
ffiffiffiffi
m

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m −

ffiffiffiffiffiffiffiffiffiffiffiffi
−M2

12

pq
−

ffiffiffiffiffiffi
B2

p : ð52Þ

Since M2
12 ¼ ð2

3
p − iq4Þ2 − q2v ¼ −ð2

3
iM3 þ q4Þ2 − q2v in

the limit m → ∞ one gets

E2 ¼ 2m −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
�
2

3
ið3m − B3Þ þ q4

�
2

− q2v

s

≈
2

3
B3 þ iq4 þ

q2v
4m

: ð53Þ

Substituting it in (51), one finds for the scattering
amplitude

F ðM2
12Þ ¼

16π
ffiffiffiffi
m

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
3
B3 þ iq4 þ q2v

4m

q
−

ffiffiffiffiffiffi
B2

p : ð54Þ

After these manipulations, Eq. (7) of Ref. [2] obtains
the form

ṽ0Eðq4; qvÞ ¼
1

π2
ffiffiffiffi
m

p 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
3
B3 þ iq4 þ q2v

4m

q
−

ffiffiffiffiffiffi
B2

p

×
Z

Λ

0

dkv

Z
∞

−∞

dk4
ð1
3
B3 − ik4Þ

× log
2
3
B3 þ ðkvþqvÞ2

2m þ iðk4 þ q4Þ
2
3
B3 þ ðkv−qvÞ2

2m þ iðk4 þ q4Þ
ṽ0Eðk4; kvÞ;

ð55Þ
where it was introduced a cutoff Λ to prevent the Thomas
collapse [18]. In order to obtain the time independent
equation, the integration over k4 needs to be performed.
Since this is a lengthy derivation, it will not be done here
explicitly.
For the three-body LF equation given by Eq. (10) of

Ref. [2], the nonrelativistic limit, obtained by following the
same steps as before, reads
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Γnrðq⃗Þ ¼
1

π2m3=2

1ffiffiffiffiffiffi
E2

p
−

ffiffiffiffiffiffi
B2

p

×
Z

Γnrðk⃗Þd3k
B3 þ q2v

2m þ k2v
2m þ ðq⃗þk⃗Þ2

2m

; ð56Þ

where

E2 ¼ 2m −M12 ≈ B3 þ
3

4

q2v
m

: ð57Þ

Here the factor 1ffiffiffiffi
E2

p
−

ffiffiffiffi
B2

p is originating from the two-body

amplitude (51) when m → ∞.
Equation (56) is the same as Eq. (18) of Ref. [1]. This

equation is known as the Skorniakov-Ter-Martirosyan
equation [25]. The nonrelativistic equation can be also
written in the form

Γnrðq⃗Þ ¼
1

π2
ffiffiffiffi
m

p 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B3 þ 3

4
q2v
m

q
−

ffiffiffiffiffiffi
B2

p

×
Z

Γnrðk⃗Þd3k
k2v þ k⃗ · q⃗þ q2v þmB3

; ð58Þ

and, for the s-wave, after integrating over the angles, it
reads

ΓnrðqvÞ ¼
2

π
ffiffiffiffi
m

p 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B3 þ 3

4
q2v
m

q
−

ffiffiffiffiffiffi
B2

p

×
Z

Λ

0

log

�
k2v þ kvqv þ q2v þmB3

k2v − kvqv þ q2v þmB3

	
ΓnrðkvÞ

×
kvdkv
qv

: ð59Þ

The above equation, like (55), and in contrast to (33),
requires a cutoff in order to allow a physical solution
avoiding the Thomas collapse [18].

VI. TRANSVERSE AMPLITUDES

The vertex function vðq0; qvÞ is fundamentally depen-
dent on the metric (Euclidean or Minkowski one) adopted
to define the integral equation. The transverse amplitude
is, instead, an useful quantity for comparison between
calculations performed in Euclidean and Minkowski
spaces. Furthermore, it gives information on the valence
wave function integrated in the longitudinal momenta in
the present model, where an infinite number of Fock-
components are taken into account implicitly by the Bethe-
Salpeter framework. The rich structure of the three-boson
bound state transverse amplitude is investigated numeri-
cally in Sec. VIII B, as it is a mean to exploit the double
parton momentum dependence of the valence wave

function, and also gives access to the dynamical correlation
between the constituents.
The derivation of the expressions for the Minkowski

transverse amplitude is presented below in Sec. VI A. The
final amplitude, computed with the BS amplitude obtained
from the solution of the BS equation in Minkowski space
(41), is expected to coincide with the one defined in
Euclidean space. The expressions for the latter one will
be derived in Sec. VI B.

A. Minkowski space

As mentioned, the BS amplitude ΦM can be written in
terms of the three vertex components by introducing the
external propagators. It is given above by Eq. (34).
The transverse amplitude can be defined via ΦM as

Lðk⃗1⊥; k⃗2⊥Þ
¼ L1ðk⃗1⊥; k⃗2⊥Þ þ L2ðk⃗1⊥; k⃗2⊥Þ þ L3ðk⃗1⊥; k⃗2⊥Þ

¼
Z

∞

−∞
dk10

Z
∞

−∞
dk1z

Z
∞

−∞
dk20

Z
∞

−∞
dk2z

× iΦMðk10; k1z; k20; k2z; k⃗1⊥; k⃗2⊥Þ: ð60Þ

However, in the three identical boson case, only one of
its Faddeev components Li is enough for the comparison
with the transverse amplitude derived from the Euclidean
BS solution. The first Faddeev component is given by

L1ðk⃗1⊥; k⃗2⊥Þ ¼ i
Z

∞

−∞
dk10

Z
∞

−∞
dk1z

vMðk10; k1vÞ
k21 −m2

1 þ iϵ

× χðk10; k1z; k⃗1⊥; k⃗2⊥Þ; ð61Þ

with

χðk10; k1z; k⃗1⊥; k⃗2⊥Þ

¼ i2
Z

d2k2
ðk22 −m2

2 þ iϵÞ½ðp0 − k2Þ2 −m2
3 þ iϵ� ; ð62Þ

where the following quantities enter: ki ¼ ðki0; kizÞ and
d2ki ¼ dki0dkiz with i ¼ 1, 2. Moreover,

m2
2 ¼ m2 þ jk⃗2⊥j2; m2

3 ¼ m2 þ ðp⃗⊥ − k⃗1⊥ − k⃗2⊥Þ2;
ð63Þ

and p0 ¼ ðp0
0; p

0
zÞ ¼ p − k1 ¼ ðp0 − k10; pz − k1zÞ.

The two-dimensional integral in (62) can be performed
by first introducing the Feynman parametrization (11) and
then making the transformation k2 → k2 þ ð1 − uÞp0. After
integration over k2, using a Wick rotation as k0 ¼ ik4,
we find
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χðk10; k1z; k⃗1⊥; k⃗2⊥Þ ¼ i2
Z

1

0

du
Z

d2k2
ðk22 þDþ iϵÞ2

¼ −πi3
Z

1

0

du
Dþ iϵ

; ð64Þ

with

D ¼ uð1 − uÞp02 −m2
2u − ð1 − uÞm2

3: ð65Þ
The denominator D is zero at

u∓ ¼ 1

2p02

�
p02 −m2

2 þm2
3

∓
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ððm2 −m3Þ2 − p02Þððm2 þm3Þ2 − p02Þ

q �
; ð66Þ

but for p02 < ðm2 þm3Þ2, the equality D ¼ 0 is never
satisfied in the interval 0 < u < 1, so the term iϵ can be
dropped out in Eq. (64) and the integral over the Feynman
parameter u can be performed safely analytically, giving
the following

χðk10; k1z; k⃗1⊥; k⃗2⊥Þ

¼ πi3

p02ðu− − uþÞ
Z

1

0

du

�
1

u − u−
−

1

1 − uþ

�

¼ −
iπ

p02ðu− − uþÞ
½logð1 − u−Þ

− logð−u−Þ − logð−1þ uþÞ þ logðuþÞ�; ð67Þ
with u� defined in (66).
In the situation where p02 > ðm2 þm3Þ2, the zeroes of

the denominator, u�, are placed on the real axis for the
interval u ∈ ½0; 1�. For that reason, one can separate χ in
two terms, analogously to what was done in (36), i.e.,

χðk10; k1z; k⃗1⊥; k⃗2⊥Þ
¼ χ0ðk10; k1z; k⃗1⊥; k⃗2⊥Þ þ χ00ðk10; k1z; k⃗1⊥; k⃗2⊥Þ; ð68Þ

where

χ0ðk10; k1z; k⃗1⊥; k⃗2⊥Þ

¼ πi3

p02ðu− − uþÞ
�
PV

Z
1

0

du
u − u−

− PV
Z

1

0

du
u − uþ

�
;

ð69Þ

and

χ00ðk10; k1z; k⃗1⊥; k⃗2⊥Þ

¼ πi3

p02ðu− − uþÞ

×

�
−iπ

Z
1

0

duδðu − u−Þ − iπ
Z

1

0

duδðu − uþÞ
�

¼ 2π2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½p02 − ðm2 −m3Þ2�½p02 − ðm2 þm3Þ2�

p : ð70Þ

The principal value integrals in Eq. (69) can be carried
out analytically and one obtains for χ0 the following
expression

χ0ðk10; k1z; k⃗1⊥; k⃗2⊥Þ

¼ iπ
log m2

2
þm2

3
−p02−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½p02−ðm2−m3Þ2�½p02−ðm2þm3Þ2�

p
m2

2
þm2

3
−p02þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½p02−ðm2−m3Þ2�½p02−ðm2þm3Þ2�

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½p02 − ðm2 −m3Þ2�½p02 − ðm2 þm3Þ2�

p : ð71Þ

The contribution L1ðk⃗1⊥; k⃗2⊥Þ can subsequently be
written in the form

L1ðk⃗1⊥; k⃗2⊥Þ ¼ −i
Z

∞

−∞
dk1z

�
iπ

2k̃10
½χðk̃10; k1z; k⃗1⊥; k⃗2⊥ÞvMðk̃10; k1vÞþχð−k̃10; k1z; k⃗1⊥; k⃗2⊥ÞvMð−k̃10; k1vÞ�

−
Z

∞

0

dk10

�
χð−k10; k1z; k⃗1⊥; k⃗2⊥ÞvMð−k10; k1vÞ

k210 − k̃210
−
χð−k̃10; k1z; k⃗1⊥; k⃗2⊥ÞvMð−k̃10; k1vÞ

k210 − k̃210

�

−
Z

∞

0

dk10

�
χðk10; k1z; k⃗1⊥; k⃗2⊥ÞvMðk10; k1vÞ

k210 − k̃210
−
χðk̃10; k1z; k⃗1⊥; k⃗2⊥ÞvMðk̃10; k1vÞ

k210 − k̃210

��
; ð72Þ

where

k̃10 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21z þ jk⃗1⊥j2 þm2

q
: ð73Þ

Similarly to the treatment of the BS equation in Sec. III,
propagators like ½k21 −m2

1 þ iϵ�−1 were expressed in the
form (36) and subtractions were made to eliminate the
principal value singularities at k0 ¼ �k̃10.

It should be noticed that the function χ in Eq. (72) has
square-root singularities at p02 ¼ ðm2 �m3Þ2. The func-
tions χð�k̃10; k1z; k⃗1⊥; k⃗2⊥Þ are thus singular at

k1z ¼ � 2

M3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM3 þm1Þ2 − ðm2 þm3Þ2

q

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM3 −m1Þ2 − ðm2 þm3Þ2

q
: ð74Þ
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Furthermore, for fixed k1z, the positions of the singular
points of the functions χð−k10; k1z; k⃗1⊥; k⃗2⊥Þ and χðk10; k1z;
k⃗1⊥; k⃗2⊥Þ are given by

k10 ¼ −M3 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21z þ ðm2 þm3Þ2

q
; ð75Þ

and

k10 ¼ M3 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21z þ ðm2 þm3Þ2

q
; ð76Þ

respectively. In this case only the singular points located on
the positive k0 axis need to be considered [see Eq. (72)]. In
fact, it turns out that the integrands in Eq. (72) are
symmetric with respect to k1z → −k1z. Therefore, one
needs to consider only the region where k1z > 0 and
multiply the equation by a factor 2. Furthermore, only
the positive solutions of Eq. (74) are needed.

B. Euclidean space

The expressions for the transverse amplitudes in the
Euclidean space, presented in Ref. [2], will be derived in
detail in this section and in Appendix B. As mentioned in
that paper, the following change of variables in the original
equation (33) was performed,

ki ¼ k0i þ
p
3
; ði ¼ 1; 2; 3Þ; ð77Þ

in order to allow the Wick rotation without crossing any
singularities. The primed momenta satisfy the relation

k01 þ k02 þ k03 ¼ 0: ð78Þ

The BS amplitude in Minkowski space can be written as

iΦ̃Mðk01; k02; k03;M3Þ

¼ i3
ṽMðk01Þ þ ṽMðk02Þ þ ṽMðk03Þ

ðk01 þ p
3
Þ2 −m2 þ iϵ

×
1

½ðk02 þ p
3
Þ2 −m2 þ iϵ�½ðk03 þ p

3
Þ2 −m2 þ iϵ�

¼ i3
ṽMðk01Þ þ ṽMðk02Þ þ ṽMð−k01 − k02Þ

½ðk01 þ p
3
Þ2 −m2 þ iϵ�½ðk02 þ p

3
Þ2 −m2 þ iϵ�

×
1

ðk01 þ k02 −
p
3
Þ2 −m2 þ iϵ

; ð79Þ

where

Φ̃Mðk01; k02; k03;pÞ ¼ ΦM

�
k01 þ

p
3
; k02 þ

p
3
; k03 þ

p
3
;p

	
;

ð80Þ

and

ṽMðk0iÞ ¼ vM

�
k0i þ

p
3

	
: ð81Þ

Now, in new (shifted) integration variable one can
perform the Wick rotation in the Eq. (33) and transform
this equation into the Euclidean space. For the full
Euclidean BS amplitude one gets:

iΦ̃Eðk014; k01z; k⃗01⊥; k024; k02z; k⃗02⊥Þ

¼ −i3
ṽEðk014; k01vÞ þ ṽEðk024; k02vÞ þ ṽEðk034; k03vÞ

ðk014 − i M3

3
Þ2 þ k021z þm2

1

×
1

ðk024 − i M3

3
Þ2 þ k022z þm2

2

×
1

ðk014 þ k024 þ i M3

3
Þ2 þ ðk01z þ k02zÞ2 þm2

3

; ð82Þ

where

k0iv ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jk⃗0i⊥j2 þ k02iz

q
;

m2
i ¼ jk⃗0i⊥j2 þm2; ði ¼ 1; 2; 3Þ

k⃗03⊥ ¼ −ðk⃗01⊥ þ k⃗02⊥Þ: ð83Þ

The full Euclidean transverse amplitude, corresponding
to the Minkowski one given by (60), reads

Lðk⃗01⊥; k⃗02⊥Þ
L1ðk⃗01⊥; k⃗02⊥Þ þ L2ðk⃗01⊥; k⃗02⊥Þ þ L3ðk⃗01⊥; k⃗02⊥Þ

¼ −
Z

∞

−∞
dk014

Z
∞

−∞
dk01z

Z
∞

−∞
dk024

Z
∞

−∞
dk02z

× iΦ̃Eðk014; k01z; k024; k02z; k⃗01⊥; k⃗02⊥Þ: ð84Þ

By insertion of Eq. (82) in (84), it is found that one of the
contributions to the transverse amplitude is given by

L1ðk⃗01⊥; k⃗02⊥Þ ¼ −
Z

∞

−∞
dk01z

Z
∞

−∞
dk014

× χðk014; k01z; k⃗01⊥; k⃗02⊥Þṽðk01v; k014Þ

×
i

ðk014 − i M3

3
Þ2 þ k021z þm2

1

; ð85Þ

where the function χ is derived in Appendix B and reads

χðk014; k01z; k⃗01⊥; k⃗02⊥Þ ¼ −π
Z

1

0

du
A

: ð86Þ

Here the denominator A is given by
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A ¼ au2 þ buþ c; ð87Þ

with

a ¼ −k021z −
�
k014 þ

2

3
iM3

	
2

;

b ¼ k021z þ
�
k014 þ

2

3
iM3

	
2

þm2
2 −m2

3;

c ¼ m2
3; ð88Þ

where the mi’s are defined by Eqs. (63) and (83).

VII. WICK ROTATION IN THE
THREE-BODY BS EQUATION

It was shown in Ref. [2] that the three-body BS
equation (33), after the introduction of the shifted variables
(77) allows the Wick rotation without crossing any singu-
larities. The validity of this rotation in the complex plane is
a key for the equivalence between the Minkowski- and
Euclidean-space transverse amplitudes. Therefore, we out-
line in this section some of the main points related to the
Wick rotation of (33).
The BS equation (33) enclosing the shifted variables

takes the form

ṽMðq0; pÞ ¼ 2iF ðM02
12Þ

Z
d4k0

ð2πÞ4
i

½ðk0 þ p
3
Þ2 −m2 þ iϵ�

×
i

½ðp
3
− q0 − k0Þ2 −m2 þ iϵ� ṽMðk

0; pÞ; ð89Þ

where M02
12 ¼ ð2

3
p − q0Þ2 and ṽM is defined by (81).

In the center-of-mass frame the pole in the upper half of
the k00 complex plane of the first propagator is located at

k0ðþÞ
01 ¼ −

M3

3
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k02v þm2

q
þ iϵ; ð90Þ

and for the second one the position of the pole is

k0ðþÞ
02 ¼ η0 − q00 þ iϵ; ð91Þ

with

η0 ¼ M3

3
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk⃗0 þ q⃗0Þ2 þm2

q
: ð92Þ

Consequently, as seen from (90), the first propagator does
not have any poles in the first quadrant. Moreover, since
M3 < 3m one has that η0 < 0. The Wick rotation of (89)
can thus be done safely without crossing any singularities.
Contrary to this, for the BS equation in the form (33),

written in terms of the unshifted variables (i.e., k and q), the
second propagator has a pole at

kðþÞ
02 ¼ η − q0 þ iϵ; ð93Þ

where

η ¼ M3 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk⃗þ q⃗Þ2 þm2

q
; ð94Þ

and ifM3 > m, there exist k⃗ and q⃗ such that η > 0, and the
Wick rotation is thus not permitted.
Each of the three Faddeev components of the transverse

amplitude, given by (60), is like the right-hand side of the
BS equation (33), an integral over a vertex function times a
product of propagators. It is therefore clear that the Wick
rotation (after introduction of the shifted variables) also
should hold for the transverse amplitude. The propagators
entering the definition of the BS amplitude (79) have poles
of the form (90), and should therefore not cause any
additional problems in this respect. The expected equiv-
alence between the transverse amplitudes computed in
Minkowski and Euclidean spaces respectively, is confirmed
by the numerical results to be presented in Sec. VIII B.
Though, in this paper the transverse amplitudes, depending
on kx, ky, are compared, we want to stress that the
aforementioned arguments are also applicable to the more
general amplitudes, not integrated over kz, i.e., depending
on kx, ky, kz.

VIII. RESULTS AND DISCUSSION

A. Vertex function in Minkowski space

The Faddeev component of the vertex function is
quantitatively studied in Minkowski space, as it carries
the dynamical content of the relativistic three-body model.
From it the full BS amplitude of the system can be
constructed. In Minkowski space it has a nontrivial analytic
structure since several branch points given by (45) are
present in the kernel of Eq. (41), and reflected in the cusps
appearing in the vertex function, as will be presented in
what follows. Evidently, the Euclidean equation, obtained
after the Wick rotation (see Ref. [2]) does not present in its
integration path any singularity as well as the correspond-
ing solution. Despite this, both solutions can be compared
as we are going to present.
We solved Eq. (41) adopting a spline decomposition of

the vertex function vMðq; pÞ used in Ref. [3], see
Appendix C. The inputs are the scattering length a and
the three-body binding energy B3, the same as in the
Euclidean calculations performed in Ref. [2]. In the
numerical solution of (41), we multiplied the right-hand
side of it by a parameter (eigenvalue) λ. A consistent
solution then corresponds to an eigenvalue of λ ¼ 1.0.
Three results for the eigenvalue are given in Table I, for

the following values of the two-body scattering length:
am ¼ −1.280, am ¼ −1.500 and am ¼ −1.705. The
results for the eigenvalue λ, expected to be real and equal
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to one, present small deviations from the unity and also an
imaginary part.
Nevertheless, it is important to mention another potential

source of error: cutoffs were introduced to constrain the
domains of the variables qv and q0. It is very difficult to
reach a reasonable convergence considering the full
domains, as the size of the region where the singularities
[given by Eqs. (42) and (43)] appear is enlarged along the
axes. Moreover, the asymptotic regions start at larger
momenta.
The actual values used to truncate the variables were

qmax
v =m ¼ 6.0 and qmax

0 =m ¼ 13.0, for the two smallest
binding energies, or qmax

0 =m ¼ 15.0, for the case where
B3=m ¼ 1.001. Regardless, the convergence was reached
within about 10% for the worst case. On the other hand, in
the Euclidean calculations it is possible to take into account
the whole range of the involved variables qv, q4, kv and k4
through a mapping procedure. The fact that in the
Minkowski approach cutoffs were applied while the whole
domains were used in the Euclidean calculations makes the
results not fully comparable. This might be one of the
reasons why in λ small nonzero imaginary parts appear and
for the deviations from 1 obtained in the real part.
The rest of this section will be devoted to a detailed study

of the representative case with B=m ¼ 0.395 and
am ¼ −1.5. Though, important to point out that many
of the stated conclusions are valid also for the other cases in
Table I.
In Fig. 2 it is shown the calculated real and imaginary

parts of the vertex function vMðq0; qvÞ versus q0 for three
fixed values of qv. For all three cases there is a quite good
agreement between the numerical peak positions and the
analytical ones, given by Eq. (45). Though, worth to
mention that, due to the scale of the figure, some of the
peaks for the case qv=m ¼ 2.5 are not clearly visible. The
peaks in Fig. 2 appear as branching points of the kernel
Πðq0; qv;�εk; kvÞ, defining its singularities, as discussed in
Sec. III. Interestingly, the aforementioned positions corre-
spond to M2

12 ¼ 0 and M2
12 ¼ 4m2, which give the branch-

ing points of the two-body scattering amplitude F ðM2
12Þ.

In Fig. 2 it is seen that for small values of qv a singula-
rity appears at q0 ≈M3. The distance between the ex-
ternal peaks, corresponding to M2

12 ¼ 4m2, is equal

to 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2v þ 4m2

p
, an increasing function with respect to

qv. This fact makes things more complicated from the

numerical point of view, as for large values of qv a very
wide region of q0 has to be covered. This imposes the need
of cutoffs for the variables.
Similarly, in Fig. 3 we present the real and imaginary

parts of vMðq0; qvÞ with respect to qv, for q0 ¼ m. In the
figure is seen a peak (both in the real and imaginary part)
which corresponds to the branching point qv ¼ M3 − q0.
However, for the other points given by Eq. (45), no solution
exists such that q0 ¼ m and qv ≥ 0. It can be seen in the
figure that the amplitude asymptotically goes to zero for
large values of qv, as expected.
Furthermore, in Fig. 4, we compare for q0 ¼ M3=3

the calculated real and imaginary parts of vMðq0; qvÞ
versus qv with the corresponding Euclidean results for
ṽEðq0; pÞ ¼ vEðq0 þ p=3; pÞ, i.e., q04 ¼ 0. It is seen that the
results for both real and imaginary parts are practically the
same for small values of qv. However, the Minkowskian
amplitude has a peak at the branching point qv ¼ 2M3=3
and the amplitudes also differ significantly at larger values

TABLE I. Eigenvalues of the three-body ground state for three
scattering lengths, a, computed in [3] by using the Euclidean
three-body binding energies.

B3=m am λ

0.006 −1.280 0.999 − 0.054i
0.395 −1.500 1.000þ 0.002i
1.001 −1.705 0.997þ 0.106i

FIG. 2. Real (upper panel) and imaginary (lower panel) parts of
the vertex function, vMðq0; qvÞ with respect to q0. For each value
of qv the analytical positions of the peaks, given in Eq. (45), are
shown with the vertical dotted lines.

THREE-BOSON BOUND STATES IN MINKOWSKI SPACE WITH … PHYS. REV. D 101, 096018 (2020)

096018-13



of qv, a difference coming from the contribution of the
cut necessary to be taken into account to match the limit
of q04 → 0 with the Minkowski point. For the sake of
comparison both amplitudes are normalized to 1 for q04 ¼ 0

and qv ¼ 0.

B. Transverse amplitude

Although the transverse amplitude has a different mean-
ing with respect to the standard distribution amplitude (see
Refs. [26,27]), it shares in common with the distribution
amplitude the valence wave function content of the full
LFWF in Fock space. However, the transverse amplitude
has a distinctive feature with respect to the distribution
amplitude as it can be obtained as well from the BS
amplitude in Euclidean space, making it a useful quantity to
compare with the correspondingMinkowski space quantity.

The demonstration of equivalence between the transverse
amplitude obtained in Minkowski and Euclidean spaces has
been given in Ref. [28] resorting to the Nakanishi integral
representation of the BS amplitude [5,6] in a two-boson
system. Furthermore, as discussed in Sec. VII, the Wick
rotation of the BS equation (33) can be performed without
crossing any singularities and should also hold for the
transverse amplitude. Consequently, the transverse ampli-
tudes computed in Minkowski and Euclidean spaces should
agree with each other also for the three-body system, which
is confirmed by the results presented in this section.
In what follows we will exploit the structure of the

transverse amplitude associated with one Faddeev compo-
nent. The reader has to keep in mind that the full transverse
amplitude from the three-body wave function is a coherent
sum of the three components. However, to expose the
consequences of our dynamical assumptions it is simpler to
look individually to each Faddeev component, as the sum
of Liðjk⃗i⊥j; jk⃗j⊥j; θijÞ where θij denotes the angle between
k⃗i⊥ and k⃗j⊥, will present a much more complex 3D
landscape as a function of the two independent transverse
momenta.
In Fig. 5 it is displayed the modulus of the contribution

L1ðjk⃗1⊥j; jk⃗2⊥j; θÞ to the transverse amplitude versus jk⃗1⊥j,
calculated from Eq. (72). It is also shown, for comparison,
the corresponding Euclidean results calculated through
Eq. (85). It is seen that the Minkowski and Euclidean
results are in fair agreement with each other. The non-
smooth behavior of the BS solution in Minkowski space,
shown in Fig. 2, is washed out and makes the agreement
between the Euclidean and Minkowski space transverse
amplitudes even more remarkable.
The dependence of the modulus of the transverse

amplitude jL1j on the angle θ between k⃗1⊥ and k⃗2⊥ is
also displayed, in Fig. 6. The modulus of L1 is a slowly
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FIG. 4. Real and imaginary parts of the Minkowski space vertex
function, vMðq0 ¼ M3=3; qvÞ versus qv, compared with the
corresponding Euclidean results for ṽEðq04; q0vÞ.
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space compared with the one calculated in Euclidean space.
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decreasing function with respect to cos θ. As seen in the
figure, a satisfactory agreement is again found between the
Euclidean (lines) and Minkowski (symbols) calculations.
Although the interaction is active in the s-wave and the
vertex function is dependent only on the time component
and the modulus of the spatial momentum in the rest-frame,
the Faddeev component of the BS amplitude acquired a
weak angular dependence, as we illustrated, due to the
presence of the individual propagators and momentum
conservation, essentially containing both s- and p-wave
dependencies. The mixing of higher waves appears as the
binding energy increases, which is expected as the bound
state mass becomes smaller increasing the sensitivity of the
denominator in Eq. (86) to variations of the relative angle,
as it is transparent in the case of the transverse amplitude in
Euclidean space.
The three-dimensional structure of the transverse ampli-

tude is further exposed in Fig. 7, where we plot the absolute
value of the amplitude L1ðjk⃗1⊥j; jk⃗2⊥j; θÞ with respect to
jk⃗1⊥j and jk⃗2⊥j for different fixed values of θ. The
computations were for simplicity performed in Euclidean
space, since it has already been shown above that the
Euclidean and Minkowski calculations give the same
results for the transverse amplitude. One can conclude
from the figure that the transverse amplitude becomes
wider when the value of is θ is increased, due to
correlations proportional to k⃗1⊥ · k⃗2⊥. This effect is clearly
visible, in particular, for the antialigned case (θ ¼ π), i.e.,
when the transverse momenta obey the relation
jk⃗3⊥j2 ¼ ðjk⃗1⊥j − jk⃗2⊥jÞ2. For θ ¼ π and along jk⃗1⊥j ¼
jk⃗2⊥j there is a clear enhancement of the transverse
amplitude which exhibits a bump due to the vanishing
value of k⃗3⊥. The development of this pattern is seen by
inspecting the evolution of the amplitude with θ and

comparing the results for the π=2 and π angles. This
feature is further enhanced when the three-body bound state
mass decreases for a strongly bound system.

C. Short-range correlation

The two-body short-range correlation (in the context of
nonrelativistic nuclear physics, see e.g., Ref. [29]) is
exhibited by the model for large relative momentum,
jk⃗2⊥ − k⃗3⊥j, and a back-to-back momentum configuration
of particles 2 and 3, where the transverse amplitude is
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FIG. 6. Transverse amplitude modulus, jL1j as a function of
cosðθÞ for ðjk⃗1⊥j=m; jk⃗2⊥j=mÞ ¼ ð0.5; 0.5Þ; ð2.0; 0.5Þ, obtained
in Minkowski space compared with the one computed in
Euclidean space.

FIG. 7. Transverse contribution, L1ðjk⃗1⊥j; jk⃗2⊥j; θÞ with respect
to jk⃗1⊥j and jk⃗2⊥j, for θ ¼ 0; π=4; π=2; π calculated in Euclidean
space.
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dominated by the component L1. Note that this amplitude is
also symmetric by the exchange of k⃗2⊥ and k⃗3⊥ due to the
bosonic nature of the system with equal masses. In the
relativistic context the concept of the short-range two-body
correlation has not yet been developed, but its emergent
imprints are observed in the transverse amplitude.
The plot for L1 as a function of jk⃗2⊥ − k⃗3⊥j for the back-

to-back configuration (jk⃗1⊥j ¼ 0) is shown in Fig. 8. In the
situation when jk⃗2⊥ − k⃗3⊥j is large, only L1 dominates in
the full three-body transverse amplitude, being the counter-
part of the factorization of the nonrelativistic wave function
as a two-body term depending on the relative distance
between the two particles times a function of the relative
coordinates of the other N − 2 particles [29]. In the model
with contact interaction, the denominator in Eq. (86)
provides the momentum dependence of the “wave func-
tion” of the short-range correlated pair in the valence
LFWF of the three-body system. The relative momentum
behavior shown in the figure reflects the free propagators of
the bosons, as the contact interaction does not bring any
momentum dependence. This property is shared by the
nonrelativistic three-body model with a zero-range poten-
tial. Furthermore, for jk⃗1⊥j ¼ 0 the denominator of Eq. (86)
provides the large momentum behavior as L1 ∼ jk⃗3⊥j−2 that
leads to L1 ∼ jk⃗2⊥ − k⃗3⊥j−2 in the back-to-back configu-
ration, as confirmed by our results. The scale for the
asymptotic behavior is naturally fixed by the individual
boson mass, as it can be seen in Fig. 8, where L1 shows an
accentuated drop in this momentum range. In the inset plot
the asymptotic behavior for large relative momentum
is shown.
The asymptotic property of L1 also follows from the

structure of the valence LFWF, which has the three-body

LF propagator as the dominant factor for the contact
interaction and at large momentum is just the inverse of
the free three-body mass, i.e.,

M2
0 ¼

X
i

k⃗2i⊥
ξi

:

Note that M−2
0 ∼ jk⃗2⊥ − k⃗3⊥j−2 for jk⃗1⊥j ¼ 0, which is

the power-law behavior seen in Fig. 8. Such asymptotic
form is expected to change for models with finite range
interactions.

IX. CONCLUSIONS

The three-body BS equation has been solved, directly in
Minkowski space, by standard analytical and numerical
methods, where (i) no ansatz or assumption has been
introduced to represent the BS amplitude and (ii) the
singularities from the kernel are treated analytically and
numerically directly in the four-dimensional equation. The
application of the direct integration method to the three-
body Faddeev-BS equation was already presented in
Ref. [3]. However, in the present paper the Minkowski-
space structure of the three-body system has been analyzed
in far greater detail and brings up the structure of the short-
range correlated pair in the Borromean system.
The computed amplitude turns out to be highly peaked,

indicating the presence of a singular behavior, as shown in
Sec. VI. This is very different from what was found for the
amplitude computed through the Wick-rotated equation in
Ref. [2], due to the presence of branching points and
the associated cuts. In one example we expose the cut
contribution to the amplitude comparing results from
Minkowski and Euclidean calculations.
Although the BS amplitudes obtained from the solution

in Euclidean and Minkowski spaces are fundamentally
different, they can be compared by means of the transverse
amplitude. The comparison shows a notable agreement,
giving more confidence on the reliability of the direct
integration method. Furthermore, the transverse amplitude
reveals the structure of the short-range correlated pair in the
valence wave function, which was found when the pair has
large relative momentum in a back-to-back configuration.
We found that the Faddeev component of the BS amplitude
defined with the pair interaction dominates over the others,
and a power-law behavior of the type ∼jk⃗i⊥ − k⃗j⊥j−2 is
found for the associated transverse amplitude and con-
firmed by our numerical results.
In this work, we show that the results obtained by the

direct integration in Minkowski space agree well with the
Euclidean results for comparable quantities, however this
method is quite demanding from the numerical point
of view. One possible way to improve on this and addi-
tionally be able to treat more realistic kernels and/or the
spin degree of freedom is to transform the BS equation into
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FIG. 8. Transverse amplitude modulus, jL1j as a function of
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a nonsingular form by using the Nakanishi integral repre-
sentation [5,6]. The formulation of the BS approach to the
three-body problem via Nakanishi integral representation
is already in progress and computations based on this
method will be undertaken in the near future. Once the BS
amplitude of the three-body state is known in Minkowski
space it can be used to investigate electromagnetic form
factors, the diversity of parton longitudinal and transverse
momentum distributions, as well as the space-time structure
of the pair short-range correlation.
Furthermore, one interesting direction for future explo-

rations of the three-body system is to consider particles
with nonequal masses, as a framework, for example, to
study baryons with a heavy-light content. Of course still
many steps have to be considered to include the subtle
physics of quantum chromodynamics (QCD) in a con-
tinuum model (see e.g., Refs. [12,30]), but now in
Minkowski space. We expect that the formulation will
also allow to explore excited states and, through it, in the
low energy region, the Efimov phenomena relativistically.
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APPENDIX A: DERIVATION OF THE RELATION
BETWEEN THE BS AMPLITUDE AND LFWF

In this Appendix, we derive in detail the relation between
the three-body BS amplitude and the three-body LFWF.
The three-body BS amplitude is defined by Eq. (46). Let

us define the integral

I3 ¼
Z

d4x1d4x2d4x3δðω · x1Þδðω · x2Þδðω · x3Þ

×ΦMðx1; x2; x3;pÞ expðik1 · x1 þ ik2 · x2 þ ik3 · x3Þ;
ðA1Þ

where ω ¼ ðω0; ω⃗Þ, ω2 ¼ 0 and k1;2;3 are the on-shell
momenta, i.e., k21 ¼ k22 ¼ k23 ¼ m2. The delta functions in
(A1) restrict the variation of the arguments of the coor-
dinate space BS amplitude to the LF hyperplane ω · x ¼ 0.

We now represent the δ-functions in (A1) in the integral
form

δðω · xiÞ ¼
1

2π

Z
expð−iω · xiτiÞdτi: ðA2Þ

Due to translation invariance, when all xi’s are shifted
by a∶ x → xþ a, the BS amplitude obtains a factor
expð−ia · pÞ:

ΦMðx1 þ a; x2 þ a; x3 þ a;pÞ
¼ expð−ia · pÞΦMðx1; x2; x3;pÞ; ðA3Þ

like the nonrelativistic wave function.
We introduce then the BS amplitude (46) in momentum

space. We define it, extracting the delta function, respon-
sible for conservation of momenta:

ΦMðx1; x2; x3;pÞ

¼ ð2πÞ4
ð2πÞ12

Z
d4k01d

4k02d
4k03

× expð−ik01 · x1 − ik02 · x2 − ik03 · x3Þ
× δð4Þðk01 þ k02 þ k03 − pÞΦMðk01; k02; k03;pÞ: ðA4Þ

Because of the delta-function in (A4) the amplitude
ΦMðx1; x2; x3;pÞ satisfies the relation (A3). We emphasize
that here, in contrast to Eq. (A1), all the arguments k01;2;3 of
the BS amplitude are the off-mass-shell momenta.
We substitute (A4) and (A2) in (A1) and integrate over

x1;2;3 and k01;2;3. The result reads:

I3 ¼
1

ð2πÞ3
Z

dτ1dτ2dτ3ð2πÞ4

× δðk1 þ k2 þ k3 − p − ωτ1 − ωτ2 − ωτ3Þ
×ΦMðk1 − ωτ1; k2 − ωτ2; k3 − ωτ3;pÞ; ðA5Þ

where the variables τ1;2;3 ∈� −∞;∞½. To avoid confusion,
we emphasize again: the four-momenta k1;2;3 in this
formula are the on-shell momenta, according to the
definition of (A1), whereas, the arguments of the BS
amplitude are the off-shell momenta, like k01;2;3 in (A4);
namely: ðk1−ωτ1Þ2¼m2−2ðω·k1Þτ1≠m2 since τ1 ≠ 0 and
similarly for other arguments except for p2 ¼ M2

3.
We subsequently introduce the variable τ ¼ τ1 þ τ2 þ τ3

and represent the integral (A5) in the following three
equivalent forms:
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I3a ¼
ð2πÞ4
ð2πÞ3

Z
dτ δðk1 þ k2 þ k3 − p − ωτÞ

Z
dτ1dτ2

×ΦMðk1 − ωτ1; k2 − ωτ2; k3 − ωðτ − τ1 − τ2Þ;pÞ;

I3b ¼
ð2πÞ4
ð2πÞ3

Z
dτ δðk1 þ k2 þ k3 − p − ωτÞ

Z
dτ2dτ3

×ΦMðk1 − ωðτ − τ2 − τ3Þ; k2 − ωτ2; k3 − ωτ3;pÞ;

I3c ¼
ð2πÞ4
ð2πÞ3

Z
dτ δðk1 þ k2 þ k3 − p − ωτÞ

Z
dτ1dτ3

×ΦMðk1 − ωτ1; k2 − ωðτ − τ1 − τ3Þ; k3 − ωτ3;pÞ:
ðA6Þ

It can be also represented as:

I3 ¼
ð2πÞ4
ð2πÞ3

Z
dτδðk1 þ k2 þ k3 − p − ωτÞ

×
Z

dτ1dτ2dτ3δðτ1 þ τ2 þ τ3 − τÞ

×ΦMðk1 − ωτ1; k2 − ωτ2; k3 − ωτ3;pÞ; ðA7Þ

where bymeans of the delta function δðτ1 þ τ2 þ τ3 − τÞ one
can exclude any τi and obtain Eq. (A6). Depending on the
convenience, one can chose any of the forms in (A6) to
calculate the double integral over τi, τj. With the standard
choice ωμ ¼ ð1; 0; 0;−1Þ, i.e., in the LF coordinates,
ω⃗⊥ ¼ 0;ωþ ¼ 0;ω− ¼ 2, these integrals are reduced to
the integrals over the k−i components. The value of τ is
determined from the conservation law k1 þ k2 þ k3 ¼
pþ ωτ. For example, squaring this equation, we find

τ ¼ ðk1 þ k2 þ k3Þ2 −M2
3

2ðω · pÞ

¼ 1

2ðω · pÞ
�
k21⊥ þm2

x1
þ k22⊥ þm2

x2
þ k23⊥ þm2

x3
−M2

3

	

≡ 1

2ðω · pÞ ðM
2
0 −M2

3Þ: ðA8Þ

On the other hand, the integral (A1) can be expressed in
terms of the three-body LFWF. We assume that the LF
plane is the limit of a spacelike plane, therefore the
operators φðx1Þ;φðx2Þ;φðx3Þ, commute with each other,
and, hence, the symbol of the T product in (46) can be
omitted. In the considered representation, the Heisenberg
operators φðxÞ in (46) are identical on the light front ω ·
x ¼ 0 to the Schrödinger ones (just as in the ordinary
formulation of field theory the Heisenberg and Schrödinger
operators are identical for t ¼ 0). The Schrödinger operator
φðxÞ (for the spinless case, for simplicity), which for ω ·
x ¼ 0 is the free field operator, is given by:

φðxÞ ¼ 1

ð2πÞ3=2
Z

d3kffiffiffiffiffiffiffi
2εk

p

× ½aðk⃗Þ expð−ik · xÞ þ a†ðk⃗Þ expðik · xÞ�: ðA9Þ

We represent the state vector jpi≡ ϕðpÞ in (A1) in the
form of the expansion via the Fock states:

jpi ¼ ð2πÞ3=2
Z

ψðk1; k2; k3; p;ωτÞ

× δð4Þðk1 þ k2 þ k2 − p − ωτÞ2ðω · pÞdτ

×
d3k1

ð2πÞ3=2 ffiffiffiffiffiffiffiffi
2εk1

p d3k2
ð2πÞ3=2 ffiffiffiffiffiffiffiffi

2εk2
p d3k3

ð2πÞ3=2 ffiffiffiffiffiffiffiffi
2εk3

p
× a†ðk⃗1Þa†ðk⃗2Þa†ðk⃗3Þj0i þ � � � : ðA10Þ

In (A9) and (A10) the four-momenta k1;2;3 are on mass-
shells. We substitute this expression in ΦMðx1; x2; x3;pÞ,
Eq. (46). Since the vacuum state on the light front is always
“bare,” the creation operator, applied to the vacuum state h0j
gives zero, and in the operators φðxÞ the part containing the
annihilation operators only survives. This cuts out the three-
body Fock component in the state vector. We thus obtain:

ΦMðx1; x2; x3;pÞ

¼ ð2πÞ3=2
Z

ψðk1; k2; k3; p;ωτÞ

× δð4Þðk01 þ k02 þ k02 − p − ωτÞ2ðω · pÞdτ
× expð−ik01x1 − ik02x2 − ik03x3Þ

×
d3k01

ð2πÞ32εk0
1

d3k02
ð2πÞ32εk0

2

d3k03
ð2πÞ32εk0

3

: ðA11Þ

Then we substitute this ΦMðx1; x2; x3;pÞ in (A1) and
integrate over x1;2;3. The integration, for example, over x1
and then over k01 is fulfilled as follows

Z
d4x1d3k01
ð2πÞ42εk0

1

expð−ik01x1Þ expð−iω · x1τ1Þdτ1 expðik1x1Þ

¼
Z

δð4Þðk1 − k01 − ωτ1Þdτ1
d3k01
2εk0

1

¼
Z

δð4Þðk1 − k01 − ωτ1Þdτ1d4k01θðω · k01Þδðk021 −m2Þ

¼
Z

θðω · k1Þδððk1 þ ωτ1Þ2 −m2Þ

¼
Z

dτ1δð2ðω · k1Þτ1Þ ¼
1

2ðω · k1Þ
; ðA12Þ

and similarly for the integrations over x2; k02 and x3; k03. We
used here that θðk010Þ ¼ θðω · k01Þ for k010 > 0. Then for I3
we get (cf. Eq. (3.56) from Ref. [23]):
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I3 ¼
ð2πÞ3=22ðω · pÞ

2ðω · k1Þ2ðω · k2Þ2ðω · k3Þ
Z

dτψðk1; k2; k3;p;ωτÞ

× δð4Þðk1 þ k2 þ k3 − p − ωτÞ: ðA13Þ

Comparing (A13) and (A7), we find:

ψðk1; k2; k3; p;ωτÞ

¼ 1ffiffiffiffiffiffi
2π

p 2ðω · k1Þ2ðω · k2Þ2ðω · k3Þ
2ðω · pÞ

×
Z

dτ1dτ2dτ3δðτ1 þ τ2 þ τ3 − τÞ

×ΦMðk1 − ωτ1; k2 − ωτ2; k3 − ωτ3;pÞ: ðA14Þ
As mentioned, in ordinary LFD, Eq. (A14) corresponds to
the integration over k−. This equation makes the link
between the three-body BS amplitude ΦM and the wave
function ψ defined on the light front specified by ω. As it is
seen from the above derivation, it is generalizable (with the
same coefficient 1=

ffiffiffiffiffiffi
2π

p Þ for arbitrary number of particles.
Simply the number of the factors 2ðω · kiÞ and of the
arguments increases. In the LF coordinates Eq. (A14)
obtains the form:

ψðk⃗1⊥; ξ1; k⃗2⊥; ξ2; k⃗3⊥; ξ3Þ

¼ 1ffiffiffiffiffiffi
2π

p ðpþÞ2
2

2ξ12ξ22ξ3

Z
dτ1dτ2dτ3δðτ1 þ τ2

þ τ3 − τÞΦMðk̃1; k̃2; k̃3;pÞ; ðA15Þ

where k̃i ≡ fk⃗i⊥; kþi ; k−i − 2τig and 0 < ξi < 1 ðξ1 þ ξ2 þ
ξ3 ¼ 1Þ denotes the longitudinal momentum fraction of
particle i.
We introduce now new integration variables: k0−1 ¼

k−1 −2τ1, etc, and then

ψðk⃗1⊥; ξ1; k⃗2⊥; ξ2; k⃗3⊥; ξ3Þ

¼ ðpþÞ2ffiffiffiffiffiffi
2π

p ξ1ξ2ξ3

Z
dk−1 dk

−
2ΦMðk1; k2; k3;pÞ

¼ ðpþÞ2ffiffiffiffiffiffi
2π

p ξ1ξ2ξ3

Z
dk−1 dk

−
2ΦMðk1; k2; k3;pÞ: ðA16Þ

In the last line, we omitted the integration over the 3rd
argument since it is not independent. In the above formula
it is understood that k3 ¼ p − k1 − k2. One can chose any
pair of arguments: (12), (13) or (23), depending on the
convenience.

APPENDIX B: CALCULATING THE EUCLIDEAN
TRANSVERSE AMPLITUDE

In this Appendix we derive in detail the function χ
occurring in the expression for the Euclidean transverse
amplitude, Eq. (85).
From Eqs. (82) and (84), we define χ as the integral

χðk014; k01z; k⃗01⊥; k⃗02⊥Þ

¼
Z

∞

−∞
dk020

Z
∞

−∞
dk02z

i

ðk024 − i M3

3
Þ2 þ k022z þm2

2

×
i

ðk014 þ k024 þ i M3

3
Þ2 þ ðk01z þ k02zÞ2 þm2

3

: ðB1Þ

The two propagators in (B1) can then be put together by
using the Feynman parametrization (11) leading to the
result

i

ðk024 − i M3

3
Þ2 þ k022z þm2

2

×
i

ðk014 þ k024 þ i M3

3
Þ2 þ ðk01z þ k02zÞ2 þm2

3

¼ −
Z

1

0

du
D2

; ðB2Þ

where the denominator reads

D ¼ k0224 þ k022z þ ð1 − uÞ½k0214 þ k021z� þ
2

3
iM3k024 þ 2ð1 − uÞk01zk02z þ

2

3
ð1 − uÞk014ð3k024 þ iM3Þ

−
4

3
iuM3k024 þ ð1 − uÞm2

3 þ um2
2 −

M2
3

9

¼ k0224 þ k022z þ ð1 − uÞ½k0214 þ k021z� þ 2

�
ð1 − uÞk014 −

iM3

3
ð−1þ 2uÞ

�
k024

þ 2ð1 − uÞk01zk02z þ
2

3
iM3ð1 − uÞk14 þ ð1 − uÞm2

3 þ um2
2 −

M2
3

9
: ðB3Þ
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We subsequently eliminate the terms linear in k024 and
k02z, by performing in Eqs. (B1), (B2) and (B3) the
transformations

k024 → k024 − α;

k02z → k02z − β; ðB4Þ
with

α ¼ ð1 − uÞk014 −
iM3

3
ð−1þ 2uÞ; ðB5Þ

and

β ¼ ð1 − uÞk01z: ðB6Þ
By these transformations the denominator (B3) is

changed into

D → D̃ ¼ k0224 þ k022z þ A; ðB7Þ
where

A ¼ uð1 − uÞ½k0214 þ k021z� þ ð1 − uÞm2
3 þ um2

2

þ 4

3
iM3uð1 − uÞk014 −

4

9
M2

3uð1 − uÞ: ðB8Þ

The integrals over k024 and k02z in (B1) can now be
performed analytically, and the result is

χðk014; k01z; k⃗01⊥; k⃗02⊥Þ

¼ −
Z

1

0

du
Z

∞

−∞
dk020

Z
∞

−∞

dk02z
ðk0224 þ k022v þ AÞ2

¼ −2π
Z

1

0

du
Z

∞

0

k0dk0

ðk02 þ AÞ2 ¼ −π
Z

1

0

du
A

: ðB9Þ

Alternatively, one can write the quantity A in the form

A ¼ au2 þ buþ c; ðB10Þ
with

a ¼ −k021z −
�
k014 þ

2

3
iM3

	
2

;

b ¼ k021z þ
�
k014 þ

2

3
iM3

	
2

þm2
2 −m2

3;

c ¼ m2
3: ðB11Þ

APPENDIX C: NUMERICAL METHODS

We solve in this work Eq. (41) by expanding the
amplitude vMðq0; qvÞ in a bicubic spline basis, on a finite
domain Ω ¼ Iq0 × Iqv ¼ ½−qmax

0 ; qmax
0 � × ½0; qmax

v �, i.e.,

vMðq0; qvÞ ¼
X2Nq0

þ1

k¼0

X2Nqvþ1

l¼0

AijSkðq0ÞSlðqvÞ; ðC1Þ

where the unknown coefficients Aij are to determined. In
the numerical implementation, the interval Ixðx ¼ q0; qvÞ
is partitioned into Nx subintervals, so that good conver-
gence was reached. The adopted spline functions, SjðxÞ are
given by [8]

S2iðxÞ ¼

8>>>>>>>><
>>>>>>>>:

3


x−xi−1
hi

�
2
− 2



x−xi−1
hi

�
3
;

if x ∈ ½xi−1; xi�
3


xiþ1−x
hiþ1

�
2
− 2



xiþ1−x
hiþ1

�
3
;

if x ∈ ½xi; xiþ1�
0; if x ∉ ½xi−1; xiþ1�

S2iþ1ðxÞ ¼

8>>>>>>>><
>>>>>>>>:

h
−


x−xi−1
hi

�
2 þ



x−xi−1
hi

�
3
i
hi;

if x ∈ ½xi−1; xi�h

xiþ1−x
hiþ1

�
2
−


xiþ1−x
hiþ1

�
3
i
hiþ1;

if x ∈ ½xi; xiþ1�
0; if x ∉ ½xi−1; xiþ1�

ðC2Þ

with hi ¼ xi − xi−1.
By using (C1), Eq. (41) can be transformed to a

generalized eigenvalue problem of the formX
i0j0

Fiji0j0Ai0j0 ¼ λðM3Þ
X
i0j0

Viji0j0Ai0j0 ; ðC3Þ

where

Fiji0j0 ¼ Si0 ðqðiÞ0 ÞSj0 ðqðjÞv Þ; ðC4Þ

and the array Viji0j0 is the right-hand side of (41) with vM
replaced by Si0 ðqðiÞ0 ÞSj0 ðqðjÞv Þ. The variable q0 (qv) has here
been discretized on a mesh consisting of 2Nq0 þ 2

(2Nqv þ 2) points. The three-body mass M3, or equiva-
lently the three-body binding energy B3, can subsequently
be obtained from the condition

λðM3Þ ¼ 1: ðC5Þ

Equation (C5) constitutes a nonlinear equation relative to
M3 and is rather time-consuming to solve. For simplicity,
we use thus instead as inputs in the calculations the
scattering length a and the M3, obtained from the solution
of the Euclidean BS equation. Eq. (C3) is then solved for
the eigenvalue λ and the coefficients Aij.
The kernel Πðq0; qv; k0; kvÞ [see Eq. (38)], which enters

Eq. (41) has logarithmic singularities, and the analytic
expressions for the singular points are given by Eqs. (42)
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and (43). In the present work, the integrals over k0 and kv
are computed by dividing a given integration interval into
subintervals Ii ¼ ½ai; bi�, so that each subinterval contains
at most one singular point which is just one of the end
points of the subinterval. For each subinterval, the inte-
grand singularity is subsequently weakened by adopting a
change of variables of the form

Z
bi

ai

fðxÞdx ¼
Z ffiffiffiffiffiffiffiffi

bi−ai
p

0

2tfðai þ t2Þdt; ðC6Þ

for a subinterval with a singularity at ai, and

Z
bi

ai

fðxÞdx ¼
Z ffiffiffiffiffiffiffiffi

bi−ai
p

0

2tfðbi − t2Þdt; ðC7Þ

if the singularity is at the end point bi. The resulting
integrals involving smooth functions can then be performed
by Gauss-Legendre integration.

1. Numerical convergence

As mentioned, in this work the three-body BS equation is
solved by using an expansion of the amplitude vMðq0; qvÞ
in terms of a finite number of spline functions. Evidently, it
is important to check that the adopted number basis
functions is enough.
For this purpose, we show in Fig. 9 the real and

imaginary parts of vMðq0; qv ¼ 0.5mÞ, computed by using
different number of subintervals Nqv and Nq0 , correspond-
ing to the variables qv and q0. In the calculations we used
the parameters am ¼ −1.5 and B3=m ¼ 0.395. It is seen in
the figure that for Nqv ≥ 40 and Nq0 ≥ 80, the solution is
well converged.

2. Behavior of F ðM2
12Þ

For negative a, the function F ðM2
12Þ is nonsingular

and continuous. However, the function may change
rapidly in the neighborhood of the transition points
M2

12 ¼ 0 and M2
12 ¼ 4m2. In terms of q0 (for a given qv)

these are
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FIG. 9. Convergence of the real (left panel) and imaginary
(right panel) parts of the vertex function vMðq0; qv ¼ 0.5mÞ with
respect to the size of the basis, Nqv × Nq0 . In the calculations we
used B3=m ¼ 0.395.
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12Þwith respect to q0

for different fixed values of qv.
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q0 ¼ M3 � qv; q0 ¼ M3 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2v þ 4m2

q
: ðC8Þ

In the Fig. 10 the real and imaginary parts ofF are shown
as functions of q0 (for selected values of qv) in the case of
M3=m ¼ 2.605 corresponding to am ¼ −1.5. It is seen in
the figures that close to q0 ¼ M3 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2v þ 4m2

p
(i.e.,

M2
12 ¼ 4m2), the amplitude has a nonsmooth behavior.
Although the nonsmoothness exists, this was shown to not

be problematic in solving the equation. To show that,we tested
solving the problem proposing a factorization of the form

vMðq0; qvÞ ¼ F ðM2
12ðq0; qvÞÞṽMðq0; qvÞ; ðC9Þ

by introducing

Π̃ðq0; qv; k0; kvÞ ¼ F ðM2
12ðq0; qvÞÞΠðq0; qv; k0; kvÞ;

ðC10Þ

and obtaining an integral equation in terms of the function ṽM
insteadofvM. The resultingequationwas solvedbyexpanding
ṽM in splines. The result showed no significant difference
between the solutions with and without the decomposition,
with the convergence being achievedwith a similar set of basis
functions and integration points.
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