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We present a systematic calculation of the current jet production semi-inclusive deeply inelastic
scattering process at the electron-ion collider energy. Contributions from weak interactions are considered
which give rise to parity-violating effects. We consider the general form of the polarized electron beam
scattering off the polarized target which has spin 1. The calculations are carried out up to twist-3 level in
the quantum chromodynamics parton model by applying the collinear expansion where multiple gluon
scattering is taken into account and gauge links are obtained automatically. We present complete results for
structure functions and spin/azimuthal asymmetries in terms of the gauge-invariant transverse momentum
dependent parton distribution functions. Both the unpolarized and the polarized electron beam cases
correspond to 24 azimuthal asymmetries, in which 6 of them appear at the leading twist, while 18 of them
contribute at twist-3 level. In addition, we also calculate the parity-violating asymmetries which arise from
the interference of the electromagnetic and weak interactions.
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I. INTRODUCTION

Thanks to the asymptotic freedom of the strong inter-
action, many high-energy reactions can be studied within
the formalism of quantum chromodynamics (QCD) fac-
torization theorems [1], which separate the calculable hard
parts from the nonperturbative soft parts in the cross
sections. These soft parts often involve parton distribution
functions (PDFs) and fragmentation functions (FFs). Both
of them are important quantities in describing high-energy
reactions. When three dimensional, i.e., the transverse
momentum dependent (TMD) PDFs and FFs are consid-
ered, the sensitive quantities studied in experiments are
often different azimuthal asymmetries. These asymmetries
are measurable quantities which can be used to extract
TMD PDFs and FFs which give information about the
nucleon structure and the hadronization mechanism. If only
TMD PDFs are taken into account, one of the best reactions
to study them is the semi-inclusive deeply inelastic scatter-
ing (SIDIS) with current jet production process. Usually
one photon approximation is used to calculate the (SI)DIS
processes. When weak interaction is taken into account,
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considering the neutral current interactions, the inter-
mediate propagator can either be virtual photon (y*) or Z°
boson. Since weak interaction does not respect parity
conservation, we can study the asymmetries induced by
the parity-violating effects through weak interaction. This
process is called as parity-violating deeply inelastic
scattering (PVDIS). Parity-violating asymmetries [2,3],
arising from the interference of electromagnetic (EM) and
weak interactions, were first observed in DIS experiments
carried out at SLAC [4,5] and have been studied widely.
Recently, measurements have been carried out [6-18].
Proposals for precise measurements in the future are
available [19,20]. We further extend the consideration
into the SIDIS at the electron-ion collider (EIC) [21]
energies in this paper.

The EIC is a high-energy, high-luminosity collider with
the capability to accelerate polarized electron and nucleon/
ions. The high energy and luminosity combined with
polarized beams will provide a wealth of data in an area
never explored before. Therefore, it offers many oppor-
tunities to study spin effects and different azimuthal
asymmetries. Though the EIC is proposed mainly for the
study of strong interactions, it has the ability to measure
parity-violating quantities when weak interaction is taken
into account. Electroweak inclusive and semi-inclusive
DIS processes have been studied extensively [3,22-27].
However, systematic researches about structure functions
and spin/azimuthal asymmetries are still lacking. This
includes a full kinematic analysis for the cross section,
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QCD parton model calculations beyond the leading power
accuracy, the study of hadron polarization effects, etc.

Higher twist effects are often significant for semi-
inclusive reaction processes and TMD observables.
Especially for the case of twist-3 (sub-leading power)
corrections, they often lead to azimuthal asymmetries
which are different from the leading twist ones [28—30].
Thus, the studies of higher twist effects will give
complementary or even direct access to the nucleon
structure or hadronization mechanism. It has been shown
that the collinear expansion is a powerful tool to calculate
higher twist effects systematically by taking into account
multiple gluon exchange contributions. By using collin-
ear expansion, on the one hand, gauge links will be
generated automatically which make the calculation
explicitly gauge invariant. On the other hand, the for-
malism takes a very simple factorization form which
consists of calculable hard parts and TMD PDFs/FFs.
This will greatly simplify the systematic calculation of
higher twist contributions. Based on the collinear expan-
sion formalism, higher twist contributions to DIS and
electron positron annihilation processes have been stud-
ied extensively [31-41].

The rest of this paper is organized as follows. In Sec. II,
we make kinematic analysis for e”N — e~ ¢g(jet)X process
and present the differential cross section in terms of
structure functions. In Secs. III and IV, we present detailed
calculations of the hadronic tensor and the cross section,
respectively, up to twist-3 level in terms of the gauge-
invariant TMD PDFs in the QCD parton model. The results
including structure functions and spin/azimuthal asymme-
tries are given in Sec. V. Finally, a summary is given
in Sec. VL

II. THE PROCESS AND GENERAL FORM
OF THE CROSS SECTION

A. The semi-inclusive PVDIS process

To be explicit, we consider the current jet production
SIDIS process at EIC energies,

e (lLA)+N(p,S) = e (I')+qk)+ X, (2.1)

where N can be a nucleon with spin-1/2 or an ion, e.g., a
deuteron with spin-1. g denotes a quark which corresponds
to a jet of hadrons observed in experiments. In this paper,
we consider the case of the electron scattering off a spin-1
target. This gives us the opportunity to access also the
tensor polarization effects. We consider the neutral current
interaction at the tree level of electroweak theory, i.e., the
exchange of a virtual photon y* or a Z° boson with
momentum ¢ = [ — I’ between the electron and the target.
The standard variables for SIDIS are

0 q

Q q-, XB 2pq’ y pl’ s (p+)
(2.2)

The differential cross section is given by

a2 d3 l/dS kK
d AL (LA YW (q.p, S K ) — -
0 = Q4 ( ) (6] p ) (27[)32E1rEk/

(2.3)

The symbol r can be yy, ZZ, and yZ, for EM, weak, and
interference terms, respectively. A summation over r in
Eq. (2.3) is understood, i.e., the total cross section is

given by
do = do*? + do"* + do™". (2.4)
A,’s are defined as
A, = e,
Q4
A,y = =y,
# Q7 + M)+ ToMJsin20,, ¥
2e,0%(Q* + M2)
Ayz =5 qz 2 3 2Z- 2 = Xint- (25)
[(Q° + M3)* +T7M7]sin*20y,
The leptonic tensors are given by
LIZ};(l’ﬂe’ ll) = 2[lﬂli/ + lul//t - (l : l/)gﬂb] +2i/leg;wll” (26)
Lif (L 2e 1) = (¢ = e5A)Lin (L A, 1), (2.7)
LIZ(L A1) = (¢85 — c4A)LIL(L 2., 1), (2.8)

where ¢ = (c$)* + (c¢$)* and ¢§ = 2c%c. ¢ and c§
are defined in the weak interaction current J,(x) =
w(x)Cp(x) with T, =y,(cf, — cy°). Similar notations
are also used for quarks where the superscript e is replaced
by ¢. The hadronic tensors are given by

Wir(a

.S K) = (22)%* (p + g — K — px)

X

x(p. S| (0) K X) (k' X[ 73, (0) | p, S),

(2.9)
Wy (q.p.S. k)= (228" (p+q—K — px)
X
x(p.S|J7z(0)|K; X)(K':X|J%,(0)|p. S).
(2.10)
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Wiz(qa.p.S. k)= ) (21)°6*(p+q—K - px)
v

X
X (p. 8|75 (0) K" X) (k' X|T7,(0)| p. S).

(2.11)

where J7,(0) = y(0)y*w(0), J7,(0) = @ (0)Igy(0) with
I =y*(ct = clys). Wi¥(q, p, S, k') is related to the had-

ronic tensor W’ﬁ”(i")(q, p.S) for the inclusive process
e"N — e X by

&K

WEN00.5) = [ G W@ SK). (212

It is convenient to consider the k' -dependent cross
section, i.e.,

2 PUd*k
=2 A Lr (1A YW (g, p, S ) ot

do
st Ey

(2.13)

where the k. integrated TMD semi-inclusive hadronic
tensor is given by

v dk; v

In terms of the variables in Eq. (2.2), we have

AU y(s —M?)

2= dxdydy,
2E, 4 raya

dxdydy =~ ? (2.15)

where y is the azimuthal angle of T around 7, M is the target
mass which will be often neglected at high-energy limit.
Therefore, the cross section can be written as

do Y0
dxdydyd®k, — 20*

ZA L, (L 2, YW (g, p, S, K, ).

(2.16)

B. The general form of the cross section
in terms of structure functions

In considering the polarized reactions, the general form
of the hadronic tensor is divided into a symmetric and an
antisymmetric part, W* = WSk 4 jWA  where we have
omitted the subscript r=yy,ZZ,yZ for simplicity.
Furthermore, we have

Suy S 7. Suv S 7.Suv
WS — Zwajh;; + wah;j . (217)
0. 0.
v A v A v
W= WA WA

where /’s and h” ’s represent the space reflection

even and odd basic Lorentz tensors (BLTs), respectively.
They are constructed from available kinematical variables
in the reaction process. The subscript ¢ specifies the
polarizations.

It has been shown that a distinct feature for BLTs in
semi-inclusive reactions is that the polarization-dependent
BLTs can be taken as a product of the unpolarized BLTs
and polarization-dependent Lorentz scalar(s) or pseudo-
scalar(s); see [33] for the detailed discussions about the
description of polarizations for spin-1 hadron and the
construction of BLTs. We repeat the results here for
completeness. There are nine unpolarized BLTs given by

- {g"” L9 iy, Kk, Pé”kiz"}}’ (2.19)
fz@",-” - {s{”‘“’k I v} , gluark k”’}} (2.20)

Hy = {pg‘kg]}v (2.21)

71?,’;” = [{emar gmak' ), (2.22)

The subscript U denotes the unpolarized part, and p, =
p—q(p-q)/q* satisfies p,-q=0. We have also used
notations A% B¥} = A¥BY 4+ A¥B* and A¥BY) = A*B* — A¥B*.

As mentioned above, the vector polarization-dependent
BLTs can be constructed from the unpolarized BLTs and be
written as a unified form given by

i = { (e, SRS 5h ) (223)
i = { e (R SO AR} (2.24)
it = { e (s n ] 229)
e = (i - sy 57 ). 220

where X5 = e“ﬁ K\ oSrp, e‘ﬁ = &%, n,; A, is the hadron
helicity while S7 is the transverse polarization component.
There are 27 such vector polarized BLTs in total.

The tensor polarized part is composed of S;; -, S; -, and
Srr-dependent parts. There are nine S; ; -dependent BLTs;
they are given by

hf_’i”, = SLLh;SJ’i'yv (2-27)
R =8, (2.28)
R = S, (2.29)
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R =S, k. (2.30)

The S; 7 part can be obtained from Eqgs. (2.23)—(2.26) with
replacing St by S;r, i.e.,

it = { KL s R (231)
i = {0 sunhle 5} (2.32)
i = {0 s ) ey
i = {0 snhg 5y (234)
For the S; part, we have
hs = {Sk’k’ Shw KK 5/“’} (2.35)
E;ﬂTuI {Sk’k’ f]ﬂlv’ Sk py Sﬂ”} (2.36)
P { SKK i SEK Aﬂ”} (2.37)
A {Sk’k’h?}l:’/’ S"/"/h?,”"}, (2.38)

where SKK = &/, STTk’M, ke =K ' s~ There are 81 such
BLTs in total.

In expressing the cross section, we choose a coordinate
system so that the momenta related to this SIDIS process
take the following forms:

p* = (p+,0,0,),

2
l”—<1_yxp+, Q ,Q‘]_y,0>,
y 2xyp™* y

0* -
q" = (—xp+’2xp+,OJ_ )

K = k" =k ,](0,0,cos @, sin ). (2.39)

And the transverse vector polarization is parametrized as

§% = |57(0,0, cos g, sin ). (2.40)

For the tensor polarization—dependent parameters, we
parametrize and define them as in Ref. [42], i.e.,

Sir = |Scr|cosopr, (2.41)

SiT = |SLT| singyr, (2-42)

[Serl =1/ (Sir)* + (S1p)*. (2.43)
Str = =Str = |Srr| cos 207, (2.44)
STT = SyTxT = |Sy7| sin 277, (2.45)
|Srrl = £/ (S7)* + (7). (2.46)

After making Lorentz contractions with the leptonic
tensor, we obtain the general form for the cross section. We
give the general form of the cross section through weak
interaction channel. The cross section is given by

do** Ui
dxdydyd®®,  y0?* Wuu +2Wrw +4Wu L
1

+AeAWr L +SeWu e + 4SuiWe i
+ St Wur + 2|81 Wer
+ S Wurr + Ae|SerWe ot

+1SrrWurr + Ae|StrWear]. (2.47)

The total cross section including the electromagnetic and
interference terms will formally take the same structure. We
define functions of y which will be often used,

(2.48)

In expressing the cross section, these functions are equiv-
alent to variables C and e used in Ref. [29]. From

=(1=y=37)/(1=y+3y" +37°y*) and £ = (1 +
v?/2x)y*/(1 —€) with y =2Mx/Q, if neglecting the
hadron mass, i.e., y = 0, we have

K= A(y),
Ke = E(y),
K\/2e(1 + ) = B(y).

(2.49)

The explicit results for the cross section in terms of
structure functions for different polarization configurations
are
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Wyu =A)Wi y +EQ@)WE , + B(y) (sm (pWU 7 + cos qu‘szU"’l) +E(®y) (sm Zqus'" 2 4 cos 2¢WCL}’SL%"’)

+ C(y)Wyuy +D(y) (sin (pW?}"’{fz + cos (pWZO,SU(/)z>, (2.50)

Wiy = A(y)VNV{,U + E(y)WIL"U + B(y) (sin (pWSLiflfl + cos goVVCLOZ;’f) + E(y) (sm 2(pWLn2¢ + cos 2chCL(T§]2"’)

+ C(y)Wry + D(y) (sm (pWL iy 4 cos chcLoif’é) , (2.51)

Wy = A(y)W{,’L + E(y)WlL,’L + B(y) (sin (/)Wsli;_lL"’1 + cos (pWZ(iSL(’l’) + E(y) (sm 2¢W51n2¢p 1+ cos 2¢W0052¢)

+ C(y)Wy + D(y) (sin goW?}rfL‘”z + cos (pWﬁ})%) , (2.52)

Wi = A)WE, + E(yY)WE, + B(y) <sm WS 4 cos (sz"Z‘{’) FE®) (sm 2pW3% 4 cos 2¢WC°52"’)

+ COIWes + D) (sin Wi + cospWi3t ), (2:53)

Wy =AW .+ E0)WE . + B(y) (sin (pWS[i]I}L(”Ll + cos (pW‘{iﬁJ +E(y) (sin ZgoW;iffL") + cos 240W§,°’SLZL(”)

+ C(y)Wy i+ D(y) (Sin goW?,’?L(”LZ + cos ¢W§§J2L2) (2.54)

Wil = A(y)WZ’LL + E(y)WﬁﬁLL + B(y) (sin (pWSLiflL("Ll + cos (pWZOi(’L’1> + E(y) <sin 2g0WSLiflL21f” + cos 2¢WCL(?SL%¢>

+ C(y)Wpp + D(y) (sin (pWSLif’L{/’L2 + cos (pVV‘Z’Z’ZZ) (2.55)

Wy r = singg [B(y)Wifr[”f + D()’)Wslj“;f’zs} + sin(p + @g)E(y )WSLI,"(‘”+‘”S)
+ sin(p — @g) [A(y)WLT]’_S}n((’)_(”S) +E(y )Wés}n((ﬂ vs) 4 C)W sm}(p f/ls)}
+sin(2g — @s) [B(y)W?ffﬁ‘”‘“”S) + D(y)W?,ﬁ‘;Z;”‘W)} 1 sin(3¢ — g E(y) WnGo—os)
+cos s [BOIWE + DLW + coslp + 95 EGYWi? )
+ cos( = ) [A)WE )+ B(y) W00 4 ()i

+cos(20 = 95) [BOYWIH" ™ + DOWGE™| +cos(3p = g EG)WT ™, (2.56)

Wer = sings [ BO)WIYE + D)WY | +sin(p + 05 E() W50
+ sin(p — ps) [A(y)W{ Semes) L B(y) W) 4 ()W ¢s>]
+5in(20 = ) [BOIWIR"™ + DOWET™| + sin(3p - g EG)W ™
+ cosgs | BOIWTE + DOIWETE | + cos(o + o) EG) Wi
+ cos(p — @s) [A(Y)Wz CT°“(</’ ?s) T E(y )WL cos(p—gs) Oy )Wcm(t/i Ws):|

+ cos(2p = ) [BOWLT ™ + DOIWEE" | +cos(Bo - g EG)WT ™ (2.57)
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Wyt = singpr [B()’)W;i/r.llfpﬂ + D(y)W;}“]jﬂTﬂ + sin(¢p + (ﬂLT)E(y)W?]?é";’"’“')
o+ sin(p = grr) [AG) W) + E(y)WL e oWy |
+5in(20 = prr) [BOIWE " + DOYWE | + sin(3e = o) E() W
+ cospur [ BOIWGIH + D(y)WZ"fL‘”TL{] +cos(p + gur) E) WS
+COS(¢—¢LT)[ WG ™) 4 EGYWES ™) + Coy W ‘f’”)}

+ 00820 = i) [BOIWRLT ™ + DIWSEE™" | + cos(3p = u) EQWE ™", (2.58)

Wer =singrr [B(y)WSLifleTL]T + D(y)WSLif‘L"’TLz”} + sin(g + @.7) E(y)W??éz;wn)
+sin(¢ — ¢r7) [ AW L E(y) Wi o) o c(y)wine” 4"”)]
+5in(20 = gup) [ BOYWE™ + DOWILTE™ | + sin(o - g Q)W
+eosgur [BOIWELT + DOWELSS | +cos(o+ our) EG)WELE ™
+ cos(p = prr) [ADWL T 4 EQ)WLTY ™)+ o)Wy |

(2 L7) (2 LT 7708 (39—prr
"‘COS(Z(P—(PLT)[ (y)WCLOZT¢ v + D(y )W;OZTg ’ )} +COS(3¢_¢LT)E(Y)W2(?L(TW v ), (2.59)

Wy rr = sin(@ = 2¢77) [B (y)W?JI,I;(/}IZWT) + D(y )Wzr,l;q};zq]n)} + sin 2¢77E(y )W;}HTZI(/"}"
+sin(2p = 2077) A <y>WZ’,“}‘;<2¢‘2“TT> +E(y >Wf, e )Wy |
+sin(3p — 2017) [BOYWWEE) + D)W | + sin(4g - 20m) EG) W0
+ cos(p — 2¢7r7) [B(y)ij’sT(?l_zq’") + D(y)WZO’ST(?;z”’")} + cos 2¢TTE(y)W°,;STz;”TT
+c08(2 = 2grr) AW+ EQIWGS 4 COywe |

+ cos(3¢ — 2¢77) [B ‘;”TST(’; 20r1) 4 D(y)WczisT(;(’z)_zwr)} + cos(4¢ — 2(pTT)E(y)WE?QT(4(” 2011 (2.60)

Wer = sin(p = 2077) [BOW; 0™ + D)W | + sin 20 EG) W
+sin(2p = 2077) [AG)WL ) 1 EGW iR 1 w2
in(3p =2 B WSin(3fﬂ—2(l’TT) D WSin(3fﬂ—2(l’TT> in(4e —2 E WSin(4(I7—2(I7TT)
+sin(3p — 2¢77) | BOY)W, 171 + D)W, + sin(4g — 2¢77)E(y)W, 71
+c0s(p = 207r) | BOWSSH ™ + DOIWE | + cos 2000 E(n) Wi
+ cos 2¢ 2(pTT [A TCOS (20—2077) +E(y)WZ;-O;<2¢_2¢TT) + C( )WCOST(%Q 2¢TT):|

(3p-2 = cos(3p—2 = cos(4g—2
+cos(3¢ — 2¢77) [B ZOSTT‘I’) orr) 4 D(y)WCL?ST(Tf (p”)] + cos(4¢ — Z(pTT)E(y)WZ?ST(T"’ orr) (2.61)
For both unpolarized and polarized electron cases, there exist 81 structure functions, respectively, which correspond to the
number of independent BLTs. For unpolarized electron beam, there are 39 structure functions correspond to parity

conserved terms and the other 42 are parity violated. While for polarized electron beam, it is just opposite, i.e., 42 structure
functions are parity conserved and 39 are parity violated.
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",/*/ZU "/*/ZU ",/*/ZU "/*/Z” ,\”*/ZU '}'*/Z“
P P P P P P
(2) (b) (©)
FIG. 1. The first few diagrams of the Feynman diagram series

with exchange of j gluons, where j = 0, 1, and 2 for diagrams (a),
(b), and (c), respectively.

III. THE HADRONIC TENSOR IN THE QCD
PARTON MODEL

A. The collinear expansion

In the QCD parton model, we can calculate the hadronic
tensor in terms of gauge-invariant TMD PDFs. At the tree
level, we need to consider the contributions from the
series of diagrams shown in Fig. 1, i.e., the multiple gluon
scattering contributions.

After collinear expansion, the hadronic tensor is
expressed in terms of the gauge-invariant quark-quark
and quark-j-gluon(s)-quark correlators and calculable hard
parts [34,35,38],

Wr;w q, D, S, kl Zwrﬂl/ q, p,S, kl), (31)

where j denotes the number of gluons exchanged and ¢
Jic)s

denotes different cuts. After integration over &, WY S are
simplified as

- (0 1. 7«

Wi, p.S.K,) = 5 Te [d (k)] (32)

- 1 ()
Wi (g, p. 5. KL) = 1 Tr[bla (e k)] (39)

up to the relevant twist-3 level. The hard parts &,’s are

(0 (1

hj(/}’.)/ll/ = yﬂﬂyy/p+’ hJ(’}’)//;” = yﬂﬂyﬁ_ﬂyw (34)
Ropu = TifT/p*. B, = Thi/ ATL (3.5)
]’,}(O) —1? + ]’%(U/’ —T? },/1 3.6

vZ.pv Hﬂyv/p ’ yZ uv ﬂﬁ J_ﬂ}/l/’ ( . )

The gauge-invariant quark-quark and quark-gluon-quark
correlators are defined as

. tdy dPy, i
O (x, k) = /p 7(;71)3 YL jixpty =ik, 3,

X (N[g(0)L£(0, )y (y)IN), (3.7)

. prdyd*y, . . &
oy (x. k1) :/ (2n) =

X (N[ (0)D 1, (0)L(0, y)w(y)IN), (3.8)
where D, (y) = —id, + gA,(y) is the covariant derivative.
L£(0,y) is the gauge link obtained from the collinear
expansion procedure, which guarantees the gauge invari-
ance of the correlators.

B. Decomposition of quark-quark and
quark-gluon-quark correlators

The quark-quark and quark-gluon-quark correlators are
4 x 4 matrices in Dirac space which can be decomposed in
terms of the Dirac gamma matrices {1, iy, y%, y*y°, ic®y°}.
In the SIDIS process e”N — e~ ¢X, where the fragmenta-
tion is not considered, only the chiral even PDFs are
involved. Thus, we only need to consider the y* and the
y%y> terms in the decomposition of the correlators. We have

. 1 3
o0 = 3 [y“(bé()) + 7/")’5‘1)&0)] + - (3.9)
R 1 _

o) = 3 [y“(pﬁ) + y“rsrﬂﬁ)ﬂ +---. (3.10)

The TMD PDFs are defined through the decomposition
of the correlation functions. Following the convention in
Ref. [39], we have

0 _ k. -S
(I)r(l) =pi, (fl +Sefiee ——LM - ir
ki SLT SIY{"kT . 1 L

= MSrof 1+ MSirofir + Shrafrr — koo T

ki@kip [« Skp
— = SUfF St S ).

M
(3.11)

_ k,-S
Ty <_/1hglL + #gﬁ

kl'sLTgL Skkg — kialgt + Sirgiy)
M 1LT M2 17T la LLYLL
—MSyp,g9r — M SLTagLT - STTagTT - ihklagf
kiakip (s - Sy
=\ Sr9r = Strgir = O )
(3.12)

For the quark-gluon-quark correlator, we have

096017-7



KAI-BAO CHEN and WEI-HUA YANG

PHYS. REV. D 101, 096017 (2020)

ool = P, {klp (F4 + Stefhin) = MSrofar

ﬂ'hl’élpfj[‘
kl<ﬂkLﬂ> tan an S];ﬂT 1

T M Stfar + Scrfar +WdeT )

(3.13)

+MSyrpfarr + Syrpfarr —

~(1 . — 7
(me> =ipth, |:kJ_p(g¢J1_ +S10941.) + MStpgar

+ MS1r,9a0r + Shr,9arr + Mk 1,90

<k
MngT )

(3.14)

ki k -
- 7“;/;@ (S/Tigii_T - S’ngjn -

where S0 = $% k,, and S = eﬂlﬂSk" We have 1 S7
behaves as a Lorentz vector like S/ZT, 111/1 Skﬁ and Sﬁ behave

as axial vectors like S/;.
In fact, not all of these TMD PFDs shown in
Egs. (3.11)—(3.14) are independent. We use the QCD
equation of motion Py =0 to obtain the following
equations to eliminate PDFs which are not independent,

1.e.,:
xptdOr ¢’Im@, +),

— —fRegf!) - (3.15)

xpt®Or = —Re!) — Imgl!).  (3.16)
By inserting Eqgs. (3.11)—(3.14) into Eqgs. (3.15) and (3.16),
we can get the relationships between the twist-3 TMD
PDFs defined via the quark-quark correlator and those
defined via the quark-gluon-quark correlator. They can be

written in a unified form, i.e.,

fis — 945 = —x(f§ — ig5). (3.17)
where k=null, 1, S=null, L, T, LL, LT, and TT
whenever applicable.

C. The hadronic tensor results
Substituting the Lorentz decomposition expressions of
the parton correlators into the hadronic tensor expression
in Egs. (3.2) and (3.3), by carrying out the traces we can
obtain the results for the hadronic tensor up to twist-3. The
relevant traces we need are

p+Tr |:7ai:l§g?}w:| = _40,41/07 (3.18)

pTr [yaiz(z(gw} = —4c]0ua — 4T g, (3.19)

pTTr [yahf,z)w] = —4¢Y0ua — HCH Egpys (3.20)
pTTr [y ysiz(o) } = 4die (3.21)

a VYUY nauv» .
p+TI' [yaVSilg)Z),;w} = _4Cl3]Q/wa + 4ic£11£na,uw (322)
pTTr [yayshyz W} = —4ch O + 4ich Engy.  (3.23)
[ﬁhwuv] = _Sgpiyﬁw (3-24)

~ 1 —_

Tr [ﬂh(zzﬁu} = q%)_u ll 81C3 J_y W (325)
[ﬁhyz;w} = _861\1/5/11/ ny, SlCAg/iu_ll’ (326)
Te | firshiph| = i, (3.27)

s L :
Tr|fiyshi)), | = —8cidL, i, - Sicle 7, (3.28)
Te[firshiyh, | = —8cidlL i, - 8iche,n,.  (3.29)

Here the pyv-symmetric tensor 0,4 = 9ua — Gualy = Jually
It is noted that, we can get the pure EM terms by replacing
{c?,cd} - {1,0} and the interference terms by replacing
{ct, 1} - {c4, ¢t} from the expressions of the pure weak
interaction terms. Therefore, we only give the pure weak
interaction part W%, up to twist-3 level for simplicity. W4,
and W’;; can be obtained by the above-mentioned replace-
ment. We first present the hadronic tensor at the leading
twist (twist-2) level for completeness. It only comes from
the quark-quark correlator in Egs. (3.11) and (3.12). The
result is

ky-Sr .|

i/ Omy
Wt2 " - M 1T

—(cl{dy +icie)) <f1 +Seefier —

kk
+ LL Sur f_LT + S—Tg 1LTT>
M M

0w k;-S
- (Cé’gfi + ’Cilgli ) <_/1hglL + ggﬁ

M
ky S S )

+ . Jr— MzngT

(3.30)

The twist-3 hadronic tensor comes also from the quark-
gluon-quark correlator in Egs. (3.13) and (3.14). After
using the equation of motion in Eq. (3.17), we get the
complete hadronic tensor at twist-3 level,

096017-8



PARITY VIOLATING SEMI-INCLUSIVE DEEPLY INELASTIC ... PHYS. REV. D 101, 096017 (2020)

(p- q)W’;; _ [ch{u(—f} + l-cg]}%(—iu]}(]u S fh) - [ qk{ﬂ v~ iclk gv]}/lhfi - {c?S{Tﬂg]u} - icg’Sg‘EIV]}MfT

+ qS{ g+ chS%rq }MfLT + [ s ) + lcgsﬂq }fTT

k, -S k2 ok S _

Cl( i Tk{ﬂ vk _ 21_ S;ﬂqu}> ng( L Tk%q] 2J_ S[jl >:|f%
koS R oo\ ok S, K

C(lj( LMLTk{M v — 2l S?TQ”) —|—zc§<—l””k%q] 2”SLTC] >:|.}LT

R = e A A < 1
_ e (Mgk{uq} A st })+zcg(#kg4q] L )} fh

_ qu{uqy} _ icgk%vl}(gl 4 Sk - [c;’kj"zf} + zc"k“‘q”l}ﬂth [ ISk + iCi’S?é”]}MgT

- qS{” qy} - quSl[/,qu ]}MQLT - [C?ST{T”LI”} ’C?SI;D;EID]}QTT
k.- Sy K> ki -Sr- k2 .
k, -8 oK e, o (k. -S K
- [03( MLTk{” = 2&5{” }) +lC?<TLTkTq] 2MS%’rq]>]giT
ki S o Ko » k, - Sk K
- (S r e - st ) it (S - st o (3.31)

where g# = ¢* + 2xp*. Fromq-§=q-k, =0andq- Sy = q- S;7 = q- Sk;/M = 0, we see clearly that the full twist-3
hadronic tensor satisfies current conservation, g, W3 = g, W = 0.

+

IV. THE CROSS SECTION UP TO TWIST-3

Substituting the leading twist hadronic tensor in Eq. (3.30) and the leptonic tensor into Eq. (2.13) yields the leading twist
cross section. Here, we also give the expressions explicitly for the weak interaction part,

{1800 =274 (F1 + Suafine) = [190) = 2710) | 2w

de?%? _  aax
dxdydyd®k',  yQ?

+ Srlk e [sin(p = 05) (TE() = ATy = cos(p = s)(T() = 21 ()i |
~ ISurlk o [sin(0 = our)(TI() = 2T{ )ty + cos(0 = 0 (TY0) = AT i |

— [Sr7li g [sin(2p = 2077) (T () = AT )by = cos(20 = 207) (TH0) = ATEON f e | o (41)

where we have defined &, ,, = |I€l|/M, and |

Ti(y) = csclA(y) + 303 C(y), kinematic factors are also different. To make it transparent,

Ti(y) = TA(y) + cScIC(y) we can get the EM and interference cross sections by
oLy Y)Ta Y replacing the parameters in the weak interaction cross

Ti(y) = c§ciA(y) + c“ch(y), section according to Table I.

Ti(y) = c{cfA(Y) + c5cfC(y) (4.2)

TABLE 1. Relations of kinematic factors between weak, EM,

to simplify the expressions. 77(y)’s and T7(y)’s are related
plty xp i ! (y) ! (y) and interference interactions.

to space reflection even and odd structure, respectively, in

the cross section. For EM interaction, it requires ¢/ =0  Interactions A, LY Wi
and ¢/7 = 1. In this case, only T(y) and T%(y) are left, ~ ZZ X c§, c§ cf, o4
and T{(y) =A(y), T1(y ) C(y). For the interference 12 X = Xin CT: cvs C§ =4 C(fq_) cv, Cg -
terms, we need to set ¢4 = ¢4 and /7 = ¢¥/9. The X = =620 21620
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Similarly, substituting the twist-3 hadronic tensor in Eq. (3.31) and the leptonic tensor into Eq. (2.13) yields the twist-3

cross section. It is given by

dofy Ay
dxdydyd®k', yQ?

2XKM{kJ_M cos p(T4(y) = AT4()(f* + Seofiy) + kiysing(T4(y) — 4, T4() (9" + S1o9tL)

Ak g [sin @(T4(5) = A T4 = cos p(T4(v) = 2.T4(0))et |

+|ST|{sin¢s<Tz<y>—aeT2< D1 = cosgs(T40) = 2740 gr

+sin(2p — g)(T5(y) = 2.T5(y)) k22

18wl [sin o (T4) = 1. T40))gur + cos pur(T40)

2

+sin(2¢ — 1) (T4(y) 2

k
= A.T1(y)) =2 gi7 + cos(2¢ — @) (T

M £t — cos(20 — gg)(T4(y) = 2, T4(y ))kTMg%}

—leTg()’))fLT

q kzM
10) - 4,700 S 11

+ [S77] [Sm(éﬂ - 2(PTT)(T§] (v) = ﬂeTéf )k imgrr — cos(p — 2(PTT)(T3 (v) = /1873 ODkimfrr

) - Ky K3
= sin(3p = 207)(T40) = 2.740)) S gty = cos(30 = 2007)(T40) = TH0) S 1] | 4
|
where we have defined x,; = M/Q to simplify the ex-  and
pression. We have also defined .
T5,,(v) =A®),  Tg, () =0
q _ e l] ¢
130) = cietB0) +53D0), 1,00 =Co) T, 0) =0
T = ¢csD
20) = AAciB0) + c4eD), 74,00 =B().  T4,0)=0
Ti(y) = “cID(y), .
a0) = c3e5B0) + c1eiD0) 4,0 =D, TL0)=0. (46
Ti(y)=c ch(y) + c¢§ciD(y). (4.4)

It is also straightforward to obtain the interference and
EM contributions by doing the corresponding replace-
ments. To further unify the notations, we define T7,.(y)’s
and T{ (y)’s with r=ZZ, yZ and yy. For the weak
interaction, we have T¢,,(y)’s and T{,,(y)’s defined as
T?(y)’s and T?(y)’s given in Egs. (4.2) and (4.4), respec-
tively. For yZ and yy parts, according to Table I, we have

T6,2(y) = cycVA(y) + c4ciC(y),
Tg.yl(y) = CACV A(y) + VCA C(y).
Til.yZ(y) CACA A(y) + VCV C(y),
Ti’,yz()’) CVCZA()’) ACV C(y),
Tq z()’) cyeyB(y) + cqeiD(y),
Tg,yZ(y) CACV B(y) + ZD()’),
Tg,yz()’) CACAB(Y) cieyD(y),
T{,2(y) = cyciB(y) + c5eiD(y) (4.5)

We see that only half of the terms will survive if only EM
interaction is considered.

V. STRUCTURE FUNCTIONS AND AZIMUTHAL
ASYMMETRIES RESULTS UP TO TWIST-3

In Sec. II, we presented the general form of the cross
section in terms of structure functions. In the previous
section, we also presented the cross section in terms of
the gauge-invariant TMD PDFs. They match to each
other. In this section, we present the structure functions
and azimuthal asymmetries results in terms of the
TMD PDFs.

A. Structure functions results

We first present the structure functions in terms of gauge-
invariant PDFs. For the leading twist part, we have

Wiy (5.1)

(5.2)

Cfc?fh

e .d
Wyu = c5e5f1.
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5 7Z - e .q
Wiv= _C3clf1,
W __ e l]f
LU = —C1C3] 1,
s 7Z e q
Wy = —cic39iL,
W _ _ e d
UL = —C3C191L»

T _ e, d
Wi = 563911,
1% _ e q

LL = C1C191L5
T _ e d
Wy = cicifice

_ q
Wyrr = C§C3f1LL,

Wi =—eseifiie,
WL,LL = —Cfcgflw
WIT],‘CTOS((/)—lﬂs) — _cfcng_Mgf_T’
W(;;;gw—(ﬂs) — _Cgc?kJ_Mgf_T’
WIT],.sTin((p—fﬂs) =cclkyyf 1lT’
W;}%qa—f/}s) =c§ CgkLMfllT’
W{:cTos(w—évs) _ cgcgklMgf_T’

os(p—ps) _ e 4 1
WCL,T = cicikimGirs

WZ:sTin(qv—fﬂs) = —c§ctkypfip
W??T(qo—(ﬂs) _ _c?cng_Mff_T’
WD,CLO;W_WT) _ —CTC?kJ_Mf{_LT’
W([:;S[({(]/Z‘V’LT) — _cgcng_Mff'LT’
WZ’,SLinT(w_WT) _ _cfcng_Mgf_LT’
Wii/r’léq}—wr) _ —cgcrkaMgllLT’
WzioTs(w—fﬂLr) _ cgci’klef_LT’
WcL?sL(?—fﬂLT) = STk fiir
W{:zir;w_(ﬂ”) — cgcgkLMgllLT’
WSLi,L((;_W) = c{clk imgiir

(5.3)
(5.4)
(5.5)
(5.6)
(5.7)
(5.8)
(5.9)
(5.10)

(5.11)

T,cos(2p—2¢rr e
Wu,CTO;( P=20r7) _ el f i (5.29)
Wcos(2¢—21ﬂrr) —ceclr? L 5.30
UTT = cseski i (5.30)
WYJ.?I¥2¢—2¢TT) _ —CfcgkngllTT’ (5.31)
~ sin(2—2
Wi}r};Tw orr) _ —c5cl 2 gty (5.32)
W{:cTo;(z(p—zwr) = —ccIR3  f (5.33)
Wcos(Z(p—Z(ﬂrr) — —cecik? L 5.34
LTT = —c{e3k y firrs (5.34)
Wz.;srir;(2(/l—2fﬂrr) _ CgcgkngllTT’ (5.35)
WsLinT(2T(p—2rprr) _ CTC?knglLTT' (5.36)

In total, we have 36 structure functions which contribute to
(5.12) the leading twist. If only the EM interaction is taken into

account, only one fourth of them which are related to
(5.13)  c$el =1 are left.

(5.14)
(5.15)
(5.16)
(5.17)
(5.18)
(5.19)
(5.20)
(5.21)
(5.22)
(5.23)
(5.24)

(5.25)
(5.26)

(5.27)

(5.28)

096017-11

For the twist-3 part, we have

Wi = —2xkyk ye§el f, (5.37)
W?}gl = =2xkpk ycécdgt, (5.38)
Wt = —2xkyk | yc§eld fr, (5.39)
Wzl,n{}’z = =2xxpk ycselgt, (5.40)
W = 2xkpk  ycsel f (5.41)
WbLmljpl = 2xkpk ycicigt, (5.42)
WioHh = 2xkpk sl ft, (5.43)
Wit = 2xkyk yciclgt, (5.44)
Wi = 2xiyky pcicgr, (5.45)
Wire = —2xiyky et el fE, (5.46)
W;ﬁ‘g = 2xkpk ycielar, (5.47)
Wi'ts = =2xkpk sl f . (5.48)
W = =2xipk  ycscdor, (5.49)
W?% = 2xkpk L mesel frs (5.50)
Wis = =2xipk e clor, (5.51)
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Fsing e qrl
Wi = 2xkpk S es fis

W(l:;),SL(/ZI = _ZxKMkJ_MCﬁC(]Ifi'L’
W;}?L(pu = —2xkpk S el
Wi, = —2xiyk  ycsed fip
W?ﬂ”m = —2xkpk pcselar

qcosg e 4l
Wit = 2xkpmk i pme5ei frps
sing e d. 1
Wi = 2xkpk Lmcse3 9t
Fcosp eyl
Wi i1o = 2xkpmk i pmeiesfips

sing e .qd, 1
Wi i = 2xkyk pcicigr,,

77008 s e 4
Wort = 2xKpcic3gr,
singg __ e .q
Wort = —2xkycicifr,

77008 s __ e 4
Wors = 2xkycseigr,
singg __ e .q
Wy = —2xkycsesfr,
WCOS(2</1—(/’S) _ k2 cecd gk
U.T1 = XKpmK7 p€1C397
Wsin(Zrﬂ—ws) _ K2 cecd £
U.T1 = —xkykiycicifT,
WCOS(Z(P—%) _ k2 e qd .1l
U.T2 = XKpmK] pC3€1 975
Wsin(Zrﬂ—ws) _ K2 cecd £
U.T2 = —XKp k] €563 /7
cosps __ e .4
WL,T] = —2xkyc§c39r,
F/sings e .q
Wi = 2xkycesei fr,
WEosPs

e .q
LT2 — —2xkpcicigr,

5 sings e.q
Wi = 2xkycicsfr,

cos(2p—ps) __ 2 e d,L
Wi = —xKky k] C5¢397
WSiH(Zlﬂ—lﬂs) _ K2 cecd L

L.T1 = XKy k7 5 ST

cos(2p—ps) __ 2 e d, L
Wi = —xKky k] pCicigr,

57510 (20—ps) 2 e dgrl
Wi = XKy k7 i3 [,

(5.52)
(5.53)
(5.54)
(5.55)
(5.56)
(5.57)
(5.58)
(5.59)
(5.60)
(5.61)
(5.62)
(5.63)
(5.64)
(5.65)
(5.66)
(5.67)
(5.68)
(5.69)
(5.70)
(5.71)
(5.72)
(5.73)
(5.74)
(5.75)

(5.76)

096017-12

WZO’SL(”TLIT = =2xkpcicl frr, (5.77)
Wi = iy el cdgrr, (5.78)
Wy = =2xkpesei fur. (5.79)
Wi = =2xkpcselgor, (5.80)
Wt ) = —xxukdyescifty,  (5.81)
Wyt ™ = =yl yeielaty,  (5.82)
Wijo,sﬁ(g_(pu) = _XKMkiMcgcgffP (5.83)
Wslifr.lizT(ﬂz_%T) = —XKMkiMC?’fgir’ (5.84)
W = 2xiyciel frr. (5.85)
WsLifleTLlr = 2xKkpC5CigLr, (5.86)
WL = 2xkpc§ci frr. (5.87)
W??L[/)TLzT = —2xkycicigLr, (5.88)

WCL(?SL(%(IP_{/)LT) = xKMkiMcgc(IIfi_T’ (5.89)

W) = xiy kL csed gt (5.90)

~ (20—
WG 1) = ik yeScdfie,  (5.91)

Wi = xk yesclatr, (5.92)

W.EZST(?;2¢1'1'> — 2xKMkLMCTC?fTT’ (593)

cos(p—2 e
WU,T(?Z o) = 2xipkpese frrs (5.94)

Wii/[_l%_lz[p”) = —2xKkyk Ly ci 3 grrs (5:95)

W?JI,];(/}EZWT) = —2xkykypcselgrr, (5.96)

cos(3p—2¢r7) __ 3 e.qdrl
Wy rr = xky k| p 5y frs (5.97)

s(3p—2¢7r e
W(l:?.T(Tg o) = xKMkiMC3cgf%T’ (5.98)

W?}%«J}—an) = XKMkiMCTng%T’ (5.99)

Wt 0m) = xiy ke yycbclorr, (5.100)

Wﬁ(ﬁz{p”) = =2xkykycselfrr,  (5.101)
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~ -2

WCL(?;"(T(”Z orr) _ —ZXKMkJ_MC{icngT’ (5.102)

W?n;¥I2¢11) — ZXKMklMcgcggTT’ (5103)

WSLiflT(¥;2</’TT) — 2XKMkJ_MC?C?gTT’ (5104)

5 3p-2

WCLOT(T‘I/’ orr) —xKMkiMcgc?fJfT, (5.105)

WCL?S(%—ZWT) = —xiy k3 el frr, (5.106)

Wsin(3(/7—2(/77‘7‘) I B ooceclok 5.107
L.TT1 = —xky ki ycsesgrr,  (5.107)

Wsin(3(/)—2(ﬂrr) — _ i3 ecd g4 5.108
LTT2 XKMRImC1 971+ (5.108)

In total, we have 72 structure functions contribute at twist-
3. Also, one fourth of them are left if only EM interaction is
taken into account.

One can get the full structure functions results measured
in experiments by summing the weak, EM, and interference
terms together. To this end, we would better redefine the
structure functions to include also the kinematic factor A,’s.
The results is simple to get, e.g.,

Wy = —2xkykm(eg + cfely + cf ) f. (5.109)

B. Azimuthal asymmetries from unpolarized
electron beam

In addition to structure functions, we also calculate
the azimuthal asymmetries results. We consider both the
unpolarized beam (4, =0) and the polarized beam
(A4, = £1) cases. They contribute to different azimuthal
asymmetries results. We first consider the unpolarized case.
The azimuthal asymmetry is defined as, e.g.,

[ d&singdy

(sing)yy = T dodg (5.110)

for the unpolarized or longitudinally polarized target case,
and

_ [ dzsin(g - gs)dgdys
[ dzdpdeg

(sin(p — @s))u.r (5.111)

for the transversely polarized target case. dé is used to
denote W and deg~dy in which integration
corresponds to take the average over the outgoing elec-
tron’s azimuthal angle [29,43]. The subscripts such as
(U, T) denote the polarizations of the lepton beam and the
target, respectively. At the leading twist, there are six
polarization-dependent azimuthal asymmetries which are
given by (the sum over r = ZZ, yZ, and yy is implicit in the
numerator and the denominator, respectively)

ArTg,r(y) %T

(sin(p — @s))ur = kim AT () (5.112)
(cos(p — f/’s)>U,T = _kiva (5.113)
(sin(¢ — €0LT)>U,LT = _kLM%’ (5.114)
(cos(¢ = prr))urr = _kLM%7 (5.115)
(sin(2¢ — €0TT)>U,TT = _kiw/%’ (5.116)
(cos(2p — @r7))yrr = K4 ArTg’r(y)fllTT (5.117)

M 2ArTg,r(y)fl .

We find that there are three parity-violating azimuthal
asymmetry modulations among the six in total. If only
electromagnetic interactions are considered, only three
parity conserved modulations are left. At twist-3, we have
18 azimuthal asymmetries. They are given by

ATS,(v) -
EVRPNLTAE VLSO P
(cos @)y y = —xky MATE (v) f ( )
AT, () g*
Sing)y y = —XKyK iy g s > 19
(sing)y y MEMATE () 1 ( )

ArTg,r(y)fl - AhArTg,r(y)gll‘

(cos (p>U,L = —xKpk 1y

ATE . (9)f ’
(5.120)
(sing)y ; = —xkpk | A,Tg‘,(y)gl il lhArTg’,(y)fi
= —XKyK1m )
vl ArTg,r(y)fl
(5.121)
(cos ¢) = —xkyk LMA,Tg‘,(y)(fL + Suefin)
UL ArTg,r(y)fl ’
(5.122)
(sin ) — xkykiy ArTg,r()’)(QL + S11971)
UL ATS, (V) ’
(5.123)
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(cos@s)yr = XKM%, (5.124)

(sin@g)yr = —xk M% (5.125)

(cos(2¢ — @s))y.r XKMkLM%7 (5.126)
(20 = )y = -k g I (5120
(cos €0LT>U,LT —XKpy % (5.128)

(sin (ﬂLT>U,LT XKMW (5.129)
(cos(2¢ — (PLT)>U,LT = “MhM%v (5.130)
(sin(2¢ — (PLT)>U,LT XKMkLM%’ (5.131)
{cos(ep — 2¢TT)>U,TT = xKMkLM%’ (5.132)
(sin(@ = 2077))y.rr = —XKMkLM%’ (5.133)
(cos(3¢ = 3¢rr))urr = = xkyrkd % . (5.134)
(sin(3¢ — 2(pTT)>U,TT xicpkd % (5.135)

H2A,TE, (0 f

There are only ten azimuthal asymmetries left if the weak
interactions are excluded.

C. Azimuthal asymmetries form polarized
electron beam

For the case of the polarized electron beam, we obtain
similar results as the unpolarized case. They have one-to-
one correspondence. At the leading twist, we have six kinds
of asymmetries,

ArT‘I 1
(sin(@ — @g)) .7 = —Ack 0,0 i

s 5.136
Haonrg, o 0

AT, ()97
— — _ rvw /I 137
<COS(§0 ¢S)>L,T j‘e’kJ_M 2ArT(q)r(y>f1 ) (5 3 )
(sin(¢ — @r7)) =1k IM (5.138)
@ —@rr))L LT eK1m 2ArTo,r( )fl .
ArTg (y)flLLT
_ — L ore Y L .1
(cos(e (PLT)>L,LT Ak 1y 2ArT3,r(y)f1 ., (5.139)
AT, (v)gr
in(2¢p — a3, =L T (5140
(sin(2p — @77)) L 77 = Akl y oA Tgr( i ( )
A Tq 1
(€052~ rr)) g7 = ~1ekdy 0OV s )

M 2A Tgr( )fl ‘

We find that three parity-violating azimuthal asymmetry
modulations among the six in total are left if only electro-
magnetic interactions are considered. At twist-3, we have 18
twist-3 azimuthal asymmetries. They are given by

ATS, ()
_ i A 5.142
{cos @)y = Aexkpyk iy AT, (v)f1 ( )
AT, (y)g*
. ek A0 5.143
(sin @)y = Aexkyk Ly A TG, () ( )
(cos @)y, = Aoxkpk AT, () = WA TS, (v)gr
Pl = AeXKyK 1M A,Tg,(y)fl ’
(5.144)

AT, (gt + AT, (0)ft

(sin (P>L,L = AeXKprk 1

A TS, (90)f ’
(5.145)
(cos ) ek AT, () (Y + S fts)
P)LLL eXKpK 1M ArTZ,,(y)fl )
(5.146)
(sin ) o kk ArTg,r(y)(gl + 811971
P)LLL eXKMK LM ArTZ,,(y)fl >
(5.147)
ArTg (y)gT
cos ¢ = — A XKy —— 5.148
< S>L.T MArTg’r(y)fl ( )
A, T
(Sin@g); 7 = AeXk ﬁ (5.149)

A T(q)r(y)fl
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A,TS,(y)g7

ArTg,r(y)gTT

(sin(g — 2<PTT)>L,TT = AeXKpk (5.157)

2¢ — = K2 A q ’
<COS( @ §0S)>L,T = eXKMKT 24 Tgr< )fl s (5 50) ArTO.r(y>f1
A Tg ) frr
AT? (cos(3¢ = 3077)) 111 = —AeXKpkd gy
(sin(20 — gs)) 1 = A xKMkLMM (5.151) S M2A,TE, (0]
2A TO r( )fl
(5.158)
AT, () fLr AT (v)gh
(cOS Q7)1 = AeXKy (5.152) in(3o — 3 - P Arl3 \Y)9rr
ATE .0 (sin(3¢ = 3077)) L 77 = —AeXKuk 24, 0V f1
5.159
(sin @7, 17 = Agxx ATS,O0)ger (5.153) o
LT = AXKM g TN .
LT ArTg,r(y)f 1 There are only ten azimuthal asymmetries left if the weak
interactions are excluded.
Tg r( )fLT
(c0s(2p = pur))vur =Aeukly 24,15, (0)fr (5.154) D. Parity-violating asymmetries
With the advent of highly polarized electron beams, parity
AT, () g violation measurements have become a standard tool for
(Sin(2p—@r7)) 1 L1 = AeXKkprk A TE (), (5.155)  probing a variety of phenomena, for example, the Standard
0.V 1 Model, the role of strange quarks in the proton and the
() neutron distribution in nuclei. The parity-violating asym-
rt2, V1T in DIS offers a unique window into the interestin
cos(gp —2 = —A . xKkpk e metry n ! g
(cos(g = 2¢rr))rrr MELM AT, (v)f1 physics. This asymmetry is sensitive to the hadronic struc-
ture of the nucleon and to the Standard Model couplings,
(5.156) L . .
e.g., ¢4, c3. To be explicit, it is convenient to consider the
inclusive DIS. Integrating over d°k’, yields
de?? aem)( _
e = S T0) = ATHOU )+ Suafrua (0] = (TH0) = 270D aga ()
+|Sr|[Sm<ﬂs( T3(y) = 2 T5(9) fr(x) = cos ps(T5(y) — A.T(y )) 7(%)]
+ |SLTHSH1€0LT<T (V) = 2T5(y)gLr(x) + cos o r(T5(y) — AT SONSLr(x)]}- (5.160)
I
The complete differential cross section is given by APV — UincT6,2(V) + T4 ()] f1(x) (5.163)

doy, _ doff + doly + dof]
dxdydy dxdydy '

(5.161)

To calculate the parity-violating asymmetries, we assume
that the lepton is longitudinal polarized. Here we introduce
the definition of the parity-violating asymmetry,

do,(4, = +1) —do,(A, = —1)
da}g ’

APV = (5.162)

where the subscript ¢ denotes the target polarization, super-
script PV denotes parity violating. First of all, we take the
target as unpolarized. According to the definition, we have

eéA(y)fl (x) ’

which is consistent with the calculation in Ref. [2] at low
energy.

It is also interesting to calculate the parity-violating
asymmetries when the beam is unpolarized while the target
is polarized. For the longitudinal polarized target, we have

[ZintT?,yZ(y) + 4T (V)12 (x)
egA)f1(x) ’

APV = (5.164)

i TG, () + 26 f12L(%)
egA(y)f1(x) '

PV _
ALL__

(5.165)
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For the transverse polarized target, we have

5,200 + 2T (0)]gr (x)

A= GAnhm 0 10
a5y = b(ing,yze(éyfz(;);lex()y)]fr(X)’ (5,167
AnL — b(intTg,yZe(gf)‘g;gcy;%i))])]fLT<x)’ (5.168)
At = wwi ) s 16

Parity-violating asymmetries given in this part combine
the electroweak and QCD theories. Measuring these
asymmetries can be important ways to examine electro-
weak and QCD theories simultaneously.

VI. SUMMARY

In this paper, we present a complete and systematic
calculation of the parity-violating current jet production
SIDIS process at the EIC. We consider both the EM and
weak interactions. We presented the general form of the
differential cross section of this process in terms of
structure functions by making full kinematical analysis.
In QCD parton model, the calculations are carried out by
applying the collinear expansion where the multiple gluon

scattering is taken into account and gauge links are
obtained systematically and automatically.

We consider both unpolarized and polarized electron
beams scattering off polarized spin-1 target. There are in
total 36 structure functions that contribute at twist-2 and 72
structure functions that contribute at twist-3 for different
polarization configurations. We also presented the azimu-
thal asymmetries results. For both unpolarized and polar-
ized electron beams cases, there are 24 azimuthal
asymmetries up to twist-3, in which 6 of them correspond
to the leading twist TMD PDFs while the other 18
correspond to the twist-3 TMD PDFs. Among these
structure functions and azimuthal asymmetries results,
only one fourth of them will left if only electromagnetic
interaction is take into account. The remaining others are all
generated through weak interaction and its interference
with EM interaction. We also calculate the parity-violating
asymmetries for weak interaction which is considered.
Though the EIC is proposed mainly for the study of strong
interactions, it has a unique ability to measure parity-
violating quantities.
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