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We revisit the chiral anomaly in the quantum kinetic theory in the Wigner function formalism under the
background field approximation. Our results show that the chiral anomaly is actually from the Dirac sea or
the vacuum contribution in the un-normal-ordered Wigner function. We also demonstrate that this
contribution modifies the chiral kinetic equation for antiparticles.
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I. INTRODUCTION

The chiral anomaly is a novel and prominent quantum
effect in particle physics and can only be understood at the
quantum field level. The kinetic theory is a bridge to
connect the macroscopic physical magnitude to the micro-
scopic particle motion in classical phase space. Hence, it is
a highly nontrivial task to incorporate the chiral anomaly
into the kinetic approach in a consistent way so that the
chiral kinetic theory is properly formulated. In recent years,
a considerable amount of work on the chiral kinetic theory
has been published where the chiral kinetic equation has
been derived from various methods such as the semi-
classical approach [1–7], the Wigner function formalism
[8–13], the effective field theory [14–17], and the world-
line approach [18–20].
In these publications, most works connect the chiral

anomaly in the chiral kinetic theory with Berry’s phase or
Berry’s curvature. In contrast, it has also been pointed out
by Fujikawa and co-worker [21–23] that topological effects
due to Berry’s phase and the chiral anomaly are basically
different from each other. The Berry phase arises only in the
adiabatic limit, while the chiral anomaly is generic and
independent of kinematic limits. This distinct difference
has been further demonstrated byMueller and Venugopalan
in Refs. [18,19] where they found that the Berry phase
arises from the real part of the world-line effective action in
a particular adiabatic limit, while the chiral anomaly is from

the imaginary part. In Ref. [24], Hidaka et al. performed the
derivation of the chiral anomaly by using the nontrivial
boundary condition of a distribution function. Recently, in
our paper with other collaborators [12], we found that some
singular boundary terms also result in a new source term
contributing to the chiral anomaly, in contrast to the well-
known scenario of the Berry phase term.
It is clear that such a controversial situation needs to be

further clarified with a more fundamental approach. In a
very recent paper by Yee and Yi [25], the authors try to
clarify the relationship between the chiral anomaly and the
Chern number of the Berry connection via the conventional
Feynman diagram. In this paper, we try to clarify this
situation from the quantum transport theory based on
Wigner functions [26–29], a first principles approach from
quantum field theory. To do this, we will start with the basic
Wigner equations and derive the chiral anomaly step by
step so that one can see clearly where the contribution
comes from. The results obtained show that the Dirac sea or
vacuum contribution that originated from the anticommu-
tation relations between antiparticle field operators in the
un-normal-ordered Wigner function cannot be dropped
casually. This unique term that comes directly from the
quantum field theory plays a central role in generating the
right chiral anomaly in quantum kinetic theory both for
massive and massless fermion systems. The coefficient of
the chiral anomaly derived this way is universal and is
independent of the phase space distribution function at zero
momentum. We will also present the updated chiral kinetic
equation for antiparticles with Dirac sea contribution.
The rest of the paper is organized as follows: In Sec. II,

we give a very brief review of the Wigner function
formalism of the relativistic quantum kinetic theory and
present especially those equations that will be used in
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deriving the chiral anomaly. In Sec. III, we derive the chiral
anomaly fromWigner equations and show in particular that
it is generated from the Dirac sea contribution. In Sec. IV,
we exhibit how the chiral kinetic equation is derived from
Wigner function formalism at the chiral limit and give
the updated chiral kinetic equation for antiparticles with
Dirac sea contribution. Lastly, we summarize the paper
in Sec. V.

II. THE WIGNER FUNCTION FORMALISM

We recall that the quantum kinetic theory based on
Wigner functions is a first principles approach from
quantum field theory. Here, the Wigner matrix Wðx; pÞ
is the basic unit, and for spin-1=2 fermions, it is defined as
the ensemble average of gauge invariant nonlocal bilinear
Dirac spinor field,

Wαβ ¼
Z

d4y
ð2πÞ4 e

−ip·yhψ̄βðxþÞUðxþ; x−Þψαðx−Þi; ð1Þ

where x� ≡ x� y=2 are two space-time points centered at
x with separation y, and U denotes the gauge link along the
straight line between xþ and x−,

Uðxþ; x−Þ≡ e
−i
R

xþ
x−

dzμAμðzÞ: ð2Þ

Here we did not define the ensemble average with normal
ordering for the Dirac fields because the Wigner equa-
tion (3) below derived from the Dirac equation must be
satisfied by the Wigner function without normal ordering
instead of with normal ordering [30]. In addition, we did
not include the path ordering in the definition of the gauge
link above since we restrict ourselves to the background
field approximation in this work. The electric charge has
been absorbed into the gauge potential Aμ for brevity.
Under the background field approximation, we obtain the
equation satisfied by the Wigner matrix from the Dirac
equation as given by [28]�

γμ

�
Πμ þ i

2
Gμ

�
−m

�
Wðx; pÞ ¼ 0; ð3Þ

where γμ’s are Dirac matrices and m is the particle’s mass.
The operators Gμ and Πμ denote the nonlocal generaliza-
tions of the space-time derivative ∂μ

x and the momentum pμ,

Gμ ≡ ∂μ
x − j0

�
1

2
ℏΔ

�
Fμν∂p

ν ; ð4Þ

Πμ ≡ pμ −
1

2
ℏj1

�
1

2
ℏΔ

�
Fμν∂p

ν ; ð5Þ

where j0 and j1 are the zeroth and first order spherical
Bessel functions, respectively. The triangle operator is

defined as Δ≡ ∂p · ∂x, in which ∂x acts only on the field
strength tensor Fμν but not on the Wigner function.
We emphasize once more that in the definition of the

Wigner function given by Eq. (1) and the Wigner equation
given by Eq. (3), there is no normal ordering in the Wigner
matrix. We will illustrate that this point plays a central role
in giving rise to the chiral anomaly in the quantum kinetic
theory. The Hamiltonian derivation of the chiral anomaly
from the physically correct normal ordering can be found
in [31].
The Wigner equation given by Eq. (3) is a matrix

equation that actually includes 32 equations for 16 inde-
pendent components in the Wigner matrix. These 16
components are classified as scalar F, pseudoscalar P,
vector Vμ, axial-vector Aμ, and tensor Sμν components
according to the Lorentz transformation. They are all real
functions of x and p defined by the Γ-matrix expansion of
Wðx; pÞ, i.e.,

W ¼ 1

4

�
Fþ iγ5Pþ γμVμ þ γ5γμAμ þ

1

2
σμνSμν

�
: ð6Þ

The chiral anomaly is a quantum effect that can be
studied using the semiclassical expansion in terms of ℏn. It
has been shown that [32], for massive particles, up to the
first order of ℏ in the expansion, we can choose F and Aμ

as independent dynamical Wigner functions and sort the
32 Wigner equations as follows: Eleven of them provide
explicit expressions of other Wigner functions in terms
of F and Aμ,

P ¼ −
ℏ
2m

∇μAμ; ð7Þ

Vμ ¼
pμ

m
F −

ℏ
2m2

ϵμνρσ∇νpρAσ; ð8Þ

Sμν ¼ −
1

m
ϵμνρσpρAσ þ ℏ

2m2
ð∇μpν −∇νpμÞF; ð9Þ

five of them give transport equations,

pμ∇μF ¼ 1

2m
pμΔF̃μνAν; ð10Þ

pν∇νAμ ¼ FμνAν þ 1

2m
pνΔF̃μνF; ð11Þ

where∇μ ≡ ∂μ
x − Fμν∂p

ν , ϵ0123 ¼ 1, and F̃μν ¼ ϵμναβFαβ=2,
and another five provide mass shell equations with the
following general solutions:

F ¼ δðp2 −m2ÞF þ ℏ
m
F̃μνpμAνδ0ðp2 −m2Þ; ð12Þ

Aμ ¼ δðp2 −m2ÞAμ þ
ℏ
m
F̃μνpνFδ0ðp2 −m2Þ; ð13Þ
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whereF andAμ are arbitrary functions that are nonsingular
for on-shell momentum p2 ¼ m2. They can be taken as the
fundamental functions replacing F and Aμ in practice.
Finally, there is another constraint equation for the axial
vector component Aμ,

pμAμ ¼ 0; ð14Þ

and the other ten Wigner equations are satisfied automati-
cally, and thus are not needed to consider in practice.
We will now use these results to derive the chiral

anomaly in the following. Other work on quantum kinetic
theory for the massive fermion can be found in
Refs. [33–38].

III. THE CHIRAL ANOMALY

Using the results presented in Sec. II, we can calculate
the chiral anomaly to the first order in ℏ. In this section, we
present the calculations step by step. To do this, we start
with the expression of P given by Eq. (7). It should be
mentioned that this expression can actually hold up to the
second order of ℏ. By inserting the general solution of the
mass shell equation for Aμ given by Eq. (13) into Eq. (7)
and integrating over the four-momentum p, we obtain the
divergence of the axial current j5μ as

ℏ∂μ
xj5μ ¼ −2mj5 þ ℏX −

ℏ2

8π2
CFμνF̃μν; ð15Þ

where j5μ ¼
R
d4pAμ, j5 ¼

R
d4pP, and

X ¼ Fμλ

Z
d4p∂p

λ ½Aμδðp2 −m2Þ�; ð16Þ

C ¼ −
2π2

m

Z
d4p∂λ

p½pλFδ0ðp2 −m2Þ�: ð17Þ

We note that though there is an m in the denominator in
Eqs. (7)–(11), the expression of Eqs. (15) and (16) is finite
in the chiral limit m ¼ 0 because F ∝ m. The result after
taking the massless limit is consistent with the one directly
from the chiral kinetic theory [8,9,12]. Therefore, Eq. (15)
actually holds for both massive and massless fermions.
We now calculate these two coefficients X and C

carefully to find the source of the chiral anomaly by using
the solution ofAμ and F . First of all, it is easy to verify that
X vanishes if Aμ approaches zero rapidly at infinity in
momentum space. Such a result is obvious since the chiral
anomaly is a quantum effect and should not exist in the
classical limit. This boundary condition seems reasonable
for Aμ from the result at zeroth order that can be calculated
directly from the free quantum field theory, i.e.,

Aμ ¼
(

m
4π3

sμðfþ − f−Þ; p0 > 0;
m
4π3

sμðf̄þ − f̄−Þ; p0 < 0;
ð18Þ

where sμ is the spin polarization vector with s2 ¼ −1 and
s · p ¼ 0, and f� and f̄� are number densities in the phase
space for particles and antiparticles with spins �sμ,
respectively. They are defined as the ensemble averages
of the normal-ordered number density operators and are
expected to vanish at infinity in phase space. For Aμ, there
is no nontrivial Dirac sea or vacuum contribution because
for a free gas of fermions the energy levels are all
degenerate with different spins, and the vacuum terms
from different spins cancel each other. However, for
fermions in strong magnetic field such as that discussed
in [39], the ground states are nondegenerate with one
specific spin. There is no cancellation and the vacuum term
exists.
The situation is however different for the coefficient C

where the solution of the scalar function F is needed. Here,
at the same level asAμ given by Eq. (18), we have the result
from the free quantum field theory as

F ¼
(

m
4π3

ðfþ þ f−Þ; p0 > 0;
m
4π3

ðf̄þ þ f̄− þ 2f̄vÞ; p0 < 0.
ð19Þ

We see that, in contrast to the axial vectorAμ, there exists a
Dirac sea or vacuum contribution f̄v ¼ −1 to the scalar
function F [39,40]. This contribution originates from the
anticommutator of the antiparticle field in the definition
of the Wigner function given by Eq. (1) without normal
ordering. It takes the value f̄v ¼ −1 that is universal and
does not depend on the state of the system that we are
considering.
Now we show how the universal f̄v ¼ −1 gives rise to

the universal coefficient C of the chiral anomaly in front
of FμνF̃μν in Eq. (15). We consider in Eq. (19) only this
universal Dirac sea contribution f̄v ¼ −1 and substitute it
into Eq. (16) and obtain

Cv ¼
Z

d4p
π

∂p0

�
1

4Ep
δ0ðp0 þ EpÞ

�

−
Z

d4p
π

∂p ·

�
p

1

4E2
p
δ0ðp0 þ EpÞ

�

þ
Z

d4p
π

∂p ·

�
p

1

4E3
p
δðp0 þ EpÞ

�
; ð20Þ

where Ep ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
, and we use the subscript “v” to

denote the Dirac sea contribution only. It is easy to verify
that the first and second terms vanish by direct calculation,
while the last term survives and gives
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Cv ¼
Z

d3p
2π

∂p ·

�
p

2E3
p

�
¼ 1: ð21Þ

This is just the right coefficient of the chiral anomaly. It is
also obvious that this derivation does not depend on
whether the system is for massive or massless fermions.
At the chiral limit m ¼ 0 and Ep ¼ jpj; hence, p=ð2E3

pÞ in
the bracket in Eq. (21) is just the usual Berry curvature
Ω ¼ p=ð2jpj3Þ with ∇ ·Ω ¼ 2π, and this exhibits how the
chiral anomaly comes from the Berry curvature. As we all
know, we can carry out the integration above either directly
in the three-dimensional momentum volume where the
Berry monopole appears and only the infrared momentum
contributes, or in the two-dimensional momentum boun-
dary area by using Gauss’s theorem in which only the
ultraviolet momentum contributes. It should be noted that
when we calculate the integral by using Gauss’s theorem,
we have to introduce an ultraviolet cutoff for momentum to
regularize the sphere at infinity. After taking the limit of this
cutoff at infinity, the integral is finite and independent on
the cutoff. This illustrates how the ultraviolet and infrared
regions in momentum space are connected. However, for
the massive particle there is no infrared singularity or Berry
monopole. When the Dirac sea contribution is included, the
boundary conditions of distribution functions at infinity
of momentum space for the particle and antiparticle are
different and this will be compatible with the treatment
given in [24].
Now we analyze the normal contributions associated

with f� and f̄�. Totally, they give no contribution to the
chiral anomaly because usually the normal distribution
functions f� and f̄� are all supposed to vanish rapidly at
infinity in phase space so that they lead to no contribution
after the integration in Eq. (16). The details of the
calculations are given in the Appendix.
We note that although we relate the chiral anomaly with

the Berry curvature through Eq. (21) at the chiral limit, it is
different from the result given in Refs. [4,7,9] where the
coefficient of the chiral anomaly is generated from

C ¼ −
Z

d3p
2π

Ω · ∂pðfp þ f̄pÞ: ð22Þ

After integrating by parts and using ∇ ·Ω ¼ 2π, we obtain

C ¼ fp¼0 þ f̄p¼0: ð23Þ
Hence, it depends on the specific distribution function at
infrared momentum. It is interesting that with the Fermi-
Dirac distribution,

f� ¼ 1

eðjpj−μ�Þ=T þ 1
; ð24Þ

f̄� ¼ 1

eðjpjþμ�Þ=T þ 1
; ð25Þ

Eq. (23) gives the right coefficient of the chiral anomaly. In
our approach, a similar term to Eq. (22) indeed exists as
well and is included in Cn where the subscript “n” indicates
that only the normal distribution functions f� and f̄� are
involved; see the definition in Eq. (A2) in the Appendix.
However, they always appear in the divergence form [see

the first term Cð1Þ
n of Cn given by Eq. (A3)]

Cð1Þ
n ¼ −

Z
d3p
4π

∂p ·

�
p
E3
p
ðfp þ f̄pÞ

�

¼ −
Z

d3p
4π

p
E3
p
· ∂pðfp þ f̄pÞ

−
Z

d3p
4π

ðfp þ f̄pÞ∂p ·
�

p
E3
p

�
; ð26Þ

where fp and f̄p in our approach are defined by Eq. (A8).

We see that Cð1Þ
n is divided into two terms, and the sum of

them vanishes for fp and f̄p that go to zero at infinity of
momentum. At chiral limit m ¼ 0 and with specific Fermi-

Dirac distribution, the first term in Cð1Þ
n reproduces the

result (23) and gives the coefficient of the chiral anomaly.
However, the second term always cancels this term and the
total contribution must vanish. Hence, in such a very
special case, one might regard the Berry curvature as the
effective source for the chiral anomaly because the Dirac
sea contribution and the second term in Eq. (26) happen to
cancel each other. However, such a case is a coincidence
since it holds only for the chiral system with a very specific
distribution constraint fp þ f̄p ¼ 1 at the zero momentum
point. It does not hold for massive fermions at all. In
general, the Berry curvature contribution to the chiral
anomaly is always canceled by the second term in
Eq. (26), and the real contribution to the chiral anomaly
comes actually from Dirac sea Cv.
Now let us consider another interesting term—the last

termCð3Þ
n in Eq. (A2). At the chiral limit and for the isotropic

distribution function in momentum space, we have

Cð3Þ
n ¼ ðfp0¼0 þ f̄p0¼0Þ − ðfp0¼0 þ f̄p0¼0Þ: ð27Þ

Once more, if we choose the Fermi-Dirac distribution, the
first term gives the right coefficient “1” of the chiral anomaly,
though it is always canceled by the second term.
To summarize, we see that for a massless Fermion with

special distribution functions fpþ f̄p¼1 and fp0¼0þ
f̄p0¼0¼1, we can rewrite Eq. (15) as

∂μ
xj

5ð1Þ
μ ¼ −

1

8π2
½Cð1Þ

n þ Cð3Þ
n þ Cv�FμνF̃μν

¼ −
1

8π2
½1 − 1þ 1 − 1þ 1�FμνF̃μν

¼ −
1

8π2
FμνF̃μν: ð28Þ
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In our previous work in [12], the first, third, and fourth
terms were obtained while the second term and last term
were missing. Some other work kept only the third term
corresponding to the Berry curvature term.
As we all know, the vector current must be conserved and

does not have anomalous terms. At the end of this section, it
would be valuable to verify this point as well. Making the
time-space divergence of both sides and integrating over
the 4-momentum, we obtain

∂μ
xjμ ¼

Z
d4p∂μ

xVμ ¼
Z

d4p

�
pμ

m
∂μ
xF

þ ℏ
2m2

ϵμνρσ∂μ
x½Fνλ∂p

λ ðpρAσÞ�
�
: ð29Þ

The last term must vanish because it is a total derivative
term on momentum and there is no vacuum contribution for
Aσ. After dropping this term and using Eq. (10), we have

∂μ
xjμ ¼

Z
d4p

�
1

m
Fμν∂ν

pðpμFÞþ ℏ
2m2

ΔF̃μνðpμAνÞ
�
; ð30Þ

where we have used Maxwell’s equation ∂μ
xF̃μν ¼ 0 when

moving pμ after the derivative operator Δ. Although the
two terms above are both total derivatives, the first term
could contribute from the vacuum term. We only keep the
vacuum contribution and obtain

∂μ
xjμ ¼ −

1

2π3
Fμν

Z
d4p∂ν

p½pμδðp2 −m2Þθð−p0Þ�

¼ −
1

4π3
Fμν

Z
d4p∂ν

p½pμδðp2 −m2Þ�

¼ 0: ð31Þ

Hence, the Dirac sea or vacuum contribution does not
influence the conservation law for electric charge as it should.

IV. THE CHIRAL KINETIC EQUATION

In this section, we show that the Dirac sea contribution
modifies the chiral kinetic equation for the antiparticle. We
now first recall how we obtain the chiral kinetic equation
from the Wigner function approach. In the chiral limit, it is
convenient to define the helicity basis,

Jμ
s ¼ 1

2
ðVμ þ sAμÞ; ð32Þ

where s ¼ � is the chirality. In this chiral limit, the helicity
bases are completely decoupled from each other and from
all the other Wigner functions as well,

pμJμ ¼ 0;

∇μJμ ¼ 0;

2sðpμJν − pνJμÞ ¼ −ℏϵμνρσ∇ρJσ; ð33Þ

where we have suppressed the lower index “s” for brevity
and only kept the contribution up to the first order of ℏ.
As shown in [12], in the chiral limit, a disentanglement

theorem of the Wigner function is valid. According to this
theorem, only one of the four components of the Wigner
function Jμ is independent, and the other three can be
determined completely from it. This independent Wigner
function satisfies only one Wigner equation and the other
equations are satisfied automatically. We especially have
the freedom to choose which component is the independent
one. In general, we can introduce a timelike 4-vector nμ

with normalization n2 ¼ 1 and choose Jn as the indepen-
dent Wigner function. For simplicity, we assume nμ is a
constant vector. With the auxiliary vector nμ, we can
decompose any vector Xμ into the component parallel to
nμ and that perpendicular to nμ,

Xμ ¼ Xnnμ þ X̄μ; ð34Þ

where Xn ¼ n · X and X̄ · n ¼ 0. The electromagnetic
tensor Fμν can be decomposed into

Fμν ¼ Eμnν − Eνnμ þ ϵμνρσnρBσ: ð35Þ

WithJn as the independent Wigner function, we obtain the
other components

J̄μ ¼ p̄μ
Jn

pn
−

sℏ
2pn

ϵμνρσnν∇σ

�
pρ

Jn

pn

�
ð36Þ

by contracting both sides of the last equation in Eq. (33)
with nν. Substituting this relation into the first equation of
Eq. (33), we obtain the general expression,

Jn

pn
¼ fδðp2Þ − sℏ

pn
B · pfδ0ðp2Þ: ð37Þ

It follows that,

Jμ ≈
�
gμν þ

ℏs
2pn

ϵμνρσnρ∇σ

�

×
�
pνfδ

�
p2 − ℏs

B · p
pn

��
: ð38Þ

Inserting this result into the second equation in Eq. (33), we
obtain the covariant chiral kinetic equation up to the first
order of ℏ as
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∇μ

��
gμν þ

ℏs
2pn

ϵμνρσnρ∇σ

�

×

�
pνfδ

�
p2 − ℏs

B · p
pn

���
¼ 0: ð39Þ

Integrating over pn from 0 to þ∞ gives rise to the chiral
kinetic equation for particles

ð1þ sℏB · ΩÞn · ∂xfp̄

þ ½vμ þ sℏð ˆ̄p ·ΩÞBμ þ sℏϵμνρσnρEσΩν�∂̄x
μfp̄

þ ðẼμ þ ϵμναβvνnαBβ þ sℏE · BΩμÞ∂̄p
μfp̄

þ sℏE · Bð∂̄μ
pΩμÞfp̄ ¼ 0; ð40Þ

where

fp̄ ¼ fðpn ¼ jp̄jð1þ ℏsB ·ΩÞÞ; ð41Þ

Ωμ ¼ p̄μ

2jp̄j3 ; jp̄j ¼
ffiffiffiffiffiffiffiffiffi
−p̄2

q
; ˆ̄pμ ¼

p̄μ

jp̄j ; ð42Þ

vμ ¼
�
1þ sℏB · p̄

jp̄j3
�
ˆ̄pμ þ sℏBμ

2jp̄j2 ; ð43Þ

Ẽμ ¼ Eμ − sℏjp̄jð∂̄μ
xBλÞΩλ: ð44Þ

For finite momentum p̄μ, the last term in Eq. (40) vanishes
due to Berry’s monopole in momentum space ∂p

μΩμ ¼
2πδ3ðp̄Þ, and the chiral kinetic equation reduces to the
usual form obtained in [4,7,9–12,14] and so on. However,
once we leave the infrared region where the last term can be
neglected, the place where the chiral anomaly comes from
is also concealed, because this last term will always cancel
the last term in the second line from below in Eq. (40) after
integrating over the momentum.
By integrating over pn from −∞ to 0 and replacing p̄

and s with −p̄ and −s, respectively, we obtain the chiral
kinetic equation for antiparticles,

ð1 − sℏB ·ΩÞn · ∂xf̄tp̄

þ ½vμ − sℏð ˆ̄p · ΩÞBμ − sℏϵμνρσnρEσΩν�∂̄x
μf̄tp̄

− ðẼμ þ ϵμναβvνnαBβ − sℏE · BΩμÞ∂̄μ
pf̄tp̄

þ sℏE · Bð∂̄μ
pΩμÞf̄tp̄ ¼ 0; ð45Þ

where

f̄tp̄ ¼ fðpn ¼ −jp̄jð1 − ℏsB ·ΩÞÞjp̄¼−p̄;s¼−s; ð46Þ

vμ ¼
��

1 −
sℏB · p̄
jp̄j3

�
ˆ̄pμ −

sℏBμ

2jp̄j2
�
: ð47Þ

Here, f̄tp̄ ¼ f̄p̄ þ f̄v denotes the total contribution of the
normal f̄p̄ and the vacuum distribution f̄v. Using the free
quantum Dirac field theory with f̄v ¼ −1, we obtain the
kinetic equation of the normal distribution f̄p̄ as

ð1 − sℏB ·ΩÞn · ∂xf̄p̄

þ ½vμ − sℏð ˆ̄p · ΩÞBμ − sℏϵμνρσnρEσΩν�∂̄x
μf̄p̄

− ðẼμ þ ϵμναβvνnαBβ − sℏE · BΩμÞ∂̄μ
pf̄p̄

þ sℏE · Bð∂̄μ
pΩμÞðf̄p̄ − 1Þ ¼ 0: ð48Þ

It should be noted that it is sufficient to use the result
f̄v ¼ −1 from the free quantum field here in order to
describe the chiral anomaly because the chiral anomaly
term with E · B in Eq. (48) always arises at the first order of
ℏ. The last term in Eq. (48) is different from that in Eq. (40)
for the particle due to the Dirac sea contribution. There
exists an inhomogeneous term −sℏE · Bð∂̄μ

pΩμÞ originated
from the Dirac sea. As discussed in the last section, this
term will eventually lead to the chiral anomaly. In the
scenario of the Dirac sea, the difference between the
particle and antiparticle is very natural.

V. SUMMARY

Starting from the quantum transport theory based on the
quantum field theory, we find that the Wigner equation
holds only for Wigner functions that are not normal
ordered. It turns out that the Dirac sea or the vacuum
contribution that originated from the anticommutation
relation between antiparticle field operators in the un-
normal-ordered Wigner function plays a central role in
generating the right chiral anomaly for both massive
fermions and massless fermions. Correspondingly, the
chiral kinetic equation for antiparticles should include
the contribution from the Dirac sea contribution.
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APPENDIX: INTEGRAL CALCULATION

In this appendix, we give the details on how to calculate
the normal contribution from f� and f̄� in Eq. (16).
Substituting the normal distribution function given by

Eq. (19) into Eq. (16) and using the identities
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δ0ðp2 −m2Þ ¼ 1

4p0Ep
½δ0ðp0 − EpÞ þ δ0ðp0 þ EpÞ�

¼ 1

4E3
p
½δðp0 − EpÞ þ δðp0 þ EpÞ�

þ 1

4E2
p
½δ0ðp0 − EpÞ − δ0ðp0 þ EpÞ�; ðA1Þ

we decompose Eq. (16) into the following three parts:

Cn ¼ Cð1Þ
n þ Cð2Þ

n þ Cð3Þ
n ; ðA2Þ

Cð1Þ
n ¼ −

Z
d4p
8π

∂p ·

�
p
E3
p
ðfþ þ f−Þδðp0 − EpÞ

�

−
Z

d4p
8π

∂p ·

�
p
E3
p
ðf̄þ þ f̄−Þδðp0 þ EpÞ

�
; ðA3Þ

Cð2Þ
n ¼ −

Z
d4p
8π

∂p ·

�
p
E2
p
ðfþ þ f−Þδ0ðp0 − EpÞ

�

þ
Z

d4p
8π

∂p ·

�
p
E2
p
ðf̄þ þ f̄−Þδ0ðp0 þ EpÞ

�
; ðA4Þ

Cð3Þ
n ¼ −

Z
d4p
8π

∂p0

�
1

Ep
ðfþ þ f−Þδ0ðp0 − EpÞ

�

−
Z

d4p
8π

∂p0

�
1

Ep
ðf̄þ þ f̄−Þδ0ðp0 þ EpÞ

�
: ðA5Þ

For Cð1Þ
n and Cð2Þ

n , we integrate p0 over the delta function or
derivative of delta function and obtain

Cð1Þ
n ¼ −

Z
d3p
4π

∂p ·

�
p
E3
p
ðfp þ f̄pÞ

�
; ðA6Þ

Cð2Þ
n ¼ −

Z
d3p
4π

∂p ·

�
p
E2
p
ðf0p þ f̄0pÞ

�
; ðA7Þ

where

fp ¼ 1

2
ðfþ þ f−Þjp0¼Ep

;

f̄p ¼ 1

2
ðf̄þ þ f̄−Þjp0¼−Ep

;

f0p ¼ −
1

2
∂p0

ðfþ þ f−Þjp0¼Ep
;

f̄0p ¼ 1

2
∂p0

ðf̄þ þ f̄−Þjp0¼−Ep
: ðA8Þ

It is obvious that both Cð1Þ
n and Cð2Þ

n vanish for the normal
distribution function that approaches zero rapidly at infinity
in momentum space.

For Cð3Þ
n , it is more convenient to integrate jpj over the

derivative of delta function,

Cð3Þ
n ¼−

Z
dΩdp0

4π
∂2
p0

h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
0−m2

q
fp0

θðp0−mÞ
i

−
Z

dΩdp0

4π
∂2
p0

h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
0−m2

q
f̄p0

θð−p0−mÞ
i

þ
Z

dΩdp0

4π
∂p0

h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
0−m2

q
f0p0

θðp0−mÞ
i

þ
Z

dΩdp0

4π
∂p0

h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
0−m2

q
f̄0p0

θð−p0−mÞ
i
; ðA9Þ

where

fp0
¼ 1

2
ðfþ þ f−Þjjpj¼ ffiffiffiffiffiffiffiffiffiffi

p2
0
−m2

p ; ðA10Þ

f̄p0
¼ 1

2
ðf̄þ þ f̄−Þjjpj¼ ffiffiffiffiffiffiffiffiffiffi

p2
0
−m2

p ; ðA11Þ

f0p0
¼ 1

2
∂p0

ðfþ þ f−Þjjpj¼ ffiffiffiffiffiffiffiffiffiffi
p2
0
−m2

p ; ðA12Þ

f̄0p0
¼ 1

2
∂p0

ðf̄þ þ f̄−Þjjpj¼ ffiffiffiffiffiffiffiffiffiffi
p2
0
−m2

p ; ðA13Þ

and θð�p0 −mÞ is the step function. It is obvious that the
last two terms vanish because the function in square
brackets vanishes at the boundary points p0 ¼ �m;�∞.
For the first two terms, when one of the derivative acts
on fp0

or the step function, the integral also vanishes.

However, when the derivative acts on
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
0 −m2

p
, the

reciprocal of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
0 −m2

p
will arise and leads to possible

divergence at boundary point p0 ¼ �m,

Cð3Þ
n ¼ −

Z
dΩdp0

4π
∂p0

�
p0fp0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
0 −m2

p θðp0 −mÞ
�

−
Z

dΩdp0

4π
∂p0

�
p0f̄p0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
0 −m2

p θð−p0 −mÞ
�
: ðA14Þ

We expand each term above according to whether the
derivative acts on the step function or not,

Cð3Þ
n ¼ −

Z
dΩ
4π

Z þ∞

m
dp0∂p0

�
p0fp0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
0 −m2

p �

−
Z

dΩdp0

4π

p0fp0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
0 −m2

p δðp0 −mÞ

−
Z

dΩ
4π

Z
−m

−∞
dp0∂p0

�
p0f̄p0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
0 −m2

p �

þ
Z

dΩdp0

4π

p0f̄p0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
0 −m2

p δðp0 þmÞ: ðA15Þ
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In order to regularize the divergence at p0 ¼ m and
p0 ¼ −m, we set p0 ¼ mþ ϵ and p0 ¼ −m − ϵ, respec-
tively. It follows that

Cð3Þ
n ¼ mþ ϵffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2mþ ϵÞϵp Z

dΩ
4π

ðfp0¼mþϵþ f̄p0¼−m−ϵÞ

−
mþ ϵffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2mþ ϵÞϵp Z

dΩ
4π

ðfp0¼mþϵþ f̄p0¼−m−ϵÞ: ðA16Þ

We see that each term is divergent at the limit ϵ → 0 when
m ≠ 0, but every two terms cancel each other and give a

null result. It is interesting that for the chiral limit m ¼ 0
there is no divergence, and we obtain

Cð3Þ
n ¼

Z
dΩ
4π

ðfp0¼0 þ f̄p0¼0Þ −
Z

dΩ
4π

ðfp0¼0 þ f̄p0¼0Þ:

ðA17Þ

As has been mentioned in Sec. III, the first term happens to
be the right coefficient of the chiral anomaly if we choose
the Fermi-Dirac distribution function given by Eq. (24).
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