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Collisions of twisted particles—that is, non-plane-wave states of photons, electrons, or any other
particle, equipped with a nonzero orbital angular momentum (OAM) with respect to its propagation
direction—offer novel ways to probe particle structure and interactions. Recently, we argued that resonance
production in twisted photon collisions or twisted eþe− annihilation gives access to parity- and spin-
sensitive observables in inclusive cross sections, even when the initial particles are unpolarized. Here, we
explore these features in detail, providing a qualitative picture and illustrating it with numerical examples.
We show how one can detect parity-violating effects in collisions of unpolarized twisted photons and how
one can produce almost 100% polarized vector mesons in unpolarized twisted eþe− annihilation. These
examples highlight the unprecedented level of control over polarization offered by twisted particles,
impossible in the usual plane wave collisions.
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I. INTRODUCTION

Determining the spin and parity properties of hadrons is
an intricate and fascinating aspect of modern particle
phenomenology. Known hadrons, including the very
short-lived resonances, exhibit a variety of spin-parity
quantum numbers possible with the usual qq̄ and qqq
quark combinations [1,2], with multiquark states [3,4] and
glueball states [5]. Deep inelastic scattering (DIS) with a
polarized initial lepton or proton allows one to investigate
how spin of the ultrarelativistic proton emerges from spins
and orbital angular momenta of its constituents [6]. This
problem alone, dubbed the spin proton crisis, has remained
a source of controversies over the past decades, and the
situation is still far from being completely resolved [7].
Going beyond helicity distributions and entering the
realm of the three-dimensional (3D) momentum space spin
structure brings in many new spin-sensitive variables,
which can be encoded via transverse-momentum distribu-
tions and explored experimentally in semi-inclusive DIS
with transversely polarized protons [8,9]. The recently

approved Electron Ion Collider in the United States
(EIC) [10] and the proposed Electron Ion Collider in
China (EicC) [11] also have a rich spin physics pro-
gram ahead.
There are two main experimental tools for investigating

spin-parity properties of hadrons. First, one can produce
them in collision of longitudinally or transversely polarized
initial particles and measure spin asymmetries, that is, the
response of the cross section to flipping the polarization
sign or changing the polarization direction. Second, one
can study exclusive or semi-inclusive reactions; look into
angular distribution of the final state particles; and, with the
aid of partial-wave analysis, deduce the spin properties
either of the target hadron (in DIS) or of the intermediate
resonances (in low-energy exclusive production processes).
In either case, the task requires certain experimental efforts
in preparing a polarized initial state or in extracting the
angular correlations of the final state particles. There seems
to be no other way to access spin-dependent observables.
In the recent paper [12], we proposed a completely new

tool for doing spin physics in particle collisions. We
showed that if one prepares initial particles in the so-called
twisted state, in which they are equipped with a nonzero,
adjustable orbital angular momentum (OAM) with respect
to their propagation direction, then spin- and parity-depen-
dent observables can be probed with fully inclusive cross
sections of unpolarized particles. In this paper, we provide a
detailed exploration of this idea by considering production
of spin-0 or spin-2 resonances in twisted γγ collisions
and of spin-1 resonance in twisted eþe− annihilation.
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We present a qualitative picture, which helps us understand
several consequences which otherwise may seem counter-
intuitive, and corroborate it with numerical examples.
In the following section, we give a brief reminder of how

twisted photons and electrons are described and equip the
reader with expressions for calculations of the twisted
helicity amplitudes. We also discuss in detail the subtle
notion of unpolarized twisted photon or electron beam.
Then, in Sec. III, we calculate production of spin-0 and
spin-2 resonances in twisted photon collisions. We show
how one can extract scalar-pseudoscalar mixing in spin-0
production and how to selectively produce a spin-2 particle
in a specific polarization state—all done with unpolarized
twisted photon beams. In Sec. IV, we repeat the analysis for
vector meson production in unpolarized twisted eþe−
annihilation. We finish the paper with an outline of the
experimental prospects to study the effects propose and a
summary of our results.
Throughout the paper, we use natural units ℏ ¼ c ¼ 1.

Three-dimensional vectors will be denoted by bold sym-
bols, while the transverse momenta will be labeled by the
subscript ⊥. We will often use the shorthand notations c
and s, which stand for

c≡ cosθ; s≡ sinθ for scalar and vector fields;

c≡ cosðθ=2Þ; s≡ sinðθ=2Þ for electrons and positrons:

II. DESCRIBING TWISTED PARTICLES

A. Twisted scalar particles

Description of twisted particle states in a way convenient
for calculations of high-energy collision processes was first
presented in Refs. [13,14] by adapting the most general
framework of Ref. [15]. It was further developed in
Refs. [16–23]; see also the recent reviews on twisted
electrons [24,25] and photons [26,27]. In this section,
we will recapitulate this formalism, first for scalar twisted
states and then for photons and electrons. The calculations
become most transparent for the so-called Bessel twisted
states described below. This is not the only option available.
Collisions involving Laguerre-Gaussian twisted states
[21,23] and other wave packets with nontrivial phase
structure [20] also demonstrated remarkable features not
present in (approximate) plane wave collisions. However,
for the purposes of the present paper, we find it sufficient to
stay with (Gaussian-smeared) Bessel states.
A Bessel twisted state is a solution of the free wave

equation with a definite energy E, longitudinal momentum
kz, modulus of the transverse momentum jk⊥j ¼ ϰ, and a
definite z projection of the total angular momentum m,
which must be integer. Since, for the scalar field, the total
angular momentum coincides with the OAM, the same
parameter m also quantifies the z projection of the OAM.
Written in cylindric coordinates ρ;φr; z, this solution
jE; ϰ; mi has the form

jE; ϰ; mi ¼ e−iEtþikzz · ψϰmðr⊥Þ;

ψϰmðr⊥Þ ¼ eimφr

ffiffiffiffiffiffi
ϰ

2π

r
JmðϰρÞ; ð1Þ

where JmðxÞ is the Bessel function. This function is
normalized according to

Z
d2r⊥ψ�

ϰ0m0 ðr⊥Þψϰmðr⊥Þ ¼ δðϰ − ϰ0Þδm;m0 : ð2Þ

The azimuthal angle dependence ∝ eimφr is the hallmark
feature of the phase vortex. A twisted state can be
represented as a superposition of plane waves,

jE; ϰ; mi ¼ e−iEtþikzz

Z
d2k⊥
ð2πÞ2 aϰmðk⊥Þeik⊥r⊥ ; ð3Þ

where

aϰmðk⊥Þ ¼ ð−iÞmeimφk

ffiffiffiffiffiffi
2π

ϰ

r
δðjk⊥j − ϰÞ: ð4Þ

is the corresponding Fourier amplitude. This expansion can
be inverted, which means that twisted states form a
complete basis for (transverse) wave functions [13,14].
When passing from plane waves to twisted states, one

should also take care of the change of the normalization
factors. The accurate treatment of these factors can be
found in Refs. [18,28]. Here, although, the appropriate
normalization coefficients are implicitly assumed, and we
do not write them for the following reason. The absolute
value of the twisted scattering cross section depends not
only on the dynamics of the fundamental interactions but
also on the details of how the initial twisted state is
prepared. These details depend on the eventual experimen-
tal realization of the twisted states. Therefore, in contrast to
the usual plane wave setting, the absolute value of the cross
section cannot be unambiguously predicted.
If one looks into the integrated cross section, its

departure from the plane wave cross section is typically
small and often negligible; see the very recent study [23].
However, the most dramatic novelties of the two-twisted-
particle collision arise not in the absolute value of the cross
section but in differential distributions absent in the plane
wave case. Since the absolute value of the cross section is
not the figure of merit for the present study, we will often
skip the normalization factors and plot cross sections in
arbitrary units.
We remark in passing that sometimes a different nor-

malization of aϰmðk⊥Þ is adopted, namely, with the
coefficient 2π=ϰ instead of

ffiffiffiffiffiffiffiffiffiffiffi
2π=ϰ

p
. This is the conse-

quence of a different normalization condition for the
coordinate wave function: with or without the prefactor
2π=ϰ in Eq. (2). This difference does not change the
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observables; one just needs to keep track of the exact
normalization choice when calculating the event rate and
the flux.
If the above Bessel state describes a particle with mass μ,

the energy and momentum are related as E2¼μ2þϰ2þk2z .
Notice that the average momentum of this state hki ¼
ð0; 0; kzÞ does not satisfy the dispersion relation: E2 ¼
μ2 þ ϰ2 þ hki2 ≠ μ2 þ hki2. Whether to interpret the
quantity μ2 þ ϰ2 as a new “effective mass” squared is just
a matter of terminological convenience.
Just like a plane wave, a pure Bessel state jE; ϰ; mi with

fixed ϰ is non-normalizable in the transverse plane.
Although the resulting singularities can be dealt with
[13,14,16,18], it is more appropriate to use realistic,
transversely localized monochromatic beams.1 Such a
beam can be written as a superposition of Bessel states
with equal energy and equal values of m but with a
distribution over ϰ,

jE; ϰ̄; σ; mi ¼
Z

dϰfðϰÞjE; ϰ; mi: ð5Þ

The weight function fðϰÞ should be peaked at ϰ̄ and have a
width σ; apart from that, it is unconstrained and will depend
on details of a future experimental realization scheme. In
our calculations below, we will use the Gaussian function
corrected by a slow-varying prefactor:

fðϰÞ ¼ n
ffiffiffi
ϰ

p
exp

�
−
ðϰ − ϰ̄Þ2
2σ2

�
; ð6Þ

with the normalization condition
R
E
0 dϰjfðϰÞj2 ¼ 1.

B. Description of twisted photons

When describing twisted photons, we adapt the formal-
ism of Refs. [13,14,27]. For definiteness, we will work in
the Coulomb gauge, where all polarization vectors only
have the spatial components. A monochromatic plane wave
electromagnetic field with helicity λ ¼ �1 is described by

AkλðrÞ ¼ ekλeikr: ð7Þ

The polarization vector is orthogonal to the wave vector:
ekλk ¼ 0. Quantization of this field produces plane wave
photons with momentum k.
As for the scalar case, we fix a reference frame, select

an axis z, and construct a Bessel twisted photon as a
superposition of plane waves with fixed longitudinal
momentum kz ¼ jkj cos θ and fixed modulus of the

transverse momentum ϰ ¼ jk⊥j ¼ k sin θ, but arriving
from different azimuthal angles φk. Such a twisted photon
with a definite z projection of the total angular momentum
m and definite helicity λ ¼ �1 can be written as

AϰmλðrÞ ¼ eikzz
Z

aϰmðk⊥Þekλeik⊥r⊥ d
2k⊥

ð2πÞ2 ; ð8Þ

where the Fourier amplitude aϰmðk⊥Þ is given by the same
Eq. (4). The usual dispersion relation holds for every plane
wave component: k2z þ ϰ2 ¼ E2.
In contrast to the scalar case, each plane wave compo-

nent of a twisted photon contains its polarization vector ekλ,
which is orthogonal to the momentum of that particular
plane wave component: ekλk ¼ 0. As a result, the polari-
zation vector cannot be taken out of the integral. Back in the
coordinate space, the polarization state of a twisted photon
is described by a polarization field rather than a polarization
vector.
To describe the polarization vector of a photon with an

arbitrary momentum, let us define the eigenvectors χ σ,
σ ¼ �1, 0, of the helicity operator ŝz defined with respect
to the axis z: ŝzχ σ ¼ σχ σ. Their explicit form is

χ 0¼

0
B@
0

0

1

1
CA; χ�1¼

∓1ffiffiffi
2

p

0
B@

1

�i

0

1
CA; χ �σχ σ0 ¼ δσσ0 : ð9Þ

The polarization vector can be expanded in the basis of χ σ:

ekλ ¼
X

σ¼0;�1

e−iσφkd1σλðθÞχ σ : ð10Þ

The explicit expressions for Wigner’s d functions [29] are

d1σλ ¼

0
BB@

cos2 θ
2

− 1ffiffi
2

p sin θ sin2 θ
2

1ffiffi
2

p sin θ cos θ − 1ffiffi
2

p sin θ

sin2 θ
2

1ffiffi
2

p sin θ cos2 θ
2

1
CCA: ð11Þ

The first, second, and third rows and columns of this matrix
correspond to the indices þ1, 0, and −1. Performing the
summation in Eq. (10), one gets explicit expressions for the
polarization vectors:

ekλ ¼
λffiffiffi
2

p

0
B@
−cosθ cosφkþ iλsinφk

−cosθ sinφk− iλcosφk

sinθ

1
CA; λ¼�1: ð12Þ

Notice that the Fourier amplitude aϰmðk⊥Þ is an eigen-
state not only of Ĵz, the operator of the z component of the
total angular momentum, but also of L̂z ¼ −i∂=∂φk, the z
projection of the OAM operator. However, this property is
not shared by ekλ given above; it is an eigenstate of Ĵz with

1We stress that a monochromatic solution with a localized
transverse wave function cannot be localized in the z direction;
otherwise, monochromaticity is lost. Therefore, such solutions
correspond to beams rather than wave packets, although we will
occasionally use the latter term as well.
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the zero eigenvalue but not of L̂z or ŝz separately. This
polarization vector, even for fixed λ, contains contributions
with different sz and l ¼ Lz, which sum up to zero. Thus,
the twisted photon (8), strictly speaking, is not an eigenstate
of the OAM because the spin and OAM projections are not
conserved separately even for free electromagnetic fields.
In most experimental situations, twisted photons are

produced in the paraxial regime, where θ ≪ 1. In this case,
one can talk about approximately conserved sz ¼ λ and
l ¼ m − λ. Indeed, when θ → 0, the polarization vector
becomes

ekλ → e−iλφkχ λ; ð13Þ

which now has definite sz ¼ −l ¼ λ. Beyond the paraxial
approximation, the spin-orbital interaction, which exists for
free electromagnetic waves, comes into play and gives
rise to a variety of remarkable optical phenomena [30]. In
particular, it leads to spatially varying polarization states of
light described by polarization field. In a tightly focused
light beam, the polarization field evolves downstream
and may significantly differ at the aperture and in the focal
plane.
Finally, when describing a counterpropagating twisted

photon defined in the same reference frame with respect
to the same axis z, one can use the above expressions
assuming that kz < 0 and replacingm → −m in the Fourier
amplitude (4). The expression for the polarization vector
(12) stays unchanged, but cos θ < 0. The paraxial limit is
now given by θ → π, in which case ekλ → eþiλφkχ−λ.

C. Description of twisted electrons and positrons

Twisted states have been experimentally demonstrated
not only for photons but also for electrons [31–33].
To describe them in a fully relativistic manner, we use
the definitions of Refs. [24,28]; other works, such as
Refs. [18,34], use slightly different conventions. The plane
wave electron with the four-momentum kμ ¼ ðE;k⊥; kzÞ,
corresponding to the propagation direction with angles θ
and φk and with helicity ζ ¼ �1=2 is described by

ΨkζðrÞ ¼
1ffiffiffiffiffiffi
2E

p uζðkÞeikr: ð14Þ

The bispinor uζðkÞ used here is

uζðkÞ ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Eþme
p

wðζÞ

2ζ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E−me

p
wðζÞ

�
; wðþ1=2Þ ¼

�
ce−iφk=2

seiφk=2

�
;

wð−1=2Þ ¼
�
−se−iφk=2

ceiφk=2

�
; ð15Þ

where c≡ cosðθ=2Þ, s≡ sinðθ=2Þ. The bispinors are
normalized as ūζ1ðkÞuζ2ðkÞ ¼ 2meδζ1;ζ2 . The negative-
frequency solutions of the Dirac equation are constructed as

vζðkÞ ¼
�

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E −me

p
wð−ζÞ

2ζ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eþme

p
wð−ζÞ

�
; ð16Þ

with the same spinors w as in (15). We use this basis of
plane wave solutions of the Dirac equation to construct the
Bessel vortex state of the electron,

ΨϰmkzζðrÞ ¼ eikzz
Z

aϰmðk⊥Þ
uζðkÞffiffiffiffiffiffi
2E

p eik⊥r⊥ d
2k⊥

ð2πÞ2 ; ð17Þ

with the same Fourier amplitude aϰmðk⊥Þ as in Eq. (4).
Notice that the total angular momentum projection m is
now half-integer. The similar expression holds for the
negative-frequency solutions.
Just as in the case of twisted photons, the spin and orbital

angular momentum projections are not separately con-
served due to the intrinsic spin-orbital interaction of the
twisted electron [21,34]. In the paraxial approximation,
when the spin-orbital interaction is suppressed, one can
nevertheless talk about two approximately conserved
quantum numbers: the z projection of the spin operator
with sz ¼ ζ and the z projection of the OAM with
l ¼ m − ζ. One could also define Bessel electron states
in which the spinor ukζ contains an extra factor expðiζφkÞ,
while the Fourier amplitude (4) is constructed with integer
l instead of half-integer m [18]. This is also a valid Bessel
electron solution; its total angular momentum depends on
helicity, m ¼ lþ ζ, while the parameter l characterizes
the orbital angular momentum independent of helicity.
These two conventions correspond to two definitions of
how an unpolarized electron is defined; see below.

D. Unpolarized twisted photons or electrons

Let us discuss the subtle notion of unpolarized twisted
photons. For concreteness, we talk about photons, but
the entire discussion is applicable to electrons and other
particles with spin.
Because of the presence of spin-orbital interaction of light

in free space, the notion of unpolarized twisted light is not
unambiguously defined. For a plane-wave photon, with its
polarization vector independent of spatial coordinates, one
can think of unpolarized light as an equalmixture of photons
in two orthogonal polarization states, for examples, with
λ ¼ þ1 and λ ¼ −1. For twisted light, an ambiguity arises:
when considering photons with λ ¼ �1, should we keep the
total angular momentum m fixed? Or should we fix m − λ,
which would correspond in the paraxial limit to the same
spatial distribution of the two polarization states?
There is no unique answer to this question; it will depend

on the photon preparation details in every experimental
scheme. If an experimental device manages to select
photons with a single m irrespective of the photon helicity,
then one needs to calculate the process of interest (in our
case, the cross section) with jm; λ ¼ þ1i and jm; λ ¼ −1i
and perform the averaging. If one creates twisted photons
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by letting them pass through a fixed aperture plate which
would impose a given OAM l in the scalar case, then,
immediately behind the aperture, one can reliably describe
the unpolarized twisted light as consisting of photons
with jmþ ¼ lþ 1; λ ¼ þ1i and jm− ¼ l − 1; λ ¼ −1i.
However, this description evolves downstream and may
become very different in the focal spot due to the same spin-
orbital interaction of light. An example of this evolution
known as spin-to-orbital conversion was experimentally
demonstrated in Ref. [35]. In that work, circularly polarized
light passed through a specially designed numerical
aperture, acquired OAM, and drove rotation of an ensemble
of microscopic target particles in the focal plane. Although
the left and right circularly polarized light had the same
spatial distribution before the aperture, this distribution
evolved in a different manner on the way to the focal
plane and led to different rotation patterns of the ensemble.
It means that when calculating processes with unpolarized

twisted photons in realistic settings one must specify accord-
ing to which definition the twisted light is unpolarized.
It is very possible that the realistic situation will correspond
to an intermediate definition between the two options just
described. In the next section,whendescribing twistedphoton
collisions, we will discuss how the results differ with the two
definitionsof unpolarized twistedphotons: fixed-m and fixed-
l options. We will show that with both definitions the key
spin- or parity-sensitive observables do not vanish, although
their magnitude will be different. Their value in a realistic
experimental situation will likely lie in between.

III. RESONANCE PRODUCTION IN TWISTED
PHOTON COLLISIONS

A. General features of twisted particle annihilation

Let us begin by briefly recapitulating the main features of
two twisted particles collisions; see more details in Ref. [36].
If we were to describe a 2 → 1 annihilation process for

the plane wave case, we would need to write the S-matrix
amplitude as

SPW ¼ ið2πÞ4δðE1 þ E2 − EKÞ

× δð3Þðk1 þ k2 −KÞMðk1; k2;KÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8E1E2EK

p : ð18Þ

Here, the energies and momenta of the initial particles are
Ei and ki, for the final particles EK andK.Mðk1; k2;KÞ is
the invariant amplitude calculated according to the standard
Feynman rules. Squaring this amplitude and appropriately
regularizing the squares of delta functions, as described, for
instance, in Ref. [37], we would get the cross section

dσ ¼ πδðE1 þ E2 − EKÞ
4E1E2EKv

jMj2δð3Þðk1 þ k2 −KÞd3K;

σ ¼ πδðE1 þ E2 − EKÞ
4E1E2EKv

jMj2: ð19Þ

Notice the well-known features of this cross section: the
final momentum is fixed at K ¼ k1 þ k2, and the depend-
ence on the total energy of the colliding particles is
proportional to δðE1 þ E2 − EKÞ. The production process
occurs only when the initial particles are directly “on
resonance.”
Let us now consider collision of two Bessel states

jE1; ϰ1; m1i and jE2; ϰ2; m2i, which are defined with
respect to the same axis z. The final particle with mass
M is still described in the basis of plane waves with the
momentumK and energy EK. The S-matrix element of this
process is

S ¼
Z

d2k1⊥
ð2πÞ2

d2k2⊥
ð2πÞ2 aϰ1m1

ðk1⊥Þaϰ2;−m2
ðk2⊥ÞSPW

¼ ið2πÞ4 δðΣEÞδðΣkzÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8E1E2EK

p ð−iÞm1−m2

ð2πÞ3 ffiffiffiffiffiffiffiffiffiffi
ϰ1ϰ2

p · J ; ð20Þ

where δðΣEÞ≡δðE1þE2−EKÞ, δðΣkzÞ≡δðk1zþk2z−KzÞ.
The twisted amplitude J is defined as

J ¼
Z

d2k1⊥d2k2⊥eim1φ1−im2φ2δðjk1⊥j−ϰ1Þ

×δðjk2⊥j−ϰ2Þδð2Þðk1⊥þk2⊥−K⊥Þ ·M

¼ ϰ1ϰ2

Z
dφ1dφ2eim1φ1−im2φ2δð2Þðk1⊥þk2⊥−K⊥Þ ·M:

ð21Þ
Remarkably, the twisted amplitude J can be calculated
exactly [16]. It is nonzero only if ϰi and K ≡ jK⊥j satisfy
the triangle inequalities

jϰ1 − ϰ2j ≤ K ≤ ϰ1 þ ϰ2: ð22Þ
They form a triangle with the area

Δ ¼ 1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2K2ϰ21 þ 2K2ϰ22 þ 2ϰ21ϰ

2
2 − K4 − ϰ41 − ϰ42

q
: ð23Þ

Out of many plane wave components “stored” in the initial
twisted particles, the integral (21) receives contributions
from exactly two plane wave combinations shown in Fig. 1
with the following azimuthal angles:

FIG. 1. The two kinematical configurations in the transverse
plane that satisfy momentum conservation laws in the scattering
of two Bessel electron states.
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configuration a∶ φ1 ¼ φK þ δ1; φ2 ¼ φK − δ2;

configuration b∶ φ1 ¼ φK − δ1; φ2 ¼ φK þ δ2: ð24Þ

Notice that

δ1 ¼ arccos

�
ϰ21 þ K2 − ϰ22

2ϰ1K

�
;

δ2 ¼ arccos

�
ϰ22 þ K2 − ϰ21

2ϰ2K

�
ð25Þ

are the inner angles of the triangle with the sides ϰ1, ϰ2, K;
they are not azimuthal variables.
The result for the twisted amplitude J can then be

compactly written as

J ¼ eiðm1−m2ÞφK
ϰ1ϰ2
2Δ

½Maeiðm1δ1þm2δ2Þ þMbe−iðm1δ1þm2δ2Þ�:
ð26Þ

Notice that the plane wave amplitudes Ma and Mb are
calculated for the two distinct initial momentum configu-
rations shown in Fig. 1 but for the same final momentumK.
They exhibit two distinct paths in momentum space to
arrive at the same final state from the initial twisted states.
In a sense, scattering of twisted Bessel states represents the
momentum-space analog of the Young double-slit experi-
ment [38].
Squaring (20) and performing appropriate regularization,

we obtain the (generalized) cross section in the form

dσ ∝ jJ j2δðE1 þ E2 − EKÞd2K⊥: ð27Þ

We deliberately omitted the prefactor to stress, as we
discussed in the previous section, that the absolute value
of the cross section cannot be predicted unambiguously as
it depends on the details of initial state preparation and,
therefore, it is not the figure of merit. Instead, it is the
nontrivial distribution over K⊥, which was absent in the
plane wave case (19), that we pay attention to.
For fixed initial values of Ei, ϰi, and M, the energy-

momentum conservation fixes Kz ¼ k1z þ k2z and, there-
fore, the modulus of the transverse momentum K ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
K −M2 − K2

z

p
. Thus, the polar angle of the produced

resonance is fixed [36],

cos θK ¼ Kzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE1 þ E2Þ2 −M2

p ; ð28Þ

but the cross section exhibits a uniform distribution in the
azimuthal angle.
The expression for the cross section (27) and the exact

evaluation of J in (26) were obtained for the pure Bessel
states, which are not normalizable and lead to singularities
in the cross sections. These singularities are removed for

realistic twisted wave packets with a finite transverse
extent, for which we use the monochromatic Gaussian-
smeared wave packet given in Eqs. (5) and (6). This
smearing with the functions f1ðϰ1Þ and f2ðϰ2Þ must be
applied at the level of S-matrix amplitude (20). Therefore,
instead of pure Bessel twisted amplitude J , we evaluate its
smeared counterpart:

hJ i ¼
Z

dϰ1dϰ2f1ðϰ1Þf2ðϰ2Þδðk1z þ k2z − KzÞ
Jffiffiffiffiffiffiffiffiffiffi
ϰ1ϰ2

p :

ð29Þ

Notice that this integration now affects the longitudinal
momenta, since, for monoenergetic states, variation of ϰ
induces variation of kz. Therefore, the final particle now
displays a 2D momentum space distribution, which can be
written as

dσ ∝ E2
KβKjhJ ij2dΩK ¼ EK

Kz
jhJ ij2d2K⊥: ð30Þ

Further insights into this distribution can be found
in Ref. [36].

B. Scalar resonance production
in twisted γγ collisions

1. Exact expressions

Production of a spin-0 resonance in twisted γγ collision
can be described with the same formalism as in the scalar
case, corrected for the presence of polarization vectors [39].
One encounters the same twisted amplitude J as in (21)
and (26), where mi now refer to the total angular momen-
tum of each photon, while the invariant amplitude M
depends now on the photon helicities. To calculate it,
suppose S is a real scalar field which can be produced
in γγ collision through the following effective interaction
Lagrangian:

LS ¼
g
4
FμνFμνS: ð31Þ

It generates the helicity amplitude

MS ¼ g½ðk1k2Þðe1e2Þ − ðk1e2Þðk2e1Þ�; ð32Þ

where all products are understood as 4-vector products. For
plane wave collisions, one usually chooses the center of
motion frame, in which the polarization vectors, written in
the Coulomb gauge, are orthogonal to the momenta of both
photons,which allows one to drop the second term in (32). In
our case, this orthogonality does not hold in the Coulomb
gauge, and both terms must be evaluated in the reference
frame we work in.
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Using the explicit expressions for the polarization
vectors and momenta, one can evaluate the products
entering this expression,

ðk1k2Þ ¼
1

2
M2 ¼ E1E2½1 − c1c2 − s1s2 cosðφ1 − φ2Þ�;

ðe1e2Þ ¼ eiðφ1−φ2Þ 1 − λ1c1
2

1þ λ2c2
2

þ e−iðφ1−φ2Þ 1þ λ1c1
2

1 − λ2c2
2

−
λ1λ2s1s2

2
;

ðe1k2Þ ¼
E2ffiffiffi
2

p
�
eiðφ1−φ2Þ λ1c1 − 1

2
s2

þ e−iðφ1−φ2Þ 1þ λ1c1
2

s2 − λ1s1c2

�
; ð33Þ

and similarly for ðe2k1Þ. We adopted here the shorthand
notation ci ≡ cos θi, si ≡ sin θi. Notice that the plane wave
amplitude depends on the azimuthal angles of the two
photons only through their difference: MSðφ1;φ2Þ ¼
MSðφ1 − φ2Þ. Substituting these products into (32) and
simplifying the expressions, we get a nonzero amplitude
only for equal helicities λ1 ¼ λ2 ¼ λ:

MS ¼ 2gE1E2δλ1;λ2

�
eiðφ1−φ2Þ 1 − λc1

2

1þ λc2
2

þ e−iðφ1−φ2Þ 1þ λc1
2

1 − λc2
2

−
s1s2
2

�

¼ 2gE1E2δλ1;λ2ðeðλÞ1 eðλÞ2 Þ: ð34Þ

Next, one calculates J via (26). The two interfering
configurations differ only by their azimuthal angles:
φ1 − φ2 ¼ δ1 þ δ2 or −ðδ1 þ δ2Þ. Thus, we get

J S ¼ eiðm1−m2ÞφK
ϰ1ϰ2
2Δ

· gE1E2δλ1;λ2

× fð1 − λc1Þð1þ λc2Þ cos ½m1δ1 þm2δ2 þ δ1 þ δ2�
þ ð1þ λc1Þð1 − λc2Þ cos ½m1δ1 þm2δ2 − ðδ1 þ δ2Þ�
− 2s1s2 cos ½m1δ1 þm2δ2�g: ð35Þ

In the paraxial limit, when θ1 → 0 meaning c1 → 1 and
θ2 → π meaning c2 → −1, the first term dominates for
λ ¼ −1, while the second term dominates for λ ¼ þ1. The
azimuthal angle dependence exp½iðm1 −m2ÞφK� indicates
that the total angular momentum of the initial two-photon
system is converted in the OAM of the single final scalar
particle, should we want to describe the latter in the basis of
twisted states as well [39].

2. Helicity dependence: Fixed-m case

A remarkable feature of J S seen in Eq. (35) is its
nontrivial dependence on helicity λ ¼ λ1 ¼ λ2. Following
the discussion in Sec. II D, we now specify that, when

considering unpolarized cross section, we fix m1 and m2

and vary λ ¼ �1. Then, the expression J S can be written as

J S ¼ eiðm1−m2ÞφKδλ1;λ2
gE1E2ϰ1ϰ2

Δ
· ðJ 1 þ λJ 2Þ; ð36Þ

where the real quantities J 1 and J 2 are

J 1 ¼ cosðm1δ1 þm2δ2Þ½cosðδ1 þ δ2Þð1 − c1c2Þ − s1s2�;
J 2 ¼ sinðm1δ1 þm2δ2Þ sinðδ1 þ δ2Þðc1 − c2Þ: ð37Þ

This dependence survives in the cross section, which can be
generically represented as

σλ ¼ σ0 þ λσa ≡ σ0ð1þ λAÞ; ð38Þ

with σ0 representing the unpolarized cross section and σa
denoting the spin asymmetry. The quantity A≡ σa=σ0 can
be called the asymmetry contrast. For the pure Bessel
beams, this asymmetry contrast is given by

A ¼ 2J 1J 2

J 2
1 þ J 2

2

; ð39Þ

which can vary between −1 andþ1 depending on the exact
position on the interference fringe.
This dependence may at first look surprising. Indeed, in

the familiar plane wave collision, the helicity combinations
λ1 ¼ λ2 ¼ þ1 and λ1 ¼ λ2 ¼ −1 lead to identical cross
sections. This is due to the fact the entire process is parity
invariant. However, in the present case, we explicitly break
the left-right symmetry of the initial state by selecting
twisted photons with definite values of m1 and m2.
A different pair of photons with angular momenta −m1

and −m2 would flip the sign of J 2 in (37) and, con-
sequently, in the asymmetry (39). In short, production of a
scalar particle in twisted photon collision is invariant under
the simultaneous sign flips mi → −mi and λi → −λi, but
not under λi → −λi alone.
We stress that, for fixed m, the asymmetry does not

vanish in the paraxial limit. Indeed, setting c1 → 1,
c2 → −1, and si → 0 in the above expressions, we obtain

MS ¼ 2gE1E2δλ1;λ2e
−iλðφ1−φ2Þ; ð40Þ

and, as the result, we get

J S ∝ cos½ðm1 − λÞδ1 þ ðm2 − λÞδ2�
¼ cosðl1δ1 þ l2δ2Þ; ð41Þ

which coincides with the expression for twisted scalar
annihilation [36]. Here, li are the z projections of the
OAM of the two photons, which are approximately con-
served in this limit. The sizable spin asymmetry σa
originates from the fact that, in the paraxial approximation,
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λ ¼ þ1 involves the OAM state l ¼ m − 1, while λ ¼ −1
involves the OAM state l0 ¼ mþ 1 ¼ lþ 2. The two
states have different spatial distributions. As schematically
illustrated by Fig. 2, the resonance production amplitude in
collision of Bessel twisted photons involves interference
between two plane wave amplitudes. Since this interference
depends on the OAM values, one observes nonidentical
cross sections σλ¼þ1 and σλ¼−1.
For Bessel photon collisions, if the initial kinematics is

fixed, then the longitudinal momentum of the produced
particle Kz and its modulus of the transverse momentum K
are also fixed. This uniquely defines δ1 and δ2 and,
therefore, the exact position with respect to the interference
fringes. However, if one performs the total energy scan,
then K and/or Kz will vary, and one can slide across
interference fringes and observe rapidly changing asym-
metry A. In particular, one can choose a particular position
on the fringe to enhance the asymmetry contrast A as much
as possible, that is, to achieve σλ¼þ1 ≫ σλ¼−1 or vice versa.
On the other hand, just as in the scalar case [36], one can
anticipate that the Gaussian smearing of the pure Bessel

states will reduce fringe visibility and the asymmetry
contrast.
Figure 3 demonstrates the typical values of the asym-

metry one can obtain for realistic twisted photon beams.
For illustration, we take a narrow resonance with mass
M ¼ 0.8 GeV and show the distribution of the cross
sections σλ and the asymmetry contrast A over the total
energy EK for the Gaussian-smeared twisted states with
kinematic parameters

ðm1; m2Þ ¼ ð2; 1Þ; ϰ̄1 ¼ 0.1 GeV;

ϰ̄2 ¼ 0.2 GeV; K̄z ¼ −0.25 GeV; ð42Þ

and with σi ¼ ϰ̄i=10. Here and below, we use the notation
K̄z≡ k̄1zþ k̄2z with k̄iz ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
i − ϰ̄2i

p
. As we see, the asym-

metry contrast remains very high, and as we scan over the
total energy, it swings from almost −1 to þ1. This is an
unprecedented sensitivity to the photon polarization in a
process, which is fundamentally P invariant.

3. Helicity dependence: Fixed-l case

Let us now adapt a different definition of what unpo-
larized twisted photons mean; see Sec. II D. When compar-
ing γγ collisions with λ1 ¼ λ2 ¼ �1, we now assume that
m1 and m2 change accordingly, so that li ≡mi − λi are
fixed. In this case, in the paraxial approximation, J S
becomes independent of λ; see Eq. (41). However, beyond
the paraxial approximation, the difference persists. Since
the quantities J 1 and J 2 defined in Eq. (37) now depend
on λ, we replace (36) with

J S ¼ eiðl1−l2ÞφKδλ1;λ2
2gE1E2ϰ1ϰ2

Δ
· ðJ 0

1 þ λJ 0
2Þ; ð43Þ

where

FIG. 2. The absolute value of the transverse momentum K and
the longitudinal momentum Kz of the produced scalar resonance
of mass M in Bessel photon collision is uniquely reconstructed
from the energy-momentum conservation for either helicity
arrangement: λ1 ¼ λ2 ¼ þ1 (left plot) and λ1 ¼ λ2 ¼ −1 (right
plot). However, the magnitude of the cross section (shown as
shades of blue) can be different due to different interference
patterns, leading to an energy-dependent polarization asymmetry.

FIG. 3. Left: Cross section of the process γγ → S with twisted photons with parameters (42) for two helicity configurations: λ1 ¼
λ2 ¼ þ1 (blue) and −1 (red). Right: the asymmetry contrast A defined in Eq. (39).
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J 0
1 ¼

�ð1þ c1Þð1− c2Þ
2

þ ð1− c1Þð1þ c2Þ
2

cos½2ðδ1 þ δ2Þ�

− s1s2 cosðδ1 þ δ2Þ
�
cosðl1δ1 þ l2δ2Þ;

J 0
2 ¼ ½s1s2 − ð1− c1Þð1þ c2Þ cosðδ1 þ δ2Þ�

× sinðl1δ1 þ l2δ2Þ sinðδ1 þ δ2Þ: ð44Þ

In the paraxial approximation θ1 ≪ 1, θ̄2 ≡ π − θ2 ≪ 1,

J 0
1 → 2 cosðl1δ1 þ l2δ2Þ;

J 0
2 → θ1θ̄2 sinðl1δ1 þ l2δ2Þ sinðδ1 þ δ2Þ ≪ J 0

1; ð45Þ

so that

A ≈ θ1θ̄2 tanðl1δ1 þ l2δ2Þ sinðδ1 þ δ2Þ ≪ 1: ð46Þ

Thus, the nonzero asymmetry is suppressed by the small
angles θ1 and θ̄2, but it may be additionally enhanced if a
suitable position on the fringe is selected.
The above two evaluations of the polarization asymme-

try of the twisted photon collision cross section (39) and
(46) differ significantly. The real experimental situation
will probably lie in between. Indeed, even if one produces
twisted photons using holographic plates, then one obtains,
just behind the plate, a light field whose spatial distribution
is not sensitive to its polarization. However, the light field
evolves downstream and will certainly be different in the
focal plane due to the intrinsic spin-orbital interaction of
light [35], as we discussed in Sec. II D. Thus, the exact
value of polarization asymmetry cannot be predicted with-
out details of the experimental scheme.
However, the mere fact of spontaneous generation of a

(sizable) polarization asymmetry in twisted photon colli-
sions is beyond any doubt. This asymmetry is certainly
absent in the usual plane photon-photon collision and
represents a novel experimental tool offered by twisted
photons.

C. Detecting scalar-pseudoscalar mixing
in unpolarized twisted γγ collisions

In the previous subsections, we demonstrated that
unpolarized twisted photon collision has a new intrinsic,
adjustable degree of freedom, which is absent in the plane
wave case: a difference between σλ¼þ1 and σλ¼−1. We will
now show how it can be applied to detect scalar-pseudo-
scalar mixing in a spin-0 resonance produced in collision of
unpolarized twisted photons. This is our first example of an
observable which up to now was considered accessible only
in production of polarized photons or via the subsequent
decays of the resonance produced.
Let us begin by considering production of a pseudoscalar

particle P in collision of two twisted photons. The coupling
is generated by the effective Lagrangian

LP ¼ i
g
4
FμνF̃μνP; ð47Þ

where F̃μν ¼ ϵμνρσFρσ=2 is the dual electromagnetic field
strength tensor. It generates the following plane wave
helicity amplitude

MP ¼ igϵμνρσk
μ
1k

ν
2e

ρ
1e

σ
2: ð48Þ

Working in the same Coulomb gauge, one can evaluate this
amplitude explicitly to find the same structure as for the
true scalar (32) times the overall helicity factor λ,

MP ¼ λMS; ð49Þ

where for simplicity we used the same coupling constant g
in both cases. For twisted photons, one concludes that
J P ¼ λJ S, which generates exactly the same cross section
as in the scalar case. Thus, in the total production cross
section, the pure scalar and pure pseudoscalar cases are as
indistinguishable for twisted photon collisions as for
plane waves.
Next, suppose the spin-0 particle produced does not

possess definite parity. Then, its production amplitude is

M ¼ aMS þ bMP ¼ ðaþ λbÞMS: ð50Þ

The (complex) coefficients a and b describe the scalar-
pseudoscalar coupling of the particle to two photons. In the
usual plane wave collision with circularly polarized pho-
tons, the cross section is

σλ ∝ ½jaj2 þ jbj2 þ 2λReða�bÞ� · jMSj2: ð51Þ

Bymeasuring the unpolarized production cross section, one
can only reveal the overall production intensity jaj2 þ jbj2
but not detect the amount of scalar-pseudoscalar mixing. It
can be detected, in the plane wave collisions, only if one
performs experiments with polarized photons and measures
various spin asymmetries. For example, circularly polarized
photons give access to σþ − σ− ∝ Reða�bÞ; additional
information can be recovered with linearly polarized pho-
tons. This is a standard way to probe the parity properties of
the produced resonance.
Remarkably, twisted photons offer access to this scalar-

pseudoscalar mixing even with unpolarized twisted pho-
tons. Using the fixed-m convention for unpolarized twisted
light, we obtain the twisted production amplitude as

J ¼ ðJ 1 þ λJ 2Þðaþ λbÞ
¼ ðaJ 1 þ bJ 2Þ þ λðbJ 1 þ aJ 2Þ; ð52Þ

with helicity-independent J 1, J 2 given in (37). Squaring it
and averaging over the initial photon helicities, we obtain
the unpolarized cross section as
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σþ þ σ− ∝ ðJ 2
1 þ J 2

2Þðjaj2 þ jbj2Þ þ 4J 1J 2Reða�bÞ:
ð53Þ

Thus, even for unpolarized twisted photons, the cross
section contains a term which is sensitive to the magnitude
of scalar-pseudoscalar mixing.
This contributions can be extracted by a scan of the total

cross section over the collision energy. Indeed, J 1 and J 2

in (37) have different dependence on δ1 and δ2. Therefore,
the J 1J 2 term exhibits a different interference pattern than
J 2

1 þ J 2
2 as one scans over the allowed energy interval. To

illustrate this effect, we present in Fig. 4 the total energy
scan of the cross section for a pure scalar or pseudoscalar
(which are indistinguishable) and for the case of their
maximal mixing with a ¼ b ¼ 1=

ffiffiffi
2

p
. One sees a clear

difference of the interference fringes in these two cases.
This particular plot corresponds to the kinematic param-
eters (42), but there certainly exists ample room for
improving the discriminating power of this measurement.

D. Spin physics with unpolarized twisted
photons: f 2 example

Let us now see what unpolarized twisted photons can do
for spin-2 resonances such as the f2ð1270Þ meson. In the
usual plane wave case, unpolarized γγ collisions produce an
equal amount of λK and −λK polarization states. But in
unpolarized twisted photon collisions, one can selectively
produce different helicity states by adjusting the total
collision energy in order to stay at an appropriate inter-
ference fringe.
To see how it works, we begin by reviewing basic

features of the γγ → f2 process. The tensor meson f2 with
helicity λK is described with the symmetric polarization

tensor TðλKÞ
μν orthogonal to its 4-momentum: TðλKÞ

μν Kν ¼ 0.

It has five polarization states, with λK spanning from
−2 to þ2. They are constructed with the three polarization

vectors eðλÞμ , λ ¼ �1, 0, orthogonal to Kμ: the vectors

eð�1Þ
μ ¼ ð0; ekλÞ can be taken as defined in Eq. (12), while

eð0Þμ ¼ γKðβK;nKÞ, where βK and γK are the standard
kinematic parameters for the produced meson and nK is
the unit vector in the direction K. The explicit expressions
for the five polarization states of the spin-2 meson are

Tð�2Þ
μν ¼ eð�Þ

μ eð�Þ
ν ; Tð�1Þ

μν ¼ 1ffiffiffi
2

p ðeð�Þ
μ eð0Þν þ eð0Þμ eð�Þ

ν Þ;

Tð0Þ
μν ¼ 1ffiffiffi

6
p ðeðþÞ

μ eð−Þν þ eð−Þμ eðþÞ
ν þ 2eð0Þμ eð0Þν Þ: ð54Þ

The interaction between the two photons and the f2 meson
is generated by the Lagrangian gFρμFρνTμν=2, which gives
rise to the following plane wave γγ → f2 amplitude:

M ¼ g½ðk1k2Þe1μe2ν þ ðe1e2Þk1μk2ν − ðk1e2Þe1μk2ν
− ðk2e1Þk1μe2ν�ðTðλKÞ

μν Þ�: ð55Þ

Once again, all scalar products are understood as products
of 4-vectors. The polarization vectors for the two photons
e1 and e2 depend on their helicities λ1 and λ2 and are
orthogonal to their respective momenta k1 and k2. We work
in the Coulomb gauge and use the same vectors (12). As in
the case of spin-0 production, we need the amplitude in the
generic kinematics. This is why we do not assume that
ðk1e2Þ ¼ ðe1k2Þ ¼ 0 and keep all four terms in (55).
In the plane wave case, one can switch to the center of

motion reference frame, in which the produced f2 is at rest
and the photons are along the z axis. All polarization
vectors in this case can be identified with the vectors χ λi
defined in (9). If one chooses the same axis z to define the
helicity of the f2 meson, then the helicity amplitudes will
take the following very simple form:

MλK¼�2 ¼ 2gE2δλ1;�δλ2;∓: ð56Þ

That is, only �2 polarization states can be produced and
only for opposite photon helicities. If the two photons have
different energies E1 ≠ E2 but their momenta are still along
axis z, the final meson moves along the same axis and has
helicity �2 depending on the initial photon helicities. For
unpolarized photon beams, the final f2 meson is, of course,
also unpolarized.
For unpolarized twisted photons, the produced f2 meson

has a nonvanishing average helicity. To illustrate the main
idea, we stick to the paraxial approximation for the two
photons, θ1 → 0 and θ2 → π, while keeping the polar angle
θK of the produced f2 meson generic (28). In the paraxial
limit, the helicity amplitudes with λK ¼ �2 dominate, and
their expressions take a simple form. For λK ¼ þ2, we get

FIG. 4. The total production cross section of a spin-0 state in
twisted γγ collision with parameters (42) with Gaussian-smeared
twisted photons σi ¼ ϰi=10. Shown are cases without mixing
(blue solid line) and with maximal scalar-pseudoscalar mixing
(red dashed line).
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ðλ1;λ2Þ¼ ðþ;−Þ∶M¼ g
2
E1E2ð1þ cosθKÞ2e−iðφ1þφ2−2φKÞ;

ðλ1;λ2Þ¼ ð−;þÞ∶M¼ g
2
E1E2ð1− cosθKÞ2eiðφ1þφ2−2φKÞ;

ð57Þ

which gives J , up to a common prefactor, of the form

ðλ1;λ2Þ¼ðþ;−Þ∶J ∝ ð1þcosθKÞ2
×cosðm1δ1þm2δ2−δ1þδ2Þ;

ðλ1;λ2Þ¼ð−;þÞ∶J ∝ ð1−cosθKÞ2
×cosðm1δ1þm2δ2þδ1−δ2Þ: ð58Þ

For λK ¼ −2, we get

ðλ1;λ2Þ¼ ðþ;−Þ∶J ∝ ð1−cosθKÞ2
×cosðm1δ1þm2δ2−δ1þδ2Þ;

ðλ1;λ2Þ¼ ð−;þÞ∶J ∝ ð1þ cosθKÞ2
×cosðm1δ1þm2δ2þδ1−δ2Þ: ð59Þ

It is immediately seen that for cos θK ¼ 0 the two polari-
zation states λK ¼ �2 are produced in equal amounts by
the opposite photon helicities. However, at cos θK ≠ 0, this
equivalence breaks down. Calculating jJ j2 and averaging it
over the initial photon helicities, we get the following
unpolarized cross section for λK ¼ �2:

σλK¼�2 ∝ ð1þ 6cos2θK þ cos4θKÞ
× ½1þ cosð2m1δ1 þ 2m2δ2Þ cosð2δ1 − 2δ2Þ�
þ 2λK cos θKð1þ cos2θKÞ · sinð2m1δ1 þ 2m2δ2Þ
× sinð2δ1 − 2δ2Þ: ð60Þ

Thus, even if the twisted photons are unpolarized, we do
see a difference between jJ þ2j2 and jJ −2j2 and, therefore,
between the production cross sections:

σλK¼þ2−σλK¼−2 ∝ cosθKð1þ cos2θKÞ · sinð2m1δ1þ2m2δ2Þ
×sinð2δ1−2δ2Þ: ð61Þ

For the longitudinally balanced collision, k1z þ k2z ¼ 0,
the emission angle is θK ¼ π=2, and this spin asymmetry
vanishes. But for an off-balanced situation with a generic
θK , the asymmetry is present and, in general, not small.
Scanning the total energy of the collision and adjusting mi,
one can find optimal conditions when one produces
preferentially þ2 polarized states over −2 states.
We skip the numerical study of this effect for the

γγ → f2 production because in the following section we
will study it at length for vector resonances produced in the
unpolarized twisted eþe− annihilation.

IV. SPIN ASYMMETRY IN
TWISTED e+ e − ANNIHILATION

Access to spin-dependent observables in unpolarized
inclusive cross section can also be expected from eþe−
annihilation, provided both the electron and the positron are
twisted. As discussed in Sec. II D, an unpolarized twisted
electron beam can be defined as an equal flux of twisted
electrons with helicities ζ ¼ þ1=2 and ζ ¼ −1=2 and either
with fixed total angular momentum m or fixed l ¼ m − ζ.
One can then calculate production of a vector meson with
helicity λK ¼ �1 with unpolarized twisted electrons and
observe a nonzero asymmetry σλK¼þ1 − σλK¼−1. In this
section, we will adopt the former definition of the unpolar-
ized twisted electrons (fixed m), where a large effect is
expected. What is actually feasible in experiment will
eventually depend on the exact scheme of preparation of
twisted electrons and positrons.
Helicity amplitudes for vector (spin-1)mesonproduction in

the plane wave annihilation process e−ðk1; ζ1Þeþðk2; ζ2Þ →
VðK; λKÞ can defined as

Mζ1ζ2λ ¼ gv̄ζ2ðk2Þγμuζ1ðk1ÞVμ�
λK
ðKÞ: ð62Þ

Here, for the sake of simplicity, we assumed that the vector
meson couples to the same v̄γμu current as the photon. For
realistic vector mesons, the current may differ according to
whether the meson represents an S-wave orD-wave state of
the quark-antiquark pair [40], but investigating this issue
goes beyond the scope of the present paper.
The polarization vector Vμ

λK
ðkÞ is constructed in the same

way as previously,

Vμ
�1 ¼ ð0; ek;�1Þ; Vμ

0 ¼ γKðβK;nKÞ; ð63Þ
where ekλ is defined in Eq. (12). To simplify the calcu-
lations without losing the main features, we assume the
electrons and positrons to be ultrarelativistic and neglect
their mass. Then, one observes that the nonzero amplitudes
exist only for ζ1 ¼ −ζ2 ≡ ζ,

Mζ1ζ2λK ¼ −2gδζ1;−ζ2
ffiffiffiffiffiffiffiffiffiffiffi
E1E2

p
· TðζÞ

μ Vμ�
λK
; ð64Þ

where

TðζÞ
0 ¼ wðζÞ

2

†wðζÞ
1 ¼ c1c2eiζðφ2−φ1Þ þ s1s2e−iζðφ2−φ1Þ;

TðζÞ
3 ¼ 2ζwðζÞ

2

†
σ3w

ðζÞ
1 ¼ c1c2eiζðφ2−φ1Þ − s1s2e−iζðφ2−φ1Þ;

TðζÞ
1 ¼ 2ζwðζÞ

2

†
σ1w

ðζÞ
1 ¼ c2s1eiζðφ2þφ1Þ þ s2c1e−iζðφ2þφ1Þ;

TðζÞ
2 ¼ 2ζwðζÞ

2

†
σ2w

ðζÞ
1

¼ −2iζ½c2s1eiζðφ2þφ1Þ − s2c1e−iζðφ2þφ1Þ�: ð65Þ

One can verify that TðζÞ
μ kμ1 ¼ TðζÞ

μ kμ2 ¼ 0. We remind the
reader that, for fermions, the shorthand notation is to be
understood as ci ≡ cosðθi=2Þ and si ≡ sinðθi=2Þ.
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These helicity amplitudes can be evaluated for generic
kinematics, but the main features again can be illustrated in
the paraxial approximation, θ1 → 0, θ2 → π, so that only
terms with c1 → 1 and s2 → 1 survive. The polar angle θK
of the produced resonance is kept generic. The surviving
helicity amplitudes correspond to production of λK ¼ �1
states:

Mζ;−ζ;λK ¼ −g
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2E1E2

p
e−iζðφ2þφ1−2φKÞ · ðλK cos θK þ 2ζÞ:

ð66Þ

When passing from plane waves to twisted Bessel states,
we use the same expression for J as in Eq. (26), with half-
integer m1, m2. The plane wave amplitudes Ma and Mb
for the two kinematic configurations are given by Eq. (66),
in which the azimuthal angles take their values set by
Eqs. (24). The resulting expression for the twisted ampli-
tude is

J ζ;−ζ;λK ¼ −g
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2E1E2

p
eiðm1−m2ÞφK

ϰ1ϰ2
Δ

· ðλK cos θK þ 2ζÞ
× cos½m1δ1 þm2δ2 − ζðδ1 − δ2Þ�: ð67Þ

Using the fixed-m definition of the unpolarized electron
and positron beams, we obtain the following unpolarized
twisted eþe− cross section in the paraxial approximation:

σλK¼�1∝ð1þcos2θKÞ½1þcosð2m1δ1þ2m2δ2Þcosðδ1−δ2Þ�
ð68Þ

þ2λK cosθK sinð2m1δ1þ2m2δ2Þsinðδ1−δ2Þ:
ð69Þ

This result is similar to the f2-meson production in
unpolarized twisted photon collision: for a generic
θK ≠ π=2, there is a clear imbalance between λK ¼ þ1
and λK ¼ −1 production cross sections, which depends on
the exact position with respect to the interference fringes.
The asymmetry contrast can be defined as

A ¼ σλK¼þ1 − σλK¼−1

σλK¼þ1 þ σλK¼−1 þ σλK¼0

; ð70Þ

and in the paraxial limit, it can be approximated as

A ≈
2 cos θK

1þ cos2θK
·

sinð2m1δ1 þ 2m2δ2Þ sinðδ1 − δ2Þ
1þ cosð2m1δ1 þ 2m2δ2Þ cosðδ1 − δ2Þ

:

ð71Þ

Thus, for the production angles θK far away from π=2, the
asymmetry can be rather sizable. Notice that in the paraxial
limit σλK¼0 → 0.

These paraxial estimates can be corroborated with
numerical calculations based on the exact expression for
the helicity amplitudes (65). To give a concrete example,
we consider production of the J=ψ meson with mass M ¼
3.1 GeV in the unpolarized twisted eþe− annihilation with
the following parameters:

ϰ1 ¼ 0.2 GeV; ϰ2 ¼ 0.1 GeV;

m1 ¼ 5=2; m2 ¼ 1=2: ð72Þ

To define the scan trajectory on the ðE1; E2Þ plane, we will
first choose the electron energy E1 and then scan over a
range of the positron energies E2 plotting the cross section
as a function of the final particle polar angle θK calculated
from Eq. (28).
In Fig. 5, we plot the polarization asymmetry for pure

Bessel beams with different values of the electron energy
E1 ranging from 1.3 to 1.8 GeV and with E2 scanned in a
certain range for each E1. We see that the exact numerical
results are very well approximated by the paraxial limit for
the kinematic configuration away from θK ¼ π=2. The sign
of the predominant polarization asymmetry is clearly
correlated with the forward or backward production hemi-
sphere. For a fixed energy E1, the curve is nonsymmetric,
which implies that, even if electron and positron beams
have certain energy spread, the overall polarization asym-
metry will persist.
We stress that the distributions shown in Fig. 5 are not to

be understood as the angular distribution in a single fixed-
energy experiment. A single experiment with fixed energies
E1 and E2 will correspond to one specific angle θK with its
cross section and polarization. The plots in Fig. 5 represent
the evolution of the polar production angle and the
correlated evolution of the spin asymmetry value as one
scans over the initial positron energy, keeping the electron

FIG. 5. The polarization asymmetry A in Eq. (70) as a function
of the final particle polar angle θK with the parameters given in
(72) and for several choices of the electron energy E1 given in
GeV. The black dashed lines are the asymmetries in the paraxial
limit, while the red solid curves represent the exact result without
including the σλK¼0 contribution to Eq. (70).
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energy fixed. They tell us that selecting a point near the
plateau would produce almost 100% polarized meson beam
even with unpolarized initial electron and positron beams.
Since the exact Bessel beams are not normalizable, we

model the realistic situation by smearing over the initial ϰi
with the parameters

ϰ̄1 ¼ 0.2 GeV; ϰ̄2 ¼ 0.1 GeV; σi ¼ ϰ̄i=5;

E1 ¼ 1.8 GeV; E2 ¼ 1.338 GeV; ð73Þ

and for the angular momentum values m1 ¼ 5=2 and
m2 ¼ 1=2. Although we now fix the energies of both
incoming particles, smearing over ϰi produces a distribu-
tion over a range of angles θK in a single experiment. We
also take into account the finite width of the produced
resonance and evaluate the differential cross section
weighted with the corresponding Breit-Wigner factor with
the width Γ ¼ 93 keV,

dσ
dsd cos θK

∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
K − s

q
jhJ ij2 1

π

MΓ
ðs −M2Þ2 þM2Γ2

; ð74Þ

dσ
d cos θK

∼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E2
K −M2

p
Z

EK

0

ds
dσ

dsd cos θK
; ð75Þ

where s≡ KμKμ ¼ E2
K − K2

z − K2 is the 4-momentum
squared of the final particle. We stress that, unlike in the
plane wave collision, the variable s is not fixed by the initial
state kinematics. Even when Ei and ϰi are fixed, resonances
with masses within a certain interval can be produced [36].
For resonances with finite width, this intrinsic mass-
spectrometric feature of the twisted particle collision
manifests itself as an s distribution of the cross section.
The dependence of the matrix element on the final particle
parameters comes through s and the polar angle θK .

In Fig. 6, we show the resulting differential cross
sections dσλK=d cos θK for all three polarization states
λK ¼ �1, 0. The left plot shows these cross sections with
zero width in the log scale, while the right plot, presenting
the same functions in the linear scale, illustrates the minor
effect of the nonzero width. The green band indicates the
angular range which saturates the cross section.
As one sees, the cross section around the peak is strongly

dominated by the polarization state λK ¼ þ1, with a ≈10%
admixture of the λK ¼ 0 state and even smaller contribution
from λK ¼ −1. This is not a coincidence but is a result of
our choice of the kinematic parameters (73). Certainly, by
adjusting these parameters, one can arrange for a situation
with λK ¼ −1 production strongly dominating over
λK ¼ þ1. Thus, we obtain a remarkable result: we can
produce almost fully polarized vector mesons in unpolar-
ized twisted eþe− annihilation.
The polarization purity of the produced resonance can be

quantified by the differential asymmetry AðθKÞ defined as

AðθKÞ ¼
�
dσλK¼þ1

d cos θK
−
dσλK¼−1

d cos θK

�.X
λK

dσλK
d cos θK

: ð76Þ

This quantity is plotted in Fig. 7. Although the smearing
effects reshape the angular profile of the asymmetry, it still
rises as high as 90%.
In the above numerical example, we used a very narrow

resonance. Let us now see how the picture changes if one
considers a wide resonance such as ρ meson with mass
Mρ ¼ 0.775 GeV and width Γρ ¼ 0.149 GeV. We take the
angular momentum values m1 ¼ 5=2 and m2 ¼ 1=2 and
the following kinematical parameters:

ϰ̄1 ¼ 0.2 GeV; ϰ̄2 ¼ 0.1 GeV; σi ¼ ϰ̄i=5;

E1 ¼ 0.6 GeV; E2 ¼ 0.258 GeV: ð77Þ

FIG. 6. Left: Distribution over the polar angles θK of the production of the J=ψ meson in the zero-width approximation in the
unpolarized twisted eþe− annihilation with kinematic parameters as in Eq. (73). Solid, dashed, and short-dashed lines show the cross
sections for λK ¼ þ1, −1, and 0, respectively. Right: the same cross sections in linear scale. The red curves include finite width effects
according to Eq. (75), while the blue curves correspond to the zero width. The green band denotes the angular interval, which gives the
main contribution to the cross section.
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In Fig. 8, we show the angular distribution of the ρ
production cross section in unpolarized twisted eþe−
annihilation for the three helicities of the produced meson.
The dramatic broadening effect of the large width is
evident. Nevertheless, the cross sections with λK ¼ þ1
and −1 differ significantly, so that the value of the
asymmetry is nonzero and rather large.
The effect becomes even more pronounced if one studies

the same angular distribution for selected values of
ffiffiffi
s

p
. We

remind the reader that, even when initial kinematical
parameters Ei and ϰi are fixed, the invariant mass of the
produced resonance is not fixed and can vary within certain
range [36]. However, since ρ decays to the ππ system, the
detector can reconstruct the invariant mass and the direction

of the produced ρ meson, enabling us to plot the fixedffiffiffi
s

p ¼ Mππ slice of the angular distribution.
The resultingdifferential cross sectionsdσλK=ðdsd cos θKÞ

are presented in Fig. 9 together with differential polarization
asymmetry for two values of invariant mass

ffiffiffi
s

p ¼
0.777 GeV and

ffiffiffi
s

p ¼ 0.755 GeV. The left plot shows these
cross sections for all three polarization states λK ¼ �1, 0,
while the right plot demonstrates the polarization asymmetry.
The curves clearly show that, at fixed initial energy of the
eþe− collision, the polarization of the produced meson
dramatically depends on the production angle. For example,
at

ffiffiffi
s

p ¼ 0.777 GeV (light red curves), the asymmetry A
reaches the values of 90% around θK ¼ 0.42. By slightly
lowering the collision energy to

ffiffiffi
s

p ¼ 0.755 GeV (dark blue
curves), one completely reverses the situation: now the
polarization state λK ¼ −1 dominates, and the asymmetry
reaches −85% in the θK region 0.6 to 0.7. These broad plots
clearly show that obtaining highly polarized ρ mesons does
not require any fine-tuning nor very narrow angular selection.
Self-polarization is an intrinsic, robust feature of this pro-
duction scheme.

V. EXPERIMENTAL PROSPECTS

The present-day high-energy colliders are not designed
to collide twisted particles. Novel instrumentation is needed
to produce, accelerate, and focus particles in twisted states,
which requires significant efforts from the beam and
accelerator physics communities. Fortunately, the final
state particles can be detected and analyzed with traditional
detectors.
Despite these challenges, we believe that many of the

phenomena proposed and studied in this paper can be
verified with a modest experimental push, and we list here
some steps toward achieving this goal:

(i) To remind the reader, twisted electrons with energies
up to 300 keV, an excellent control over OAM, and
focal spot stability have been produced [24]. Among
several twisted electron produced schemes demon-
strated so far, one is based on an artificial magnetic
monopole, which effectively exists at the tip of a thin
magnetized needle [41]. This method relies on
electromagnetic interactions and can be applied to
any charged particle, including positrons and (anti)
protons. To realize it, one needs to prepare the initial
charged particle in an approximately plane wave
state with the transverse coherence length of the
order of 1 μm. It remains to be seen if this can be
achieved, for example, in experiments with trapped
cold protons, antiprotons, or positrons.

(ii) Once a beam of low-energy electrons or other
charged particles is prepared in a twisted state, it
can be injected in a linear accelerator and accelerated
to higher energies. This can be done either inside a
conventional Radio Frequency (RF) cavity or in
plasma wake field accelerators. In the ideal case of a

FIG. 7. The differential polarization asymmetry A, Eq. (76), as a
function of the polar angle θK of the produced resonance. The red
dotted line represent the result for the pure Bessel beams and is
identical to the leftmost curve in Fig. 5. The blue solid line
represents the asymmetry with smearing effects taken into account
and with fixed energies of initial particles. The green band is the
same as in Fig. 6, left. Thevertical line around θK ≈ 0.36 represents
the angle with Kz ¼ k̄1z þ k̄2z, where k̄iz ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
i − ϰ̄2i

p
.

FIG. 8. The cross sections (in arbitrary units) as in Fig. 6, right,
but for the wide ρ meson. The lighter orange curves include
finite width effects according to Eq. (75), while the blue curves
correspond to the zero width.
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perfectly longitudinal electric field and Bessel
twisted state, the acceleration will boost the longi-
tudinal momentum without affecting its transverse
wave function. In a realistic situation, stray electro-
magnetic fields may be of concern as they may spoil
the twisted state. We believe that the phase vortex of
a twisted state, being topologically protected, will
survive for sufficiently weak stray fields. This belief
is further supported by the optical experiments with
free space transmission of twisted light across the
turbulent atmosphere over a distance of 143 km [42].
The exact tolerance levels can only be revealed by a
dedicated numeric simulation and its experimental
verification. These proof-of-principle studies are do-
able with the existing technologies.

(iii) Behavior of paraxial twisted electrons in storage
rings was analytically studied in Refs. [43,44], with
the optimistic conclusions that orbital helicity
evolves in a well-predicted way and can survive
many rotation. Once again, these expectations must
be corroborated by numerical simulations.

(iv) Once the twisted particles are accelerated and
brought to collisions, one must be able to monitor
whether their twisted state is indeed preserved and
whether it is sufficiently stable. A suitable diagnostic
tool is elastic scattering of twisted charged particles.
This process was analyzed in Ref. [45], and char-
acteristic observables were demonstrated.

(v) It is possible to bring twisted particles to the
hadronic physics realm even without accelerating
them. It suffices to bring slow protons and anti-
protons to twisted states and arrange for their
collisions pp̄ → hadrons. All features proposed in
this paper will apply to this proof-of-principle
experiment. The list of observables will be even
larger due to the more complex final state, and its

theoretical exploration is postponed to a future
publication.

(vi) Finally, it is possible to arrange for an atomic
physics counterpart of the experiments described
here. Imagine a one-photon excitation of a trapped
atom or ion, in which both initial particles are
twisted: γtw þ atomtw → atom�. All the kinematic
and polarization effects discussed here will apply,
albeit in different energy ranges. If one prefers to
avoid dealing with twisted atoms, one can arrange
for two-twisted-photon excitation of a trapped atom
γ1 tw þ γ2 tw þ atom → atom�, again keeping all the
essential proposals of the present paper. We believe
that such “twisted spectroscopy” is doable with the
present-day technology. If successful, it will dem-
onstrate the feasibility of the idea and open a new
direction in optical spectroscopy.

VI. CONCLUSIONS

Uncovering and exploring the spin properties of hadrons
and their interactions is an intricate and fascinating topic in
hadron phenomenology. There is a wealth of information
revealed through spin-dependent observables in hadronic
processes, but it is not always easy to extract and disen-
tangle them experimentally. Although the spin physics
program pursued by the hadronic community at specialized
colliders is rich and multifaceted, any new complementary
method of accessing spin observables would be very
welcome.
In this work, we explored in detail the idea that we

recently proposed in Ref. [12] that spin- and parity-
dependent observables can be studied even with unpolar-
ized particles, provided they are prepared in twisted states.
In such a state, particles possess a well-defined z projection
of the angular momentum, which receives contribution not

FIG. 9. Polarization properties of ρ mesons produced in the unpolarized twisted eþe− annihilation with kinematic parameters as in
Eq. (77). Left: Differential cross section (in arbitrary units) for the broad range of polar angles 0.1 < θK < 0.8 and for the two values of
the center of mass energies:

ffiffiffiffiffi
s1

p ¼ 0.777 GeV (lighter orange curves) and
ffiffiffiffiffi
s2

p ¼ 0.755 GeV (darker blue curves). The solid, dashed,
and short-dashed curves show the cross sections for λK ¼ þ1, −1, and 0, respectively. Right: Differential polarization asymmetry A,
Eq. (76), as a function of the polar angle θK . The finite width effects are included according to Eq. (74).

TWISTED PARTICLE COLLISIONS: A NEW TOOL FOR SPIN … PHYS. REV. D 101, 096010 (2020)

096010-15



only from spin but also from the orbital angular momen-
tum. If one prepares a beam of photons or electrons with an
equal amount of positive and negative helicities but with
the angular momentum fixed, then the resonance produc-
tion cross sections will display dramatic energy dependence
and angular effects, which will reveal the spin-dependent
observables in a novel way.
We showed how production of a hypothetical spin-0

particle in collision of unpolarized twisted photons can
reveal the amount of its scalar-pseudoscalar mixing. This is
an illustration of the power of twisted particles in detecting
parity-violating effects in the fully unpolarized case. We
also demonstrated that vector mesons produced in unpo-
larized twisted eþe− annihilation can in fact be almost
100% polarized and their polarization state can be con-
trolled by adjusting kinematics of the colliding twisted
particles. None of these effects is possible with the usual
plane wave collisions.
All these opportunities offer a remarkably rich pattern of

observable spin physics effects which can be probed in
twisted particle collisions, although not yet at existing
colliders. Twisted electrons and photons have been exper-
imentally demonstrated only for low energies, and one
needs first to prepare high-energy twisted particles and
bring them into collisions. This field is barely explored, but
there exist theoretical suggestions such as in Refs. [13,14]
which await exploration. We believe that the novel oppor-
tunities in hadronic physics offered by twisted particles

present a sufficiently compelling scientific case to justify
further dedicated work on their realization.
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[7] E. Leader and C. Lorcé, Phys. Rep. 541, 163 (2014).
[8] M. Anselmino, M. Boglione, U. D’Alesio, A. Kotzinian,

F. Murgia, A. Prokudin, and C. Turk, Phys. Rev. D 75,
054032 (2007).

[9] M. Anselmino, A. Mukherjee, and A. Vossen, arXiv:
2001.05415.

[10] D. Boer, Proc. Sci., SPIN2018 (2019) 167 [arXiv:
1903.01119].

[11] X. Chen, Proc. Sci., DIS2018 (2018) 170 [arXiv:
1809.00448].

[12] I. P. Ivanov, N. Korchagin, A. Pimikov, and P. M. Zhang,
Phys. Rev. Lett. 124, 192001 (2020).

[13] U. D. Jentschura and V. G. Serbo, Phys. Rev. Lett. 106,
013001 (2011).

[14] U. D. Jentschura and V. G. Serbo, Eur. Phys. J. C 71, 1571
(2011).

[15] G. L. Kotkin, V. G. Serbo, and A. Schiller, Int. J. Mod. Phys.
A 07, 4707 (1992).

[16] I. P. Ivanov, Phys. Rev. D 83, 093001 (2011).
[17] I. P. Ivanov and V. G. Serbo, Phys. Rev. A 84, 033804

(2011).
[18] D. V. Karlovets, Phys. Rev. A 86, 062102 (2012).
[19] D. V. Karlovets, G. L. Kotkin, and V. G. Serbo, Phys. Rev. A

92, 052703 (2015).
[20] D. Karlovets, J. High Energy Phys. 03 (2017) 049.
[21] D. Karlovets, Phys. Rev. A 98, 012137 (2018).
[22] A. J. Silenko, P. Zhang, and L. Zou, Phys. Rev. A 100,

030101(R) (2019).
[23] D. V. Karlovets and V. G. Serbo, Phys. Rev. D 101, 076009

(2020).
[24] K. Y. Bliokh et al., Phys. Rep. 690, 1 (2017).
[25] S. M. Lloyd, M. Babiker, G. Thirunavukkarasu, and J. Yuan,

Rev. Mod. Phys. 89, 035004 (2017).
[26] M. J. Padgett, Opt. Express 25, 11265 (2017).
[27] B. A. Knyazev and V. G. Serbo, Phys. Usp. 61, 449 (2018).

IVANOV, KORCHAGIN, PIMIKOV, and ZHANG PHYS. REV. D 101, 096010 (2020)

096010-16

https://doi.org/10.1103/PhysRevD.98.030001
https://doi.org/10.1103/PhysRevD.98.030001
https://doi.org/10.1016/j.ppnp.2016.07.001
https://doi.org/10.1007/s11467-014-0449-6
https://doi.org/10.1103/PhysRevD.101.014002
https://doi.org/10.1103/PhysRevD.101.014002
https://doi.org/10.1103/PhysRevD.96.114024
https://doi.org/10.1103/RevModPhys.85.655
https://doi.org/10.1103/RevModPhys.85.655
https://doi.org/10.1016/j.physrep.2014.02.010
https://doi.org/10.1103/PhysRevD.75.054032
https://doi.org/10.1103/PhysRevD.75.054032
https://arXiv.org/abs/2001.05415
https://arXiv.org/abs/2001.05415
https://doi.org/10.22323/1.346.0167
https://arXiv.org/abs/1903.01119
https://arXiv.org/abs/1903.01119
https://doi.org/10.22323/1.316.0170
https://arXiv.org/abs/1809.00448
https://arXiv.org/abs/1809.00448
https://doi.org/10.1103/PhysRevLett.124.192001
https://doi.org/10.1103/PhysRevLett.106.013001
https://doi.org/10.1103/PhysRevLett.106.013001
https://doi.org/10.1140/epjc/s10052-011-1571-z
https://doi.org/10.1140/epjc/s10052-011-1571-z
https://doi.org/10.1142/S0217751X92002131
https://doi.org/10.1142/S0217751X92002131
https://doi.org/10.1103/PhysRevD.83.093001
https://doi.org/10.1103/PhysRevA.84.033804
https://doi.org/10.1103/PhysRevA.84.033804
https://doi.org/10.1103/PhysRevA.86.062102
https://doi.org/10.1103/PhysRevA.92.052703
https://doi.org/10.1103/PhysRevA.92.052703
https://doi.org/10.1007/JHEP03(2017)049
https://doi.org/10.1103/PhysRevA.98.012137
https://doi.org/10.1103/PhysRevA.100.030101
https://doi.org/10.1103/PhysRevA.100.030101
https://doi.org/10.1103/PhysRevD.101.076009
https://doi.org/10.1103/PhysRevD.101.076009
https://doi.org/10.1016/j.physrep.2017.05.006
https://doi.org/10.1103/RevModPhys.89.035004
https://doi.org/10.1364/OE.25.011265
https://doi.org/10.3367/UFNe.2018.02.038306


[28] V. Serbo, I. P. Ivanov, S. Fritzsche, D. Seipt, and A.
Surzhykov, Phys. Rev. A 92, 012705 (2015).

[29] L. D. Landau and E. M. Lifshits, Quantum Mechanics,
Course of Theoretical Physics Vol. 3 (Butterworth-Heine-
mann, Oxford, 1991).

[30] K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, and A. V.
Zayats, Nat. Photonics 9, 796 (2015).

[31] M. Uchida and A. Tonomura, Nature (London) 464, 737
(2010).

[32] J. Verbeeck, H. Tian, and P. Schattschneider, Nature
(London) 467, 301 (2010).

[33] B. J. McMorran, A. Agrawal, I. M. Anderson, A. A.
Herzing, H. J. Lezec, J. J. McClelland, and J. Unguris,
Science 331, 192 (2011).

[34] K. Y. Bliokh, M. R. Dennis, and F. Nori, Phys. Rev. Lett.
107, 174802 (2011).

[35] Y. Zhao, J. S. Edgar, G. D. M. Jeffries, D. McGloin, and
D. T. Chiu, Phys. Rev. Lett. 99, 073901 (2007).

[36] I. P. Ivanov, N. Korchagin, A. Pimikov, and P. Zhang, Phys.
Rev. D 101, 016007 (2020).

[37] V. B. Berestetskii, E. M. Lifshitz, and L. P. Pitaevskii,
Quantum Electrodynamics, Course of Theoretical Physics
Vol. 4 (Pergamon Press, Oxford, 1982).

[38] I. P. Ivanov, D. Seipt, A. Surzhykov, and S. Fritzsche,
Europhys. Lett. 115, 41001 (2016).

[39] I. P. Ivanov, V. G. Serbo, and P. Zhang, J. Opt. 21, 114001
(2019).

[40] I. P. Ivanov and N. N. Nikolaev, JETP Lett. 69, 294
(1999).
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