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Electron-positron pair production for inhomogeneous electric and magnetic fields oscillating in space
and time is investigated. By employing accurate numerical methods (Furry-picture quantization and
quantum kinetic theory), final particle momentum spectra are calculated and analyzed in terms of effective
models. Furthermore, criteria for the applicability of approximate methods are derived and discussed. In
this context, special focus is placed on the local density approximation, where fields are assumed to be
locally homogeneous in space. Eventually, we apply our findings to the multiphoton regime. Special
emphasis is on the importance of linear momentum conservation and the effect of its absence in momentum
spectra within approximations based on local homogeneity of the fields.
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I. INTRODUCTION

Quantum field theory has taught us to see the quantum
vacuum as a key factor towards understanding fundamental
physical processes. The reason is that the quantum vacuum
is far from being empty but can rather be described as a
nonlinear medium with fluctuating virtual particles acting
as mediators of interactions. In quantum electrodynamics
(QED), for example, it is perpetual creation and annihila-
tion of virtual electrons, positrons, and photons that gives
rise to new, staggering phenomena such as the Sauter-
Schwinger effect [1–3], vacuum birefringence [4–6], and
light-by-light scattering [7–10].
Especially in the context of strong-field QED, under-

standing these effective interactions and finding ways to
probe vacuum nonlinearities have driven the evolution of
the research field ever since; for reviews see Refs. [11–18].
However, testing these conjectures experimentally has
proved to be challenging. Due to the small cross sections
of direct light-by-light scattering, it takes extremely high
field strengths in order to obtain any signal of underlying
nonlinearities. As a consequence, experiments have been
limited to atomic fields and highly charged ions (see

Refs. [19–22], where high-energy processes were dis-
cussed). New theoretical developments concerning sponta-
neous pair production in low-energy ion collisions have
been recently reported in Ref. [23] (see also references
therein).
In the context of measuring nonlinear quantum electro-

dynamics the SLAC E144 experiment has to be mentioned.
The setup consisting of a terawatt laser and an electron
beam of 46.6 GeV, which was guided through the laser
beam, was the first experiment to observe nonlinear Comp-
ton scattering and, moreover, nonlinear Breit-Wheeler pair
production [24,25]. In the years following this seminal
observation, newly built laser facilities have been recog-
nized as an opportunity to advance the field even further,
and thus a variety of new theoretical predictions regarding
the feasibility of observing similarly astonishing phenom-
ena have been published (see, e.g., Refs. [26–28]). In
particular creation of matter through high-intensity electric
fields, the famous Schwinger effect, and the prospect of
finding direct proof for quantum vacuum nonlinearities has
gained renewed interest as current laser technology is on
the brink of investigating these effects in the laboratory.
This development also has a huge impact on the

theoretical aspect of the research field as experimental
conditions are often far away from perfect theoretical
settings, cf. Refs. [29–49] considering various temporal
and spatial pulse shapes. The possibility of working with an
imperfect vacuum as well as having imprecise laser and
detector equipment plays a huge role in evaluating the
chances for detecting, e.g., signal photons [50,51]. Hence,
this article is mainly devoted to analyzing currently used
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numerical methods and approximations in studies on
electron-positron pair production. To be more specific,
we evaluate two computational techniques based on the
Furry-picture quantization formalism and quantum kinetic
approaches, respectively, in order to determine the
strengths and weaknesses of the corresponding numerical
procedures. Moreover, we test the applicability of the
local dipole approximation, where spatial dependences
are treated as locally homogeneous. This is an important
step forward in finding a suitable method to actually
perform calculations with respect to pair production for
given laboratory conditions.
For this work, we consider two counterpropagating laser

beams which are focused at the same point creating a
highly intense standing-wave pattern. Such a setup pro-
vides a perfect environment for testing various numerical
methods because the temporal structure allows one to study
Schwinger as well as multiphoton effects and the inhomo-
geneous spatial structure is ideal to see the implications of
magnetic fields. Furthermore, the computational techniques
applied offer a lot of flexibility allowing us to further
investigate the fundamental differences in purely time-
dependent electric fields and time-dependent, spatially
inhomogeneous backgrounds.
The article is structured as follows. In Sec. II we

introduce the external laser field and discuss its character-
istic traits. Sections III, IV, and Vare the basis of this paper
as we individually introduce the different methods step by
step. To be more specific, Sec. III is about the Furry-picture
quantization, in Sec. IV a phase-space formalism is intro-
duced, and in Sec. V we discuss the local dipole approxi-
mation (LDA). In the largest section, Sec. VI, we present
and discuss our results on the basis of a comparison
between the methods for short-pulsed fields, Sec. VI A,
as well as for many-cycle pulses, Sec. VI B. The last
section, Sec. VII, contains the conclusions of our study.
Throughout the article, we use ℏ ¼ c ¼ 1 and display

observables in terms of the electron mass m. The electron
charge is e < 0.

II. EXTERNAL FIELD CONFIGURATION

One of our goals is to study the performance of different
numerical methods regarding calculating the particle
yield for spatially inhomogeneous fields within various
setups. Moreover, we are determined to inspect various
multiphoton signatures in standing-wave patterns which
approximate a scenario involving two counterpropagating
laser pulses. Hence, we introduce a vector potential of
the form

Aðt; zÞ ¼

0
B@

Axðt; zÞ
0

0

1
CA ¼ εEcr

ω
exp

�
−
t6

τ6

�
sinωt cos kzzex:

ð1Þ

This expression represents a standing wave being linearly
polarized along the x direction, with a cosine profile along
the z axis and a super-Gaussian temporal envelope. Four
individual field parameters allow for great flexibility: the
peak field strength ε, the pulse length τ, and the field
frequencies ω and kz. The critical field strength Ecr ¼
m2=jej has been factored out for the sake of convenience.
The electric and magnetic fields are derived from Eq. (1),

Eðt; zÞ ¼

0
B@

Exðt; zÞ
0

0

1
CA ¼

0
B@

−∂tAxðt; zÞ
0

0

1
CA

¼ −εEcr exp

�
−
t6

τ6

��
cosωt −

6

ωτ

�
t
τ

�
5

sinωt

�
× cos kzzex; ð2Þ

Bðt; zÞ ¼

0
B@

0

Byðt; zÞ
0

1
CA ¼

0
B@

0

∂zAxðt; zÞ
0

1
CA

¼ −εEcr
kz
ω
exp

�
−
t6

τ6

�
sinωt sin kzzey: ð3Þ

In this way a single vector potential is sufficient in order to
interpolate from the Schwinger to the multiphoton regime
and from few-cycle to many-cycle pulses. In addition, all
fields vanish at asymptotic times as Aðt → �∞Þ → 0. As
we will discuss in Sec. VI, neither does ω ¼ kz hold in
general nor do the parameters ω and kz always represent
physical quantities. Although Maxwell’s equations lead to

jkzj=ω¼! 1, our toy model allows for a gradual change of
this ratio in order to switch on/off the magnetic field
component and make the spatial variations more/less
pronounced. In what follows, it will provide additional
insights into the particle dynamics and its relation to the
features of the pair production process. Furthermore, for
few-cycle pulses ωτ ≈Oð1Þ, a Fourier analysis of the pulse
profiles does not yield one dominant field frequency. In
many-cycle pulses ωτ ≫ 1, the situation changes drasti-
cally in particular close to the critical frequency ω ∼m.
Then, it can be shown that ω indeed corresponds to the
photon energy and kz represents the photon momentum.

III. FURRY-PICTURE QUANTIZATION

The general formalism of quantization within the Furry
picture is described in detail in Ref. [52]. We will first
briefly discuss how the rigorous QED approach allows one
to extract the necessary pair-production probabilities from
the one-particle solutions of the Dirac equation including
the interaction with a classical external field Aμ. After that
we will show how this approach can be implemented in the
case of the standing-wave background (1).
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The external classical field is treated nonperturbatively,
thus allowing one to study also nonperturbative pair pro-
duction, e.g., the Schwinger mechanism in strong quasi-
static fields. On the other hand, we will completely neglect
the quantized part of the electromagnetic field, which gives
rise to, e.g., loop corrections. Furthermore, neither photon
emission [53–57] nor backreaction effects [58,59] are taken
into account. In short, our techniques are exact to zeroth
order in the fine-structure constant.
The external field is assumed to vanish outside the time

interval tin < t < tout, where in the case of the field con-
figuration (1), tin=out → ∓ ∞. We introduce two complete
sets of the one-particle Hamiltonian eigenfunctions at
t ¼ tin and t ¼ tout, respectively:

HeðtinÞ�φnðxÞ ¼ �εnðtinÞ�φnðxÞ; ð4Þ

HeðtoutÞ�φnðxÞ ¼ �εnðtoutÞ�φnðxÞ; ð5Þ

where HeðtÞ ¼ α½−i∇ − eAðxÞ� þ eA0ðxÞ þ βm, and the
eigenvalues denoted by plus (minus) are positive (nega-
tive). These sets are orthonormal and complete with respect
to the usual inner product. In terms of these functions, the
field operator can be decomposed as

ψðxÞ ¼
X
n

½anðtinÞþφnðxÞ þ b†nðtinÞ−φnðxÞ�; ð6Þ

ψðxÞ ¼
X
n

½anðtoutÞþφnðxÞ þ b†nðtoutÞ−φnðxÞ�; ð7Þ

where we have introduced the electron (positron) crea-
tion and annihilation operators a†n (b†n) and an (bn),
respectively. These operators satisfy the usual anticommu-
tation relations. The Dirac-field Hamiltonian HeðtÞ ¼R
ψ†ðxÞHeðtÞψðxÞdx is then diagonalized at time instants

tin and tout.
We will turn to the Heisenberg representation which is

achieved by the unitary evolution operator

Ueðt; t0Þ ¼ T exp

�
−i

Z
t

t0
HeðτÞdτ

�
: ð8Þ

We perform a transformation by means of the operator
Ueð0; tÞ, so the field operator gains a temporal dependence:

ψðt; xÞ≡ ψðxÞ ¼ Ueð0; tÞψðxÞU†
eð0; tÞ: ð9Þ

The creation and annihilation operators are transformed
according to

anðinÞ ¼ Ueð0; tinÞanðtinÞU†
eð0; tinÞ; ð10Þ

anðoutÞ ¼ Ueð0; toutÞanðtoutÞU†
eð0; toutÞ: ð11Þ

The other creation/annihilation operators with indices (in)
and (out) are defined similarly. The anticommutation

relations match those taking place in the Schrödinger
picture. The in (out) vacuum in the Schrödinger and
Heisenberg representation is denoted by j0; tini (j0; touti)
and j0; ini (j0; outi), respectively, i.e., j0; ini ¼
Ueð0; tinÞj0; tini and j0; outi ¼ Ueð0; toutÞj0; touti.
One can demonstrate that the evolution of the field

operator ψðxÞ is governed by the equation i∂tψðxÞ ¼
HeðtÞψðxÞ, i.e., it is a solution to the Dirac equation
similar to that for the time-dependent one-particle solu-
tions. From this, it follows that the field operator can be
represented as

ψðxÞ ¼
X
n

½anðinÞþφnðxÞ þ b†nðinÞ−φnðxÞ�; ð12Þ

where þφnðxÞ and −φnðxÞ are the so-called in solutions of
the Dirac equation evolved from the corresponding func-
tions (4). One can also show that

ψðxÞ ¼
X
n

½anðoutÞþφnðxÞ þ b†nðoutÞ−φnðxÞ�; ð13Þ

where þφnðxÞ and −φnðxÞ are the out solutions, which
coincide at t ¼ tout with the eigenfunctions (5).
If the Schrödinger field operator ψðxÞ is known, the

Heisenberg operator ψðtout; xÞ can be constructed in two
different ways. First, one can perform the transformation
(9) at t ¼ tout. Second, one can evolve the Heisenberg
operator ψðtin; xÞ by means of the one-particle propagator.
This allows one to express the out operators in terms of the
in operators according to

anðoutÞ ¼
X
k

½akðinÞGðþjþÞnk þ b†kðinÞGðþj−Þnk�; ð14Þ

bnðoutÞ ¼
X
k

½a†kðinÞGðþj−Þkn þ bkðinÞGð−j−Þkn�; ð15Þ

where

GðζjκÞnk ¼ ðζφn; κφkÞ; GðζjκÞnk ¼ ðζφn; κφkÞ; ζ; κ ¼ �:

ð16Þ
Note that these inner products do not depend on time.
We can now evaluate the number density of electrons

produced. The starting point is the following expression:

nmðe−Þ ¼ h0; tinjU†
eðtout; tinÞa†mðtoutÞamðtoutÞ

× Ueðtout; tinÞj0; tini; ð17Þ
which is obvious in the Schrödinger representation.
Using the relation Ueðtout; tinÞ ¼ Ueðtout; 0ÞUeð0; tinÞ and
inserting the identity operator 1 ¼ Ueðtout; 0ÞU†

eðtout; 0Þ
between a†mðtoutÞ and amðtoutÞ, we find

nmðe−Þ ¼ h0; inja†mðoutÞamðoutÞj0; ini: ð18Þ
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With the aid of Eqs. (14) and (15), one obtains

nmðe−Þ ¼
X
n

Gðþj−ÞmnGð−jþÞnm ¼ fGðþj−ÞGð−jþÞgmm:

ð19Þ
The analogous expressions for the number density of
positrons have the form

nmðeþÞ ¼ h0; injb†mðoutÞbmðoutÞj0; ini; ð20Þ

nmðeþÞ ¼
X
n

Gð−jþÞmnGðþj−Þnm ¼ fGð−jþÞGðþj−Þgmm:

ð21Þ

It turns out that the full information about the number of
particles and their spectrum (to zeroth order in the fine-
structure constant) can be extracted from the (in and out)
one-particle solutions of the Dirac equation incorporating
the interaction with the external background.
We will now discuss how one can employ this approach

in the case of a standing wave (1), which can be represented
as Axðt; zÞ ¼ QðtÞ cos kzz. Since the external field depends
only on t and z, the in and out solutions of the Dirac
equation have the form

þφp;sðxÞ ¼ ð2πÞ−3=2eipxþχp;sðt; zÞ;
þφp;sðxÞ ¼ ð2πÞ−3=2eipxþχp;sðt; zÞ; ð22Þ
−φp;sðxÞ ¼ ð2πÞ−3=2e−ipx−χp;sðt; zÞ;
−φp;sðxÞ ¼ ð2πÞ−3=2e−ipx−χp;sðt; zÞ: ð23Þ

The time-dependent functions χ satisfy the following
conditions:

þχp;sðt ≥ tout; zÞ ¼ e−ip
0ðt−toutÞup;s;

þχp;sðt ≤ tin; zÞ ¼ e−ip
0ðt−tinÞup;s; ð24Þ

−χp;sðt ≥ tout; zÞ ¼ eip
0ðt−toutÞv−p;s;

−χp;sðt ≤ tin; zÞ ¼ eip
0ðt−tinÞv−p;s; ð25Þ

where p0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

p
, and the bispinors up;s and vp;s

form an orthonormal and complete set (for given p). Since
the external field is monochromatic as a function of z, one
can represent the functions ζχp;sðt; zÞ as

ζχp;sðt; zÞ ¼
Xþ∞

j¼−∞

ζwj
p;sðtÞeiζkzjz; ð26Þ

where ζ ¼ �. Similar series are introduced for ζχp;sðt; zÞ. In
terms of the time-dependent Fourier coefficients ζwj

p;sðtÞ,
the Dirac equation takes the following form:

iζ _wj
p;sðtÞ ¼ ½ζα · ðpþ jKÞ þ βm�ζwj

p;sðtÞ
−
e
2
QðtÞαx½ζwj−1

p;s ðtÞ þ ζwjþ1
p;s ðtÞ�; ð27Þ

where K ¼ kzez and j ∈ Z, so one has to solve an infinite
system of ordinary differential equations (in practical
calculations, it can, of course, be truncated at sufficiently
large jjj). The same holds true for the in functions ζw

j
p;s
ðtÞ.

The G matrices can be evaluated according to

GðþjþÞp;s;p0;s0 ¼
X
l

δðp − p0 − lKÞgðþjþÞp;s;l;s0 ; ð28Þ

Gðþj−Þp;s;p0;s0 ¼
X
l

δðpþ p0 þ lKÞgðþj−Þp;s;l;s0 ; ð29Þ

Gð−jþÞp;s;p0;s0 ¼
X
l

δðpþ p0 þ lKÞgð−jþÞp;s;l;s0 ; ð30Þ

Gð−j−Þp;s;p0;s0 ¼
X
l

δðp − p0 − lKÞgð−j−Þp;s;l;s0 ; ð31Þ

where

gðþjþÞp;s;l;s0 ¼
X
j

½þwj
p;sðtÞ�†þwlþj

p−lK;s0 ðtÞ; ð32Þ

gðþj−Þp;s;l;s0 ¼
X
j

½þwj
p;sðtÞ�†−wl−j

−p−lK;s0 ðtÞ; ð33Þ

gð−jþÞp;s;l;s0 ¼
X
j

½−wj
p;sðtÞ�†þwl−j

−p−lK;s0 ðtÞ; ð34Þ

gð−j−Þp;s;l;s0 ¼
X
j

½−wj
p;sðtÞ�†−wlþj

p−lK;s0 ðtÞ: ð35Þ

The number density of electrons produced reads

np;s ≡ ð2πÞ3
V

dNð−Þ
p;s

dp
¼

X
l

X
s0

jgð−jþÞ−p−lK;s0;l;sj2

¼
X
l

X
s0

jv†pþlK;s0
þwl

p;sðtinÞj2: ð36Þ

Evolving the Fourier coefficients þwj
p;sðtÞ backwards in

time according to the system (27), one can obtain the
electron number density for given quantum numbers p and
s. It turns out that in the case of a linearly polarized
standing wave (1), the number density does not depend on
s, np;s ¼ np (see, e.g., Ref. [60]). The individual contri-
butions for a given l in Eq. (36) can be interpreted as
separate channels of pair production by absorbing external-
field quanta of total momentum lK. This aspect will be
addressed in Sec. VI B.
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Finally, we point out that our numerical technique was
successfully employed in a number of previous studies
[41,43,56,61,62].

IV. DIRAC-HEISENBERG-WIGNER
FORMALISM

In heavy contrast to the Furry-picture formalism, Sec. III,
where one solves for the wave functions of one-particle
solutions to the Dirac equation, kinetic theories are for-
mulated on the basis of transport properties of a quantum
plasma. The advantage of such a description is mainly
given by the fact that the governing set of equations of
motion only have to be calculated once in order to
determine the full particle spectrum. The downside of this
approach is the presence of nonlocal operators, required
to properly account for dynamical pair production.
Furthermore, the Dirac-Heisenberg-Wigner (DHW) for-
malism accesses the full particle phase space, a speciality
of kinetic approaches, that can become numerically
challenging.
Similarly to Sec. III for the Furry-picture formalism, we

will only state the key points in the derivation of the DHW
approach, cf. Ref. [63] for a complete derivation of the
governing equations of motion or Refs. [64,65] for a more
in-depth look at the features of the formalism.
We begin the derivation of the governing quantum

kinetic equations of motion by stating the QED Lagrangian

LðΨ; Ψ̄; AÞ ¼ 1

2
ðiΨ̄γμDμΨ − iΨ̄D†

μγμΨÞ

−mΨ̄Ψ −
1

4
FμνFμν; ð37Þ

and, consequently, the Dirac equation

ðiγμ∂μ − eγμAμ −mÞΨ ¼ 0; ð38Þ

Ψ̄ði∂μ

↼
γμ þ eγμAμ þmÞ ¼ 0; ð39Þ

where Dμ ¼ ð∂μ þ ieAμÞ and D†
μ ¼ ð∂μ

↼
− ieAμÞ are the

covariant derivatives with a vector potential Aμ that
vanishes at asymptotic times, and γμ are the gamma
matrices. The fundamental quantity within the DHW
approach is given by the gauge-invariant density operator

Ĉαβðr; sÞ ¼ UðA; r; sÞ½Ψ̄βðr − s=2Þ;Ψαðrþ s=2Þ�; ð40Þ

with the center-of-mass coordinate r, the relative coordinate
s, and the Wilson line factor

UðA; r; sÞ ¼ exp

�
ie
Z

1=2

−1=2
dξ Aðrþ ξsÞs

�
: ð41Þ

In order to obtain a proper phase-space formalism, we
perform a Fourier transform in s leading to the covariant
Wigner operator

Ŵαβðr; pÞ ¼
1

2

Z
d4s eipsĈαβðr; sÞ; ð42Þ

which is properly defined in terms of four-position r and
four-momentum p coordinates. Combining the Dirac and
adjoint Dirac equations (38)–(39) with derivatives of this
operator yields two coupled operator equations

�
1

2
D̂μ − iP̂μ

�
γμŴðr; pÞ ¼ −imŴðr; pÞ; ð43Þ

�
1

2
D̂μ þ iP̂μ

�
Ŵðr; pÞγμ ¼ imŴðr; pÞ; ð44Þ

where the derivatives ∂μ are replaced by nonlocal, pseu-
dodifferential operators

D̂μ ¼ ∂r
μ − e

Z
1=2

−1=2
dξ F̂μνðr − iξ∂pÞ∂ν

p; ð45Þ

P̂μ ¼ pμ − ie
Z

1=2

−1=2
dξξ F̂μνðr − iξ∂pÞ∂ν

p: ð46Þ

In a crucial step towards obtaining a numerically feasible
formalism based on distribution functions, we then take the
vacuum expectation value of Eqs. (43)–(44). At this point
we introduce a Hartree-type approximation of the form

hΦjF̂μνðrÞjΦi ¼ hΦjFμνðrÞ þOjΦi ≈ FμνðrÞ: ð47Þ

This basically transforms the field-strength tensor F̂μν to a
fixed c-number valued function Fμν, i.e., we will perform
calculations at tree level only neglecting the loop correc-
tions and radiation processes as was also done in Sec. III.
The key implication of this approximation becomes ap-
parent when considering terms of the form hF̂μνðrÞĈðr; sÞi,
which simplify tremendously

hΦjF̂μνðrÞĈðr; sÞjΦi ≈ FμνðrÞhΦjĈðr; sÞjΦi: ð48Þ

The significance of Eq. (48) is given by the fact that we end
up with a closed expression of only one-particle correla-
tions instead of an infinite Born-Bogoliubov-Green-
Kirkwood-Yvon hierarchy of n-particle correlation func-
tions. This, in turn, allows us to obtain the equations of
motion for the covariant Wigner function

Wðr; pÞ ¼ hΦjŴðr; pÞjΦi: ð49Þ

A decomposition into Dirac bilinears

Wðr; pÞ ¼ 1

4
ð1Sþ iγ5Pþ γμVμ þ γμγ5Aμ þ σμνTμνÞ

ð50Þ
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turns the occurring matrix-valued equations into a set of
equations for the c-number valued Wigner coefficients
S;P;Vμ;Aμ, and Tμν. Up to this point everything is
formulated covariantly, which, however, poses the problem
of having to know the solution to the governing equations
of motion for all times. To avoid this, we project on equal
times

R dp0

2π thus essentially reformulating everything in
terms of an initial-value problem. As all covariant Wigner
coefficients are transformed analogously ½wðt; x; pÞ ¼R dp0

2π Wðr; pÞ�, we eventually end up with a set of coupled
integro-differential equations for the equal-time Wigner
coefficients,

Dts − 2Π · t1 ¼ 0; ð51Þ
Dtpþ 2Π · t2 ¼ −2ma0; ð52Þ

Dtv0 þ D · v ¼ 0; ð53Þ
Dta0 þ D · a ¼ 2mp; ð54Þ

Dtv þ Dv0 þ 2Π × a ¼ −2mt1; ð55Þ
Dtaþ Da0 þ 2Π × v ¼ 0; ð56Þ

Dtt1 þ D × t2 þ 2Πs ¼ 2mv; ð57Þ
Dtt2 − D × t1 − 2Πp ¼ 0: ð58Þ

The vectors t1 and t2 are defined as t1 ¼ 2ti0ei and
t2 ¼ ϵijktjkei. The pseudodifferential operators are given by

Dt ¼ ∂t þ e
Z

dξEðxþ iξ∇p; tÞ · ∇p; ð59Þ

D ¼ ∇x þ e
Z

dξBðxþ iξ∇p; tÞ × ∇p; ð60Þ

Π ¼ p − ie
Z

dξξBðxþ iξ∇p; tÞ × ∇p: ð61Þ

To mimic the vacuum-to-matter formalism introduced in
Sec. III, we further employ vacuum initial conditions

svacðpÞ ¼ −
mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2 þ p2
p ; vvacðpÞ ¼ −

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

p :

ð62Þ
At this point we can already interpret the functions of the
different Wigner coefficients [65]. Most notably, s gives the
mass density, v0 yields the charge density, and v describes
the current density. Moreover, we can construct observ-
ables, valid when evaluated at asymptotic times, e.g., the
particle distribution function

nðx; pÞ ¼ mðs − svacÞ þ p · ðv − vvacÞ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

p ð63Þ

as well as the particle momentum spectrum

nðpÞ ¼
Z

d3xnðx; pÞ: ð64Þ

As we are employing periodic boundary conditions in x
and are mainly interested in particle densities, the
spatial integral in Eq. (64) requires proper normalization,R π=kx
−π=kx

dx
2π=kx

R π=ky
−π=ky

dy
2π=ky

R π=kz
−π=kz

dz
2π=kz

.

V. LOCAL DIPOLE APPROXIMATION

As exact computations (see note in Ref. [66]) taking into
account spatiotemporal inhomogeneities of complex exter-
nal backgrounds may be extremely time consuming, it is
important to employ approximate techniques or design
effective models to advance computations. If, for example,
the external field only slowly varies in space and time, one
can assume it to be locally constant, which provides a huge
advantage since the Heisenberg-Euler effective Lagrangian
[2] has a well-known nonperturbative closed-form expres-
sion in the case of a constant background. A general idea
here is to calculate the necessary physical quantities in the
presence of a constant external field and then perform
integration over space and time by summing the individual
(local) contributions.
The locally constant field approximation (LCFA) is

widely used in particle-in-cell (PIC) simulations, where
“pair production” refers to a two-step process with a
charged particle (electron) as initial condition (see, e.g.,
Refs. [67–69]). This electron is accelerated by the back-
ground field leading to the emission of photons via non-
linear Compton scattering. At the second stage, these
photons decay into electron-positron pairs via the (non)
linear Breit-Wheeler mechanism. To be more specific, the
general pair production probabilityWðχ; f; gÞ can be stated
in terms of three parameters: the quantum parameter

χðp;E;BÞ ¼ e
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ðFμνpνÞ2

p
m3 , with the particle momentum p

and the electromagnetic field-strength tensor Fμν, and
the two Lorentz invariants f ¼ E·B

Ecr
and g ¼ E2−B2

E2
cr
. For

subcritical fields f, g ≪ 1 and relativistic particle energies,
as is generally the case for PIC simulations, the majority of
quantum effects are induced by particles crossing the
background field. Hence, the probability can be replaced
with Wðχ; 0; 0Þ and the external field is treated as locally
constant allowing one to use the explicit expressions
derived in the case of constant crossed fields [70,71].
The corresponding expressions for the rate of the quantum
processes in constant crossed fields can then be locally
employed in PIC codes.
In the present study, we consider the process of vacuum

particle production by a classical external field without
any initial particles, i.e., the external field amplitude is
sufficiently large to create particles in a one-stage process.
In the context of this phenomenon the applicability of the
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LCFA is still not perfectly well understood especially when
evaluating the momentum spectra of particles produced in
the presence of general space-time-dependent fields. The
main obstacle here is the fact that the particle created is
being accelerated in the field, so that its dynamics can
become overwhelmingly complicated in a general back-
ground. Furthermore, the locally constant field approxi-
mation disregards photon absorption effects entirely thus
restricting its validity severely. To overcome these issues,
we abandon the strict concept of locally homogeneous
fields and discuss a local density approximation instead.
Our suggestion is to treat the external field as locally
constant in space incorporating the temporal dependence
exactly. Since approximating the field by a spatially uni-
form time-dependent background is often referred to as the
dipole approximation [72], we will refer to this technique as
the local dipole approximation. In what follows, we will
discuss how the LDA is implemented within the methods
described in Secs. III and IV.

A. LDA in the Furry-picture approach

The external field is approximated by a spatially homo-
geneous background whose temporal dependence coin-
cides with that of the original field considered at a given
position x. In this case, we perform exact computations of
the momentum spectra by solving the Dirac equation and
employing the formalism described in Sec. III. By varying
x and summing the results over the spatial coordinates, one
obtains approximate momentum distributions of particles
created. This approach was discussed in detail in Ref. [62].
Although it was already benchmarked against the exact
predictions considering several different space-time-depen-
dent field configurations [62], it was not assessed in the
case of spatially oscillating fields. In the present study, we
carry out the analysis of the LDA by applying it to a
standing-wave background. In this case, instead of inte-
grating over the whole z axis, one should average the results
over the spatial period, i.e., z is being varied within the
region ½0; 2π=kz�.
Within the LDA computations, the external field does

not depend on the spatial coordinates, which means that the
coordinate part of the one-particle solutions of the Dirac
equation is always given by expð�ipxÞ, so one has to
construct only the time-dependent bispinor part, which is a
solution to Eq. (27) for j ¼ 0 in the absence of the coupling
terms involving QðtÞ, which do not appear within the LDA
as the momentum transfer does not take place here. Instead
of an infinite ordinary differential equation (ODE) system,
one now deals with only one four-component equation.
Let us point out several important features concerning

the validity of the LDA. First, we note that such
approximate calculations completely neglect the mag-
netic field component, so one may expect this approach
to perform well only for sufficiently small kz and large
ω since the characteristic ratio between the electric field

strength (2) and the magnetic field strength (3) is kz=ω.
Moreover, the LDA approximates the electric field
component as well, so one can expect that averaging
the results over z is reasonable only when the external
field slowly varies in space, i.e., kz is again sufficiently
small. Note that the LDA predictions, i.e., the average
pair-production probabilities, do not depend on kz at all.

Thus, there should be a characteristic value kðLDAÞz

allowing one to employ the LDA for kz ≲ kðLDAÞz . In

Sec. VI, we will investigate how kðLDAÞz depends on the
external field parameters and reveal several important
features of this dependence.

B. LDA in the DHW formalism

Due to the fact that evaluating the pseudodifferential
operators in Eqs. (59)–(61) is numerically challenging, the
LDA provides a good opportunity to significantly reduce
numerical costs. The phase-space formalism is inherently
formulated as an initial value problem for transport pro-
perties, e.g., mass or charge density. Hence, it is impossible
to perform independent calculations for separate mode
functions.
Within the LDA, however, the governing equations of

motion simplify drastically, as a Taylor expansion in x of the
pseudodifferential operators terminates at first order and, as
the spatial coordinates xi are fixed, the spatial derivative
operators ∇x, and with them the magnetic fields, vanish
entirely leading to a much simpler system of equations,
cf. Ref. [73]. To be more specific, within the LDA the set of
partial differential equations decouples into a set of ordinary
differential equations. The particle momentum spectrum is
then obtained by simply summing the individual local
density functions nðxi; pÞ over all instances of xi. See
Refs. [58,74–76] for more details on a phase-space formal-
ism for purely time-dependent electric fields.
In all our simulations, the LDA results obtained

within the Furry-picture approach and DHW formalism
were found to be identical (see the Appendix A for more
details).

VI. NUMERICAL RESULTS

We vary the external field parameters within the follow-
ing domain: 0.1 ≤ ε ≤ 1.0, 0.1m ≤ ω ≤ m, 0.1m ≤ kz ≤m.
In what follows, we will separately consider the cases of
short and long laser pulses, i.e., we will employ small and
large values of the pulse duration τ.

A. Short pulses

In this subsection we choose τ ¼ 5m−1 and vary ε, kz,
and ω. For such a small value of the pulse duration, the
number of carrier cycles N ∼ ωτ=ð2πÞ is always less than 1
in our computations, so the carrier frequency is not well
localized in the Fourier spectrum of the pulse.
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1. Validity of the LDA

In order to determine kðLDAÞz , we compared the exact
momentum distributions obtained by means of the tech-
niques discussed in Secs. III and IV to those predicted by
the LDA by first varying kz for given ε and ω and then
turning to other values of these two parameters. In Fig. 1 we
present the momentum spectra along the magnetic field
direction y which were obtained exactly for various kz and
with the aid of the LDA. We observe that the LDA indeed
provides very accurate predictions in the case of small kz
which become worse with increasing kz. Note that the
discrepancy between the exact and approximate results
appears to be independent of ω, i.e., it is fully determined
by kz. This fact is illustrated in Fig. 1 and was confirmed in
our computations employing other different field parame-

ters. It means that kðLDAÞz does not depend on ω, which is no
surprise as ω does not drastically change the form of the
laser pulse for such short pulses. In order to make this point
more evident, we evaluated the number density of electrons
at px ¼ pz ¼ 0 integrated over py as a function of ω for
various values of kz (see Fig. 2). These curves provide a
measure of the discrepancy between the LDA spectra and
the exact results and indicate that the ratio kz=ω does not
play any important role for given kz. The spectra computed
within our study proved that this ratio is an irrelevant
parameter in the case of such short laser pulses.
The fact that the validity of the LDA strongly depends on

kz and does not depend on ω can also be accounted for
by the requirement that the “formation length” l ¼
2m=jeεEcrj must be much smaller than the spatial wave-
length λ ¼ 2π=kz. In other words, the eþe− pair must be
formed within a sufficiently narrow spatial region. This
condition is equivalent to kz=ðπmεÞ ≪ 1, which is indeed
independent of ω and also explains why smaller values of kz
are preferable. However, as will be seen below, this require-
ment is not the only criterion regarding the LDA justification.

Next we will examine how kðLDAÞz depends on ε. In Fig. 3
we present the number density of electrons integrated over

py for px ¼ pz ¼ 0 as a function of ε for various values of
kz (ω ¼ 0.2m). We observe that the discrepancy between
the exact curves and the LDA predictions is not reduced for
larger values of the field amplitude, so the results suggest
that the concept of the formation length does not always
provide a relevant parameter for justifying this kind of an
approximate technique.
As was demonstrated in Ref. [62], in order to properly

justify the LDA, one should also make sure that the
classical particle trajectories are well localized within the
spatial region where the external field does not change
much. This condition arises due to the fact that the LDA
treats different positions in space independently, and thus
does not appropriately take into account the particle
post-creation dynamics leading to inaccurate momentum
spectra. This drawback becomes crucial when the particle
trajectory stretches over a large part of the spatial period of
the external standing-wave background. To carefully exam-
ine this issue, we solve the equations of motion in the case

FIG. 1. Momentum distributions computed by means of the LDA and calculated exactly for various values of kz (px ¼ pz ¼ 0). The
field parameters are τ ¼ 5m−1, ε ¼ 0.2, ω ¼ 0.1m (left) and ω ¼ 0.8m (right).

FIG. 2. Electron number density np integrated over py at px ¼
pz ¼ 0 as a function of the carrier frequency ω for various values
of kz (τ ¼ 5m−1, ε ¼ 0.2).
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of a relativistic classical particle interacting with the
standing electromagnetic wave of the form (1). We assume
that the particle is initially at rest [pðtinÞ ¼ 0] at the position
zðtinÞ ¼ z0. Since the external field does not depend on x
and y, two momentum components have obvious temporal
dependences:

pxðtÞ ¼ e½Axðtin; z0Þ − Axðt; zðtÞÞ�; ð65Þ

pyðtÞ ¼ 0: ð66Þ

In order to evaluate the function zðtÞ, we solve the
following ODE system:

dpz

dt
¼ epxðtÞByðt; zðtÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2 þ p2
xðtÞ þ p2

zðtÞ
p ; ð67Þ

dz
dt

¼ pzðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

xðtÞ þ p2
zðtÞ

p : ð68Þ

As the particle is likely to be produced in the vicinity of the
electric field maxima z ¼ πn=kz (n ∈ Z), we choose z0
to be close to the origin z ¼ 0. To take the magnetic
field component into account properly, we use a small
nonzero value z0 ¼ λ=20 ¼ π=ð10kzÞ. We then propagate
the solution zðtÞ from t ¼ tin to t ¼ 1.5τ, where the external
field is about to vanish, and evaluate the ratio η ¼
jzð1.5τÞ − z0j=λ. In this context, η is a measure for the
particles’ maximal displacement within the strong-field
region of the background field. The criterion for the
applicability of the LDA is given by η ≪ 1.

2. Trajectory analysis

In Fig. 4 we find that only when kz is sufficiently small,
particle positions fluctuate locally, i.e., η ≪ 1. Starting with
kz ≈ 0.4m, the value of η exceeds 0.1, so we expect a
noticeable discrepancy between the LDA and exact sim-
ulations. It is nicely illustrated in Fig. 1, where calculations
for kz ¼ 0.8m considerably deviate from the curves
obtained through the LDA. More important, calculating
η as a function of ε, the discrepancies displayed in Fig. 3
can be well understood by considering that for strong laser
pulses (ε ≥ 0.4) particle trajectories become poorly local-
ized. On the other hand, for weak fields (ε < 0.4) the first
criterion based on the particle formation length is not
fulfilled as l=λ > 0.24. Accordingly, the LDA is inaccurate
for fields where kz ≥ 0.3m independent of ε. For slowly
varying fields with kz ∼ 0.1m, on the other hand, η remains
small for all ε ≤ 1. Hence, applying the LDA and averaging
over z is completely justified according to this criterion.

3. Formation length

For the other criterion, the formation length l, one
actually distinguishes in this example between strong and
weak fields. For ε ≥ 0.2 particles are created in a sufficiently
confined space interval. For the latter, however, the ratio l=λ
increases with decreasing field strength and thus pair

FIG. 4. Parameter η ¼ jzð1.5τÞ − z0j=λ as a function of kz for ω ¼ 0.1m and ε ¼ 0.2 (left) and its dependence on ε for ω ¼ 0.2m and
kz ¼ 0.3m (right). The pulse duration is τ ¼ 5m−1.

FIG. 3. Electron number density np integrated over py at px ¼
pz ¼ 0 as a function of the field amplitude ε for various kz
(τ ¼ 5m−1, ω ¼ 0.2m).
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creation happens nonlocally. As for such weak fields the
trajectories of the created particles are approximately sta-
tionary, averaging over z still yields good agreement with the
full calculations, cf. Fig. 3. This example demonstrates that
simple estimates involving the formation length do not

necessarily yield a well-defined threshold kðLDAÞz .
As a similar argument can actually be made when η is

considered on its own, it shows that it is the combination of
both criteria, l=λ ≪ 1 and η ≪ 1, that determines the
validity of the LDA.

4. Magnetic fields

Finally, let us note that the LDA leads to identical spectra
in the y and z directions, whereas the exact results are
anisotropic due to the presence of the magnetic field. In
Fig. 5 we display this anisotropy for two different values of
kz. We observe again that the accuracy of the LDA results
strongly depends on kz.

B. Long-pulsed, high-frequency fields

External fields that exhibit a high frequency-duration
product, ωτ ≫ 1, open up an opportunity for multiphoton
pair production. Especially for rapidly oscillating fields,
photon absorption easily becomes the main source for
particle creation. If we further assume that high-intensity
light sources in the hard x-ray regime operate at a specific
carrier frequency, setups involving collisions of multiple
pulses give rise to distinctive and well-pronounced multi-
photon signatures in the momentum spectrum.
As the focus in this section of the manuscript is primarily

on evaluating the importance of the incident photons’
momenta, we rely again on a comparison between full-
scale simulations and the LDA. In this way, we can
perfectly isolate the impact that momentum transfer has
on the particle spectra as in the LDA the “energy packets”
do not carry any linear momentum.

To be more specific, we take advantage of the fact that
we have access to various performant codes that excel in
different areas. To gain an overview over the full particle
spectrum, we solve the equations of motion within the
DHW formalism and display the results in terms of two-
dimensional (2D) density plots. High-precision computa-
tions, which are required to perform an in-depth analysis,
are done within the Furry-picture approach. In order to
understand the outcome of these simulations in simple
terms, we introduce a model based on momentum-energy
conservation laws. This absorption model is capable of
predicting the appearance of resonances in the particle
distribution and thus perfectly suited to examine spectral
signatures in the multiphoton regime.
To illustrate our goal, we display in Fig. 6 an example of

the momentum distribution in the direction parallel to the
employed electric field (pulse duration τ ¼ 40m−1, peak
field strength ε ¼ 0.2, and temporal frequency ω ¼ 0.8m).
We have chosen this direction specifically because it serves
as a good starting point for the following discussion on
more complex, fully developed 2D spectra. In particular,
because although the background fields’ spatial frequency
still plays a vital role in creating distinctive patterns in the
particle distribution, the net momentum transfer in the
direction of px is always zero leading to an easier to
interpret distribution function.
In the left panel of Fig. 6, we present the results obtained

within the LDA. For comparison, in the right panel we have
displayed the momentum spectrum for on-shell photons,
where we have kz ¼ ω ¼ 0.8m. It becomes immediately
obvious, that the LDA predictions do not match the exact
results when the spatial frequency is properly taken into
account. None of the peaks in the spectrum are entirely
unaffected by a change in kz. Even for four-photon
absorption in the 4 and 2 − 2 processes, the peak height
is significantly different.
Concerning the computational time, we first note that our

numerical technique based on the Furry-picture formalism

FIG. 5. Momentum distributions with respect to py and pz computed by means of the LDA and calculated exactly. The field
parameters are τ ¼ 5m−1, ε ¼ 0.2, ω ¼ 0.2m, and kz ¼ 0.2m (left) and kz ¼ 0.8m (right).
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allows us to independently calculate any individual points in
the spectrum of particles, which makes this method particu-
larly efficient when computing one-dimensional distribu-
tions. For instance, the spectrum displayed in Fig. 6 (right)
was obtained with a standard consumer laptop in 4 minutes
with the resolution Δpx ¼ 0.002m and at least five accurate
significant digits (the uncertainty in np was always less than
10−14). The LDA performs even faster: it took only 1 minute
to calculate an analogous curve.
The DHW formalism is well suited to perform calcu-

lations with respect to the full momentum spectrum. As a
matter of fact, in order to obtain the spectrum shown in
Fig. 6 (right) we calculated the particle momenta in px–pz
and then cut along pz ¼ 0. This, of course, significantly
increases the overall CPU time. For a reasonable compari-
son we therefore divide by the number of grid points in
Npz

¼ 1280 leading to roughly 10 minutes of runtime.
Within the LDA, the DHW formalism is converted from

a set of partial differential equations to a set of ordinary
differential equations. Consequently, the distribution func-
tion np can be calculated at any point in p individually
dramatically improving the overall performance. For exam-
ple, the curve in Fig. 6 (left) has been obtained within
2 minutes.

1. Absorption model

The key to understanding this apparent mismatch and
multiphoton pair production in general lies in proper
application of conservation laws, here for energy and linear
momentum (it was already successfully employed, e.g., in
Refs. [43,77,78]). To derive a conclusive picture, we start
by stating the full 4-momentum conservation for any single
multiphoton creation process,

pμ
eþ þ pμ

e− ¼ nþk
μ
þ þ n−kμ−; ð69Þ

where pμ
e− and pμ

eþ give the 4-momentum of the electron
and positron, respectively. The photons are characterized
by the 4-vectors kμþ and kμ−, where we used a subscript to
distinguish photons with positive and negative momentum
with respect to the z axis, cf. the definition of the vector
potential (1). In particular, we have

pμ
eþ ¼

0
BBB@

Eeþ

px;eþ

py;eþ

pz;eþ

1
CCCA; pμ

e− ¼

0
BBB@

Ee−

px;e−

py;e−

pz;e−

1
CCCA;

kþ ¼

0
BBB@

ω

0

0

kz

1
CCCA; k− ¼

0
BBB@

ω

0

0

−kz

1
CCCA: ð70Þ

As one can see, the only relevant parameters in our
analysis are the fields’ temporal and spatial frequencies,
which coincide with the photon energy ω and photon
momentum kz.

1

We see immediately, that linear momentum conser-
vation for two components is trivial: px;eþ ¼ −px;e− and
py;eþ ¼ −py;e− . The momentum pz, however, yields a
fascinating connection between electrons, positrons, and
photons. Formally, we have

pz;eþ þ pz;e− ¼ nþkz − n−kz: ð71Þ

FIG. 6. Log-plot of the particle momentum spectrum np as a function of px for py ¼ pz ¼ 0 evaluated within the LDA (left) and
calculated exactly for kz ¼ ω (right). Vertical lines indicate predictions given by our absorption model. Only for symmetric photon
absorption (2 − 2 at px ¼ 1.25m) the peak location is unaffected by having a nonzero kz. Every other spike in the spectrum either
changes position or splits into multiple smaller peaks. Overall, the particle yield decreases. The field parameters are τ ¼ 40m−1, ε ¼ 0.2,
and ω ¼ 0.8m.

1There are of course additional effects to consider if, e.g., the
field strength reaches almost critical values or the pulse length is
too short. These modifications, however, do not play a significant
role in the setups discussed here and, in order to keep the
discussion as simple as possible, are thus left out in the main body
of the manuscript. We have added some additional remarks on
this issue in Appendix B.
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In a fully symmetric process, nþ ¼ n−, the particle-
antiparticle pair is created with zero net momentum as
the linear momentum of the electron and positron cancel
each other out pz;eþ ¼ −pz;e− . If, however, nþ ≠ n−, then
the particle and antiparticle are accelerated in opposite
directions minus an offset q0 due to a surplus of momentum
stemming from the absorbed photons,

q0 ¼
kz
2
ðnþ − n−Þ: ð72Þ

The interesting aspect of this relation is that although for
the latter pz;eþ þ pz;e− ≠ 0 holds, the whole system’s total
linear momentum Ptot ¼

P
particles p is still conserved. This

is due to the fact that, in order to obtain the full picture we
always have to take into account all multiphoton channels,
in particular the mirrored case nþ ↔ n−. As the sum over
all particle momenta in the combined situation vanishes, the
total momentum is preserved (due to vacuum conditions,
initially we have Ptot ¼ 0). Nevertheless, to keep the
discussion concise, we derive all expressions for a single
scattering channel and ignore the mirrored cases.
Particle and antiparticle momenta in the z direction are

therefore given by

pz;eþ ¼ qz þ q0; ð73Þ

pz;e− ¼ −qz þ q0: ð74Þ

In the weak-field limit, ε ≪ 1, we can assume that the
particle energies are given by

Eeþ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

x þ p2
y þ ðqz þ q0Þ2

q
; ð75Þ

Ee− ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

x þ p2
y þ ðqz − q0Þ2

q
: ð76Þ

The final particle momenta for a specific setup can thus be
calculated by finding a solution of the equationffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

x þ p2
y þ ðqz þ q0Þ2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

x þ p2
y þ ðqz − q0Þ2

q
¼ nþωþ n−ω: ð77Þ

2. Scattering channels

Having established such a simple picture of multiphoton
pair production, we now turn our attention towards under-
standing scattering channels; see Fig. 7 for an example. At
first we have to establish a general concept of channel
openings and the consequences of having a photon energy
surplus. Due to the fact that an electron-positron pair has to
be created out of the vacuum by absorbing photons in the
first place, the energy of the incident photons combined has
to exceed a threshold given by the rest mass of the pair, 2m.
If this is not the case, this particular scattering channel is
closed.
If, on the other hand, a channel is open, particles are

created with a specific kinetic energy. As energy is con-
served throughout the creation process, any excessive
photon energy is converted into higher particle momenta
by forming above-threshold peaks. In order to analyze
these peaks in the particle spectrum, we derive simple
expressions within the LDA (kz → 0) and in the on-shell
limit (kz ¼ ω), respectively.

FIG. 7. Modified density plot of the particle momentum spectrum nðpx; pzÞ (py ¼ 0). In order to highlight the weaker production
channels, the distribution function is displayed using nonlinear scaling. A sketch of the various open channels calculated through our
model is illustrated on the right-hand side. The channels 2 − 1 and 3 − 1 are not labeled explicitly. Field parameters: ε ¼ 0.2,
τ ¼ 60m−1, and ω ¼ kz ¼ 0.8m.
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3. Particle spectra

In order to allow for a gentle start, we begin the
discussion on the basis of one-dimensional spectra. For
the special case where py ¼ pz ¼ 0we obtain in the case of
a vanishing spatial frequency kz

pxðkz ¼ 0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�ðnþ þ n−Þω

2

�
2

−m2

s
ð78Þ

recovering the simple energy-momentum relation. Con-
sequently, within the LDA the positions of the above-
threshold peaks are determined solely by the total number
of photons absorbed n ¼ nþ þ n− as there is no distinction
between nþ and n− due to the fact that one cannot
distinguish between photons propagating in direction þz
and photons propagating in direction −z.
As Fig. 6 has been the showcase for this section, we

apply our analysis to these plots first. From the data we
retrieve peak positions at px ¼ 0.65m, 1.24m, and 1.73m
for the LDA. Employing our absorption model (78),
we find that these peaks correspond to our model’s
predictions regarding three-, four-, and five-photon pair
production, respectively. Hence, we label the peak posi-
tions px;3 ¼ 0.66m, px;4 ¼ 1.25m, and px;5 ¼ 1.73m.
In the same vein we can perform an analysis for on-shell

photons. To be more specific, for kz ¼ ω we obtain

pxðkz ¼ ωÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4n2þn2−ω2

ðnþ þ n−Þ2
−m2

s
ð79Þ

finally allowing us to analyze also the right panel in Fig. 6.
From Eq. (79) we immediately see that the total number of
absorbed photons n ¼ nþ þ n− is not sufficient anymore to
interpret the particle spectrum. In turn, this automatically
explains the rather involved spectrum in Fig. 6 as the various
channels become fully distinct. One consequence is that only
signatures at high momenta become fully distinguishable.
This includes the symmetric channel nþ ¼ n− ¼ 2, which is
still located at the same position px;2−2 ¼ px;4 ¼ 1.25m due
to a vanishing linear momentum surplus. Additionally, we
have the channel nþ ¼ 3, n− ¼ 2 at px;3−2 ¼ 1.64m and the
channel 4 − 2 at px;4−2 ¼ 1.88m. The broad particle dis-
tribution at low momenta px, however, is the result of
summing over various overlapping contributions. In Fig. 8
we illustrate the particle spectrum with a focus on the net
photon number l ¼ nþ − n−. Apparently, at small px the
main fraction of particles is created through the channels
2 − 1 and 3 − 1. Moreover, the distribution function for the
channel 4 − 1 peaks around px ∼ 0.79m enhancing the local
particle rates even further. Interestingly, there is already
evidence for the channel 1 − 1 to open at px < 0.5m
although two-photon pair production is well below the
threshold 2 × 0.8m < 2m.
Furthermore, the right-hand side in Eq. (79) yields only

imaginary, and thus unphysical values, for one-sided

photon absorption. In other words, multiphoton pair pro-
duction is generally forbidden if the photon is on shell ω ¼
kz and either nþ or n− vanishes. This is in accordance with
the fact that an individual plane-wave pulse cannot produce
pairs. In particular, one-photon pair production is therefore
only possible if the photon is off shell [44].
On a similar note we can derive analytical expressions

for the two different limits in the z component of the final
particle momentum. For on-shell photons, kz ¼ ω, our
model yields

pzðkz ¼ ωÞ ¼ ðnþ − n−Þω
2

� nþ þ n−
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 −

m2 þ p2
x þ p2

y

nþn−

s
; ð80Þ

which was also found in Ref. [43]. Similarly to Eq. (79), the
right-hand side diverges for one-sided photon absorption.
On the contrary, in the homogeneous limit, kz ¼ 0,

photons carry only energy, which, in turn, enables, e.g.,
one-photon pair production. Analyzing the expression

pzðkz ¼ 0Þ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�ðnþ þ n−Þω

2

�
2

− ðm2 þ p2
x þ p2

yÞ
s

;

ð81Þ
we can further deduce that this includes not only one-
photon pair production but also channels where only
photons from one beam are absorbed. Furthermore, as
ðnþ þ n−Þ is equal to the total number of absorbed photons
n, we have recovered the following simple energy con-
servation relation given in, e.g., Ref. [79]:

FIG. 8. Particle spectrum calculated for a standing wave with
temporal length τ ¼ 40m−1, peak field strength ε ¼ 0.2, and
frequency kz ¼ ω ¼ 0.8m (py ¼ pz ¼ 0). Within the Furry
picture, it is possible to discriminate between contributions from
different net photon absorption numbers l ¼ nþ − n−. The thick
light-blue line gives the total production rate serving as a
reference value.
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�
nω
2

�
2

¼ m2 þ p2: ð82Þ

The ring pattern revealed in Fig. 7 can be described if we
keep both px and pz in Eq. (77). In particular, we obtain the
following relation:

4nþn−
ðnþ þ n−Þ2

ðpz − q0Þ2 þ p2
x ¼ nþn−ω2 −m2: ð83Þ

This equation indicates that each of the “resonance
rings” is, in fact, an ellipse with semiminor axis b ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nþn−ω2 −m2

p
corresponding to the px direction and

semimajor axis a ¼ bðnþ þ n−Þ=ð2 ffiffiffiffiffiffiffiffiffiffiffi
nþn−

p Þ ≥ b regarding
the pz direction. The center of the ellipse is located at
px ¼ 0, pz ¼ q0. These predictions of our model are in
perfect agreement with the full-simulation results.

4. Resonances

With the aid of the model introduced above, we can also
efficiently search for resonance effects in the spectrum.
A similar study has already been performed on the basis of
two-level systems exploiting Rabi oscillations in order to
determine resonance frequencies with maximal transition
probability between the two states [40,80,81] (in the case of
more complex space-time-dependent setups, it was done in
Refs. [43,60,77]). In terms of our model, such a study can
be equivalently formulated as a search for optima in the
particle distribution for particles at rest px ¼ py ¼ pz ¼ 0.
The corresponding optimal frequencies are found to be

ωp¼0ðkzÞ ¼ ω0ðkzÞ ¼
mþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ k2zðnþ − n−Þ2

p
nþ þ n−

: ð84Þ

We point out that such resonances precisely at p ¼ 0
appear only for odd values of n ¼ nþ þ n− due to parity
and charge-conjugation symmetry [40,43,80,81].
To demonstrate conclusively how big the impact of a

nonzero spatial frequency is, we illustrate Eq. (84) in Fig. 9.
By varying the spatial frequency kz, we can easily calculate
the peak positions for any given absorption channel. The
resulting 2D map eventually reveals a highly complex
structure of peak locations in the multiphoton regime.
Furthermore, it makes it very clear that taking into account
the spatial dependence of the background field completely
changes the landscape of few-photon pair production. Most
important, however, it shows spectacularly that within the
LDAwe obtain nonphysical contributions. Simply because
none of the nþ − 0 lines in Fig. 9 intersect with the on-shell
limiter (light-blue thick line), pair creation, for which either
nþ or n− is zero, is impossible for on-shell photons. On a
similar note, for kz ¼ 0 multiple above-threshold peaks
overlap at the same position in the spectrum leading to
nonphysical enhancements. Such an effect can already be
observed in Fig. 6, where the four-photon channel is
misleadingly large in the LDA.

For the sake of completeness, the on-shell limit for this
type of resonance is given by

ω0ðkz ¼ ω0Þ ¼
m
2

nþ þ n−
nþn−

: ð85Þ

The LDA yields

ω0ðkz ¼ 0Þ ¼ 2m
nþ þ n−

: ð86Þ

Keep in mind, though, that these zero-momentum frequen-
cies ω0 only help to determine spikes in the local pair
production rate. They do not yield any information regard-
ing the total particle number N. More specifically, only a
tiny fraction of electrons/positrons are created at rest at
these frequencies as most of the particles are going to be
produced with nonvanishing momentum. Moreover, the
frequencies ω0 are not directly linked to the resonance
frequencies ω� and thus to the sudden increases in the
production rate as the latter are expected to happen when a
new channel opens for px ¼ py ¼ qz ¼ 0.
In order to find these resonance frequencies ω�, we again

rely on our model. In this case, energy conservation gives

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ q20

q
¼ ðnþ þ n−Þω: ð87Þ

A resonance in the particle yield is then obtained for
frequencies

ω�ðkzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2 þ k2zðnþ − n−Þ2

ðnþ þ n−Þ2

s
; ð88Þ

FIG. 9. Map of the resonance peaks as a function of temporal ω
and spatial frequency kz for odd values of the total number
n ¼ nþ þ n− of photons absorbed. The peaks are color coded
according to n (n ¼ 3, 5, and 7). The thick, solid light-blue line is
an indicator for kz ¼ ω.
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and, for the sake of completeness, the resonance condition
for on-shell photons is given by

ω�ðkz ¼ ω�Þ ¼
mffiffiffiffiffiffiffiffiffiffiffi
nþn−

p : ð89Þ

Additionally, for light that does not carry momentum,
Eq. (88) takes on the more familiar form

ω�ðkz ¼ 0Þ ¼ 2m
nþ þ n−

: ð90Þ

Hence, only within the LDA does the appearance of a
resonance in the particle spectrum for particles at rest
coincide with the resonance condition for the particle yield,
cf. Eq. (86) and Eq. (90).
In Fig. 10 we display this connection for a series of

setups. Most notably, in Fig. 10(d) three different channels
are observable (not counting the two mirrored cases). The

channels 2 − 3 and 3 − 2 qualify for resonance in the zero-
momentum frequency ω0. However, the majority of par-
ticles created within this channel are ejected at a ∼30° angle
from the center. Additionally, although ω0 exhibits a local
optimum due to the 3 − 2 channel, the actual resonance in
the particle yield Nðω�Þ is expected to come from the 2 − 1
channel. In Fig. 10(d) at pz ≈ �0.335m one can already see

that a new peak forms.
Last, one fascinating feature of our setup is that it allows

one to study channel closing directly. Solving Eq. (88)
for kz we obtain the resonance condition for the spatial
frequency

kz;� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ þ n−Þ2ω2 − 4m2

ðnþ − n−Þ2

s
: ð91Þ

In Fig. 11 we have displayed the full particle momentum
spectrum for a configuration with ε ¼ 0.2, τ ¼ 40m−1,

(a) (b)

(c) (d)

FIG. 10. Density plots of the particle momentum spectrum nðpx; pzÞ (py ¼ 0) for fields of different temporal ω and spatial kz
frequency with a peak field strength of ε ¼ 0.2 and a pulse duration of τ ¼ 60m−1. The symmetric four-photon channel (nþ ¼ n− ¼ 2)
is about to open at ω ¼ kz ¼ 0.5m [double peak at pz ¼ 0 in panel (a)]. The channels 3 − 2 and 2 − 3 contribute heavily to the particle
yield at ω ¼ kz ¼ 0.5m [ellipses with center at p ¼ ð0; 0.25mÞ]. Their impact is overshadowed by contributions from four-photon
channels once the threshold is reached. At ω ¼ kz ¼ 0.67m, the channels 2 − 2 (ring with center at the origin), 1 − 3, and 3 − 1 are
clearly visible. Additionally, around pz ¼ �0.335m, signatures of three-photon pair production are already observable.

PAIR PRODUCTION IN TEMPORALLY AND SPATIALLY … PHYS. REV. D 101, 096009 (2020)

096009-15



ω ¼ 0.8m, and various kz. This series of plots strikingly
demonstrates the transition from the LDA results to the on-
shell limit up to the value of kz where the resonance
condition is met.

Technically, for vanishing kz we cannot distinguish
between the 2 − 1 and 1 − 2 channels. Consequently, both
of them form the same structure in momentum space
centered at p ¼ 0 even constructively interfering with each

(a)

(c) (d)

(e) (f)

(b)

FIG. 11. Density plots of the particle momentum spectrum nðpx; pzÞ (py ¼ 0) for various spatial frequencies kz. For otherwise
identical field configurations (ε ¼ 0.2, τ ¼ 40m−1, ω ¼ 0.8m), a higher frequency kz results in a shift towards higher particle momenta.
Going from low to high frequencies, the signatures also become smaller in diameter. At a photon momentum of kz ¼ 1.0m, a great
amount of particles is created at rest, p ¼ 0. In panel (f) (kz ¼ 1.33m), the channels 2 − 1 and 1 − 2 are close to the resonance condition.
Additionally, the interference patterns are very sensitive to changes in kz; see the shift in the particle distribution’s maxima.
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other. We also see, that an increase in the spatial frequency
automatically leads to an increase in the net momentum
transfer as nþ ≠ n−. Closing of the channels 2 − 1 and
1 − 2 is predicted at k� ≈ 1.33m explaining the tremendous
decrease in the distribution function in Fig. 11(f). The drop-
off is apparently so significant that it leads to the 2 − 2
channel being dominant.

5. Beyond the weak-field approximation

In this whole section, we have never mentioned shifts in
the final particle spectrum due to the oscillatory energy of
the created particles. The reason is that for the exemplary
setups presented here such a field-dependent effect
amounts to a ∼1% correction only. Nevertheless, in order
to build a bridge to the established results given in the
literature we have included a discussion on the effective
mass effects in Appendix B.

VII. DISCUSSION AND SUMMARY

Electron-positron pair production within high-intensity
electromagnetic background fields is a highly complex
process, and thus adequately precise theoretical predictions
for realistic scenarios are difficult to obtain. Specifically,
the fact that phenomena concerning the particle distribu-
tions occur within laser fields requires resolving effects
on two vastly different scales (1=m ∼ 10−21 s and 1 fs∼
10−15 s), so a complete simulation is out of reach for the
foreseeable future. In this regard and especially with a view
to upcoming strong-field laser facilities, it is thus of utter
importance to develop a formalism that can accurately
describe such strong-field experiments.
In this work we have therefore inspected the applicability

of the LDA in the context of short-pulsed fields and in the
regime of few-photon pair production. Within our study, we
have found a second criterion for the applicability of the LDA
based on the expected particle movement within the back-
ground field, the first involving the formation length of the
particle pair. To bemore specific, in order for theLDA to hold,
the particle trajectories after creation must be confined to an
area smaller than the field’s wavelength. Note, however, that
neither the formation length nor the particle movement make
hard, exclusive statements aswe have still found setupswhere
only one of these two criteria was fulfilled.
In the second part of the manuscript, we made a

comparison between the LDA and full simulation in the
regime of multiphoton pair production on the basis of the
particle momentum spectrum. We reproduced the spectra
given in the literature for the LDA confirming that these
momentum distribution functions indeed carry signatures
of particle absorption. However, upon further inspection,
these distributions fail to give the right above-threshold
peak positions (except for the symmetric case, where an
equal amount of photons was absorbed from each direc-
tion) and even show nonphysical contributions. Moreover,

quantum resonances show up at wrong frequencies and
momenta and, worse, the amplitudes in the spectrum are
wrong by at least 1 order of magnitude. The latter is true
even for symmetric, few-photon signals, where enhance-
ments stemming from quantum interferences of different
scattering channels are rare.
All limitations of the LDA in this regime can be traced

back to its inability to take into account the photon’s linear
momentum. As a matter of fact we have developed an
effective model based upon the conservation of energy and
linear momentum in order to predict peak locations and to
obtain the right resonance conditions. While this model
does not yield any information on the signal strength, it can
give an idea about the landscape in the multiphoton regime.
This includes estimates for quantum resonances, channel-
resolved peak locations as well as zero-momentum reso-
nance frequencies. Although the model presented in this
manuscript is based on monochromatic, linearly polarized
fields, the basic concept is universal and can be readily
applied to more involved field configurations.
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APPENDIX A: COMPUTATIONAL METHODS

Within the Furry-picture formalism, the ODE system (27)
is solved by means of various Runge-Kutta methods
including, for instance, the implicit Gauss-Legendre method
of order six. In our computations the explicit schemes turn
out to be always stable, so the usage of implicit ones is not
necessary. At each time step, we make sure that the
components of wj

p;sðtÞ with large values of jjj do not
contribute, i.e., the “momentum box” is sufficiently wide.
Solution techniques as well as the computational meth-

ods used in order to solve the DHW equations (51)–(58)
have been already presented in great detail in Refs. [82,83].
Regarding the computer libraries in use, in order to perform
the time integration, we rely on a Dormand-Prince Runge-
Kutta integrator of order 8(5,3) [84]. Spatial and momen-
tum derivatives have been carried out with FFTW3 [85]
using Ref. [86] as a manual.
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A main concern when discussing results on the basis of
two quite different numerical approaches is given by the
uncertainty as well as the stability of the results. As no
proof demonstrating the equality of both techniques nor an
analytical solution in the regimes of interest to gauge the
methods is available, we can only provide evidence that
both formalisms contain the same physics and are indeed
equal in terms of producing the correct outcome.
Optimally, different formalisms contain the same infor-

mation; only the way to retrieve it might be different. Within
this manuscript, we employ one solution technique based on
Furry-picture quantization uniquely suited to calculate par-
ticle distributions to an unprecedented level of accuracy. The
alternative way is given by the DHW formalism, a relativistic
quantum kinetic approach, that automatically yields, by its
design, a complete overview of the particle phase space and
therefore the full momentum spectrum.
As demonstrated in the manuscript multiple times, the

strengths of these two significantly different formalisms lie
in totally different areas: one is about high precision while
the other aims at completeness. It is therefore challenging to
show that both approaches indeed produce the same result.
In this Appendix, we want to provide some insight into the
technical details of our computations. To do so, we employ a
test scenario that allows us to examine in particular the
accuracy of the results displayed in the main text.
The test configuration is given by a long-pulsed field

with the pulse length τ ¼ 40m−1, peak field strength
ε ¼ 0.2, and temporal frequency ω ¼ 0.8m. For the spatial
frequency we opted for two different scenarios. In the first
setup, we studied on-shell photons, kz ¼ ω ¼ 0.8m, ulti-
mately proving the trustworthiness of both approaches; see
Fig. 12. In the second scenario, cf. Fig. 13, we have
averaged over z allowing for inspection within the LDA.
The Furry-picture formalism is formulated in terms of

solving many first-order, ordinary differential equations in
time. As memory is not an issue, the only concern is about
resolving any given oscillation in the mode functions. As
the approach is used sparsely in the manuscript mainly in
order to determine distribution functions locally, there is
no need to use coarse step functions in order to save
computation time. Consequently, the usage of a small step
size in time t leads to tremendously accurate solutions in
the particle momentum spectra. In Figs. 12 and 13 the
actual limiter is given by the precision of long double
variables ∼Oð10−15Þ.
The DHWapproach, on the other hand, operates intrinsi-

cally with partial differential equations. Hence, the accu-
racy and precision of such an approach cannot compete
with more streamlined formalisms using, e.g., mode
decomposition. However, given sufficiently advanced com-
putational techniques and sophisticated parallelization
schemes, phase-space approaches can make up for their
slowness in calculating distributions at a specific point in
the domain by the huge amount of output they can produce.

On top of that, although kinetic approaches are not on the
same level as other formalisms in terms of accuracy, they
still provide reasonably precise results; in Fig. 12 the
orange curve evens out at ∼Oð10−9Þ.
Within the LDA the situation changes significantly. Due

to the fact that within this approximation, spatial inhomo-
geneities are singled out altogether, the coupled system of

FIG. 12. Comparison of the particle distribution np as a
function of the momentum px (py ¼ pz ¼ 0) obtained through
the Furry-picture quantization approach (blue line) and DHW
formalism (orange markers). At a peak value around px ¼
0.32m, both approaches deviate by roughly 3%. The configura-
tion tested here is τ ¼ 40m−1, ε ¼ 0.2, ω ¼ kz ¼ 0.8m. The
uncertainty in np in the Furry-picture formalism is less than
∼10−14. The DHW formalism, on the other hand, is only accurate
to the percentage level plus it has a general threshold in
uncertainty of ∼10−9 due to the necessity of performing a vast
number of complex calculations.

FIG. 13. Comparison between Furry-picture quantization and
DHW formalism in the LDA on the basis of the particle dis-
tribution function npx;py¼0;pz¼0. Both approaches produce results
that are accurate to at least 8 orders. The difference at peak values
in np is less than 3.5%. Field parameters: τ ¼ 40−1m, ε ¼ 0.2,
ω ¼ kz ¼ 0.8m.
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partial differential equations governing the particle dynamics
in the DHW formalism is converted into a set of ordinary
differential equations. Consequently, the time integration of
this noncoupled system behaves similarly to the mode
equations within the Furry-picture formalism leading to
highly accurate, easily calculable distribution functions. In
Fig. 13 a comparison between the Furry-picture formalism
and DHW approach in the LDA is displayed.

APPENDIX B: EFFECTIVE MASS EFFECTS

To put it simply, the sole idea of having an effective mass
is based on the concept of summarizing the electrons’ and
positrons’ collective interactions with the environment and
absorbing it in a single variable. If successful, this approach
leads to a massive simplification of the process one wants to
describe. It is therefore not surprising that the concept of an
effective mass is very often used in the literature when
discussing physics in the multiphoton regime. In its most
common form, it appears as a field-dependent modification
m → m�ðEÞwith primary focus on the particles’ oscillatory
energy within a high-frequency field.
The huge advantage of this build is its simplicity. In its

most uncomplicated form, the effective mass is easily
derived through a single averaging over the temporal shape
of the vector potential. Reference [79] is an excellent
example of such an approach, where the field-dependent
mass term was found to be

m� ¼ m
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ξ2

p
; where ξ ¼ e

m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−hAμAμi

q
: ðB1Þ

For the vector potential in this manuscript (1), this would
amount to

m� ≈m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ε2m2

2ω2

s
ðB2Þ

completely neglecting any spatial dependency.
A slightly different approach was given in

Refs. [43,77,87], where the effective mass was not calcu-
lated directly but through an effective particle energy
defined via

E ¼ 1

T

Z
T

0

dt0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ ðp − eAÞ2

q
: ðB3Þ

This technique is more accurate than the previous one and
applicable even for very strong fields ε ∼Oð1Þ. The
downside, however, is given by the fact that in order to
calculate peak locations (78)–(81) or resonance frequen-
cies, Eqs. (84) and (88), one has to solve an implicit
equation.

APPENDIX C: SUPPLEMENTS

We could not put all data we have generated in the
main body of the manuscript without seeming to be
repetitive. The utility of the following attachments is too
narrow to warrant putting it into the main body of the
manuscript. Nevertheless, they might still turn out to be
of good use, cf. Table I and Fig. 14.

TABLE I. Supplemental material for the figures displayed in
Sec. VI B: list of peak locations in the particle spectrum according
to the exact numerical simulation px and our model px;nþ−n− ,
where nþ (n−) gives the number of photons absorbed with positive
(negative) momentum and l ¼ nþ − n−. Effective mass effects are
not taken into account in Sec. VI B, and thus the peak location for
the channel 2 − 1 is slightly off.a The background field configu-
ration is determined by a temporal length of τ ¼ 40m−1, a peak
field strength of ε ¼ 0.2, and a frequency of kz ¼ ω ¼ 0.8m.

l nþ n− px;nþ−n− ½m� px½m�
1 2 1 0.37a 0.32
2 3 1 0.66 0.656
3 4 1 0.8 0.662–0.794b
0 2 2 1.25 1.244
1 3 2 1.64 1.634
2 4 2 1.88 1.878
3 5 2 2.06 2.048
0 3 3 2.18 2.178
1 4 3 2.55 2.55
2 5 3 2.83 2.824

aIf effective mass effects were taken into account, we would
get px ¼ 0.325m.

bThis configuration exhibits a plateau rather than a peak.

FIG. 14. Supplemental material for Fig. 7. Overlay showing the
particle spectrum obtained from solving the DHW equations in a
combination with the solution within our absorption model. The
channels 2 − 2 (ring with center “x” at origin), 1 − 3 and 3 − 1
(ellipses with center “þ” at pz ¼ �0.67m) are visible as well as
1 − 2 and 2 − 1 (ellipses with center “o” at pz ¼ �0.335m). Field
parameters: ε ¼ 0.2, τ ¼ 60m−1, and ω ¼ kz ¼ 0.8m.
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