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The ρ meson gravitational form factors are studied based on a light-front constituent quark model
which has been successfully employed to calculate its generalized parton distributions and some low-
energy observables. The distributions of energy, spin, pressures, and shear forces inside the ρ meson
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I. INTRODUCTION

We know that the gravitational form factors (GFFs)
are defined through the matrix element of the energy-
momentum tensor (EMT) [1]. Since the GFFs relate to the
mass, spin, shear forces, and D-term of the particles [2,3],
they (or EMT form factors) involve a large range of
physics, such as the gravitation physics and the physics
in hard scattering processes [4,5]. It is a promising way to
extract more information about the mechanical properties
of a hadron (especially in the nonperturbative region) from
the study of GFFs. Those tasks mainly try to answer some
fundamental questions, like how the hadron mass and spin
are carried out by quarks and gluons or what the mecha-
nism that the trace anomaly contributes to hadron mass is,
and how the strong force distributes inside the hadron, etc..
Besides, the Fourier transforms of the EMT matrix ele-
ments define the static EMT which can further tell the
distributions of pressure and shear forces [4,5].
In the 1960s, the total GFFs were already introduced for

both spin-0 and spin-1=2 hadrons [1]. The most natural but
also the least practical way to probe GFFs is scattering
processes through graviton exchange. However, it’s more
practical to extract GFFs through their connections to the

generalized parton distributions (GPDs). The relations
between GFFs and GPDs were discussed in detail in
Refs. [6,7]. As the soft part of the hard-exclusive reactions,
GPDs have been received many theoretical and experi-
mental investigations [8–13]. As a reflection of the broken
scale invariance of QCD, the matrix element of the trace
anomaly part of EMT naturally connects with the hadron
mass [14,15]. Especially the gluonic operator is believed to
contribute to the majority part. This may give another
possible way to probe the GFFs via the exclusive produc-
tion of heavy quarkonium states, such as near-threshold
J=ψ and ϒ photoproduction processes at JLab. and RHIC
etc. [16–18].
At present, it is still not clear what the specific relations

among the strong force, pressure, and shear forces are.
Nevertheless, one may get some hints from the phenom-
enological studies of the static EMT of particles with
different spins. For instance, the GFFs of pion (spin-0)
were evaluated in chiral quark models in Refs. [19,20] and
parameter methods [21]. Reference [22] applies the Q-ball
model to spin-0 particles as well, where theD-term, energy
density, pressure, and shear forces were investigated in
detail. There are also lattice QCD calculations related to the
pion GFFs [23]. For the spin-1=2 hadrons, there are model
calculations from the AdS/QCD approach [24], and the
chiral quark soliton model [25], etc.. More can be found in
a review article (see Ref. [4]). The formalism of GFFs for a
spin-1 hadron are discussed by Refs. [26–28] and for
arbitrary spin hadrons in recent Ref. [29]. In the literature,
the model calculations for the spin-1 particles include the
AdS/QCD approach [30] and the Nambu-Jona-Lasinio
(NJL) model [31].
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It is shown that the light-cone quark model (LCCQM)
for the ρ meson employed in our previous works can
describe the ρmeson well in the low energy region, such as
its electromagnetic form factors, GPDs, etc. [32–34]. In this
work, we’ll apply our LCCQM and the previous results of
GPDs to study the ρ meson GFFs and its mechanical
properties (quadrupole pressure and shear forces, etc.
[27,35]), and try to get some information about those
fundamental questions.
This paper is organized as follows. In Sec. II, the

definitions of GFFs, pressure, and shear forces for a
spin-1 particle are briefly presented. Moreover, the
LCCQM for the ρ meson applied in our previous works
is also shortly reviewed in this section. Section III gives our
numerical results for the ρmeson GFFs, pressure, and shear
forces, etc.. In this part, we introduce a phenomenological
three-dimensional (3D) Gaussian form wave package,
when calculating the static EMT, since our obtained

GFFs do not drop fast enough. We also display our
model-dependent D-term of the ρ meson, which is not
affected by the Gaussian form wave package. Finally,
Sec. IV is devoted for a summary.

II. GFFS OF SPIN ONE PARTICLES AND
OUR MODEL

A. GFFs of spin one particles

The formalism of GFFs of a spin one particle and its
other mechanical properties have been discussed and given
explicitly [26–28]. Here, we briefly summarize them as
follows. In this paper, we use the covariant normalization
hp0; σ0jp; σi ¼ 2p0ð2πÞ3δð3Þðp⃗0 − p⃗Þδσσ0 for the system,
and introduce the kinematic variables P ¼ 1

2
ðp0 þ pÞ,

Δ ¼ p0 − p, t ¼ Δ2. Then, the symmetric (Belinfante)
EMT form factors of a spin-1 particle in QCD are
defined as,

hp0;σ0jT̂a
μνðxÞjp;σi ¼

�
2PμPν

�
−ϵ0� · ϵAa

0ðtÞþ
ϵ0� ·Pϵ ·P

m2
Aa
1ðtÞ

�
þ 2½Pμðϵ0�ν ϵ ·Pþ ϵνϵ

0� ·PÞþPνðϵ0�μ ϵ ·Pþ ϵμϵ
0� ·PÞ�JaðtÞ

þ 1

2
ðΔμΔν− gμνΔ2Þ

�
ϵ0� · ϵDa

0ðtÞþ
ϵ0� ·Pϵ ·P

m2
Da

1ðtÞ
�
þ
�
1

2
ðϵμϵ0�ν þ ϵ0�μ ϵνÞΔ2− ðϵ0�μ Δνþ ϵ0�ν ΔμÞϵ ·P

þðϵμΔνþ ϵνΔμÞϵ0� ·P− 4gμνϵ0� ·Pϵ ·P
�
EaðtÞþ

�
ϵμϵ

0�
ν þ ϵ0�μ ϵν−

ϵ0� · ϵ
2

gμν

�
m2f̄aðtÞ

þ gμν

�
ϵ0� · ϵm2c̄a0ðtÞþ ϵ0� ·Pϵ ·Pc̄a1ðtÞ

��
eiðp0−pÞx; ð1Þ

where m is ρ meson mass and a ¼ g; u; d;…, which
represent the contributions of gluon and all flavors of
quarks, and the polarization vectors ϵ0μ ¼ ϵμðp0; σ0Þ, ϵμ ¼
ϵμðp; σÞ with σ ¼ x, y, z, respectively. The 6 quark and
gluon GFFs Aa

0;1, Da
0;1, Ja and EaðtÞ are individually

momentum-energy conserving, and the other 3 GFFs, f̄a

and c̄a0;1ðtÞ, are not.
As shown in our previous works, in the Breit frame, the

above expression can be reorganized according to the
power of the quadrupole operator of the spin one particles.
The static EMT Tμνðr⃗; σ0; σÞ of the spin-1 system is defined
by the Fourier transform of the EMT with respect to Δ⃗ as

Tμν
a ðr⃗; σ0; σÞ ¼

Z
d3Δ

2Eð2πÞ3 e
−iΔ⃗·r⃗hp0; σ0jT̂μν

a ð0Þjp; σi: ð2Þ

Equation (2) contains the energy densities, the distributions
of spin, pressure and shear forces with different power of
quadrupole operator. For the energy distributions, we have
(sum over all gluons and quark flavors)

T00ðr⃗; σ0; σÞ ¼
Z

d3Δ
2Eð2πÞ3 e

−iΔ⃗·r⃗hp0; σ0jT̂00ð0Þjp; σi ð3Þ

¼ ε0ðrÞδσ0σ þ ε2ðrÞQ̂ijYij
2 ; ð4Þ

where r ¼ jr⃗j, Yij
2 ¼ rirj=r2 − δij=3, Q̂ij ¼ ðQ̂ijÞσ0σ, and

ε0ðrÞ ¼ mẼ0ðrÞ; ð5aÞ

ε2ðrÞ ¼ −
1

2m
r
d
dr

1

r
d
dr

Ẽ2ðrÞ; ð5bÞ

with

Ẽ0;2ðrÞ ¼ 2m
Z

d3Δ
2Eð2πÞ3 e

−iΔ⃗·r⃗E0;2ðtÞ ð6Þ

where E0;2ðtÞ ¼
P

a E
a
0;2ðtÞ and, in the Breit frame, t ¼

−Δ⃗2 and E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ Δ⃗2=4

q
.
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For the spin distribution, the 0j component is

T0j
a ðr⃗; σ0; σÞ ¼

Z
d3Δ

2Eð2πÞ3 e
−iΔ⃗·r⃗hp0; σ0jT̂0j

a ð0Þjp; σi: ð7Þ

The individual contributions of quarks and gluons to the
spin of the particle is

Jiaðr⃗; σ0; σÞ ¼ ϵijkrjT0k
a ðr⃗; σ0; σÞ; ð8Þ

¼ Ŝjσ0σ

Z
d3Δ
ð2πÞ3e

−iΔ⃗·r⃗
��

J̄ aðtÞþ2

3
t
dJ̄ aðtÞ

dt

�
δij

þ
�
ΔiΔj−

1

3
Δ⃗2δij

�
dJ̄ aðtÞ

dt

�
; ð9Þ

with J̄ aðtÞ ¼ m
E J

aðtÞ, and the spin operator [27,36].1

Ŝiσ0σ ¼ −iϵijkϵ�jσ ϵkσ0 ; ði; j; k; σ0; σ ¼ x; y; zÞ; ð10Þ

where the rest frame spin-1 polarization vectors are

ϵx ¼

0
B@

1

0

0

1
CA; ϵy ¼

0
B@

0

1

0

1
CA; ϵz ¼

0
B@

0

0

1

1
CA: ð11Þ

For the ij-components, the quadrupole elastic pressure
and shear forces are firstly defined in Ref. [27] in the sprit
of Ref. [37–39]. A new parametrization of pressure and
shear forces is introduced in a recent paper [35], and it
conveniently generates the normal and tangential forces
acting on radial area element (dFr, dFθ, and dFϕ). These
forces explains how the hadron shape forms. The corre-
sponding relations of two sets of parametrization are given
in the Appendix of Ref. [35]. According to Ref. [35],

Tijðr⃗Þ ¼
Z

d3Δ
2Eð2πÞ3 e

−iΔ⃗·r⃗hp0; σ0jT̂ijð0Þjp; σi ð12Þ

¼ p0ðrÞδij þ s0ðrÞYij
2 þ

�
p2ðrÞ þ

1

3
p3ðrÞ −

1

9
s3ðrÞ

�
Q̂ij

þ
�
s2ðrÞ −

1

2
p3ðrÞ þ

1

6
s3ðrÞ

�
2½Q̂ipYpj

2 þ Q̂jpYpi
2 − δijQ̂pqYpq

2 �

þ Q̂pqYpq
2

��
2

3
p3ðrÞ þ

1

9
s3ðrÞ

�
δij þ

�
1

2
p3ðrÞ þ

5

6
s3ðrÞ

�
Yij
2

�
þ… ð13Þ

where the quadrupole pressure pnðrÞ and shear forces functions snðrÞ can be written as

pnðrÞ ¼
1

6m
∂2D̃nðrÞ ¼

1

6m
1

r2
d
dr

r2
d
dr

D̃nðrÞ; ð14aÞ

snðrÞ ¼ −
1

4m
r
d
dr

1

r
d
dr

D̃nðrÞ; ð14bÞ

and we found,

D̃0ðrÞ ¼ 2m
Z

d3Δ
2Eð2πÞ3 e

−iΔ⃗·r⃗D0ðtÞ; ð15aÞ

D̃2ðrÞ ¼ 2m
Z

d3Δ
2Eð2πÞ3 e

−iΔ⃗·r⃗D2ðtÞ þ
2

m

�
d
dr

d
dr

−
2

r
d
dr

�Z
d3Δ

2Eð2πÞ3 e
−iΔ⃗·r⃗D3ðtÞ; ð15bÞ

D̃3ðrÞ ¼ −
4

m

�
d
dr

d
dr

−
2

r
d
dr

�Z
d3Δ

2Eð2πÞ3 e
−iΔ⃗·r⃗D3ðtÞ; ð15cÞ

1In Ref. [27], the spin operator and rest frame spin-1 polarization vectors in Eq. (13) and (14) are incorrect.
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with DnðtÞ ¼
P

aD
a
nðtÞ. The detailed definitions for the

form factors Ea
0;2ðtÞ, J aðtÞ, and Da

0;2;3ðtÞ are shown in the
Appendix A. The spherical components of the force (dFr,
dFθ, and dFϕ) acting on the infinitesimal radial area
element dSr (dS ¼ dSrer þ dSθeθ þ dSϕeϕ) are given in
Ref. [35]. For completeness, we include the results in
Appendix B. As shown in Eq. (B1) and (B2), in the
unpolarized case, only the normal force dFr=dSr exists
inside the particle system and it only has contributions from
p0ðrÞ and s0ðrÞ. In polarized cases, both normal and
tangential forces shows up, together with the higher-
ordered ones, p2ðrÞ, s2ðrÞ, p3ðrÞ, and s3ðrÞ.

B. Phenomenological light-front constituent quark

We know that the GFFs can be obtained from GPDs via
the sum rules. For the quark sector, one has

Z
1

−1
xdxHq

1ðx;ξ;tÞ¼Aq
0ðtÞ−ξ2Dq

0ðtÞþ
t

6m2
EqðtÞþ1

3
f̄qðtÞ;

ð16aÞZ
1

−1
xdxHq

2ðx; ξ; tÞ ¼ 2JqðtÞ; ð16bÞ
Z

1

−1
xdxHq

3ðx; ξ; tÞ ¼ −
1

2
½Aq

1ðtÞ þ ξ2Dq
1ðtÞ�; ð16cÞ

Z
1

−1
xdxHq

4ðx; ξ; tÞ ¼ −2ξEqðtÞ; ð16dÞ
Z

1

−1
xdxHq

5ðx; ξ; tÞ ¼
t

2m2
EqðtÞ þ f̄qðtÞ; ð16eÞ

and they are similar to the gluon ones. [27,28]. Figure 1
illustrates the process we are considering for GPDs in our
phenomenological model. The notations are [32]

t ¼ Δ2 ¼ ðp0 − pÞ2 ¼ ðq − q0Þ2; Q2 ¼ −q2;

ξ ¼ −
Δ · n
2P · n

¼ −
Δþ

2Pþ ; jξj ¼ Δþ

2Pþ ; ðjξj ≤ 1Þ

x ¼ k · n
P · n

¼ kþ

Pþ ; ð−1 ≤ x ≤ 1Þ; ð17Þ

where n is a lightlike 4-vector. Here q is the virtual photon
momentum, and q0 is treated as a real one.
In a numerical calculation, we employ the phenomeno-

logical light-front quark model to describe the interaction
between the spin- 1 ρmeson and its two constitutes u and d
[32,40]. It is based on an effective interaction Lagrangian
for the ρ → q̄q vertex,

LI ¼ −
imq

fρ
q̄Γμτq · ρμ

¼ −
i

ffiffiffi
2

p
mq

fρ

�
ūΓμu − d̄Γμdffiffiffi

2
p ρ0μ þ ūΓμdρþμ þ d̄Γμuρ−μ

�
;

ð18Þ
where ρμ is the ρ meson field, fρ is the ρ decay constant,
and Γμ is a Bethe-Salpeter amplitude (BSA) describing the
interaction between the meson and the quark-antiquark
pair,

Γμ ¼ N
γμ − ðkq þ kq̄Þμ=ðMi;f þ 2mqÞ
½k2q −m2

R þ {ϵ�½k2q̄ −m2
R þ {ϵ� ; ð19Þ

where, for the u quark contribution, the struck u quark
momentum is ku ¼ k − Δ=2 and the spectator constituent
momentum is ks ¼ kd̄ ¼ k − P. N is the normalization
constant,mq andmR are the masses of the constituent quark
and the regulator, respectively. Mi;f are the kinematic
invariant masses with subscript i for initial vertex and f
for the final vertex,

M2
i ¼

κ2⊥ þm2
q

1 − x0
þ κ2⊥ þm2

q

x0
; ð20aÞ

M2
f ¼

κ02⊥ þm2
q

1 − x00
þ κ02⊥ þm2

q

x00
; ð20bÞ

with the light-front momentum fractions x0 ¼ −kþs =pþ ¼
ð1 − xÞ=ð1 − jξjÞ, x00 ¼ x0pþ=p0þ ¼ ð1− xÞ=ð1þjξjÞ, and

κ⊥ ¼ ks⊥ −
kþs
pþ pi⊥ ¼ ðk − PÞ⊥ −

x0

2
Δ⊥; ð21aÞ

κ0⊥ ¼ðk − PÞ⊥ þ x00

2
Δ⊥: ð21bÞ

In the Efremov-Radyushkin-Brodsky-Lepage (ERBL)
regime (i.e., nonvalence regime), the relation of −jξj <
x < jξj leads to x0 > 1, and the initial vertex becomes the
nonwave-function vertex which meansM2

i can get negative
values. To keep the mass square positive, we follow
Ref. [40] by directly replacing 1 − x0 with x0 − 1 in
Eq. (20a) and gets

M̃2
i ¼

κ2⊥ þm2
q

x0 − 1
þ κ2⊥ þm2

q

x0
: ð22ÞFIG. 1. The s-channel handbag diagram forGPDs. The u-channel

one can be obtained by q ↔ q0.
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When both the struck and spectator constituents are on
mass shells, one gets M2

i ¼ M2
f ¼ m2 but M̃2

i ≠ m2. The
physics in the ERBL regime is much more complicated
than that in the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi
one, since the creation of the qq̄ pair involves an infinite
sum of the meson contribution. The above simple method
may omits the rich details. As Eq. (16) shows, the GFFs
D0ðtÞ and D1ðtÞ is bound to ξ and the nonzero ξ requires

the ERBL regime. It is one possible reason why our results
for these two GFFs are very different with that of other
models and the free theory.

III. NUMERICAL RESULTS

Following our previous work on the ρmeson GPDs [32–
34], we take the two model parameters, the constituent

(a) (b)

(c) (d)

(e) (f)

FIG. 2. Gravitational form factors (a) A0ðtÞ, A1ðtÞ, (b) JðtÞ, EðtÞ, (c) D0ðtÞ, and (d) D1ðtÞ. The solid lines are parametric fittings and
the empty circles are model results. The red dot-dashed lines are results from the AdS/QCD approach by the Abidin etc. [30] and the
blue dashed lines are results from the NJL model by Freese etc. [31]. To compare the results from Ref. [30] with ours, we need take the
scale ΛQCD ¼ 0.226 GeV which is employed in our previous work [32].
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mass mq ¼ 0.403 GeV and regulator mass mR ¼
1.61 GeV. The renormalization scale is about 0.5 GeV.
In our LCCQM, the gluon contributions are assumed to be
absorbed into the constituent quark mass. After summing
over all the contributions from the quark flavors, we get the
total GFFs, where the 3 energy-momentum nonconserving
terms are canceled, and only 6 conserving terms are
considered.
Our results for GFFs are shown in Fig. 2. We know that

the GFFs A0ðtÞ and JðtÞ are related to the generators of the
Poincare group for the mass and spin of the particle (here is
the ρ meson) which give the constraints at zero-momentum
transfer A0ð0Þ ¼ 1 and Jð0Þ ¼ 1 [26,30,41,42]. Except for
the cases of free particles and Goldstone bosons, there is no
any other general principles or constraints for D-term [4].
The results for the D-terms of the proton and pion have
been given by different phenomenological analyses based
on the experimental data of leading order deep virtual
Compton scattering (DVCS) process [43]. In the spin-1
case, the D-term is related to the GFFs DðtÞ and EðtÞ. It is
expected, with a similar approach, one can also obtain an
estimation for the mechanical properties for other spin-1
particles, in particular for deuteron, which may be mea-
sured in the future JLab experiment [44].
In the literature, there are some other model calculations

for the spin-1 GFFs before present work. Reference [30]
gives the results for A0ðtÞ and JðtÞ by applying the AdS/
QCD approach, and Ref. [31] shows the six nonzero GFFs
in the NJL model. The relations among the different
notations have been explicitly discussed in Ref. [27].
Besides the common constraints from the total mass
(A0ð0Þ ¼ 1) and spin (Jð0Þ ¼ 1), the present calculation
and the mentioned two other approaches, however, show
different decreasing t—dependent behaviors of the two
GFFs, A0ðtÞ and JðtÞ. For the rest four nonzero GFFs A1,
D0, D1, and E, our results are also quite different from that

in the NJL model [31]. One could find, in the common
region of momentum transfer, the absolute value of our
A1ðtÞ (∼1.2 at t ¼ 0) is much larger than the results (∼0.4 at
t ¼ 0) in Ref. [31] and the absolute value of our EðtÞ
(∼0.15 at t ¼ 0) is smaller than that (∼0.5 at t ¼ 0) in
Ref. [31]. For D0ðtÞ, we get D0ð0Þ ∼ 0 which is a
significant difference w.r.t. the free theory D0ð0Þ ¼ 1
(without the nonminimal term) [27] and the chiral limit
[31]. One possible reason for such a difference is due to the
simplification we used in the model, as discussed previ-
ously. The other possible reason is that the quark mass is
large and much away from the chiral limit. ForD1ðtÞwe get
opposite sign comparing with that from Ref. [31].
The present model result for ρ meson D-term is

D ¼ D0ð0Þ ¼ −D0ð0Þ þ
4

3
Eð0Þ

¼ 0þ 4

3
· ð−0.161Þ ¼ −0.21 < 0: ð23Þ

It should be stressed that the negative value of the D-term
satisfies the requirement for the mechanical stability [4],
i.e.,

2

3
s0ðrÞ þ p0ðrÞ > 0: ð24Þ

Although the t-dependent behaviors of GFFs obtained in
different approaches are quite different, we find the D-term
value obtained from the GFFs of Ref. [31] (although it is
not given explicitly in the paper) is around −0.33, which is
close to ours −0.21.
It is shown that the 3D Fourier transforms in the Breit

frame (BF) and two-dimensional(2D) Fourier transforms in
the Light-Cone (LC) frame gives different definitions of the
mass radii hr2imass [5,31,45]. In the Breit frame, we have2

hr2iBF ¼
R
d3rr2T00ðr⃗ÞR
d3rT00ðr⃗Þ ¼ 1

m

Z
d3r r2T00ðr⃗Þ

¼ 6
dA0ðtÞ
dt

����
t→0

þ 1

m2

�
−
7

4
A0ð0Þ þ

1

2
A1ð0Þ þ

3

2
D0ð0Þ þ 2Jð0Þ − Eð0Þ

�
; ð25Þ

Eq. (25) is equivalent to Eq. (36) of Ref. [28]. In the light-cone frame, it is obtained in Ref. [31] as

hr2iLC ¼ 4
dA0ðtÞ
dt

����
t¼0

þ 1

3m2
½2A0ð0Þ þ A1ð0Þ − 2Jð0Þ þ 2Eð0Þ�: ð26Þ

2In our previous proceeding paper [46], the definition of hr2imass in its Eq. (7) is wrong. In Ref. [30] where an AdS/QCD model
calculation is preformed, its Eq. (46) defines the radius as hr2imass ¼ −6 ∂A

∂Q2 jQ2¼0 with Q2 ¼ −t.
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As discussed in Ref. [31,45], the 3D spatial distributions in
the Breit frame are found not invariant under Lorentz
boosts. While the relativistic corrections are intrinsically
accounted for in the light-cone frame and therefore the
physical meaning of the radius of 2D transverse distribu-
tions in light-cone is more clear. The numerical results of
these radii are list in Table I in comparing with other model
predictions. In the present work, we have

ffiffiffiffiffiffiffiffiffiffiffiffiffi
hr2iBF

p
¼

0.53 fm and
ffiffiffiffiffiffiffiffiffiffiffiffiffi
hr2iLC

p
¼ 0.41 fm. In both frames, the mass

radii are smaller than the charge radius (0.72 fm) from our
previous calculation. This feature is reasonable and con-
sistent with the nucleon case [25,47]. Besides, we find both
of the radius and the D-term are sensitive to the constituent
quark mass mq. As binding energy is approaching zero (mq

is approaching to the half of total ρmeson mass), the radius
increases rapidly and the absolute value of D-term de-
creases close to zero. It means the bound system is getting
looser or even falls apart in the view of the constituent
quark model. It is consistent with the observation in
Ref. [48] that the value of D-term vanishes in the free
Dirac fermions case.
The gravitational quadrupole moment,

Qmass ¼ −
1

m

�
−A0ð0Þ þ

1

2
A1ð0Þ þ 2Jð0Þ − Eð0Þ

�

¼ −0.0322½mρ-fm2�; ð27Þ

in the present model. It is consistent with that from the NJL
model prediction (−0.0224½mρ-fm2�) in Ref. [31]. The
quadrupole moments of mass and charge are close under
the comparable units. The same (negative) sign implies the
mass and charge distributions are synchronous when the
particle becomes polarized.
In principle, one can calculate the static EMT TμνðrÞ

(also the energy density and pressure) straightforwardly
from the obtained GFFs with Fourier transformation.
However, the integrals may not converge if the GFFs
drops slowly with respect to the momentum transfer

square t. According to the analyses of pQCD and
AdS=CFT, at the large momentum transfer (−t¼Q2→∞),
the six GFFs decease roughly with the following power
respectively [30],

ðA0; D0; J; EÞ ∼ 1=t2; ðA1; D1Þ ∼ 1=t3: ð28Þ

In the nucleon case, Ref. [49] adopts an assumption that its
GFFs behave d1ðtÞ ∼ t−3, and the converged results are
obtained.
Because of the limited capability of our LCCQM,

especially at the large momentum transfer region, we
believe that a modification of our model results in the
large momentum transfer region is needed. To simulate the
t-dependent behaviors of the obtained GFFs, we consider
the forms like

a

�
1 −

t
b

�
c

ð29Þ

to present our numerical results at a momentum transfer
region, 0 < −t < 10 GeV2, and we find five of the six
GFFs are approximately described by

A0ðtÞ ¼ ð1 − 0.996tÞ−1.28; ð30aÞ

A1ðtÞ ¼ −1.20
�
1 −

t
0.73

�
−1.38

; ð30bÞ

D1ðtÞ ¼ 0.814

�
1 −

t
1.32

�
−1.64

; ð30cÞ

JðtÞ ¼ 0.965

�
1 −

t
0.68

�
−0.877

; ð30dÞ

EðtÞ ¼ −0.161
�
1 −

t
4.2

�
−0.909

: ð30eÞ

Due to the limit jξj ≤ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4M2=t

p
, there are some

small oscillation in the numerical result of the GFF D0ðtÞ
at 0 < −t < 3 GeV2. After a careful check of its t—
dependent behavior, we find it is oscillating around a
curve that can be simulated by

�
1 −

t
b

�
c
�
1 −

d
t

�
e
: ð31Þ

Thus, for D0ðtÞ, we get

D0ðtÞ ¼
�
1 −

0.97
t

�
−1.97

�
1 −

t
0.14

�
−0.86

: ð32Þ

It turns out, unlike the nucleon case in Ref. [49], neither
our GFFs results in Eqs. (30) and (32) nor the pQCD
predictions in Eq. (28) drop fast enough to give converging

TABLE I. Mean squared mass radius, mass and quadrupole
moment of ρ meson by this work, the NJL model [31] and the
AdS/QCD model [30], respectively. All radii are in fm, the mass
quadrupole moment is in units of mρ-fm2,and the electric
quadrupole moment is in e-fm. In Ref. [30], it is not specified
in which frame the definition of radii is given, and the mass
definition differ from that the Breit frame and light cone
prescriptions used in the present work and Ref. [31].

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hr2imass

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hr2ielec

p
Qmass Qelec

AdS/QCD [30] 0.46 0.73
NJL [31], Briet frame 0.45 0.67 −0.0224 −0.0200
NJL [31], Light Cone 0.32 0.45
this work, Briet frame 0.53 0.72 −0.0322 −0.0212
this work, Light Cone 0.41
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results for TμνðrÞ [see Eq. (2)]. This issue has already been
pointed out and discussed for the cases of pion meson [22]
and nucleon [5]. One possible reason is that the integrals
that defining TμνðrÞ is subjected to the relativistic
corrections. For the spin-0 case, Ref. [22] estimated the
relativistic corrections by a way of smearing out the point-
particles (a delta function is replaced by a Gaussian
function). It is believed that the relativistic corrections
(δrel ≡ 1=ð2m2R2

hÞ) is negligible when mRh ≫ 1 where m
is the hadron mass and Rh is the hadron size. For the light
meson pion, its δrel ¼ 220% [22]. Although the ρ meson is
spin-1 hadron, we may simply “borrow” the argument for
pion to roughly estimate how large the relativistic correc-
tions are for the case of the ρ meson. With our model

estimation of the radius (
ffiffiffiffiffiffiffiffiffiffiffiffi
hri2grav

q
∼ 0.53 fm), one gets

δrel ∼ 12% which is not important and we believe that the
concept of the 3D densities is applicable for the ρ meson.
So far, there is no experimental data for the ρmeson radius,
the future experimental information about its size would be
essential for our estimate.
To proceed with a modification of our phenomenological

model calculation, particularly in the large t region, we
introduce a Gaussian form wave package, as we did in
previous work [33], to suppress the contribution from the
high energy region. It’s reasonable since only limited
values of t can be measured in the experiments.
Choosing the Gaussian form wave package originates from
the observation that a hadron is an extended object and is
smeared out in space [50]. It should be stressed that the
value of D-term is not affected by this modification and by
the consideration of the relativistic corrections since it’s
defined by the value of GFFs at the zero momentum
transfer [4,22].
In our previous study for the ρ-meson transverse dis-

tributions in the 2D impact parameter space [33], we
introduced a 2D Gaussian form wave packet in both of
the incoming and outgoing states in order to avoid the

similar divergences, and we found the appropriate value for
the wave packet width being around σ ¼ 1–2 GeV−1. This
treatment was also pointed out and employed in other
calculations of nucleon GPDs in the impact parameter
space [50]. Here, a similar 3D Gaussian form wave packet,

e−Δ⃗
2σ2

0
=4; ð33Þ

is adopted (with width σ0 ∼ 2 GeV−1 ¼ 0.39 fm) to carry
out the calculation for the spatial distributions. As a result,
the expressions for the energy densities are modified to be

εðσ0Þ0 ðrÞ ¼ 2m2

Z
d3Δ

2Eð2πÞ3 e
−iΔ⃗·r⃗−Δ⃗2σ2

0
=4E0ðtÞ; ð34aÞ

εðσ0Þ2 ðrÞ ¼ −r
d
dr

1

r
d
dr

Z
d3Δ

2Eð2πÞ3 e
−iΔ⃗·r⃗−Δ⃗2σ2

0
=4E2ðtÞ: ð34bÞ

Then, the spin distribution is modified to be

Jiðσ0Þa ðr; σ0; σÞ ¼ Jiðσ0Þa ðr⃗; σ0; σÞ

¼ Ŝjσ0σ

Z
d3Δ
ð2πÞ3 e

−iΔ⃗·r⃗−Δ⃗2σ2
0
=4

×

��
Ĵ aðtÞ þ 2

3
t
dĴ aðtÞ

dt

�
δij

þ
�
ΔiΔj −

1

3
Δ⃗2δij

�
dĴ aðtÞ

dt

�
; ð35Þ

where Ĵ aðtÞ ¼ m
E J

aðtÞ and the first step in the above
equation is based on the observation that Jia depends on r⃗
only through r ¼ jr⃗j. Moreover, the function D̃nðrÞ in
Eq. (15a), which defines the distributions of pressure and
shear force, is modified as

(a) (b)

FIG. 3. Energy densities (a) εðσ0Þ0 ðrÞ, (b) εðσ0Þ2 ðrÞ with σ0 ¼ 2 GeV−1.
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D̃ðσ0Þ
0 ðrÞ ¼ 2m

Z
d3Δ

2Eð2πÞ3 e
−iΔ⃗·r⃗−Δ⃗2σ2

0
=4D0ðtÞ; ð36aÞ

D̃ðσ0Þ
2 ðrÞ ¼ 2m

Z
d3Δ

2Eð2πÞ3 e
−iΔ⃗·r⃗−Δ⃗2σ2

0
=4D2ðtÞ

þ 2

m

�
d
dr

d
dr

−
2

r
d
dr

�

×
Z

d3Δ
2Eð2πÞ3 e

−iΔ⃗·r⃗−Δ⃗2σ2
0
=4D3ðtÞ; ð36bÞ

D̃ðσ0Þ
3 ðrÞ ¼ −

4

m

�
d
dr

d
dr

−
2

r
d
dr

�

×
Z

d3Δ
2Eð2πÞ3 e

−iΔ⃗·r⃗−Δ⃗2σ2
0
=4D3ðtÞ: ð36cÞ

Correspondingly, pnðrÞ → pðσ0Þ
n ðrÞ and snðrÞ → sðσ0Þn ðrÞ.

After summing over all the partons (only quarks here) in
Eq. (35), one has

Jiðσ0Þσ0σ ðr⃗Þ ¼
X
a

Jiðσ0Þa ðr⃗; σ0; σÞ; i; σ0; σ ¼ x; y; z: ð37Þ

In the Cartesian basis, average over all polarizations and
spatial directions, one further has

Jðσ0ÞðrÞ≡ 1

Tr½Ŝ2�
X
σ0σi

Ŝiσ0σJ
iðσ0Þ
σ0σ ðr⃗Þ ¼ iJxðσ0Þyz ðrÞ; ð38Þ

which is a real quantity and is the 3D spatial spin
distribution of the ρ meson.
With those preparations, the energy densities calculated

from the GFFs in Eqs. (30) and (32) are shown in Fig. 3. In
Fig. 3(b), the normalization is changed to the form of

4πr2εðσ0Þ0 ðrÞ=m, which gives 1 after averaging over the
polarizations and integrating over the whole radial space.

The higher-order term εðσ0Þ2 ðrÞ does not contribute to the
energy distributions in the unpolarized case. Its negative
value indicates that the mass or energy distribution would
deviate from the center because of the polarization effect.
As shown in Table I, the values of charge and mass
quadrupole moments in our work and Ref. [31] are all
negative. In the classical picture, a negative quadrupole
moment corresponding to an oblate ellipsoid distribution.
Thus the charge and mass distributions are consistent
in shape.
The result for the spin distribution is shown in Fig. 4. In

our previous work with LCCQM, we obtain the fraction of
spin carried by the constituent quark and antiquark in ρ
meson is 86% [34]. The rest part is believed to come from
the orbital angular momentum (no gluon in our model)
[51–54].
Finally, our results for pressures pðσ0Þ

n and shear forces

sðσ0Þn are shown in Fig. 5. To the best of our knowledge,
there are some model calculations for spin-0 and spin-1=2

nucleon, but none for the spin-1 particle before. In the
unpolarized case, only the first order pressure and shear
force contribute to Tij in Eq. (12) and the normal force dFr
in Eq. (B1). So far in almost all model studies for different
spin cases, it is found that the (unpolarized) pressure is
positive in the inner region and negative in the outer region.
Under the present convention, we know that the positive
sign means repulsion toward outside and the negative sign
means attraction toward inside. However, the specific
relationship between these values and the strong force

remains obscure. As one can see, pðσ0Þ
0 ðrÞ changes its sign

for the first time at around r ∼ 0.5 fm, which is roughly the
gravitational radius. Physically, the sign-changing means
the forces change from “stretching” to “squeezing.” This
phenomenon is the same as in the nucleon case [4]. In the
polarized case, the higher-ordered pressures p2ðrÞ, p3ðrÞ
and shear forces s2ðrÞ, s3ðrÞ, contributes to both normal
and tangential forces, as shown in Eq. (B1) and (B2). The
size of tangential forces are proportional to p2ðrÞ þ 2

3
s2ðrÞ

which keeps negative as shown in Fig. 5(c). The final sign
of dFθ and dFϕ is, however, also dependent on the
spherical quadrupole tensor elements as shown in
Appendix B. In the large−Nc limit with the baryon as
chiral soliton, it is found that p2ðrÞ ¼ s2ðrÞ ¼ 0 for the Δ
baryon ðJ ¼ 3=2Þ [35], which is a very interesting pre-
diction. At the region, r ≥ 1 fm, the pressures and shear
forces are all quickly approaching to zero with small
oscillations with respect to the center region values.
There always exist oscillations in this approach and the
oscillations depend on what the value of σ0 is used in our
numerical calculation (larger σ0 generates stronger sup-
pression on the amplitudes of the oscillations). There is still
no constraint on how many times the changing would
happen and no explanation for the meaning of those
numbers. It is of great interest to have further study and
to answer these intriguing questions. Nevertheless, here we
present the first model estimation for the pressures and
shear forces for the spin-1 ρ meson. Similar distributions

FIG. 4. Spin densities Jðσ0ÞðrÞ with σ0 ¼ 2 GeV−1.
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may indicate some common properties of the strong force
in forming the hadron systems.

IV. SUMMARY

In this work, we extend our previous approach on the ρ
meson GPDs with the phenomenological light-front con-
stituent quark model to its GFFs and further to the
distributions of pressure and shear forces. For the GFFs
A0 and J which are related to the mass and spin, our model
estimations are consistent with the result of other
approaches, such as the NJL model and AdS=CFT etc..
For the rest four GFFs, there are no specific constraints as
the mass and spin cases, and the results from different
approaches have large discrepancies even with opposite
signs. Moreover, theD-term is given through our calculated
GFFs, and it is estimated to be −0.21. The negative value
satisfies the stability condition. We also calculate the
distributions of energy, pressure, spin, and shear forces.
The results for the mass radius and quadrupole moment
also agree with previous calculations in the NJL model and
the AdS/QCD model etc. Since the LCCQM works well

mainly within the low momentum transfer regions, we
consider a Gaussian wave package during the Fourier
transforms to suppress the contributions from large
momentum transfer regions. Thus, the present results
should be considered as a qualitative estimation. We expect
that our results may provide some hints for the under-
standing of the mechanical properties, especially in the case
of spin-1 hadron.
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FIG. 5. The pressure and shear forces functions with σ0 ¼ 2 GeV−1.
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APPENDIX A: DEFINITION FOR THE FORM FACTORS

The definitions for the form factors used in this work are

Ea
0ðtÞ ¼ Aa

0ðtÞ þ
1

4
f̄aðtÞ − 1

2
c̄a0ðtÞ

þ t
12m2

�
−5Aa

0ðtÞ þ 3Da
0ðtÞ þ 4JaðtÞ − 2EaðtÞ þ Aa

1ðtÞ þ
1

2
f̄aðtÞ þ c̄a0ðtÞ þ

1

2
c̄a1ðtÞ

�

−
t2

24m4

�
−Aa

0ðtÞ þDa
0ðtÞ þ 2JaðtÞ − 2EaðtÞ þ Aa

1ðtÞ þ
1

2
Da

1ðtÞ þ
1

4
c̄a1ðtÞ

�
þ t3

192m6
½Aa

1ðtÞ þDa
1ðtÞ�; ðA1Þ

Ea
2ðtÞ ¼ −Aa

0ðtÞ þ 2JaðtÞ − EaðtÞ þ 1

2
Aa
1ðtÞ þ

1

4
f̄aðtÞ þ 1

2
c̄a0ðtÞ þ

1

4
c̄a1ðtÞ

−
t

4m2

�
−Aa

0ðtÞ þDa
0ðtÞ þ 2JaðtÞ − 2EaðtÞ þ Aa

1ðtÞ þ
1

2
Da

1ðtÞ þ
1

4
c̄a1ðtÞ

�

þ t2

32m4
½Aa

1ðtÞ þDa
1ðtÞ�; ðA2Þ

J aðtÞ ¼ JaðtÞ þ 1

2
f̄aðtÞ − t

4m2
ðJaðtÞ − EaðtÞÞ: ðA3Þ

Da
0ðtÞ ¼ −Da

0ðtÞ þ
4

3
EaðtÞ þ t

12m2
½2Da

0ðtÞ − 2EaðtÞ þDa
1ðtÞ� −

t2

48m4
Da

1ðtÞ; ðA4Þ

Da
2ðtÞ ¼ −EaðtÞ; ðA5Þ

Da
3ðtÞ ¼

1

4
½2Da

0ðtÞ − 2EaðtÞ þDa
1ðtÞ� −

t
16m2

Da
1ðtÞ: ðA6Þ

When sum over all partons, the momentum-energy nonconserving terms, f̄a and c̄a0;1, will drop and they have no
contribution.

APPENDIX B: QUADRUPOLE TENSOR ELEMENTS

The spherical components of the force acting on the infinitesimal radial area element dSr (dS ¼ dSrer þ dSθeθ þ dSϕeϕ)
read [35]:

dFr

dSr
¼ p0ðrÞ þ

2

3
s0ðrÞ þ Q̂rr

�
p2ðrÞ þ

2

3
s2ðrÞ þ p3ðrÞ þ

2

3
s3ðrÞ

�
; ðB1Þ

dFθ

dSr
¼ Q̂θr

�
p2ðrÞ þ

2

3
s2ðrÞ

�
;

dFϕ

dSr
¼ Q̂ϕr

�
p2ðrÞ þ

2

3
s2ðrÞ

�
: ðB2Þ

Some of the spherical quadrupole tensor elements involved in Eq. (B1) and (B2) are,

Q̂rr ¼ ðQ̂xx cos2 ϕþ Q̂xy sin 2ϕþ Q̂yy sin2 ϕÞ sin2 θ þ Q̂xz sin 2θ cosϕþ Q̂yz sin 2θ sinϕþ Q̂zz cos2 ϕ; ðB3Þ
Q̂θr ¼ ðQ̂xx cos2 ϕþ Q̂xy sin 2ϕþ Q̂yy sin2 ϕ − Q̂zzÞ sin θ cos θ þ ðQ̂xz cosϕþ Q̂yz sinϕÞ cos 2θ; ðB4Þ

Q̂ϕr ¼ ððQ̂yy − Q̂xxÞ sinϕ cosϕþ Q̂xy cos 2ϕÞ sin θ þ ðQ̂yz cosϕ − Q̂xz sinϕÞ cos θ; ðB5Þ
where θ is the pole angle and ϕ is the azimuthal angle in commonly used polar coordinate system, and [36]

ðQ̂ikÞlm ¼ ðQ̂ikÞlm ¼ −
1

2

�
δilδkm þ δimδkl −

2

3
δikδlm

�
; ði; k; l; m ¼ x; y; zÞ: ðB6Þ
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[41] S. Cotogno, C. Lorcé, and P. Lowdon, Phys. Rev. D 100,

045003 (2019).
[42] C. Lorcé and P. Lowdon, Eur. Phys. J. C 80, 207 (2020).
[43] K. Kumerički and D. Müller, EPJ Web Conf. 112, 01012

(2016).
[44] M. Hattawy et al. (CLAS12 Run-Group), arXiv:1908

.00949.
[45] G. A. Miller, Phys. Rev. C 99, 035202 (2019).
[46] B. Sun and Y. Dong, SciPost Phys. Proc. 3, 014 (2020).
[47] N. Bezginov, T. Valdez, M. Horbatsch, A. Marsman, A. C.

Vutha, and E. A. Hessels, Science 365, 1007 (2019).
[48] J. Hudson and P. Schweitzer, Phys. Rev. D 97, 056003

(2018).
[49] V. D. Burkert, L. Elouadrhiri, and F. X. Girod, Nature

(London) 557, 396 (2018).
[50] M. Diehl, Eur. Phys. J. C 25, 223 (2002); 31, 277(E) (2003).
[51] P. Hoodbhoy, X.-D. Ji, and W. Lu, Phys. Rev. D 59, 014013

(1998).
[52] C. Lorce and B. Pasquini, Phys. Rev. D 84, 014015 (2011).
[53] Y. Hatta, Phys. Lett. B 708, 186 (2012).
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