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In the framework of the Standard Model, we present predictions for partial widths, double and
single differential distributions, and forward-backward lepton asymmetries for four-leptonic decays
B−→μþμ−ν̄ee−, B−→eþe−ν̄μμ−, B−→μþμ−ν̄μμ−, and B− → eþe−ν̄ee−. We consider the contributions of
virtual photon emission from the light and heavy quarks of the B− meson, and we include bremsstrahlung
of a virtual photon from the charged lepton in the final state. We use the model of vector meson dominance
for calculation of virtual photon emission by the light quark of the B− meson and take into account the
isotopic correction. The dependence of branchings on the relative phase of the contributions of the light
intermediate vector mesons is studied.
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I. INTRODUCTION

Four-leptonic decays of B mesons allow a precise test of
Standard Model (SM) predictions in the higher orders of
perturbation theory. At the same time, these decays may be
background processes to the helicity-suppressed ultrarare
decays Bd;s → μþμ−, which are under study at the Large
Hadron Collider (LHC) [1–5]. These studies are motivated
by searches for Beyond the Standard Model physics.
Rare four-leptonic decays of Bmesons in the SMmay be

divided into two groups. The decays of the first group are
forbidden at the tree level and occur through the higher
order loop diagrams of perturbation theory—“penguin”
and/or “box.” In this way, the SM includes flavor changing
neutral currents. An example of the first group of decays is
the process Bs → eþe−μþμ− and any other four-leptonic
decays of neutral Bmesons. In the second group, in order to
obtain the given multilepton final state, a number of tree
level weak and electromagnetic processes are involved.
Examples are the decay B− → eþe−ν̄μμ− and analogous
processes involving charged B mesons. Both groups are
studied at the LHC and potentially could be investigated
at the Belle II experiment. Currently, only upper limits
for branching ratios of the decays Bd;s → μþμ−μþμ− and
B− → μþν̄μμ−μ− are available [6–8].

The experimental upper limits [6,7] for the decays
Bd;s → μþμ−μþμ− are an order of magnitude higher than
the corresponding theoretical predictions [9] and estimates
[10]. The situation with the decay B− → μþν̄μμ−μ− is
different. The experimental upper limit [8],

BrðB− → μþν̄μμ−μ−Þ < 0.16 × 10−7; ð1Þ

obtained with 95% confidence level (CL) is almost an
order of magnitude lower than the theoretical predictions
[10,11]. We present here to more detailed calculation of the
branching ratios of B− → μþμ−ν̄ee−, B− → eþe−ν̄μμ−,
B− → μþμ−ν̄μμ−, and B− → eþe−ν̄ee−, taking into account
isotopic effects. Also, in the phase space of the decays, a
correction to nonzero lepton mass is considered. While this
leads to better agreement between theory and experiment,
some discrepancy remains. Special attention is given to the
predictions of the behavior of differential distributions, e.g.,
forward-backward lepton asymmetries.
This article is organized as follows. In Sec. I, we give a

task description. In Sec. II, we write the effective
Hamiltonian and give definite the hadronic form factors.
In Sec. III, the common dependence of the decay ampli-
tudes B− → lþl−ν̄l0l0− on dilepton four-momenta is
studied. Section IV contains the exact formulae for ampli-
tudes of the decayB− → lþl−ν̄l0l0− for l ≠ l0, and Sec. V
provides analogous formulas for l≡ l0. In Sec. VI, we
present numerical results for the decays of charged B
mesons into three charged leptons and a neutrino and
discuss the precision of the predictions. Section VII con-
tains the main outcome of the work. Appendix A contains
some formulas necessary for analytical calculations of
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differential distributions. Some details of the four-leptonic
decay kinematics are given in Appendix B.

II. EFFECTIVE HAMILTONIAN AND
HADRONIC MATRIX ELEMENTS

In terms of fundamental quark and lepton fields, the
Hamiltonian for calculation of the amplitudes of four-
lepton decays B− → lþl−ν̄l0l0− has the form

HeffðxÞ ¼ HWðxÞ þHemðxÞ: ð2Þ

The Hamiltonian of the transitions b → uW− → ul−ν̄l is
written as

HWðxÞ ¼ −GFffiffiffi
2

p VubðūðxÞγμð1 − γ5ÞbðxÞÞ

× ðl̄ðxÞγμð1 − γ5ÞνlðxÞÞ þ H:c:;

where uðxÞ and bðxÞ are quark fields, lðxÞ and
νlðxÞ are lepton fields, GF is the Fermi constant,
Vub is the corresponding matrix element of the Cabibbo-
Kobayashi-Maskawa (CKM) matrix, and the matrix γ5 is
defined as γ5 ¼ iγ0γ1γ2γ3.
The Hamiltonian of the electromagnetic interaction has

the form

HemðxÞ ¼ −e
X
f

Qfðf̄ðxÞγμfðxÞÞAμðxÞ ¼ −jμemðxÞAμðxÞ;

where the unitary charge e ¼ jej is normalized by
e2 ¼ 4παem; αem ≈ 1=137, the fine structure constant, Qf

is the charge of the fermion of flavor f in units of the
unitary charge, fðxÞ is the fermionic field of flavor f, and
AμðxÞ is the four-potential of the electromagnetic field.
We define the following nonzero hadronic matrix ele-

ments, which are needed for the subsequent calculations:

h0jūγμγ5bjB−ðM1; pÞi ¼ ifBu
pμ;

h0jq̄γμQjVðMV; k; ϵÞi ¼ ϵμMVfV;

hVðM2; q; ϵÞjūγμbjB−ðM1; pÞi ¼
2Vðk2Þ
M1 þM2

εμναβϵ
�νpαqβ;

hVðM2; q; ϵÞjūγμγ5bjB−ðM1; pÞi ¼ iϵ�ν
�
ðM1 þM2ÞA1ðk2Þgμν −

A2ðk2Þ
M1 þM2

ðpþ qÞμpν −
2M2

k2
ðA3ðk2Þ − A0ðk2ÞÞkμpν

�
;

hB�−ðMB� ; k; ϵÞjb̄γμbjB−ðM1; pÞi ¼
2Vbðq2Þ
M1 þMB�

εμναβϵ
�νpαkβ; ð3Þ

where M1 − B− is the meson mass, pμ is the its four-
momentum,MB� is the B�− meson mass,M2 is mass of the
light (ρ0ð770Þ or ωð782Þ) mesons, MV ¼ fM2;MB�g are
masses of the intermediate vector mesons, and ϵμ are their
polarizations. Four vectors pμ, qμ, and kμ satisfy the
conservation law pμ ¼ qμ þ kμ. The components of the
fully antisymmetric tensor εμναβ are fixed by the condition
ε0123 ¼ −ε0123 ¼ −1, and gμν is the metric tensor in
Minkowsky space with diaggμν ¼ ð1;−1;−1;−1Þ.

III. GENERIC STRUCTUREOF THEAMPLITUDES
FOR THE DECAYS B− → l+l− ν̄l0l0− WITH THE

ZERO LEPTON MASS APPROXIMATION

There are three main types of diagrams needed
for description of the decays B−ðpÞ → γ�ðqÞW−ðkÞ →
lþðk1Þl−ðk2Þν̄l0 ðk3Þl0−ðk4Þ, when the flavor of lepton l
is different from the flavor of lepton l0. The first type arises
in the situation when a virtual photon is emitted by light a u
quark (see Fig. 1). The second type corresponds to the
emission of a virtual photon from a b quark (see Fig. 2).
The third type is related to bremsstrahlung, when a virtual
photon is emitted by the lepton l0− in the final state

FIG. 1. Emission of a virtual photon by the light quark of the
B− meson.

FIG. 2. Emission of a virtual photon by the heavy quark of the
B− meson.
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(see Fig. 3 below). The four-momenta q and k are defined
in Appendix B.
The structure of the amplitude, corresponding to dia-

grams on Figs. 1–3, may be presented as

Mfiðq2; k2Þ ∼
1

q2
Tνμðq; kÞjνðk2; k1ÞJμðk4; k3Þ; ð4Þ

where

Tνμðq; kÞ ¼ i
Z

d4xeiðqxÞh0jjνemðxÞ; ūð0Þ

× γμð1 − γ5Þbð0ÞjB−ðM1; pÞi
¼ TðuÞ

νμ ðq; kÞ þ TðbÞ
νμ ðq; kÞ þ TðbremÞ

νμ ðq; kÞ:
The lepton currents are

jνðk2; k1Þ ¼ ðl̄ðk2Þγνlð−k1ÞÞ and

Jμðk4; k3Þ ¼ ðl0ðk4Þγμð1 − γ5Þνl0 ð−k3ÞÞ:

In the amplitude Mfiðq2; k2Þ, the pole 1=q2 of the photon
propagator is evident. For calculations with q2 → 0, it is
necessary to take into account nonzero lepton masses. This
is done using the exact formula (B4) for four-particle phase
space and by introducing an effective cut for some value
q2min. If l≡ μ for q2min, it makes sense to choose the natural
kinematical cut 4m2

μ. For the case when l≡ e, it is better to
use the kinematical limits of an experimental device, which
are definitely higher than 4m2

e.
Tensor Tνμðq; kÞ satisfies the condition qνTνμðq; kÞ ¼ 0.

According to this condition, and taking into account the
result of Ref. [12], tensor Tνμðq; kÞ has the form

Tνμðq;kÞ¼ενμqk
eaðq2;k2Þ

M1

−i

�
gνμ−

qνqμ
q2

�
eM1bðq2;k2Þ

−ie

�
kν−

ðqkÞ
q2

qν

��
kμ
2dðq2;k2Þ

M1

−qμ
2cðq2;k2Þ

M1

�

−iQBu
efBu

qνkμ
q2

; ð5Þ

where QBu
¼ Qb −Qu ¼ −1 is the electric charge

of the B− meson in units of jej. The functions
aðq2; k2Þ;…; dðq2; k2Þ are dimensionless form factors

which depend on two variables, the squares of the trans-
ferred four-momenta, q2 and k2. From (5), it follows
that dð0; 0Þ ¼ QBu

fBu
=M1.

Using the equations of motion, in the limit of massless
leptons, one can obtain the following generic structure for
the amplitude Mfi:

Mfiðq2; k2Þ ∼
e
q2

�
ενμqk

aðq2; k2Þ
M1

− igνμM1bðq2; k2Þ

þ ikνqμ
2icðq2; k2Þ

M1

�
jνðk2; k1ÞJμðk4; k3Þ:

The exact calculation of the form factors aðq2; k2Þ, …, and
cðq2; k2Þ is quite complicated. In the current work, we will
take into account only the leading singular factors to the
corresponding form factors.
Let us start with a study of tensor TðuÞ

νμ ðq; kÞ, which
describes the contribution of diagram from Fig. 1 to the
tensor Tνμðq; kÞ. The main contribution to the structure of

tensor TðuÞ
νμ ðq; kÞ is given by the lightest intermediate vector

resonances that contain a uū pair. For such states, tensor

TðuÞ
νμ ðq; kÞ has Breit-Wigner poles for variable q2. Taking

into account only the contributions from ρ0ð770Þ and
ωð782Þ mesons, we can write

TðuÞ
νμ ðq; kÞ →
→

X
i¼ρ0;ω

h0jūγνujVðM2i; q; εÞi
e

M2
2i − q2 − iM2iΓ2i

× hVðM2i; q; εÞjūγμð1 − γ5ÞbjB−ðM1; pÞi;
where M2i and Γ2i are the masses and widths, respectively,
of the intermediate vector resonances.
For the zero leptonic mass approximation, the

range of values of the variable k2 is 0 ≤ k2 ≤ M2
1. The

closest pole in k2 is related to the appearance of
the intermediate vector state B�−. As MB�− > M1, this pole
lies outside of the kinematically allowed range of the decay
B− → lþl−ν̄l0l0−. The existence of the pole at the mass of
the B�− meson is taken into account when choosing the
pole parametrization of the form factors of the transitions
B → ρ and B → ω [13]. For nonzero leptonic masses,
m2

l0 ≤ k2 ≤ ðM1 − 2mlÞ2. Hence, all the remarks above on

the poles of tensor TðuÞ
νμ for variable k2 are still valid.

As the contribution from ρ0 and ω resonances is
dominant, it is possible to use the following estimate for
the branching ratio of B− → μþμ−ν̄ee−:

BrðuÞðB−→ μþμ−ν̄ee−Þ
≈
��� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

BrðB−→ ρ0e−ν̄eÞBrðρ0→ μþμ−Þ
q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BrðB− →ωe−ν̄eÞBrðω→ μþμ−Þ

p ���2
≈0.3×10−7; ð6Þ

FIG. 3. Bremsstrahlung of the virtual photon.
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where the necessary experimental values for the branching
ratios are taken from [14]. The estimate (6) does not take
into account the fact that the ρ0ð770Þ meson is a wide
resonance, i.e., in the case of the ρ0ð770Þ meson, the naive
factorization approximation should lead to a lower branch-
ing ratios. Also, in estimate (6), the photon pole, which
should also lead to lower results, is not taken into account.
Does estimate (6) contradict the experimental upper limit
in (1)? We do not think so, because we attribute to the factor
of 2 accuracy. But the estimate of (6) does point to the
possibility that the minimum of the possible theoretical
predictions may be above the experimental limit [8].
Now consider tensor TðbÞ

νμ ðq; kÞ, which is related to
diagram from Fig. 2. In the limit of massless leptons, there
are no poles for the variable q2 in the kinematically allowed

range 0 ≤ q2 ≤ M2
1 for the tensor TðbÞ

νμ ðq; kÞ. The closest
pole outside the allowed range corresponds to the bb̄ quark
composition. This is the Υð1SÞ meson, whose mass is
almost two times higher than the mass of the B− meson.
The dominant contribution to emission of a virtual photon
by a heavy quark is described using the process
B− → B�−γ�. In this case,

TðbÞ
νμ ðq; kÞ → h0jūγμð1 − γ5ÞbjB�−ðMB� ; k; εÞi

×
e

M2
B� − k2

hB�−ðMB� ; k; εÞjb̄γνbjB−ðM1; pÞi:

Note that the imaginary addition −iMB�ΓB� does not exist
in the propagator, as k2 < M2

B� , i.e., the pole of the B�

meson is not reached. The contribution from the Υð1SÞ is
taken into account effectively when introducing pole para-
metrization for the form factor Vbðq2Þ. For the variable k2
in the kinematically allowed range, the tensor TðbÞ

νμ ðq; kÞ
does not have any other poles.
Numerically, the contribution of the process on Fig. 2 to

the branching ratio associated with the four-leptonic decay
is suppressed comparing to the contribution of the process
on Fig. 1 by factor ðΛ=mbÞ2, where mb ∼ 5 GeV, the mass
of b quark, and the parameter Λ ≈ 300–500 MeV. This
follows from the exact equations for the form factors of the
rare leptonic radiative decays of B mesons [15,16]. Due to
the interference between diagrams 1 and 2 near the
photonic pole, it is necessary, however, to take into account
the contribution of diagram 2 to the full branching ratio.
The bremsstrahlung contribution is described by the

diagram in Fig. 3. The bremsstrahlung amplitude has a
single pole by q2 from the photon propagator. Hence, the

tensor TðbremÞ
νμ ðq; kÞ does not have poles by q2 and k2. It is

important to take into account the bremsstrahlung contri-
bution near the pole by q2, where the zero-mass approxi-
mation may not be fully correct. This contribution should
be calculated for nonzero lepton masses.

IV. FORMULAS FOR THE DECAY
B− → l+l− ν̄l0l0−

Consider the decays B− → μþμ−ν̄ee− and B− →
eþe−ν̄μμ−, for the case when the lepton flavors in the final
state are different. Generally, these decays may be written
as B− → lþl−ν̄l0l0− for l ≠ l0.
The contribution to the full decay amplitude B−ðpÞ →

lþðk1Þl−ðk2Þν̄l0 ðk3Þl0−ðk4Þ from Fig. 1 may be calculated
using the vector meson dominance (VMD) model (see
Fig. 4). Assuming ml ¼ ml0 ¼ 0 and using the effective
Hamiltonian (2), one finds that for VMD the contribution
from process (1) is described by diagram 4, and the
corresponding amplitude may be written as

MðuÞ
fi ¼ A

q2

� X
i¼ρ0;ω

IiM2ifVi

q2 −M2
2i þ iΓ2iM2i

F ðiÞ
μν ðk2Þ

�

× jνðk2; k1ÞJμðk4; k3Þ; ð7Þ

where, using the motion equations,

F ðiÞ
μν ðk2Þ ¼ 2VðiÞðk2Þ

M1 þM2i
εμνkq − iðM1 þM2iÞAðiÞ

1 ðk2Þgμν

þ 2i
AðiÞ
2 ðk2Þ

M1 þM2i
qμkν:

For the calculation of the resonances sum in the (7), only
the contributions from the lightest ρ0 and ω mesons,
containing uū pairs, are taken into account. Because the
ρ0 and ω mesons are linear combinations of uū and dd
pairs, in order to extract the contributions only uū pair
alone, an isotopic coefficient Ii is introduced. By definition,

Iρ0 ¼ hρ0jūui ¼ 1=
ffiffiffi
2

p

and

FIG. 4. Diagram for calculation ofMðuÞ
fi [see Eq. (7)] using the

decay B− → μþμ−ν̄ee− as an example. The emission of the
virtual photon by a light quark is described by the vector meson
dominance model.
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Iω ¼ hωjūui ¼ 1=
ffiffiffi
2

p
:

The contribution from process (2) is given by the
diagram in Fig. 5, which is the cross-channel of the decay
B� → Bγ� of a heavy vector meson into a heavy pseudo-
scalar meson and a virtual photon, and is represented by

MðbÞ
fi ¼ 2

3

A
q2

MB�fB�

k2 −M2
B�

Vbðq2Þ
M1 þMB�

εμνkqjνðk2; k1ÞJμðk4; k3Þ:

ð8Þ

There is no imaginary correction in the propagator,
as k2 < M2

B� .
Finally, the contribution of the bremsstrahlung

process (3) of the virtual photon is described by the diagram
in Fig. 6. In the case when ml ≠ 0 and ml0 ≠ 0, for the
amplitude of the bremsstrahlung is

MðbremÞ
fi ¼ A

q2
ifBu

gμνjνðk2; k1ÞJ̃μðk4; k3Þ;

where

J̃μðk4; k3Þ ¼ Jμðk4; k3Þ þ
ml0

ðp − k3Þ2 −m2
l0

× ðl̄0ðk4Þγμðp̂þml0 Þð1 − γ5Þνl0 ð−k3ÞÞ:

As ð2ml þml0 Þ2 ≤ ðp − k3Þ2 ≤ M2
1, the second summand

does not contain any poles in the whole kinematically
allowed range. The second summand may be compatible
with the first one only in the range where ðp − k3Þ2 ∼
ð2ml þml0 Þ2. But this range is suppressed by the phase

space (B4) integration. For this the reason, we assume that
the bremsstrahlung amplitude may be written as

MðbremÞ
fi ¼ A

q2
ifBu

gμνjνðk2; k1ÞJμðk4; k3Þ: ð9Þ

In formulas (7)–(9), we denote A ¼ GFffiffi
2

p 4παemVub.

The full decay amplitude B−ðpÞ→lþðk1Þl−ðk2Þ×
ν̄l0 ðk3Þl0−ðk4Þ may be written as

Mð1234Þ
fi ¼ MðuÞ

fi þMðbÞ
fi þMðbremÞ

fi : ð10Þ

The differential branching ratio of the decay B− →
lþl−ν̄l0l0− is calculated as

dBrðB−→lþl−ν̄l0l0−Þ¼ τB−

P
s1;s2;s3;s4 jM

ð1234Þ
fi j2

2M1

dΦð1234Þ
4 ;

ð11Þ

where τB− is the lifetime of theB−meson, four-particle phase

space dΦð1234Þ
4 is defined by Eq. (B4), and the summation is

performed over the spins of the final fermions. In formula
(11), the integration over the angular variables y12, y34, andφ
may be performed analytically [see [10], Eq. (16)]. More
accurate and precise values of functions aðx12; x34Þ,
bðx12; x34Þ, and cðx12; x34Þ for calculation of the distribution
(16) from [10] are given in Appendix A.
Because in the decay of the B− meson, all the leptons in

the final state are different, it makes sense to define two

forward-backward leptonic asymmetries AðB−Þ
FB ðx12Þ and

AðB−Þ
FB ðx34Þ as

AðB−Þ
FB ðx12Þ ¼

R
1
0 d cos θ̃12

d2ΓðB−→lþl−ν̄l0l
0−Þ

dx12d cos θ̃12
−
R
0
−1 d cos θ̃12

d2ΓðB−→lþl− ν̄l0l
0−Þ

dx12d cos θ̃12
dΓðB−→lþl−ν̄l0l

0−Þ
dx12

ð12Þ

and

FIG. 5. Diagram for the calculation ofMðbÞ
fi [see Eq. (8)] using

the decay B− → μþμ−ν̄ee− as an example. FIG. 6. Diagram for the calculation of the amplitude
of the bremsstrahlung MðbremÞ

fi [see Eq. (9)] for the decay
B− → μþμ−ν̄ee−.
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AðB−Þ
FB ðx34Þ ¼

R
1
0 d cos θ̃34

d2ΓðB−→lþl−ν̄l0l
0−Þ

dx34d cos θ̃34
−
R
0
−1 d cos θ̃34

d2ΓðB−→lþl−ν̄l0l
0−Þ

dx34d cos θ̃34
dΓðB−→lþl− ν̄l0l

0−Þ
dx34

; ð13Þ

where θ̃12 is the angle between the propagation directions
of the l− and B− in the rest frame of the lþl− pair, and
θ̃34 is the angle between the propagation directions of
l0− and B− in the rest frame of the l0−ν̄l0 pair. It is obvious
that θ̃12 ¼ π − θ12 and θ̃34 ¼ π − θ34. Equations (12) and
(13) are chosen such that they correspond to the notions of
Ref. [12].

V. BRANCHING RATIO FORMULAS FOR
THE DECAY B− → l+ ν̄ll−l−

In practice, the muonic tracks are registered with a much
higher efficiency at almost all contemporary experiments.
That is why from the experimental point of view the decay
B− → μþν̄μμ−μ− is of the most interest. In this decay, the
final state contains two identical muons of negative charge.
Hence, the Fermi antisymmetry should be taken into
account.

Consider the full amplitude of the decay B−ðpÞ →
lþðk1Þν̄lðk3Þl−ðk2Þl−ðk4Þ. In the approximation of zero
leptonic masses, the calculation below is applicable to the
decay B− → μþν̄μμ−μ− as well as to the decay B− →
eþν̄ee−e−. The full amplitude of the decay may be
written as

MðtotÞ
fi ¼ Mð1234Þ

fi −Mð1432Þ
fi ; ð14Þ

where the amplitude Mð1234Þ
fi is set by Eq. (10), and the

amplitude Mð1432Þ
fi can be obtained from Mð1234Þ

fi by
exchanging k2 ↔ k4. This leads to the necessity of replac-
ing qμ → q̃μ, kμ → k̃μ, x12 → x14, and x34 → x23 (see

Appendix B) in the calculation of Mð1432Þ
fi .

The differential branching ratio of the decay is given by

dBrðB− → lþν̄ll−l−Þ ¼ 1

2

"
τB−

P
s1;s2;s3;s4 jM

ð1234Þ
fi j2

2M1

dΦð1234Þ
4 þ τB−

P
s1;s2;s3;s4 jM

ð1432Þ
fi j2

2M1

dΦð1432Þ
4

− τB−

P
s1;s2;s3;s4ðM

ð1234Þ†
fi Mð1432Þ

fi þMð1432Þ†
fi Mð1234Þ

fi Þ
2M1

dΦð1234Þ
4

#
; ð15Þ

where dΦð1234Þ
4 and dΦð1432Þ

4 are set by Eqs. (B4) and (B5). The common factor of 1=2 is due to by Fermi antisymmetry.
The first and the second summands in (15) are equal. Hence, for the branching ratio, it is possible to write

BrðB− → lþν̄ll−l−Þ ¼ BrðB− → lþl−ν̄l0l0−Þ − BrinterfðB− → lþν̄ll−l−Þ; ð16Þ
where

BrinterfðB− → lþν̄ll−l−Þ ¼ τB−

4M1

Z X
s1;s2;s3;s4

ðMð1234Þ†
fi Mð1432Þ

fi þMð1432Þ†
fi Mð1234Þ

fi ÞdΦð1234Þ
4 : ð17Þ

From (17), it follows that in the calculation of the
interference contribution it is necessary to perform five-
dimension of numerical integration.
In case of two identical leptons of the same sign in the

final state, the experimental measurement of forward-
backward leptonic asymmetries becomes problematic.
Hence, in the present work, we do not present any
predictions for the corresponding symmetries.

VI. NUMERICAL RESULTS

To calculate the branching ratio, differential distribu-
tions, and asymmetries, we use numerical values of the

masses, lifetimes, and decay widths of the pseudoscalar and
vector mesons, and matrix elements of the CKM matrix
from Ref. [14]. The constants fρð770Þ ¼ 154 MeV and
fωð782Þ ¼ 46 MeV were calculated in [16].
Parametrizations of the hadronic form factors (3), except

the electromagnetic form factor Vbðq2Þ, were obtained in
[13] in the framework of the dispersion relation of the
constituent quark model. Using the generic formulas from
[17,18] in [10], a parametrization for the electromagnetic
form factor Vbðq2Þ was obtained. The same method
allows us to obtain the values of the leptonic constants
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fBu
¼ 191 MeV and fB� ¼ 183 MeV. These values of the

decay constants and form factors will be used for the
calculations below.
We now calculate the branching ratio of the decay

B− → μþμ−ν̄ee−. The natural kinematical cut of the pole
by x12 is x12 min ¼ ð2mμ=M1Þ2 ≈ 0.0016. In this case, the
numerical integration of Eq. (16) from [10] with more
precise coefficients from Appendix A of the present work
by x12 and x34 gives

BrðB− → μþμ−ν̄ee−Þ

≈ 0.6
τB−

1.638 × 10−12 s
jVubj2

1.55 × 10−5
× 10−7: ð18Þ

The value of the branching of the B− → μþμ−ν̄ee− decay
given in (18) is approximately two times less than the
corresponding value of 1.3 × 10−7 from Refs. [10,11].
This difference is mostly due to the isotopic coefficients
Iρ0 and Iω in (7), while decreases the contribution from the
intermediate vector ρ0ð770Þ and ωð782Þ resonances to the
total branching ratio by a factor 2. This contribution is
dominant, so BrðB− → μþμ−ν̄ee−Þ increases by almost the
same factor. Also, the mean value of Vub is changed from
4.09 × 10−3 [19] to 3.94 × 10−3 [14]. A decrease of the
branching by 10% is due to the use of the exact formula
(B4) for the phase space.
The result in Eq. (18) is compatible with the naive

estimate of (6) up to an expected factor of 2. The difference
between the estimate of (6) and the exact calculation (18) is
mostly due to the fact that the estimate does not take
into account the pole contribution when x12→x12min. The
importance of the pole contribution becomes obvious when
analyzing the double differential distribution d2BrðB− →
μþμ−ν̄ee−Þ=dx12dx34, which is presented in Fig. 7. The
figure features the pole when x12 → x12 min ¼ 4m2

μ=M2
1 and

the ridge of the narrow ωð782Þ resonance, the contribution
of which defines the maximum of the matrix element. The
wide ρ0ð770Þmeson also gives a significant contribution to
the branching ratio, but in the distribution of Fig. 7 is not as
prominent as the narrow ωð782Þ resonance.
The uncertainty on the numerical value (18) depends on

the uncertainty on the calculation of the hadronic form
factors of the transitions B → ρð770Þ and B → ωð782Þ, but
does not exceed 20% [13].
Note that the numerical value of the amplitude of the

decay B− → μþμ−ν̄ee− significantly depends on the model
that describes the contributions of the ρ0ð770Þ and ωð782Þ
mesons. This dependence is due to the choice of the relative
nonperturbative phase Φ between the contribution of
the ωð782Þ and ρ0ð770Þ resonances in the amplitude (7).
In the framework of the model of VMD, which is used in the
present work, phase Φ is equal to zero. For the phenom-
enological description of the models with other values of the
phase Φ, let us parametrize the amplitude (7) as follows:

MðuÞ
fi ¼ eiΦMðρÞ

fi þMðωÞ
fi : ð19Þ

As the relative phase Φ is unknown, let us vary the phase
in the interval from 0 to 2π. The results are presented in
Table I. Onemay observe that forΦ ¼ π the branching of the
decay B− → μþμ−ν̄ee− may decrease by factor of 3 com-
paring to the result of (18), obtained for Φ ¼ 0. This
dependence points to the importance of a future model-
independent study of nonperturbative and nonfactorized
contributions of the strong interaction to the amplitudes of
the decaysB− → lþl−ν̄l0l0−. Similar issue of generation of
additional relative phases between the contributions of
different charmonia by nonfactorizable gluons was dis-
cussed in [20].
Below for the calculations of the differential distributions

wewill work in the framework of VMD, i.e., will imply that

FIG. 7. Double differential distribution 104 × d2BrðB−→μþμ− ν̄ee−Þ
dx12dx34

, calculated according to formula (16) from [10] with coefficients that
are given in Appendix A. In (b), the range x12 ∈ ½0.00; 0.04� is highlighted, which corresponds to the area of applicability of the model
considered in the present work.

DECAYS OF CHARGED B MESONS INTO THREE CHARGED … PHYS. REV. D 101, 096007 (2020)

096007-7



the relative phase Φ ¼ 0. Values of Φ ≠ 0 will be used
only for calculation of the branching of the decay
B− → μþμ−ν̄μμ−.
In the model used for the result of (18), the nonresonant

contribution, which is not related to the tails from the
ρ0ð770Þ and ωð782Þ resonances, is not taken into account.
This contribution may be estimated by using the results
from Ref. [21]; in this work, the branching ratio of the
decay B → γlν was predicted, omitting the contributions
from ρ0 and ω resonances. An estimation of the nonreso-
nant contribution gives

BrðB− → μþμ−ν̄ee−ÞNRC
∼ αem × BrðB → γlνÞBeneke ∼ 0.1 × 10−7;

which is about 15% of the value of the branching ratio of
(18) and is comparable to the uncertainty of the form
factors calculation. Note that numerically the contributions
to (18) from the processes in Figs. 5 and 6, which were
taken into account, are also comparable to the nonresonant
contribution, which was not taken into account. The
analogous conclusions on the value of nonresonant con-
tribution may be reached if one uses the numerical values
BrðB → γlνÞ from [22–25].
It seems that the approximation of using only the

contributions from the lightest ρð770Þ and ωð782Þ reso-
nances, which are used in this work, is not applicable if the
branching ratio of the decay B− → μþμ−ν̄ee− will be
measured in the range of

ffiffiffiffiffi
q2

p
> 1 GeV. In this range,

it is necessary to take into account the contributions from
the ωð1420Þ, ρð1450Þ, ωð1650Þ, and ρð1700Þ resonances.
These contributions should not affect the branching ratio of
the decay B−→μþμ−ν̄ee− for

ffiffiffiffiffi
q2

p
≤ 1GeV but will define

the behavior in the range
ffiffiffiffiffi
q2

p
> 1 GeV. However, in the

experimental procedure [8], the variable
ffiffiffiffiffi
q2

p
is chosen to be

less than 980 MeV, in order to remove a potential back-
ground from the decayϕ → lþl−. So, the experimental data
are available only in the range of applicability of the current
work. This fact allows as to exclude from consideration
resonances heavier than the ρ0ð770Þ and ωð782Þ.
We calculate the branching ratio of the decay B− →

eþe−ν̄μμ− forΦ ¼ 0. Formal integration in the range around
the photon pole by x12 leads to the rough dependence of the
branching on x12min,

Br ∼
Z

dx12
x212

∼
1

x12 min
:

If we choose x12 min ¼ ð2me=M1Þ2, then by the order of
magnitude

BrðB− → eþe−ν̄μμ−Þ ∼
�
mμ

me

�
2

BrðB− → μþμ−ν̄ee−Þ

∼ 104BrðB− → μþμ−ν̄ee−Þ:

Because the efficiency of detection of the muonic pairs forffiffiffiffiffi
q2

p
below 80–100MeVis low, this range is not suitable for

experimental observation. On the other hand, if we choose
x12min ¼ ðΛ=M1Þ2 ¼ 0.0002 for Λ ¼ 80 MeV, then

BrðB− → eþe−ν̄μμ−Þ
���
x12 min¼0.0002

≈ 3.0
τB−

1.638 × 10−12 s
jVubj2

1.55 × 10−5
× 10−7: ð20Þ

The BrðB− → eþe−ν̄μμ−Þ will decrease with increasing
x12 min.
The decays B− → μþμ−ν̄ee− and B− → eþe−ν̄μμ− may

be suitable for tests of the hypothesis of leptonic universality,
if one measures the branching ratio for the fixed value of
x12 > ð2mμ=M1Þ2 ¼ 0.0016. If the hints for [26–30] vio-
lation of the leptonic universality are true, then the ratio
between BrðB−→μþμ−ν̄ee−Þ and BrðB−→eþe−ν̄μμ−Þmay
significantly differ from unity [10].
We consider predictions for the branching ratio of the

decay B− → μþν̄μμ−μ− at Φ ¼ 0, which is more suitable
for experimental observation [8], as the efficiency of muon
detection is higher than the efficiency of electron detection.
Numerical integration of the interference contribution (17)
for x12 min ¼ ð2mμ=M1Þ2 ¼ 0.0016 gives

BrinterfðB− → μþν̄μμ−μ−Þ

≈ −0.09
τB−

1.638 × 10−12 s
jVubj2

1.55 × 10−5
× 10−7; ð21Þ

which is comparable due to uncertainty of the strong
nonperturbative effects, the contributions from Eqs. (5)
and (6) and the result with the nonresonant contribution

TABLE I. Dependence of the branching of the decay
B− → μþμ−ν̄ee− on the relative nonperturbative phase Φ in
the amplitude (19). The first row of the table corresponds to
the result of (18).

Phase Φ Branching ratio BrðB− → μþμ−ν̄ee−Þ
0 0:6 τB−

1.638×10−12 s
jVubj2

1.55×10−5
× 10−7

π=4 0:5 τB−
1.638×10−12 s

jVubj2
1.55×10−5

× 10−7

π=2 0:3 τB−
1.638×10−12 s

jVubj2
1.55×10−5

× 10−7

3π=4 0:2 τB−
1.638×10−12 s

jVubj2
1.55×10−5

× 10−7

π 0:2 τB−
1.638×10−12 s

jVubj2
1.55×10−5

× 10−7

5π=4 0:3 τB−
1.638×10−12 s

jVubj2
1.55×10−5

× 10−7

3π=2 0:5 τB−
1.638×10−12 s

jVubj2
1.55×10−5

× 10−7

7π=4 0:6 τB−
1.638×10−12 s

jVubj2
1.55×10−5

× 10−7
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omitted. So, we may state that in the limit of massless
leptons, with a 30% precision from Eqs. (16) and (18), it
follows that

BrðB− → μþν̄μμ−μ−Þ

≈ 0.7
τB−

1.638 × 10−12 s
jVubj2

1.55 × 10−5
× 10−7: ð22Þ

This is obtained for x12min ¼ ð2mμ=M1Þ2 ¼ 0.0016. This
prediction is almost four times higher than the experimental
upper limit (1), obtained in Ref. [8]. What may explain the
discrepancy between the experimental result and the
theoretical prediction? First, there is quite high uncertainty
of the theoretical prediction (22). Second, the value of
BrðB− → μþν̄μμ−μ−Þ depends on the relative phase Φ
between the contributions of the ωð782Þ and ρ0ð770Þ
resonances. In the framework of VMD,Φ ¼ 0. The depend-
ence of the interference contribution and of the branching of
the decay B− → μþν̄μμ−μ− on nonperturbative phase Φ is
presented in Table II. One may see that the branching of

the decay B− → μþν̄μμ−μ− strongly depends on the value
of nonperturbative phase Φ. For Φ ¼ π, it is numerically
close to the upper experimental limit (1), but still slightly
exceeds it. However, there are no solid theoretical arguments
to favor the value Φ ¼ π over Φ ¼ 0. All the other
contributions, which were omitted in the current work,
could not significantly influence the numerical result of
Eq. (22). It seems unlikely that the discrepancy between the
prediction and measured result may be attributed to Beyond
the Standard Model physics.
Note that the decays B− → eþν̄ee−e− and B− →

μþν̄μμ−μ− allow us to introduce yet another test for lepton
universality at x12 > 0.0016 and x34 > 0.0016 [10].
We consider single differential distributions for the

decays B− → μþμ−ν̄ee− and B− → μþν̄μμ−μ− at Φ ¼ 0.
One-dimensional projections of the double differential
distribution d2Br

dx12dx34
by x12 and x34 are given in Figs. 8

and 9, respectively. The distributions by x12 are given in the
range ½0; 0.04�, which corresponds to the area of appli-
cability of the model. Figure 8 features a photon pole for
x12 → x12 min ¼ ð2mμ=M1Þ2 ¼ 0.0016 and a peak from the

FIG. 8. Normalized differential distributions 1
Γ

dΓ
dx12

for the decays (a) B− → μþμ−ν̄ee− and (b) B− → μþν̄μμ−μ−, obtained by
integration by dx34dy12dy34dφ of Eqs. (11) and (15), respectively.

TABLE II. Dependence of the interference contribution and of the branching of the decay B− → μþν̄μμ−μ− on the relative
nonperturbative phaseΦ in the amplitude (19). The first row of the table corresponds to the results of (21) and (22). The third column of
the table is obtained by adding up the results of the second column of the table and the last column of Table I according to (16).

Phase Φ Interference contribution Branching ratio BrðB− → μþν̄μμ−μ−Þ
0 −0.09 τB−

1.638×10−12 s
jVubj2

1.55×10−5
× 10−7 0:7 τB−

1.638×10−12 s
jVubj2

1.55×10−5
× 10−7

π=4 −0.10 τB−
1.638×10−12 s

jVubj2
1.55×10−5

× 10−7 0:6 τB−
1.638×10−12 s

jVubj2
1.55×10−5

× 10−7

π=2 −0.09 τB−
1.638×10−12 s

jVubj2
1.55×10−5

× 10−7 0:4 τB−
1.638×10−12 s

jVubj2
1.55×10−5

× 10−7

3π=4 −0.02 τB−
1.638×10−12 s

jVubj2
1.55×10−5

× 10−7 0:2 τB−
1.638×10−12 s

jVubj2
1.55×10−5

× 10−7

π −0.01 τB−
1.638×10−12 s

jVubj2
1.55×10−5

× 10−7 0:2 τB−
1.638×10−12 s

jVubj2
1.55×10−5

× 10−7

5π=4 −0.08 τB−
1.638×10−12 s

jVubj2
1.55×10−5

× 10−7 0:4 τB−
1.638×10−12 s

jVubj2
1.55×10−5

× 10−7

3π=2 −0.12 τB−
1.638×10−12 s

jVubj2
1.55×10−5

× 10−7 0:6 τB−
1.638×10−12 s

jVubj2
1.55×10−5

× 10−7

7π=4 −0.13 τB−
1.638×10−12 s

jVubj2
1.55×10−5

× 10−7 0:7 τB−
1.638×10−12 s

jVubj2
1.55×10−5

× 10−7
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ωð782Þ resonance for x12 → ðMω=M1Þ2 ≈ 0.023. Due to
the fact that the ρ0ð770Þ meson has a width of about
150 MeV, the contribution from this meson in Fig. 8
appears as a wide background to the narrow peak of the
ωð782Þ resonance. The distributions by x34 in Fig. 9 does
not have poles, in agreement with the analysis from Sec. III,
and demonstrates the importance of taking into account the
Fermi antisymmetry in the decay B− → μþν̄μμ−μ−, because
due to the additional contribution from Fermi antisymmetry

the shapes of the distributions by x34 in the decays B− →
μþμ−ν̄ee− and B− → μþν̄μμ−μ− are significantly different.
An analogous difference may be seen in the distributions by
y12 ¼ cos θ12, y34 ¼ cos θ34, and φ, which are presented in
Figs. 10–12, respectively. The definition of angular vari-
ables y12, y34, and cosφ is given in Appendix B.
Detectability of the multilepton decays of the B mesons

with a neutrino in the final state may be linked to the
distributions by normalized invariant mass of the

FIG. 9. Normalized differential distributions 1
Γ

dΓ
dx34

for the decays (a) B− → μþμ−ν̄ee− and (b) B− → μþν̄μμ−μ−, obtained by
integration by dx12dy12dy34dφ of formulas (11) and (15), respectively.

FIG. 10. Normalized differential distributions 1
Γ

dΓ
dy12

for the decays (a) B− → μþμ−ν̄ee− and (b) B− → μþν̄μμ−μ−, obtained by
integrating by dx12dx34dy34dφ of formulas (11) and (15) accordingly.

FIG. 11. Normalized differential distributions 1
Γ

dΓ
dy34

for the decays (a) B− → μþμ−ν̄ee− and (b) B− → μþν̄μμ−μ−, obtained by
integration by dx12dx34dy12dφ of Eqs. (11) and (15), respectively.
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charged leptons. The square of the corresponding mass is
defined as

x124 ¼
ðk1 þ k2 þ k4Þ2

M2
1

; ð23Þ

where ki are four-momenta of charged leptons in the final
state. The distributions by x124 are presented in Fig. 13. One

can see from the figure that the shape of the distribution by
x12 is not very sensitive to the procedure of Fermi
antisymmetrization.
It is well known that forward-backward lepton asymme-

tries are very sensitive to BSM physics. For the decay
B− → μþμ−ν̄ee−, it is possible to define forward-backward
lepton asymmetries AðB−Þ

FB ðx12Þ and AðB−Þ
FB ðx34Þ according to

FIG. 12. Normalized differential distributions 1
Γ

dΓ
d cosφ for the decays (a) B− → μþμ−ν̄ee− and (b) B− → μþν̄μμ−μ−, obtained by

integration by dx12dx34dy12dy34 of Eqs. (11) and (15), respectively. Variable cosφ is defined by (B3).

FIG. 13. Normalized differential distributions 1
Γ

dΓ
dx124

by invariant mass of all of the charged leptons in the final state for the decays
(a) B− → μþμ−ν̄ee− and (b) B− → μþν̄μμ−μ−.

FIG. 14. Forward-backward lepton asymmetries (a) AðB−Þ
FB ðx12Þ and (b) AðB−Þ

FB ðx34Þ for the decay B− → μþμ−ν̄ee−, calculated using
Eqs. (12) and (13), respectively.
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Eqs. (12) and (13). These asymmetries are shown in

Fig. 14. The asymmetry AðB−Þ
FB ðx12Þ is shown only for the

interval x12 ∈ ½0; 0.04�, which corresponds to the area of
applicability of the current model. In this interval, exclud-
ing the area of the ωð782Þ resonance, the contributions to

AðB−Þ
FB ðx12Þ come from electromagnetic and strong proc-

esses; thus, this asymmetry is close to zero in almost all of
the considered range. The shape of the asymmetry

AðB−Þ
FB ðx34Þ is very similar to the shape of the asymmetries

in three-body semileptonic decays of B mesons.
One cannot to study forward-backward lepton asym-

metries in the decay B− → μþν̄μμ−μ−, as in this case
there are two identical negative muons in the final state.
Experimentally, it is not possible to distinguish which of
the negatively charged muons should be attributed to the
μþμ− pair and which to the ν̄μμ

− pair.
All the above that is related to the differential distribu-

tions for the decays B− → μþμ−ν̄ee− and B− → μþν̄μμ−μ−
is also related to the differential distributions for the decays
B− → eþe−ν̄μμ− and B− → eþν̄ee−e−. In this model, the
lepton universality holds, so the differential distributions of
the two latter decays are not needed.

VII. CONCLUSION

In the present work,
(i) Theoretical predictions for the branching ratios of

the decays B−→ μþμ−ν̄ee− and B− → μþν̄μμ−μ− for
the value of nonperturbative hadronic phase Φ ¼ 0
are obtained in the framework of Standard Model,

BrðB− → μþμ−ν̄ee−Þ ≈ 0.6 × 10−7

and

BrðB− → μþν̄μμ−μ−Þ ≈ 0.7 × 10−7;

and uncertainties for every prediction are discussed.
(ii) The difference between the obtained predictions and

the predictions from Ref. [10] is discussed, as well
as the compatibility with the recent experimental
result [8] by the LHCb Collaboration.

(iii) The dependence of branchings of the decays B− →
μþμ−ν̄ee− and B− → μþν̄μμ−μ− on the nonpertur-
bative phase Φ is discussed.

(iv) The possibility to test the hypothesis of lepton
universality in rare four-leptonic decays of Bmesons
with three charged leptons in the final state is
analyzed.

(v) Double and single differential distributions for
the decays B−→ μþμ−ν̄ee− and B−→ μþν̄μμ−μ− are
considered, and some recommendations for searches
for Beyond the Standard Model physics in these
decays are given.
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APPENDIX A: MORE PRECISE VALUES OF
FUNCTIONS aðx12;x34Þ, bðx12;x34Þ, AND cðx12;x34Þ
More precise dimensionless functions aðx12; x34Þ,

bðx12; x34Þ, and cðx12; x34Þ for calculation of the amplitude
(10) of the present work and double differential distribution
d2BrðB− → lþl−ν̄l0l0−Þ=dx12dx34 from [10] may be writ-
ten as follows:

aðx12;x34Þ¼
1

3

M̂B� f̂B�

x34−M̂2
B�

2VbðM2
1x12Þ

1þ M̂B�

þ
X
i¼ρ0;ω

IiM̂2if̂Vi

x12− M̂2
2iþ iΓ̂2iM̂2i

2VðiÞðM2
1x34Þ

1þ M̂2i
;

bðx12;x34Þ¼−f̂Bu
þ

X
i¼ρ0;ω

IiM̂2if̂Vi

x12− M̂2
2iþ iΓ̂2iM̂2i

× ð1þ M̂2iÞAðiÞ
1 ðM2

1x34Þ;

cðx12;x34Þ¼
X
i¼ρ0;ω

IiM̂2if̂Vi

x12− M̂2
2iþ iΓ̂2iM̂2i

AðiÞ
2 ðM2

1x34Þ
1þ M̂2i

; ðA1Þ

where the dimensionless variables x12 ¼ q2=M2
1 and x34 ¼

k2=M2
1 are defined in Appendix B, and the dimensionless

constants are defined as f̂Bu
¼ fBu

=M1, f̂B� ¼ fB�=M1,
f̂Vi

¼ fVi
=M1, M̂2i ¼M2i=M1, M̂B� ¼ MB�=M1, and Γ̂2i ¼

Γ2i=M1.

APPENDIX B: KINEMATICS OF
FOUR-LEPTON DECAYS

Denote the four-momenta of the final leptons in four-
leptonic decays of B mesons as ki, i ¼ f1; 2; 3; 4g. Let

q ¼ k1 þ k2; k ¼ k3 þ k4; q̃ ¼ k1 þ k4;

k̃ ¼ k2 þ k3; p ¼ k1 þ k2 þ k3 þ k4;

A. DANILINA, N. NIKITIN, and K. TOMS PHYS. REV. D 101, 096007 (2020)

096007-12



where p is the four-momentum of the B meson and
p2 ¼ M2

1. For the calculations below, it is suitable to use
the dimensionless variables,

x12¼
q2

M2
1

; x34¼
k2

M2
1

; x14¼
q̃2

M2
1

; x23¼
k̃2

M2
1

:

By common notation, xij¼ðkiþkjÞ2=M2
1. Hence, xij ¼ xji.

The leptons may be considered as massless in almost all of
the calculations of the present work, i.e., k2i ¼ 0. However,
during the calculation of the bremsstrahlung contribution in
the area q2 ∼ 4ml

2, where ml is the mass of any of the
charged leptons of the lþl− pair, it is necessary to take into
account the dependence of the bremsstrahlung matrix
element and phase space on the value of ml.
From the conservation law of four-momentum, in the

zero-mass limit the variables xij are linked by

x12 þ x13 þ x14 þ x23 þ x24 þ x34 ¼ 1: ðB1Þ

Let us find the intervals for xij using the inequality

ðp1p2Þ ≥
ffiffiffiffiffiffiffiffiffiffi
p2
1p

2
2

p
; then any xij ≥ 0. On the other hand,

1≥ð ffiffiffiffiffiffi
x12

p þ ffiffiffiffiffiffi
x34

p Þ2. As 0≤ x34, so x12 ≤ 1, and x12 ∈ ½0; 1�.
The upper limit of the variable x34 depends on the value of
x12: x34 ≤ ð1 − ffiffiffiffiffiffi

x12
p Þ2. Thus, for the fixed value of x12, the

variable x34 ∈ ½0; ð1 − ffiffiffiffiffiffi
x12

p Þ2�. For the pair x14 and x23, the
analogous condition holds x14 ∈ ½0; 1� and for the fixed
x14, x23 ∈ ½0; ð1 − ffiffiffiffiffiffi

x14
p Þ2�.

Consider the kinematics of the decay B−ðpÞ →
lþðk1Þl−ðk2Þν̄l0 ðk3Þl0−ðk4Þ, when the flavor of negatively
charged lepton l−ðk2Þ is different from the flavor of the
negatively charged lepton l0−ðk4Þ. Let the positively
charged lepton have the momentum k1, and let the
antineutrino have the momentum k3. We define an angle
θ12 between the momentum of the positively charged
lepton and the direction of the B meson (z axis) in the
rest frame of the lþl− pair, and another angle θ34 between

the direction of the antineutrino and the direction of the B
meson (z axis) in the rest frame of l0−ν̄l0 pair, as it is shown
in Fig. 15. Then,

y12 ≡ cos θ12 ¼
1

λ1=2ð1; x12; x34Þ
ðx23 þ x24 − x13 − x14Þ;

y34 ≡ cos θ34 ¼
1

λ1=2ð1; x12; x34Þ
ðx14 þ x24 − x13 − x23Þ;

ðB2Þ

where λða; b; cÞ ¼ a2 þ b2 þ c2 − 2ab − 2ac − 2bc, the
triangle function. Angles θ12 ∈ ½0; π� and θ34 ∈ ½0; π�.
Hence, y12 ∈ ½−1; 1� and y34 ∈ ½−1; 1�. Angles are mea-
sured relative to z axis. Also let us define an angle φ ∈
½0; 2πÞ in the rest frame of the B meson between the planes
which are set by the pairs of vectors ðk1;k2Þ and ðk3;k4Þ.
Introduce a vector a1 ¼ k1 × k2, perpendicular to the plane
ðk1;k2Þ, and vector a3 ¼ k4 × k3, perpendicular to the
plane ðk3;k4Þ. Then,

cosφ ¼ ða1; a3Þ
ja1jja3j

:

Using the technique from Ref. [31], for cosφ, we can write

− 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x12x34ð1 − y212Þð1 − y234Þ

q
cosφþ ð1 − x12 − x34Þy12

¼ x13 − x14 − x23 þ x24: ðB3Þ

Four-particle phase space has the form

dΦð1234Þ
4 ¼ M4

1

dx12
2π

dx34
2π

dΦðqkÞ
2 dΦð12Þ

2 dΦð34Þ
2 ;

where (assuming nonzero masses for leptons l� and l0−)
we can write

dΦð1234Þ
4 ¼ M4

1

214π6
λ1=2ð1; x12; x34Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m̂2
l

x12

s �
1 −

m̂2
l0

x34

�

× dx12dx34dy12dy34dφ; ðB4Þ

where m̂l ¼ ml=M1 and m̂l0 ¼ ml0=M1.
In the decay B−ðpÞ → lþðk1Þl−ðk2Þν̄lðk3Þl−ðk4Þ, there

are two identical leptons l−ðk2Þ and l−ðk4Þ in the final
state, so Fermi antisymmetrization of the decay amplitude
is necessary by four-momenta k2 and k4. We will need an
additional formula to calculate of the branching ratio in this
case for ml ≠ 0,

dΦð1432Þ
4 ¼ M4

1

214π6
λ1=2ð1; x14; x23Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m̂2
l

x12

s �
1 −

m̂2
l

x34

�

× dx14dx23dy14dy23dφ̃; ðB5Þ

FIG. 15. Kinematics of the decay B−ðpÞ→lþðk1Þ×
l−ðk2Þν̄l0 ðk3Þl0−ðk4Þ. Angle θ12 is defined in the rest frame
of lþðk1Þl−ðk2Þ pair; angle θ34 is defined in the rest frame of
ν̄l0 ðk3Þl0−ðk4Þ pair; angle φ is defined in the rest frame of B−

meson.
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where φ̃ is the angle of planes ðk1;k4Þ and ðk2;k3Þ,
measured relative to plane ðk1;k4Þ. Equation (B5) may
be obtained in a fully analogous way to (B4). The cos φ̃
may be found by exchanging indices in Eq. (B3) as
2 ↔ 4. Also, in order to perform numerical integration, it
is necessary to have all the definitions of xij using the set

of variables x12, x34, y12, y34, and φ. In the zero leptonic
mass limit, the formulas for x13, x14, x23, and x24 are
given in [10]. Finally, note that this paper uses notations
almost identical to the notations of Ref. [32], except for
in case of the yij, which here have the opposite sign
compared to Ref. [32].
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