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A formally exact discrete multiresolution representation of quantum field theory on a light front is
presented. The formulation uses an orthonormal basis of compactly supported wavelets to expand the fields
restricted to a light front. The representation has a number of useful properties. First, light-front preserving
Poincaré transformations can be computed by transforming the arguments of the basis functions. The
discrete field operators, which are defined by integrating the product of the field and a basis function over
the light front, represent localized degrees of freedom on the light-front hyperplane. These discrete fields
are irreducible and the vacuum is formally trivial. The light-front Hamiltonian and all of the Poincaré
generators are linear combinations of normal ordered products of the discrete field operators with
analytically computable constant coefficients. The representation is discrete and has natural resolution and
volume truncations like lattice formulations. Because it is formally exact, it is possible to systematically
compute corrections for eliminated degrees of freedom.
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I. INTRODUCTION

A discrete multiresolution representation of quantum
field theory on a light front is presented. Light-front
formulations of quantum field theory have advantages
for calculating electroweak current matrix elements in
strongly interacting states in different frames. Lattice
truncations have proved to be the most reliable method
for nonperturbative calculations of strongly interacting
states, but Lorentz transformation and scattering calcula-
tions are not naturally formulated in the lattice representa-
tion. The purpose of this work is to investigate a
representation of quantum field theory that has some of
the advantages of both approaches, although this initial
work is limited to canonical field theory rather than gauge
theories.
In 1939, Wigner [1] showed that the independence of

quantum observables in different inertial reference frames
related by Lorentz transformations and space-time trans-
lations requires the existence of a dynamical unitary
representation of Poincaré group on the Hilbert space of
the quantum theory. Because there are many independent
paths to the future, consistency of the initial value problem
requires that a minimum of three of the infinitesimal
generators of the Poincaré group are interaction dependent.
In 1949, Dirac [2] introduced three “forms of relativistic

dynamics” that are characterized by having the largest
interaction-independent subgroups.
Dirac’s “front-form dynamics” is the only form of

dynamics with the minimal number, 3, of dynamical
Poincaré generators. The interaction-independent subgroup
is the seven-parameter subgroup that leaves the hyperplane

xþ ¼ x0 þ n̂ · x ¼ 0 ð1Þ

invariant. The light-front representation of quantum
dynamics has several advantages. One is that the kinematic
(interaction-independent) subgroup has a three-parameter
subgroup of Lorentz boosts. The subgroup property means
that there are no Wigner rotations for light-front boosts. A
consequence is that the magnetic quantum numbers of the
light-front spin are invariant with respect to these boosts. A
second advantage is that the boosts are independent of
interactions. This means that boosts can be computed by
applying the inverse transform to noninteracting basis
states. These properties simplify theoretical treatments of
electroweak probes of strongly interacting systems, where
the initial and final hadronic states are in different Lorentz
frames.
In light-front quantum field theory [3–14], there are

additional advantages. These are consequences of the
spectrum of the generator

pþ ¼ p0 þ n̂ · p ≥ 0 ð2Þ

of translations in the

x− ¼ x0 − n̂ · x ð3Þ
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direction tangent to the light front. The first property is that
free fields restricted to the light front are irreducible. This
means that both the creation and annihilation operators for
a free field can be constructed from the field restricted to the
light front. It follows that any operator on the free-field
Fock space can be expressed as a function of free fields
restricted to the light front. The second advantage is that
interactions that commute with the interaction-independent
subgroup leave the Fock vacuum invariant. This means that
it is possible to express all of the Poincaré generators as
operators on the free-field Fock space. There are ultraviolet
and infrared (pþ ¼ 0) singularities in the light-front
Hamiltonian due to local operator products, which could
impact these properties; however, in an effective theory
with ultraviolet and infrared cutoffs, the interaction still
leaves the Fock vacuum invariant and the light-front
Hamiltonian can still be represented as a function of the
free fields on the light front.
Having an explicit vacuum along with an expression for

the light-front Hamiltonian,

P− ¼ P0 − P · n; ð4Þ

in terms of the algebra of fields on the light front means that
it is possible to perform nonperturbative calculations by
diagonalizing the light-front Hamiltonian in the light-front
Fock space.
In a given experiment, there is a relevant volume and a

finite amount of available energy. The available energy
limits the resolution of the accessible degrees of freedom.
The number of degrees of freedom with the limiting
resolution that fits in the experimental volume is finite.
It follows that it should be possible to accurately calculate
experimental observables using only these degrees of
freedom.
Wavelets can be used to represent fields on the light front

as linear combinations of discrete field operators with
different resolutions. This provides a natural representation
to make both volume and resolution truncations consistent
with a given reaction. In addition, the representation is
discrete, which is a natural representation for computations.
Finally, the basis functions are self-similar, so truncations
with different resolutions have a similar form.
There are many different types of wavelets that have

been discussed in the context of quantum field theory [15–
36]. The common feature is that the different functions have
a common structure related by translations and scale
transformations. This work uses Daubechies’ wavelets
[37–41]. These have the property that they are an ortho-
normal basis of functions with compact support. The price
paid for the compact support is that they have a limited
smoothness. It is also possible to use a wavelet basis of
Schwartz functions that are infinitely differentiable, but
these functions do not have compact support.

This work is an extension to the light front of the wavelet
representations of quantum field theory used in
Refs. [25,28,35]. The notation and development of the
wavelet bases is identical to the development in these
references. The difference is that the algebra generated by
the discrete fields and conjugate generalized momenta in
these papers is replaced by the irreducible algebra of fields
on a light front. The light-front representation is formally
exact and has all of the advantages of any other represen-
tation of light-front field theories.
There are several motivations for considering this

approach. These include the following:
(1) Volume and resolution truncations can be performed

naturally, the resulting truncated theory is similar to
a lattice truncation [42,43], in the sense that it is a
theory involving a finite number of discrete degrees
of freedom associated with a given volume and
resolution.

(2) While the degrees of freedom are discrete, the field
operators have a continuous space-time dependence.
Kinematic Lorentz transformations can be computed
by transforming the arguments of the basis func-
tions. While truncations necessarily break kinematic
Lorentz invariance, kinematic Lorentz transforma-
tions can still be approximated by transforming the
arguments of the basis functions.

(3) Even though some truncations may lead to states
with energy below the Fock vacuum energy, the
error in using the free Fock vacuum as the lowest
mass state of the truncated theory is due to correc-
tions that arise from the discarded degrees of
freedom.

(4) Since the representation is formally exact and xþ is a
continuous variable, there is a formulation of Haag-
Ruelle [44–46] scattering in this representation.
Approximation methods need to be developed in
the presence of truncations.

Some of the possible applications of the wavelet repre-
sentation are discussed in [25] in the context of canonical
field theory. There are a number of applications involving
free fields that are straightforward and should be instruc-
tive. The advantage of free fields is that they can be solved
and used as a testing ground in order to get an initial
understanding of the convergence of truncated theories.
One such application is understanding the restoration of
Poincaré invariance in truncated theories as the resolution is
improved. An advantage of the wavelet representation is
that this can be checked locally, i.e., in a small volume [25].
Understanding the restoration of Lorentz invariance is
important for approximating current matrix elements.
Another application involving free fields is to test the
convergence of free-field commutator functions or
Wightman functions based on truncated fields to the
exact expressions. These can be approximated by iterating
the Heisenberg field equations, which are simple in the
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free-field case. This could provide some insight into the
nature of convergence in interacting theories. In [35], flow
equation methods are used to block diagonalize the Hilbert
space of a truncated free-field theory by resolution, con-
structing an effective Hamiltonian that involves only
coarse-scale degrees of freedom, but includes the dynamics
of the eliminated degrees of freedom. This calculation
provided some insight into the complementary roles played
by volume and resolution truncations.
While the elementary calculations discussed above can

provide insight into the nature of approximations, the long-
term goal is to use the wavelet representation to perform
calculations of observables in 3þ 1-dimensional field
theories. Calculations in 3þ 1 dimensions are considerably
more complicated for interacting theories. One computa-
tional method is to use the fields to construct a basis by
applying discrete operators to the vacuum and then diag-
onalizing the light-front Hamiltonian in that basis. The
light-front representation has the advantage that it is not
necessary to first solve the vacuum problem. This method
should be useful for modeling composite states that are
spatially localized. This Hamiltonian approach is in the
same spirit as the basis light-front quantization approach
used in [47]. Variational methods could also be employed
for low-lying composite states. Another method that takes
advantage of the discrete nature of the wavelet representa-
tion is to use the light-front Heisenberg equations to
generate an expansion of the field as a linear combination
of products of fields restricted to the light front. Correlation
functions can be computed by evaluating products of these
fields in the light-front vacuum. In this case, while the
algebra is discrete, the number of terms grows with each
iteration. One of the advantages of the wavelet representa-
tion is that interactions involving different modes are
self-similar and differ only by multiplicative scaling coef-
ficients. A detailed study of the scaling properties could
help to formulate efficient approximations to the solution of
the light-front Heisenberg field equations by eliminating
irrelevant degrees of freedom. Another potential use of the
wavelet representation would be in quantum computing. In
the wavelet representation, the field is replaced by discrete
modes that only interact locally. This allows evolution over
short time steps to be represented by quantum circuits
involving products of local interactions.
This paper consists of 13 sections. The next section

introduces the notation that will be used in this work,
defines the light-front kinematic subgroup and the Poincaré
generators that generate both the kinematic and dynamical
Poincaré transformations. Section III discusses the irreduc-
ibility of free fields on the light front and properties of
kinematically invariant interactions. Section IV discusses
the structure of Poincaré generators on the light front using
Noether’s theorem. The wavelet basis is constructed from
the fixed point of a renormalization group equation in
Sec. V. Wavelet representations of fields restricted to the

light front are defined in Sec. VI. Section VII has a short
discussion on kinematic Poincaré transformations of
the fields in the light-front representation. In Sec. VIII,
the irreducibility of the light-front free-field algebra and the
triviality of the light-front vacuum are used to construct
vectors in the light-front Fock space. Dynamical equations
in the light-front wavelet representation are discussed in
Sec. IX. Dynamical computations require expressions for
the commutator of discrete fields on the light front, which
are computed in Sec. X. In Sec. XI, the coefficients of the
expansion of all ten Poincaré generators as polynomials of
discrete fields on the light front are computed. Section XII
discusses truncations and Sec. XIII gives a summary and
outlook.

II. NOTATION

The light front is a three-dimensional hyperplane that is
tangent to the light cone. It is defined by the constraint

xþ ≔ x0 þ n̂ · x ¼ 0: ð5Þ
It is natural to introduce light-front coordinates of the four-
vector xμ,

x� ≔ x0 � n̂ · x; x⊥ ¼ n̂ × ðx × n̂Þ: ð6Þ
The components

x̃ ≔ ðx−;x⊥Þ ð7Þ
are coordinates of points on the light-front hyperplane. This
will be referred to as a light-front three-vector. In what
follows, the light front defined by n̂ ¼ ẑ will be used.
The contravariant light-front components are

x� ¼ −x∓ xi⊥ ¼ xi⊥; ð8Þ
and the Lorentz-invariant scalar product of two light-front
vectors is

x · y ≔ −
1

2
xþy− −

1

2
x−yþ þ x⊥ · y⊥

¼ 1

2
ðxþyþ þ x−y−Þ þ x1y1 þ x2y2: ð9Þ

For computational purposes, it is useful to represent four
vectors by 2 × 2 Hermitian matrices. The coordinate matrix
is constructed by contracting the four-vector xμ with the
Pauli matrices and the identity

X ¼ xμσμ ¼
�
xþ x�⊥
x⊥ x−

�
xμ ¼ 1

2
TrðσμXÞ

x⊥ ¼ x1 þ ix2: ð10Þ
In this matrix representation, Poincaré transformations
continuously connected to the identity are represented by

X → X0 ¼ ΛXΛ† þ A Λ ∈ SLð2;CÞ A ¼ A†:

ð11Þ
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The subgroup of the Poincaré group that leaves xþ ¼ 0
invariant consists of pairs of matrices ðΛ; AÞ in (11) of the
form

Λ ¼
�
a 0

c 1=a

�
A ¼

�
0 b�⊥
b⊥ b−

�
; ð12Þ

where a, c and b⊥ are complex and b− is real. This is a
seven-parameter group. The SLð2;CÞ matrices with real a
represent light-front preserving boosts. They can be para-
metrized by the light-front components of the four velocity
v ¼ p=m,

Λfðp=mÞ ≔

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffi
pþ=m

p
0

p⊥=mffiffiffiffiffiffiffiffiffi
pþ=m

p 1=
ffiffiffiffiffiffiffiffiffiffiffiffi
pþ=m

p
1
CA

¼
 ffiffiffiffiffiffi

vþ
p

0

v⊥=
ffiffiffiffiffiffi
vþ

p
1=

ffiffiffiffiffiffi
vþ

p
!
: ð13Þ

These lower triangular matrices form a subgroup. The
inverse light-front boost is given by

Λ−1
f ðp=mÞ ≔

0
B@ 1=

ffiffiffiffiffiffiffiffiffiffiffiffi
pþ=m

p
0

− p⊥=mffiffiffiffiffiffiffiffiffi
pþ=m

p ffiffiffiffiffiffiffiffiffiffiffiffi
pþ=m

p
1
CA

¼
 

1=
ffiffiffiffiffiffi
vþ

p
0

−v⊥=
ffiffiffiffiffiffi
vþ

p ffiffiffiffiffiffi
vþ

p
!
; ð14Þ

while the adjoint and the inverse adjoint of these
matrices are

Λ†
fðp=mÞ ≔

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffi
pþ=m

p p�⊥=mffiffiffiffiffiffiffiffiffi
pþ=m

p

0 1=
ffiffiffiffiffiffiffiffiffiffiffiffi
pþ=m

p
1
CA

¼
 ffiffiffiffiffiffi

vþ
p

v�⊥=
ffiffiffiffiffiffi
vþ

p

0 1=
ffiffiffiffiffiffi
vþ

p
!
; ð15Þ

ððΛfÞ†Þ−1ðp=mÞ ≔

0
B@ 1=

ffiffiffiffiffiffiffiffiffiffiffiffi
pþ=m

p
− p�⊥=mffiffiffiffiffiffiffiffiffi

pþ=m
p

0
ffiffiffiffiffiffiffiffiffiffiffiffi
pþ=m

p
1
CA

¼
 
1=

ffiffiffiffiffiffi
vþ

p
−v�⊥=

ffiffiffiffiffiffi
vþ

p

0
ffiffiffiffiffiffi
vþ

p
!
: ð16Þ

General Poincaré transformations are generated by ten
independent one-parameter subgroups. Seven of the one-
parameter groups leave the light front invariant. The
remaining 3 one-parameter groups map points on the light
front to points off of the light front. These are called
kinematic and dynamical transformations, respectively. The
kinematic one-parameter groups in the 2 × 2 matrix rep-
resentation and the corresponding unitary representations
of these groups are related by

ΛðλÞ ¼
�
1 0

λ 1

�
UðΛðλÞÞ ¼ eiE

1λ ΛðλÞ ¼
�

1 0

iλ 1

�
UðΛðλÞÞ ¼ eiE

2λ; ð17Þ

ΛðλÞ ¼
�
eλ=2 0

0 e−λ=2

�
UðΛðλÞÞ ¼ eiK

3λ ΛðλÞ ¼
�
eiλ=2 0

0 e−iλ=2

�
UðΛðλÞÞ ¼ eiJ

3λ; ð18Þ

AðλÞ ¼
�
0 λ

λ 0

�
UðΛðλÞÞ ¼ eiP

1λ: AðλÞ ¼
�

0 −iλ
iλ 0

�
UðΛðλÞÞ ¼ eiP

2λ; ð19Þ

AðλÞ ¼
�
0 0

0 λ

�
UðΛðλÞÞ ¼ e−

i
2
Pþλ: ð20Þ

The corresponding dynamical transformations are

ΛðλÞ ¼
�
1 λ

0 1

�
UðΛðλÞÞ ¼ eiF

1λ ΛðλÞ ¼
�
1 −iλ
0 1

�
UðΛðλÞÞ ¼ eiF

2λ; ð21Þ

AðλÞ ¼
�
λ 0

0 0

�
UðΛðλÞÞ ¼ e−

i
2
P−λ: ð22Þ

Relations (17)–(20) define the infinitesimal generators

fPþ; P1; P2; E1; E2; K3; J3g ð23Þ
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of the kinematic transformations, while (21) and (22) define the infinitesimal generators

fP−; F1; F2g ð24Þ

of the dynamical transformations. With these definitions, the light-front Poincaré generators are related to components of
the angular-momentum tensor

Jμν ¼

0
BBB@

0 −K1 −K2 −K3

K1 0 J3 −J2

K2 −J3 0 J1

K3 J2 −J1 0

1
CCCA ð25Þ

by

E1 ¼ K1 − J2 E2 ¼ K2 þ J1 F1 ¼ K1 þ J2 F2 ¼ K2 − J1: ð26Þ

The inverse relations are

K1 ¼ 1

2
ðE1 þ F1Þ K2 ¼ 1

2
ðE2 þ F2Þ J1 ¼ 1

2
ðE2 − F2Þ J2 ¼ 1

2
ðF1 − E1Þ: ð27Þ

F1 and F2 could be replaced by J1 and J2 as dynamical
generators.
The evolution of a state or operator with initial data on

the light front is determined by the light-front Schrödinger
equation

i
djψðxþÞi

dxþ
¼ 1

2
P−jψðxþÞi ð28Þ

or the light-front Heisenberg equations of motion

dOðxþÞ
dxþ

¼ i
2
½P−; OðxþÞ�: ð29Þ

When P− is a self-adjoint operator, the dynamics is well-
defined and given by the unitary one-parameter group (22).
The Poincaré Lie algebra has two polynomial invariants.

The mass squared is

M2 ¼ PþP− − P2⊥; ð30Þ

which gives the light-front dispersion relation

P− ¼ M2 þ P2

Pþ : ð31Þ

The other invariant is the inner product of the Pauli-
Lubanski vector,

Wμ ¼ 1

2
ϵμναβPνJαβ; ð32Þ

with itself

W2 ¼ WμWμ ¼ M2s2: ð33Þ

The Pauli-Lubanski vector has components

W0 ¼ P · J W ¼ HJþ P ×K ð34Þ
or expressed in terms of the light-front Poincaré generators

Wþ ¼ PþJ · ẑþ ðP × EÞ · ẑ; ð35Þ

W⊥ ¼ 1

2
ðPþẑ × F − P−ẑ ×EÞ − ðẑ ·KÞẑ × P; ð36Þ

W− ¼ P−J · ẑ − ðP × FÞ · ẑ: ð37Þ

In order to compare the spins of particles in different
frames, it is useful to transform both particles to their rest
frame using an arbitrary but fixed set of Lorentz trans-
formations parametrized by the four velocity of the particle.
The light-front spin is the angular momentum measured in
the particle’s or system’s rest frame when the particle or
system are transformed to the rest frame with the inverse
light-front preserving boosts (14),

s · ẑ ¼ J · ẑ −
ðE × PÞ · ẑ

Pþ ¼ Wþ

Pþ ; ð38Þ

s⊥ ¼ ðW⊥ − P⊥Wþ=PþÞ=M: ð39Þ

The components of the light-front spin can also be
expressed directly in terms of Jμν,
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si ¼ 1

2
ϵijkðΛ−1

lf ÞjμðP=MÞðΛ−1
lf ÞkνðP=MÞJμν; ð40Þ

where in (40) the P=M in the Lorentz boosts are operators.

III. FIELDS

Light-front free fields can be constructed from canonical
free fields by changing variables p → p̃, where p̃ ≔
ðpþ; p1; p2Þ are the components of the light-front momen-
tum conjugate to x̃. The Fourier representation of a free
scalar field of mass m and its conjugate momentum
operator are

ϕðxÞ ¼ 1

ð2πÞ3=2
Z

dpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ωmðpÞ

p ðeip·xaðpÞ þ e−ip·xa†ðpÞÞ;

ð41Þ

πðxÞ ¼ −
i

ð2πÞ3=2
Z

dp

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ωmðpÞ

2

r
ðeip·xaðpÞ − e−ip·xa†ðpÞÞ;

ð42Þ

where ωmðpÞ ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

p
is the energy of a

particle of mass m, p is its three-momentum, and
x · p ≔ −ωmðpÞx0 þ p · x.
Changing variables from the three momentum, p, to the

light-front components, p̃ ¼ ðpþ; p1; p2Þ, of the four
momentum gives the light-front Fourier representation
of ϕðxÞ,

ϕðxÞ¼ 1

ð2πÞ3=2
Z

dpþθðpþÞffiffiffiffiffiffiffiffiffi
2pþp dp⊥ðeip·xãðp̃Þþe−ip·xã†ðp̃ÞÞ;

ð43Þ

where

���� ∂ðp1; p2; p2Þ
∂ðpþ; p1; p2Þ

���� ¼ ωmðpÞ
pþ

p · x ¼ −
1

2

�
p2⊥ þm2

pþ xþ þ pþx−
�
þ p⊥ · x⊥ ð44Þ

and

ãðp̃Þ ≔ ãðpþ;p⊥Þ ¼ aðpÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ωmðpÞ
pþ

s
: ð45Þ

It follows from

½aðpÞ; a†ðp0Þ� ¼ δðp − p0Þ ð46Þ

and (44) and (45) that

½aðp̃Þ; a†ðp̃0Þ� ¼ δðp̃ − p̃0Þ: ð47Þ

The spectral conditions

P� ¼ H � P3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ P2

p
� P3 ≥ 0; ð48Þ

P− ¼ M2 þ P2

Pþ ≥ 0 ð49Þ

imply that it is possible to independently construct both
aðp̃Þ and a†ðp̃Þ from the field ϕðxþ ¼ 0; x̃Þ restricted to the
light front. This can be done by computing the partial
Fourier transform of the field on the light front,

ϕðxþ ¼ 0; pþ;p⊥Þ ¼
1

ð2πÞ3=2
Z

eip
þx−=2−ip⊥·x⊥ϕðxþ ¼ 0; x−;x⊥Þ

dx⊥dx−
2

: ð50Þ

The creation and annihilation operators can be read off of
this expression,

ãðp̃Þ ¼
ffiffiffiffiffiffi
pþ

2

r
θðpþÞϕðxþ ¼ 0; pþ;p⊥Þ; ð51Þ

ã†ðp̃Þ ¼
ffiffiffiffiffiffi
pþ

2

r
θðpþÞϕðxþ ¼ 0;−pþ;p⊥Þ: ð52Þ

Both operators are constructed directly from the field
restricted to the light front without constructing a gener-
alized momentum operator. This means that ϕðxÞ restricted
to the light front defines an irreducible set of operators. It
follows that any operator O on the Fock space that

commutes with ϕðxþ ¼ 0; x̃Þ at all points on the light
front must be a constant multiple of the identity,

½ϕðxþ ¼ 0; x̃Þ; O� ¼ 0 → O ¼ cI: ð53Þ

An important observation is that the only place where the
mass of the field appears is in the expression for the
coefficient of xþ. When the field is restricted to the light
front, xþ → 0, all information about the mass (and dy-
namics) disappears.
This is in contrast to the canonical case because the

canonical transformation that relates free canonical fields
and their generalized momenta with different masses
cannot be realized by a unitary transformation [48].
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When these fields are restricted to the light front, they
become unitarily equivalent [10]. This is because dynami-
cal information that distinguishes the different representa-
tions is lost as a result of the restriction.

Since the fields restricted to the light front are irreduc-
ible, the canonical commutation relations are replaced by
the commutator of the fields at different points on the
light front,

½ϕðxþ ¼ 0; x̃Þ;ϕðyþ ¼ 0; ỹÞ� ¼ i
2π

Z
dpþθðpþÞ

pþ
e−

i
2
pþðx−−y−Þ − e

i
2
pþðx−−y−Þ

2i
δðx⊥ − y⊥Þ ¼ ð54Þ

−
i
2π

Z
dpþθðpþÞ

pþ sin

�
1

2
pþðx− − y−Þ

�
δðx⊥ − y⊥Þ ¼ −

i
4
ϵðx− − y−Þδðx⊥ − y⊥Þ: ð55Þ

Note that while the x− derivative gives

∂
∂x− ½ϕðx

þ ¼ 0; x̃Þ;ϕðyþ ¼ 0; ỹÞ� ¼ −
i
2
δðx− − y−Þδðx⊥ − y⊥Þ; ð56Þ

∂−ϕðxÞ is not the canonical momentum.
Interactions that preserve the light-front kinematic sym-

metry must commute with the kinematic subgroup. In
particular, they must be invariant with respect to trans-
lations in the x− direction. This means that the interactions
must commute with Pþ, which is a kinematic operator.
Since Pþ ¼Pi P

þ
i is kinematic, the vacuum of the field

theory is invariant with respect to these translations,
independent of interactions. This requires that

½Pþ; V� ¼ 0 Pþj0i ¼ 0; ð57Þ

which implies

PþVj0i ¼ VPþj0i ¼ 0; ð58Þ

where j0i is the free-field Fock vacuum. This means that
Vj0i is an eigenstate of Pþ with eigenvalue 0. Inserting a
complete set of intermediate states between V† and V in
h0jV†Vj0i, the absolutely continuous spectrum of pþ

i
cannot contribute to the sum over intermediate states
because pþ

i ¼ 0 is a set of measure 0. This means that

Vj0i ¼ j0ih0jVj0i ð59Þ

or interactions that preserve the kinematic symmetry leave
the free-field Fock vacuum unchanged.
The observation that the interaction leaves the vacuum

invariant implies that it is an operator on the free-field Fock
space. The irreducibility of the light-front Fock algebra
means that the interaction can be expressed in terms of
fields in this algebra. The Poincaré generators, defined by
integrating the þ components of the Noether currents that
come from Poincaré invariance of the action over the light
front, are also linear in this interaction. This means that it
should be possible to solve for the relativistic dynamics of
the field on the light-front Fock space.

A more careful analysis shows that the interaction, while
formally leaving the light-front invariant, has singularities
at pþ ¼ 0, so the formal expressions for the interaction-
dependent generators are not well-defined self-adjoint
operators on the free-field Fock space. This is because
the interaction contains products of operator-valued
distributions which are not defined. Discussions of the
nontriviality of the light-front vacuum and the associated
“zero-mode” problem, which is the subject of many papers,
can be found in [7,49–55] and the references cited therein.
The expressions for the Poincaré generators are defined

on the free-field Fock space if infrared and ultraviolet
cutoffs are introduced, but the cutoffs break the Poincaré
symmetry. The nontrivial problem is how to remove the
cutoffs in a manner that recovers the Poincaré symmetry.
While the solution of this last problem is equivalent to

the unsolved problem of giving a nonperturbative definition
of the theory, cutoff theories should lead to good approx-
imations for observables on scales where the cutoffs are not
expected to be important.

IV. FORMAL LIGHT-FRONT FIELD DYNAMICS

The Lagrangian density for a scalar field theory is

LðϕðxÞÞ ¼ −
1

2
ημν∂μϕðxÞ∂νϕðxÞ −

1

2
m2ϕðxÞ2 − VðϕðxÞÞ;

ð60Þ

where ημν is the metric tensor with signature ð−;þ;þ;þÞ.
The action is

A½V;ϕ� ¼
Z
V
d4xLðϕðxÞÞ: ð61Þ

Variations of the field that leave the action stationary satisfy
the field equation,
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∂2ϕðxÞ
∂ðx0Þ2 − ∇2ϕðxÞ þm2ϕðxÞ þ ∂VðϕÞ

∂ϕðxÞ ¼ 0: ð62Þ

Changing to light-front variables, the partial derivatives
become

∂0≔
∂
∂x0¼

∂xþ
∂x0

∂
∂xþþ

∂x−
∂x0

∂
∂x−¼

∂
∂xþþ

∂
∂x−¼∂þþ∂−;

ð63Þ

∂3≔
∂
∂x3¼

∂xþ
∂x3

∂
∂xþþ

∂x−
∂x3

∂
∂x−¼

∂
∂xþ−

∂
∂x−¼∂þ−∂−:

ð64Þ

Squaring and subtracting give

∂2

∂ðx0Þ2 −
∂2

∂ðx3Þ2 ¼ 4
∂

∂xþ
∂

∂x− : ð65Þ

It follows that the Lagrangian density (60) and the field
equation in light-front variables have the forms

LðϕðxÞÞ ¼ 2∂−ϕðxÞ∂þϕðxÞ −
1

2
∇⊥ϕðxÞ · ∇⊥ϕðxÞ

−
1

2
m2ϕðxÞ2 − VðϕðxÞÞ ð66Þ

and

4∂þ∂−ϕðxÞ − ∇2⊥ϕðxÞ þm2ϕðxÞ þ ∂VðϕÞ
∂ϕðxÞ ¼ 0: ð67Þ

Invariance of the action under infinitesimal changes in the
fields and coordinates

ϕðxÞ → ϕ0ðx0Þ ¼ ϕðxÞ þ δϕðxÞ xμ → x0μ þ δxμðxÞ;
ð68Þ

along with the field equation, leads to the conserved
Noether currents,

∂μJμðxÞ ¼ 0; ð69Þ

where the Noether current is

JμðxÞ ¼ Lημνδxν þ
∂LðϕÞ
∂ð∂μϕÞ

ðδϕðxÞ − ∂νδxνÞ: ð70Þ

The Noether currents associated with translational and
Lorentz invariance of the action are the energy-momentum,
Tμν, and angular-momentum, Mμαβ, tensors,

∂μTμν ¼ 0 ∂μMμαβ ¼ 0; ð71Þ

where for the Lagrangian density (66)

Tμν ¼ ημνLðϕðxÞÞ þ ∂μϕðxÞ∂νϕðxÞ; ð72Þ

Mμαβ ¼ Tμαxβ − Tμβxα: ð73Þ

Integrating the þ component of the conserved current over
the light front, assuming that the fields vanish on the
boundary of the light front, gives the light-front conserved
(independent of xþ) charges,

d
dxþ

Pμ ¼ 0
d

dxþ
Jαβ ¼ 0; ð74Þ

where

Pμ ≔
Z

dx⊥dx−
2

Tþμ ¼
Z

dx⊥dx−
2

ðT0μ þ T3μÞ ð75Þ

and

Jαβ ≔
Z

dx⊥dx−
2

Mþαβ

¼
Z

dx⊥dx−
2

ððT0α þ T3αÞxβ − ðT0β þ T3βÞxαÞ: ð76Þ

These are the conserved four-momentum and angular-
momentum tensors. They are independent of xþ and thus
can be expressed in terms of fields and derivatives of fields
restricted to the light front.
In order to construct the Poincaré generators, the first

step is to express the þ component of the energy-momen-
tum tensor and angular-momentum tensors in terms of
fields on the light front,

Tþþ ¼ 4∂−ϕðxÞ∂−ϕðxÞ; ð77Þ

Tþi ¼ −2∂−ϕðxÞ∂iϕðxÞ; ð78Þ

Tþ− ¼ ∇⊥ϕðxÞ · ∇⊥ϕðxÞ þm2ϕ2ðxÞ þ 2VðϕðxÞÞ; ð79Þ

Mþþ− ¼ 4∂−ϕðxÞ∂−ϕðxÞx− − ð∇⊥ϕðxÞ · ∇⊥ϕðxÞ
þm2ϕ2ðxÞ þ 2VðϕðxÞÞxþ; ð80Þ

Mþþi ¼ 4∂−ϕðxÞ∂−ϕðxÞxi þ 2∂−ϕðxÞ∂iϕðxÞxþ; ð81Þ

Mþ−i ¼ ð∇⊥ϕðxÞ · ∇⊥ϕðxÞ þm2ϕ2ðxÞ
þ 2VðϕðxÞÞxi þ 2∂−ϕðxÞ∂iϕðxÞx−; ð82Þ

Mþij ¼ −2∂−ϕðxÞ∂iϕðxÞxj þ 2∂−ϕðxÞ∂jϕðxÞxi: ð83Þ

The Poincaré generators are constructed by integrating
these operators over the light front,
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Pþ ¼ 4

Z
dx−d2x⊥

2
∂−ϕðxÞ∂−ϕðxÞ; ð84Þ

Pi ¼ −2
Z

dx−d2x⊥
2

∂−ϕðxÞ∂iϕðxÞ; ð85Þ

P− ¼
Z

dx−d2x⊥
2

ð∇⊥ϕðxÞ · ∇⊥ϕðxÞ þm2ϕ2ðxÞ þ 2VðϕðxÞÞ; ð86Þ

Jþ− ¼
Z

dx−d2x⊥
2

ð4∂−ϕðxÞ∂−ϕðxÞx− − ð∇⊥ϕðxÞ · ∇⊥ϕðxÞ þm2ϕ2ðxÞ þ 2VðϕðxÞÞxþÞ; ð87Þ

Jþi ¼
Z

dx−d2x⊥
2

ð4∂−ϕðxÞ∂−ϕðxÞxi þ 2∂−ϕðxÞ∂iϕðxÞxþÞ; ð88Þ

J−i ¼
Z

dx−d2x⊥
2

ðð∇⊥ϕðxÞ · ∇⊥ϕðxÞ þm2ϕ2ðxÞ þ 2VðϕðxÞÞxi þ 2∂−ϕðxÞ∂iϕðxÞx−Þ; ð89Þ

Jij ¼
Z

dx−d2x⊥
2

ð−2∂−ϕðxÞ∂iϕðxÞxj þ 2∂−ϕðxÞ∂jϕðxÞxiÞ: ð90Þ

For free fields, these operators can be expressed in terms of the light-front creation and annihilation operators (51) and (52)
using the identities

Z
dx−d2x⊥

2
∶ϕðxÞϕðxÞ ≔

Z
θðpþÞdpþd2p⊥

pþ ã†ðp̃Þãðp̃Þ; ð91Þ

Z
dx−d2x⊥

2
∶∂−ϕðxÞ∂−ϕðxÞ ≔

1

4

Z
θðpþÞdpþd2p⊥ã†ðp̃Þpþãðp̃Þ; ð92Þ

Z
dx−d2x⊥

2
∶∂−ϕðxÞ∂iϕðxÞ ≔ −

1

2

Z
θðpþÞdpþd2p⊥ã†ðp̃Þpiãðp̃Þ; ð93Þ

Z
dx−d2x⊥

2
∶∂iϕðxÞ∂iϕðxÞ ≔

Z
θðpþÞdpþd2p⊥

pþ ã†ðp̃ÞðpiÞ2ãðp̃Þ: ð94Þ

Using (91)–(94) in (84)–(90) gives the following expressions for the Poincaré generators for a free field in terms of the light-
front creation and annihilation operators:

Pþ ¼
Z

dpþd2p⊥θðpþÞã†ðp̃Þpþãðp̃Þ; ð95Þ

Pi ¼
Z

dpþd2p⊥θðpþÞã†ðp̃Þpiãðp̃Þ; ð96Þ

P− ¼
Z

dpþd2p⊥θðpþÞã†ðp̃Þp
2⊥ þm2

pþ ãðp̃Þ; ð97Þ

Jþ− ¼
Z

dpþd2p⊥θðpþÞã†ðp̃Þ
�
pþ
�
−2i

∂
∂pþ

�
− xþ

p2⊥ þm2

pþ

�
ãðp̃Þ; ð98Þ

Jþi ¼
Z

dpþd2p⊥θðpþÞã†ðp̃Þ
��

pþ
�
i
∂
∂pi

�
− pixþ

�
ãðp̃Þ; ð99Þ
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J−i ¼
Z

dpþd2p⊥θðpþÞã†ðp̃Þ
�
p2⊥ þm2

pþ

�
i
∂
∂pi

�
− 2pi

�
−i

∂
∂pþ

��
ãðp̃Þ; ð100Þ

Jij ¼
Z

dpþd2p⊥θðpþÞã†ðp̃Þ
�
pj

�
−i

∂
∂pi − pi

�
−i

∂
∂pj

��
ãðp̃Þ: ð101Þ

Since these are independent of xþ, the expressions with an explicit xþ dependence can be evaluated at xþ ¼ 0. These
expressions lead to the following identifications:

Jþ− ¼ −2K3 Jþ1 ¼ K1 − J2 ¼ E1 Jþ2 ¼ K2 þ J1 ¼ E2; ð102Þ

J−1 ¼ K1 þ J2 ¼ F1 J−2 ¼ K2 − J1 ¼ F2: ð103Þ

V. WAVELET BASIS

In this section, the multiresolution basis that is used to
represent the irreducible algebra of fields on the light front
is introduced. Wavelets provide a natural means for exactly
decomposing a field into independent discrete degrees of
freedom labeled by volume and resolution. In this repre-
sentation, there are natural truncations that eliminate
degrees of freedom associated with volumes and resolu-
tions that are expected to be unimportant in modeling a
given reaction.
While there are many different types of wavelets, this

application uses Daubechies [37,38] L ¼ 3wavelets. These
are used to generate an orthonormal basis of functions with
the following desirable properties: (1) all of the basis
functions have compact support, (ii) there are an infinite
number of basis functions with compact support inside of
any open set, (iii) the basis functions have one continuous
derivative, and (iv) polynomials of degree 2 can be
pointwise represented by locally finite linear combinations
of these basis functions.
In what follows, these basis functions will be used to

decompose fields restricted to a light front into an infinite
linear combination of discrete operators with arbitrarily fine
resolutions. The advantage of the light-front representation
is that the resulting discrete algebra is irreducible and the
vacuum remains trivial.
For Lagrangians that are polynomials in the fields, in the

wavelet representation all of the Poincaré generators can be
formally expressed as polynomials in the discrete fields on
the light front with coefficients that can be computed
analytically. While the polynomials are finite degree, there
are an infinite number of discrete field operators.
The construction of the wavelet basis starts with the

fixed-point solution of the renormalization group equation

sðxÞ ¼
X2L−1
l¼0

hlDTlsðxÞ; ð104Þ

where

DfðxÞ ≔
ffiffiffi
2

p
fð2xÞ and TfðxÞ ≔ fðx − 1Þ ð105Þ

are unitary scale transformations and translations. The fixed
point, sðxÞ, is a linear combination of a weighted sum of
translates of itself on a smaller scale by a factor of 2. The
weights hl are constant coefficients chosen, so sðxÞ satisfies

Z
TmsðxÞTnsðxÞ ¼ δmn and

xk ¼
X
n

cknTnsðxÞk < L pointwise: ð106Þ

There are different weights hl for different values of L. The
L ¼ 3 weights are the algebraic numbers in Table I.
Solving (104) is analogous to finding a fixed point of a
block spin transformation, except the averaging over blocks
is replaced by a weighted average.
The solution of the renormalization group equation (104)

is a fractal valued function that has compact support for
x ∈ ½0; 2L − 1�. For L ¼ 3, the solution has one continuous
derivative with support on the interval [0, 5]. Since the scale
can be changed by a general unitary scale transformation, a
scale is fixed by the convention

TABLE I. Scaling coefficients for Daubechies L ¼ 3 wavelets.

h0 ð1þ ffiffiffiffiffi
10

p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5þ 2

ffiffiffiffiffi
10

pp
Þ=16 ffiffiffi

2
p

h1 ð5þ ffiffiffiffiffi
10

p þ 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5þ 2

ffiffiffiffiffi
10

pp
Þ=16 ffiffiffi

2
p

h2 ð10 − 2
ffiffiffiffiffi
10

p þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5þ 2

ffiffiffiffiffi
10

pp
Þ=16 ffiffiffi

2
p

h3 ð10 − 2
ffiffiffiffiffi
10

p
− 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5þ 2

ffiffiffiffiffi
10

pp
Þ=16 ffiffiffi

2
p

h4 ð5þ ffiffiffiffiffi
10

p
− 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5þ 2

ffiffiffiffiffi
10

pp
Þ=16 ffiffiffi

2
p

h5 ð1þ ffiffiffiffiffi
10

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5þ 2

ffiffiffiffiffi
10

pp
Þ=16 ffiffiffi

2
p
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Z
sðxÞdx ¼ 1: ð107Þ

Because sðxÞ is fractal valued, it cannot be represented in
terms of elementary functions; however, it can be exactly
calculated at all dyadic rationals using the renormalization
group equation (104). It can also be approximated by
iterating the renormalization group equation starting with a
seed function satisfying (107). The evaluation of sðxÞ is not
necessary because most of the integrals that are needed in
field theory applications can be evaluated exactly using the
renormalization group equation. The integrals can be
expressed in terms of solutions of finite linear systems
of equations involving the numerical weights hl in Table I.
The next step in constructing the wavelet basis is to

construct subspaces of L2ðRÞ with different resolutions
defined by

Sk ≔
�
fðxÞjfðxÞ ¼

X
n

cnDkTnsðxÞ
X
n

jcnj2 < ∞
�
:

ð108Þ

The resolution is determined by the width of the support of
these functions, which for L ¼ 3, is 5 × 2−k. The functions

sknðxÞ ≔ DkTnðxÞsðxÞ; ð109Þ

for fixed k, are orthonormal, have compact support on
½2−kn; 2−kðnþ 5Þ�, satisfyZ

sknðxÞdx ¼ 2−k=2 ð110Þ

and are locally finite partitions of unityX
n

2k=2sknðxÞ ¼ 1: ð111Þ

The subspace Sk is called the resolution 2−k subspace
of L2ðRÞ.
The scale transformation D has the following intertwin-

ing properties with translations and derivatives:

TD ¼ DT2 and
d
dx

D ¼ 2D
d
dx

: ð112Þ

Applying DkTn to the renormalization group equation,
using (112), gives

sknðxÞ ¼
X2L−1
l¼0

hlDkþ1T2nþlsðxÞ ¼
X2L−1
l¼0

hls
kþ1
2nþlðxÞ; ð113Þ

which expresses every basis element of Sk as a finite linear
combination of basis elements of Skþ1 or

Sk ⊂ Skþ1: ð114Þ

This means that the lower resolution subspaces are sub-
spaces of the higher resolution subspaces. The orthogonal
complement of Sk in Skþ1 is called Wk,

Skþ1 ¼ Sk ⊕ Wk: ð115Þ

Since Wk ⊂ Skþ1, orthonormal basis functions wk
nðxÞ in

Wk are also linear combinations of the skþ1
n ðxÞ. These

functions are defined by

wk
nðxÞ ¼ DkTnwðxÞ; ð116Þ

where wðxÞ is the “mother wavelet” defined by

wðxÞ ≔
X2L−1
l¼0

glDTlsðxÞ; ð117Þ

and the coefficients gl are related to the weight coefficients
hl by

gl ¼ ð−Þlh2L−1−l 0 ≤ l ≤ 2L − 1: ð118Þ

The orthonormal basis functions wk
nðxÞ for Wk are called

wavelets. Since wk
nðxÞ are finite linear combinations of the

skþ1
n ðxÞ, they have the same number of derivatives as sðxÞ.
wk
nðxÞ also has the same support as sknðxÞ. Finally, it follows

from (106) that

Z
xmwk

nðxÞ ¼ 0 0 ≤ m < L: ð119Þ

Equation (119) is equivalent to the condition (106).
Equation (115) means that the wavelet subspace Wk

consists of functions that increase the resolution of Sk

from 2−k to 2−ðkþ1Þ.
The inclusions (114) imply a decomposition of Skþn into

an orthogonal direct sum of the form

Skþn ¼ Wkþn−1 ⊕ Wkþn−2 ⊕ � � � ⊕ Wk ⊕ Sk; ð120Þ

which indicates that the resolution of Sk can be increased to
2−k−n by including additional basis functions in the sub-
spaces fWkþn−1;…;Wkg. This can be continued to arbi-
trarily fine resolutions to get all of L2ðRÞ,

L2ðRÞ ¼ Sk ⊕∞
n¼0 W

kþn ¼⊕∞
n¼−∞ Wn: ð121Þ

Since all of the subspaces are orthogonal, an orthonormal
basis for L2ðRÞ consists of

fsknðxÞg∞n¼−∞ ∪ fwm
n ðxÞg∞n¼−∞;m¼k ð122Þ
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for any fixed starting resolution 2−k or

fwk
nðxÞg∞k;n¼−∞: ð123Þ

The basis (123) includes functions of arbitrarily large
support, while the basis (122) consists of functions with
support in intervals of width 2−lð2L − 1Þ for l ≥ k.
The basis (122) is used with L ¼ 3 Daubechies wavelets

[37,38]. Locally finite linear combinations of the L ¼ 3

scaling functions, sknðxÞ, can be used to pointwise represent
polynomials of degree 2. The wavelets, wl

nðxÞ, are orthogo-
nal to these polynomials. The L ¼ 3 basis functions have
one continuous derivative.

VI. WAVELET REPRESENTATION OF
QUANTUM FIELDS

In what follows, the basis (122) is used to expand
quantum fields restricted to a light front. It is useful to
think of the starting scale 2−k in (122) as the resolution that
is relevant to experimental measurements. The higher
resolution degrees of freedom are used to represent shorter
distance degrees of freedom that couple to experimental-
scale degrees of freedom.
The basis (122) can be used to get a formally exact

representation of the field operators of the form

ϕðx̃; xþÞ ≔
X

ϕlmnðxþÞξlðx−Þξmðx1Þξnðx2Þ where ϕlmnðxþÞ ¼
Z

d2x⊥dx−ξlðx−Þξmðx1Þξnðx2Þϕðx̃; xþÞ; ð124Þ

where ξl are the basis functions,

ξlðxÞ ∈ fsknðxÞg∞n¼−∞ ∪ fwm
n ðxÞg∞n¼−∞;m¼k: ð125Þ

In what follows, the shorthand notation is used,

ξnðx̃Þ ≔ ξn−ðx−Þξn1ðx1Þξn2ðx2Þ
X
n

¼
X
n−

X
n1

X
n2

:

ð126Þ

With this notation, (124) has the form

ϕðx̃; xþÞ ≔
X
n

ϕnðxþÞξnðx̃Þ; ð127Þ

which gives a discrete representation of the field as a linear
combination of discrete operators with different resolutions
on the light front.
Each discrete field operator, ϕnð0Þ, is associated with a

degree of freedom that is localized in a given volume on the
light-front hyperplane. In addition, there are an infinite
number of these degrees of freedom that are localized in
any open set on the light front.
While the fields are operator valued distributions, that

does not preclude the existence of operators constructed by
smearing with functions that have only one derivative. Note
that the support condition implies that the Fourier transform
of the basis functions are entire.

VII. KINEMATIC POINCARÉ
TRANSFORMATIONS OF FIELDS IN THE

WAVELET REPRESENTATION

Since this representation is formally exact, kinematic
Poincaré transformations on the algebra of fields restricted
to the light front can be computed by acting on the basis

functions. This follows from the kinematic covariance of
the field

UðΛ; aÞϕðx̃; xþ ¼ 0ÞU†ðΛ; aÞ ¼ ϕððΛ̃ x̃þãÞ; xþ ¼ 0Þ
ð128Þ

for ðΛ; aÞ in the light-front kinematic subgroup. Using the
discrete representation of the field on both sides of this
equation gives the identity

UðΛ; aÞ
X
n

ϕnðxþ ¼ 0Þξnðx̃ÞU†ðΛ; aÞ

¼
X
n

ϕnðxþ ¼ 0ÞξnðΛ̃ x̃þãÞ: ð129Þ

This shows that kinematic transformations can be com-
puted exactly by transforming the arguments of the
expansion functions.
The transformation property of the discrete field oper-

ators restricted to a light front follows from the orthonor-
mality of the basis functions (129),

UðΛ;aÞϕnðxþ¼0ÞU†ðΛ;aÞ¼
X
m

ϕmðxþ¼0ÞUmnðΛ̃;ãÞ;

ð130Þ

where the matrix

UmnðΛ̃; ãÞ ≔
Z

d2x⊥dx−ξmðΛ̃ x̃þãÞξnðx̃Þ ð131Þ

is a discrete representation of the light-front kinematic
subgroup.
This identity implies that in the wavelet representation

kinematic Lorentz transformations on the fields can be
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computed either by transforming the arguments of the basis
functions or by transforming the discrete field operators.

VIII. STATES IN THE WAVELET
REPRESENTATION

Because the algebra of free fields restricted to the light
front is irreducible and kinematically invariant interactions
leave the Fock vacuum unchanged, the Hilbert space for the
dynamical model can be generated by applying functions of
the discrete field operators, ϕnðxþ ¼ 0Þ, to the Fock
vacuum.
Smeared light-front fields can be represented in the

discrete representation as linear combinations of the dis-
crete field operators,

ϕðf; xþ ¼ 0Þ ≔
X
n

Z
d2x⊥dx−fðx̃Þξnðx̃Þϕnðxþ ¼ 0Þ:

ð132Þ

Equation (132) can be expressed as

ϕðf; xþ ¼ 0Þ ¼
X
n

fnϕnðxþ ¼ 0Þ; ð133Þ

where

fn ≔
Z

d2x⊥dx−fðx̃Þξnðx̃Þ: ð134Þ

States can be expressed as polynomials in the smeared
fields applied to the light-front Fock vacuumX

cm1���mn
ϕðfm1

; 0Þ � � �ϕðfmn
; 0Þj0i: ð135Þ

This representation can be reexpressed as a linear combi-
nation of products of discrete fields applied to the Fock
vacuum X

cm1���mn
ϕm1

ð0Þ � � �ϕmn
ð0Þj0i: ð136Þ

The inner product of two vectors of this form is a linear
combination of n-point functions. For the free-field alge-
bra, the n-point functions are products of two-point
functions. The two-point functions have the form

h0jϕðf; 0Þϕðg; 0Þj0i ¼
Z

θðpþÞdpþd2p⊥
2pþ f̃ð−p̃Þg̃ðp̃Þ:

ð137Þ

This integral is logarithmically divergent if the Fourier
transforms of the smearing functions do not vanish at
pþ ¼ 0. Since pþ ¼ 0 corresponds to infinite three-
momentum, this requirement is that the smearing functions
need to vanish for infinite three-momentum.

From (133) and (137), it follows that the inner product
above is a linear combination of two-point functions in the
discrete fields, ϕnðxþ ¼ 0Þ.
The basis functions ξmðxÞ have compact support which

implies that their Fourier transforms are entire functions of
the light-front momenta p̃. This means that they cannot
vanish in a neighborhood of pþ ¼ 0; however, they can
have isolated zeroes at pþ ¼ 0. For the wavelet basis
functions, wl

mðxÞ, the vanishing (119) of the first three
moments of the L ¼ 3 wavelets implies that

w̃l
mðpþÞpþ¼0¼

1

2π1=2

Z
wl
mðx−Þdx−¼0

d
dpþ w̃

l
mðpþÞpþ¼0¼−

1

2π1=2

Z
x−wl

mðx−Þdx−¼0; ð138Þ

d2

d2pþ w̃l
mðpþÞpþ¼0 ¼ −

1

2π1=2

Z
ðx−Þ2wl

mðx−Þdx− ¼ 0:

ð139Þ

Since the Fourier transforms are entire, this means that they
have the form w̃l

mðpþÞ ¼ ðpþÞ3flmðpþÞ where flmðpþÞ is
entire. For the scaling function basis functions, skmðxÞ, the
normalization condition (111) gives

s̃kmðpþÞpþ¼0 ¼
1

2π1=2

Z
skmðx−Þdx− ¼ 1

2π1=2
2−k=2 ≠ 0:

ð140Þ

These results imply that

h0jϕmðxþ ¼ 0Þϕnðxþ ¼ 0Þj0i ð141Þ

is singular if both basis functions have scaling functions in
the x− variable, but are finite if at least one of the basis
functions has a wavelet in the x− variable.
Since the smearing functions, fðp̃Þ, should all vanish at

pþ ¼ 0, the discrete representation will involve linear
combinations of wavelets and scaling functions whose
Fourier transforms all vanish at pþ ¼ 0. In computing
these quantities, the linear combinations of scaling func-
tions should be summed before performing the integrals.
This can alternatively be done by including a cutoff near
pþ ¼ 0, doing the integrals, adding the contributions, and
then letting the cutoff go to zero.

IX. DYNAMICS

The dynamical problem involves diagonalizing P− on
the free-field Fock space or solving the light-front
Schrödinger (28) or Heisenberg equations (29). The two
dynamical equations can be put in integral form
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ΨðxþÞj0i ¼ Ψðxþ ¼ 0Þj0i − i
2

Z
xþ

0

½P−;Ψðxþ0Þ�j0idxþ0

ð142Þ

or

OðxþÞ ¼ Oðxþ ¼ 0Þ þ i
2

Z
xþ

0

dxþ0½P−; Oðxþ0Þ�; ð143Þ

whereΨðxþ ¼ 0Þ andOðxþ ¼ 0Þ are operators in the light-
front Fock algebra.
The formal iterative solution of these equations has the

structure of a linear combination of products of discrete

fields, ϕnð0Þ, in the light-front Fock algebra with xþ-
dependent coefficients. What is needed to perform this
iteration are the initial operatorsΨðxþ ¼ 0Þ andOðxþ ¼ 0Þ
expressed as polynomials in the ϕnð0Þ, the expression for
P− as a polynomial in the ϕnð0Þ, and an expression for the
commutator, ½ϕmð0Þ;ϕnð0Þ�, of the discrete fields on the
light front.

X. THE COMMUTATOR

It follows from (55) that the commutator of the discrete
fields is

½ϕmð0Þ;ϕnð0Þ� ¼ −
i
4
δm1n1δm2n2

Z
ξm−ðx−Þϵðx− − y−Þξn−ðy−Þdx−dy−: ð144Þ

Unlike the inner product, the commutator is always finite
since both ξm−ðx−Þ and ξn−ðy−Þ have compact support.
The commutator (144) can be computed exactly using

the renormalization group equations. The computation
involves three steps. The first step is to express ξm−ðx−Þ
and ξn−ðy−Þ as linear combinations of scaling functions on
a sufficiently fine common scale. The second step is to
change variables, so the commutator is expressed as a linear
combination of commutators involving integer translates of
the fixed-point solution sðx−Þ of the renormalization group
equation. The last step is to use the renormalization group
equation to construct a finite linear system relating the
commutators involving integer translates of the sðx−Þ.

Applying DkTn to the renormalization group equation
and the expression for wðxÞ gives

DkTnsðxÞ ¼
Xl
L¼0

hlDkþ1T2nþlsðxÞ ð145Þ

and

DkTnwðxÞ ¼
Xl
L¼0

glDkþ1T2nþlsðxÞ: ð146Þ

These equations express sknðxÞ and wk
nðxÞ as linear combi-

nations of the skþ1
n ðxÞ,

sknðxÞ ¼
X2L−1
l¼0

hls
kþ1
2nþlðxÞ ¼

X2nþ2L−1

m¼2n

hm−2nskþ1
m ðxÞ ¼

X2nþ2L−1

m¼2n

Hn;mskþ1
m ðxÞ where Hn;m ≔ hm−2n ð147Þ

and

wk
nðxÞ ¼

X2L−1
l¼0

gls
kþ1
2nþlðxÞ ¼

X2nþ2L−1

m¼2n

gm−2nskþ1
m ðxÞ ¼

X2nþ2L−1

m¼2n

Gn;mskþ1
m ðxÞ where Gn;m ≔ gm−2n: ð148Þ

While the matrices Hn;m and Gn;m are formally infinite, for
each fixed n, these are 0 unless 2n ≤ m ≤ 2L − 1þ 2n.
Using powers of the matrices,

Hm
nl ≔

X
Hnk1Hk1k2 � � �Hkml; ð149Þ

andGnl the basis function can be represented as finite linear
combinations of finer resolution scaling functions

skn ¼
X
l

Hm
nls

kþm
l ; ð150Þ

wk
n ¼

X
lt

Hm−1
nt Gtls

kþm
l ; ð151Þ

where the sums in (150) and (151) are finite. Using these
identities, all of the integrals can be reduced to finite linear
combinations of integrals involving a pair of scaling
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functions, sknðxÞ ¼ 2k=2sð2kx − nÞ, on a common fine
scale, 2−k.
What remains is linear combinations of products of

integrals of the formZ
skmðxÞϵðx−−y−Þsknðy−Þdx−dy−

¼
Z

2k=2sð2kx−−mÞϵðx−−y−Þ2k=2sð2ky−−nÞdx−dy−:

ð152Þ

Changing variables

y−0 ¼ 2ky− − n; x−0 ¼ 2kx− − n; ð153Þ

and noting

ϵðx− − y−Þ ¼ ϵð2kx− − 2ky−Þ; ð154Þ

this becomesZ
2−ksðx0−−mÞϵðx0−−y0−Þsðy0−−nÞdx0−dy0−¼; ð155Þ

Z
2−ksðx0−þn−mÞϵðx0−−y0−Þsðy0−Þdx0−dy0−¼2−kI½n−m�;

ð156Þ

where

I½n� ≔
Z

sðx− þ nÞϵðx− − y−Þsðy−Þdx−dy−: ð157Þ

I½n� can be expressed as a difference of two integrals,

I½n� ¼
Z

sðx− þ nÞ
�Z

x−

−∞
sðy−Þ −

Z
∞

x−
sðy−Þ

	
dx−dy−;

ð158Þ
while the normalization condition (107) gives

Z
sðx−þnÞ

�Z
x−

−∞
sðy−Þþ

Z
∞

x−
sðy−Þ

	
dx−dy−¼1: ð159Þ

Adding (158) and (159) gives

I½n� ¼ 2

Z
sðx− þ nÞ

Z
x−

−∞
sðy−Þdx−dy− − 1: ð160Þ

If the support of sðx− þ nÞ is to the right of the support of
sðy−Þ, the integral is 1 while if the support of sðx− þ nÞ is
to the left of the support of sðy−Þ the integral is −1. Thus,
for the L ¼ 3 basis functions,

I½n� ¼
8<
:

1 n ≤¼ −5
I½n� −4 ≤ n ≤ 4

−1 n ≥ 5

: ð161Þ

The I½n� for n ∈ ½−4; 4� are related by the renormalization
group equations

I½n� ¼
Z

sðx− þ nÞϵðx− − y−Þsðy−Þdx−dy− ¼; ð162Þ

2
X

hlhk

Z
sð2x− þ 2n − lÞϵðx− − y−Þsð2y− − kÞdx−dy− ¼; ð163Þ

1

2

X
hlhk

Z
sð2x− þ 2n − lÞϵð2x− − 2y−Þsð2y− − kÞ2dx−2dy− ¼; ð164Þ

1

2

X
hlhk

Z
sðx− þ 2n − lÞϵðx− − y−Þsðy− − kÞdx−dy− ¼; ð165Þ

1

2

X
hlhk

Z
sðx− þ 2n − lþ kÞϵðx− − y−Þsðy−Þdx−dy− ¼; ð166Þ

1

2

X
hlhkI½2nþ k − l� ¼ 1

2

X
hmþl−2nhlI½m� ¼ 1

4

X
am−2nI½m�; ð167Þ

where

an ≔ 2
X5
l¼0

hlhlþn − 5 ≤ n ≤ 5: ð168Þ

The numbers an will appear again. The an are rational numbers [56–58]. For L ¼ 3, the nonzero an are

a0 ¼ 2 a1 ¼ a−1 ¼
75

64
a3 ¼ a−3 ¼ −

25

128
a5 ¼ a−5 ¼

3

128
: ð169Þ
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The 9 × 9 matrix Amn ≔ an−2m (−4 ≤ m; n ≤ 4) has the
following rational eigenvalues λ ¼ 2; 1; 1

2
; 1
4
;� 1

8
; 1
16
; 9
32
;

− 9
64
, so it is invertible.

The nontrivial I½n� are solutions of the linear system,

X4
n¼−4

AmnI½n� ¼ dm; ð170Þ

where

dm ¼ a5−2m − a−5−2m: ð171Þ

The solution of (170) is

I½n� ¼

0
BBBBBBBBBBBBBBBB@

−3.34201389eþ 00; n ¼ −4
8.33333333eþ 00; n ¼ −3

−1.79796007eþ 01; n ¼ −2
1.94444444eþ 01; n ¼ −1
0.00000000e − 00; n ¼ 0

−1.94444444eþ 01; n ¼ 1

1.79796007eþ 01; n ¼ 2

−8.33333333eþ 00; n ¼ 3

3.34201389eþ 00; n ¼ 4

1
CCCCCCCCCCCCCCCCA

: ð172Þ

While (172) is a numerical solution, the exact solution is
rational since both Amn and dn are rational.
This solution, along with (161), can be used to construct

the commutator of any of the discrete field operators using
(145)–(155).
The general structure of the commutators is

½ϕmð0Þ;ϕnð0Þ�¼Cm;n

¼ðscale factorsÞ×ðpowers of H;GÞ×I½n�:
ð173Þ

Note that while this commutator looks very nonlocal, if
the scaling functions in (144) are replaced by wavelets with

supports that are sufficiently separated, the integrals vanish
because the moments of wavelets vanish. This will also be
true of linear combinations of scaling functions that
represent functions that vanish at pþ ¼ 0.

XI. POINCARÉ GENERATORS

The other quantity needed to formulate the dynamics is
an expression for P− or one of the other dynamical
Poincaré generators expressed in terms of operators in
the irreducible algebra. Since the generators are conserved
Noether charges, they are independent of xþ, so the
generators can be expressed in terms of fields on the light
front. The discrete representations of the generators can be
constructed by replacing the fields on the light front by the
discrete representation (124), (127) of the fields. The
integrals over the light front become integrals over products
of basis functions and their derivatives. This section
discusses the computation of these integrals using renorm-
alization group methods.
A scalar ϕ4ðxÞ theory is used for the purpose of

illustration. In this case, the problem is to express all of
the generators as linear combinations of products of
discrete fields.
The construction of the Poincaré generators from

Noether’s theorem was given in Sec. IV. Using the discrete
representation of fields, the light-front Poincaré generators
(84)–(90) have the following forms:

Pþ ¼
X
mn

∶ϕmð0Þϕnð0Þ∶Pþ
m;n; ð174Þ

where

Pþ
m;n ≔ 2

Z
dx−d2x⊥∂−ξmðx̃Þ∂−ξnðx̃Þ; ð175Þ

Pi ¼
X
mn

∶ϕmð0Þϕnð0Þ∶Pi
m;n; ð176Þ

where

Pi
m;n ≔ −

Z
dx−d2x⊥∂−ξnðx̃Þ∂iξmðx̃Þ; ð177Þ

P− ¼
X
mn

∶ϕmð0Þϕnð0Þ∶P−
m;n þ

X
n1n2n4n4

∶ϕn1
ð0Þϕn2

ð0Þϕn3
ð0Þϕn4

ð0Þ∶P−
n1;n2;n3;n4

; ð178Þ

where

P−
m;n ≔

Z
dx−d2x⊥

�
1

2
∇⊥ξmðx̃Þ · ∇⊥ξnðx̃Þ þ

1

2
m2ξmðx̃Þξnðx̃Þ

�
ð179Þ

and
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P−
n1;n2;n3;n4

≔ λ

Z
dx−d2x⊥ξn1

ðx̃Þξn2
ðx̃Þξn3

ðx̃Þξn4
ðx̃Þ; ð180Þ

K3 ¼
X
mn

∶ϕmð0Þϕnð0Þ∶K3
m;n þ

X
n1n2n4n4

∶ϕn1
ð0Þϕn2

ð0Þϕn3
ð0Þϕn4

ð0Þ∶K3
n1;n2;n3;n4

; ð181Þ

where

K3
m;n ≔

Z
dx−d2

�
2x⊥x−∂−ξmðx̃Þ∂−ξnðx̃Þ −

1

2
xþ∇⊥ξmðx̃Þ · ∇⊥ξnðx̃Þ −

1

2
m2xþξmðx̃Þξnðx̃Þ

�
ð182Þ

and

K3
n1;n2;n3;n4

≔ −λ
Z

dx−d2x⊥xþξn1
ðx̃Þξn2

ðx̃Þξn3
ðx̃Þξn4

ðx̃Þ: ð183Þ

Setting xþ ¼ 0, this becomes

K3
m;n → 2

Z
dx−d2x⊥x−∂−ξmðx̃Þ∂−ξnðx̃Þ; K3

n1;n2;n3;n4
→ 0: ð184Þ

For the remaining generators,

E1 ¼
X
mn

∶ϕmð0Þϕnð0Þ∶E1
m;n; ð185Þ

where

E1
m;n ≔

Z
dx−d2x⊥ð2x1∂−ξmðx̃Þ∂−ξnðx̃Þ þ ∂−ξmðx̃Þ∂1ξnðx̃ÞxþÞ → 2

Z
x1∂−ξmðx̃Þ∂−ξnðx̃Þ; ð186Þ

E2 ¼
X
mn

∶ϕmð0Þϕnð0Þ∶E2
m;n; ð187Þ

where

E2
m;n ≔

Z
dx−d2x⊥ð2x2∂−ξmðx̃Þ∂−ξnðx̃Þ þ ∂−ξmðx̃Þ∂2ξnðx̃ÞxþÞ → 2

Z
dx−d2x⊥x2∂−ξmðx̃Þ∂−ξnðx̃Þ; ð188Þ

F1 ¼
X
mn

∶ϕmð0Þϕnð0Þ∶F1
m;n þ

X
n1n2n3n4

∶ϕn1
ð0Þϕn2

ð0Þϕn3
ð0Þϕn4

ð0Þ∶F1
n1;n2;n3;n4

; ð189Þ

where

F1
m;n ≔

Z
dx−d2x⊥

�
1

2
x1∇⊥ξkðxÞ · ∇⊥ξlðxÞ þ

1

2
x1m2ξkðx̃Þξlðx̃Þ þ x−∂−ξkðx̃Þ∂1ξlðx̃Þ

�
ð190Þ

and

F1
n1;n2;n3;n4

≔ λ

Z
dx−d2x⊥x1ξn1

ðx̃Þξn2
ðx̃Þξn3

ðx̃Þξn4
ðx̃Þ; ð191Þ

F2 ¼
X
mn

∶ϕmð0Þϕnð0Þ∶F2
m;n þ

X
n1n2n4n4

∶ϕn1
ð0Þϕn2

ð0Þϕn3
ð0Þϕn4

ð0Þ∶F2
n1;n2;n3;n4

; ð192Þ

where
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F2
m;n ≔

Z
dx−d2x⊥

�
1

2
x2∇⊥ξkðxÞ · ∇⊥ξlðxÞ þ

1

2
x2m2ξkðx̃Þξlðx̃Þ þ x−∂−ξkðx̃Þ∂2ξlðx̃Þ

�
ð193Þ

and

F2
n1;n2;n3;n4

≔ λ

Z
dx−d2x⊥x2ξn1

ðx̃Þξn2
ðx̃Þξn3

ðx̃Þξn4
ðx̃Þ: ð194Þ

All of these operators have the structure of linear combinations of normal products of discrete fields evaluated at xþ ¼ 0

times constant coefficients, Pþ
n1;n2

; Pi
n1;n2

; P−
n1;n2

; P−
n1;n2;n3;n4

; K3
n1;n2

; J3n1;n2
; Ei

n1;n2
; Fi

n1;n2
; Fi

n1;n2;n3;n4
, which are integrals

involving products of basis functions and their derivatives. The three-dimensional integrals that need to be evaluated to
compute these coefficients are products of 3 one-dimensional integrals that have one of the following eight forms:Z

dxξmðxÞξnðxÞ
Z

dx∂xξmðxÞξnðxÞ
Z

dx∂xξmðxÞ∂xξnðxÞ; ð195Þ
Z

dxxξmðxÞξnðxÞ
Z

dxx∂xξmðxÞξnðxÞ
Z

dxx∂xξmðxÞ∂xξnðxÞ; ð196Þ

Z
dxξn1ðxÞξn2ðxÞξn3ðxÞξn4ðxÞ

Z
dxxξn1ðxÞξn2ðxÞξn3ðxÞξn4ðxÞ: ð197Þ

In what follows, it is shown how all of these integrals can be
computed using the renormalization group equation (104).
The integrals (195)–(197) are products of basis functions

which may be scaling functions with scale 2−k or wavelets
of scale 2−k−l for l ≥ 0. The same methods that were used
in the computation of the commutator function, (145)–
(151), can be used to express the integrals (195)–(197) as
linear combinations of integrals involving scaling functions
on a common scale fine scale, 2−l.

After expressing the integrals in terms of scaling
functions, slnðxÞ, and their derivatives, the one-dimensional
integrals (195)–(197) can be expressed in terms of integrals
involving products of the snðxÞ. A variable change x →
x0 ¼ 2−lx can be used to express all of the integrals in terms
of translates of the original fixed point sðxÞ. The scale
factors for each type of integral are shown as follows:

Z
dxslmðxÞslnðxÞ ¼ δmn; ð198Þ

Z
dx∂xslmðxÞslnðxÞ ¼ 2l

Z
dxs0ðxÞsn−mðxÞ; ð199Þ

Z
dx∂xslmðxÞ∂xslnðxÞ ¼ 22l

Z
dxs0ðxÞs0n−mðxÞ; ð200Þ

Z
dxsln1ðxÞsln2ðxÞsln3ðxÞsln4ðxÞ ¼ 2l

Z
dxsðxÞsn2−n1ðxÞsn3−n1ðxÞsn4−n1ðxÞ; ð201Þ

Z
dxxslmðxÞslnðxÞ ¼ 2−l

�Z
dxxsðxÞsn−mðxÞ þmδm;n

�
; ð202Þ

Z
dxx∂xslmðxÞslnðxÞ ¼

Z
dxðxþmÞs0ðxÞsn−mðxÞ; ð203Þ

Z
dxx∂xslmðxÞ∂xslnðxÞ ¼ 2l

Z
dxðxþmÞs0ðxÞs0n−mðxÞ; ð204Þ

Z
dxxsln1ðxÞsln2ðxÞsln3ðxÞsln4ðxÞ ¼

Z
dxðxþ n1ÞsðxÞsn2−n1ðxÞsn3−n1ðxÞsn4−n1ðxÞ: ð205Þ

W.N. POLYZOU PHYS. REV. D 101, 096004 (2020)

096004-18



These identities express all of the integrals involving scale
2−l scaling functions in terms of related integrals involving
the snðxÞ. The compact support of the functions snðxÞ
means these integrals are identically zero unless the indices
and the absolute values of their differences are less than or
equal to 2L − 2 which is 4 for L ¼ 3.
The integrals of the right side of (199)–(205) are the

following integrals:

δmn ¼
Z

dxsmðxÞsnðxÞ m ¼ n; ð206Þ

D1½m� ≔
Z

dx
ds
dx

ðxÞsmðxÞ − 4 ≤ m ≤ 4; ð207Þ

D2½m� ≔
Z

dx
ds
dx

ðxÞ dsm
dx

ðxÞ − 4 ≤ m ≤ 4; ð208Þ

Γ4½m�½n�½k� ≔
Z

dxsðxÞsmðxÞsnðxÞskðxÞ

−4 ≤ m; n; k; m − n;m − k; k − n ≤ 4; ð209Þ

X½m� ≔
Z

dxxsðxÞsmðxÞ − 4 ≤ m ≤ 4; ð210Þ

X1½m� ≔
Z

dxx
ds
dx

ðxÞsmðxÞ − 4 ≤ m ≤ 4; ð211Þ

X2½m� ≔
Z

dxx
ds
dx

ðxÞ dsm
dx

ðxÞ − 4 ≤ m ≤ 4; ð212Þ

Γ4x½m�½n�½k� ≔
Z

dxxsðxÞsmðxÞsnðxÞskðxÞ

−4 ≤ m; n; k;m − n;m − k; k − n ≤ 4: ð213Þ

The renormalization group equation in the form

sðx − nÞ ¼
X5
l¼0

hl
ffiffiffi
2

p
sð2x − 2n − lÞ ð214Þ

and a variable change x → x0 ¼ 2x lead to the following
linear equations relating the nonzero values of these
integrals:

D1½n� ¼
X4
m¼−4

am−2nD1½m� ¼
X4
m¼−4

AnmD1½m�; ð215Þ

D2½n� ¼ 2
X4
m¼−4

am−2nD2½m� ¼ 2
X4
m¼−4

AnmD2½m�; ð216Þ

where am

am ≔ 2
X5
k¼0

hkþmhk − 5 ≤ m ≤ 5 ð217Þ

is the same quantity (168) and (169) that appeared in the
computation of the commutator function. A similar quan-
tity appears in the homogeneous equations relating the
nonzero Γ4½m�½n�½k�’s,

Γ4½m�½n�½k�≔
X5

l;lmln;lk¼0

2hlhlmhlnhlkΓ4½2mþ lm− l�½2nþ ln− l�½2kþ lk− l�¼
X
m0m0k0

A4ðm;n;k;m0;n0;k0ÞΓ4½m0�½n0�½k0�; ð218Þ

where

A4ðm; n; k;m0; n0; k0Þ ≔
X
l

2hlhm0−2mþlhn0−2nþlhk0−2kþl:

ð219Þ
The relations involving X½n�; X1½n�; X2½n� and Γ4x½m�½n�½k�
have inhomogeneous parts,

X½n� ¼ 1

4

X4
m¼−4

AnmX½m� þ 1

2

X
l

lhlhl−2n; ð220Þ

X1½n� ¼
1

2

X4
m¼−4

AnmX1½m� þ
X
l

lhlhl−2nþmD1½m�; ð221Þ

X2½n� ¼
X4
m¼−4

AnmX2½m� þ 2
X
l

lhlhl−2nþmD2½m�; ð222Þ

Γ4x½m�½n�½k� ≔ 1

2

X
m0n0k0

A4ðm; n; k;m0; n0; k0ÞΓ4x½m0�½n0�½k0�−;

ð223ÞX
m0n0k0

�X
l

hlhm0−2mþlhn0−2nþlhk0−2kþll
�
Γ4½m0�½n0�½k0�:

ð224Þ
Since the 9 × 9 matrix Amn ≔ an−2m (−4 ≤ m; n ≤ 4) has
eigenvalues λ ¼ 2; 1; 1

2
; 1
4
;� 1

8
; 1
16
; 9
32
;− 9

64
, it follows that

D1½n� andD2½n� are eigenvectors of Amn with eigenvalues 1
and 1

2
, respectively. The normalization is determined by the

equations discussed below. Equation (218) similarly im-
plies that Γ4½m�½n�½k� is an eigenvector with eigenvalue 1 of
the matrix A4 defined by the right-hand side of (218). The
normalization of Γ4½m�½n�½k� is also discussed below.
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The matrix ðI − 1
4
AÞ in (220) is invertible, so (220) is a

well-posed linear system for X½n�, while the matrices
ðI − 1

2
AÞ and (I − A) in (221) and (222) are singular. To

solve them, the Moore-Penrose generalized inverse [59] is
applied to the inhomogeneous terms to get specific sol-
utions. These solutions are substituted back in the equations
to ensure that the inhomogeneous terms are in the range of
ðI − 1

2
AÞ and (I − A), respectively, although this must be

the case since the solutions can also be expressed as
integrals. The general solutions of (221) and (222) can
include arbitrary amounts of the solution of the homo-
geneous equations which are eigenstates of Amn with
eigenvalues 2 and 1, respectively. The contribution from
the homogeneous equation is determined by the normali-
zation conditions below.
The normalization conditions are derived from the

property that polynomials with degree less than L can
be pointwise represented as locally finite-linear combina-
tion of the snðxÞ. These expansions have the form

1 ¼
X

snðxÞ; ð225Þ

x ¼
X

ðhxi þ nÞsnðxÞ ¼ hxi þ
X

nsnðxÞ; ð226Þ

x2 ¼
X

ðhxi þ nÞ2snðxÞ ¼ hxi2 þ 2hxi
X

nsnðxÞ
þ
X

n2snðxÞ; ð227Þ

where

hxni ≔
Z

sðxÞxndx ð228Þ

are moments of sðxÞ. Differentiating (226) and (227) gives

1 ¼
X

ns0nðxÞ; ð229Þ

x ¼ hxi þ 1

2

X
n2s0nðxÞ: ð230Þ

Multiplying (229) by sðxÞ and integrating the result give

X4
n¼−4

nD1½n� ¼ −1: ð231Þ

Multiplying (230) by s0ðxÞ and integrating give

X4
n¼−4

n2D2½n� ¼ −2: ð232Þ

These conditions determine the normalization of the
eigenvectors D1½n� and D2½n�. Note that the moments do
not appear in these normalization conditions, although all
moments of sðxÞ can be computed recursively using the
renormalization group equation and the normalization
condition (107). Using (229) in (211) and integrating by
parts gives

X4
n¼−4

X1½n� ¼ −1: ð233Þ

Using (230) in (212) and integrating by parts gives

X4
n¼−4

nX2½n� ¼ −1: ð234Þ

These conditions determine the contribution of the solution
of the homogeneous equations in the general solution.
The normalization conditions for Γ4½m�½n�½k� are

obtained using the partition of unity property (225),

X4
m¼−4

Γ4½m�½n�½k� ¼ Γ3½n�½k�;
X4
n¼−4

Γ3½n�½k� ¼ δk0;

ð235Þ

X4
m¼−4

Γ4x½m�½n�½k� ¼ Γ3x½n�½k�;
X4
n¼−4

Γ3½n�½k� ¼ X½k�;

ð236Þ

where

Γ3½m�½n� ≔
Z

dxxsðxÞsmðxÞsnðxÞ − 2Lþ 2 ≤ m; n;m − n ≤ 2L − 2; ð237Þ

Γ3x½m�½n� ≔
Z

dxxsðxÞsmðxÞsnðxÞ − 2Lþ 2 ≤ m; n;m − n ≤ 2L − 2; ð238Þ

and Γ3½m�½n� is a solution of the eigenvalue problem

Γ3½m�½n� ¼
X
m0n0

a3ðm; n;m0n0ÞΓ3½m0�½n0�; ð239Þ

with normalization (235) and
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a3ðm; n;m0n0Þ ¼
X
l

hlhm0−2mþlhn0−2nþl: ð240Þ

Γ3x½m�½n� satisfies

Γ3x½m�½n� ≔
X
m0n0

a3ðm; n;m0n0ÞΓ3x½m0�½n0�−; ð241Þ

X
m0n0

�X2L−1
l

lhlhm0−2mþlhn0−2nþl

�
Γ3½m0�½n0�; ð242Þ

with the normalization constraintX
n

Γ3x½m�½n� ¼ X½m�: ð243Þ

These finite linear systems can be solved for all of the
integrals (195)–(197). The results for D1½n�; D2½n�; X½n�;
X1½n�; X2½n� for L ¼ 3, which are needed to compute the
constant coefficients for the free-field generators, are given
below. The vector Γ4½m�½n�½k� of coefficients for the
dynamical generators has too many components to display.
They can be computed by finding the eigenvector with
eigenvalue 1 of the 93 × 93 matrix a4½m�½n�½m0�½n0� with
normalization given by (235). The normalization condition
requires solving for the eigenvector with eigenvalues 1 of
the 92 × 92 matrix a3½m�½n�½m0�½n0� using the normalization

condition (235). Finally, Γ4x½m�½n�½k� be computed by
applying the Moore Penrose generalized inverse of
ðI − a4Þ to the inhomogeneous term in (223) and adding
an amount of the solution of the eigenvalue problem
ð2I − a4ÞX ¼ 0 consistent with the normalization condi-
tion (236).
All the these quantities can alternatively computed by a

direct quadrature; however, the fractal nature of the basis
functions makes the renormalization group method dis-
cussed above preferable. The values of D1½n�; D2½n�; X½n�;
X1½n�, and X2½n� are given below.

0
BBBBBBBBBBBBBBBBBB@

D1½−4� ¼ 1
2920

D1½−3� ¼ − 16
1095

D1½−2� ¼ − 53
365

D1½−1� ¼ 272
365

D1½0� ¼ 0.0

D1½1� ¼ − 272
365

D1½2� ¼ 53
365

D1½3� ¼ − 16
1095

D1½4� ¼ − 1
2920

1
CCCCCCCCCCCCCCCCCCA

0
BBBBBBBBBBBBBBBBBB@

D2½−4� ¼ − 3
560

D2½−3� ¼ − 4
35

D2½−2� ¼ 92
105

D2½−1� ¼ − 356
105

D2½0� ¼ 295
56

D2½1� ¼ − 356
105

D2½2� ¼ 92
105

D2½3� ¼ − 4
35

D2½4� ¼ − 3
560

1
CCCCCCCCCCCCCCCCCCA

; ð244Þ

0
BBBBBBBBBBBBBBBBBB@

X0½−4� ¼ −3.96222254e − 06

X0½−3� ¼ −6.76219313e − 04

X0½−2� ¼ 1.92128831e − 02

X0½−1� ¼ −1.21043257e − 01

X0½0� ¼ 1.02242228eþ 00

X0½1� ¼ −1.21043257e − 01

X0½2� ¼ 1.92128831e − 02

X0½3� ¼ −6.76219313e − 04

X0½4� ¼ −3.96222254e − 06

1
CCCCCCCCCCCCCCCCCCA

0
BBBBBBBBBBBBBBBBBB@

X1½−4� ¼ 1.75026831e − 06

X1½−3� ¼ −6.81293512e − 04

X1½−2� ¼ −3.98947081e − 02

X1½−1� ¼ 3.39841948e − 01

X1½0� ¼ −5.00000000e − 01

X1½1� ¼ −1.08504743eþ 00

X1½2� ¼ 3.30305667e − 01

X1½3� ¼ −4.31543229e − 02

X1½4� ¼ −1.37161328e − 03

1
CCCCCCCCCCCCCCCCCCA

0
BBBBBBBBBBBBBBBBBB@

X2½−4� ¼ −5.08087952e − 04

X2½−3� ¼ −8.68468406e − 03

X2½−2� ¼ 5.47476157e − 01

X2½−1� ¼ −3.01673853eþ 00

X2½0� ¼ 6.95730703eþ 00

X2½1� ¼ −6.40481025eþ 00

X2½2� ¼ 2.29938859eþ 00

X2½3� ¼ −3.51494681e − 01

X2½4� ¼ −2.19355544e − 02

1
CCCCCCCCCCCCCCCCCCA

: ð245Þ

XII. TRUNCATIONS

The value of the wavelet representation is that, while it is
formally exact, it also admits natural volume and resolution
truncations in the light-front hyperplane. Truncations
define effective theories that are expected to be good
approximations to the theory for reactions associated with
a volume and energy scale corresponding to the volume and
resolution of the truncations. The simplest truncation
discards degrees of freedom smaller than some limiting
fine resolution, 2−l, as well as degrees of freedom with
support outside of some volume on the light front.

In this regard, it has similar properties to a lattice
truncation. Unlike a lattice truncation, because the theory
is formally exact, it is straightforward to systematically
include corrections associated with finer resolution or
larger volumes. Some other appealing features are that
the truncated fields have a continuous space-time depend-
ence and can be differentiated, so there is no need to use
finite difference approximations. Finally, it is possible to
take advantage of some of the advantages of the light-front
quantization.
One problem that is common to lattice truncations of

field theory is that truncations break symmetries. In the
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light-front case, truncations break the kinematic covari-
ance. One consequence is that transforming the truncated
field covariantly using (128) is not the same as trans-
forming the truncated field using the matrix (130) and
truncating the result. The difference between these two
calculations is due to the discarded degrees of freedom,
which should be small for a suitable truncation. This
suggests that kinematic Lorentz transformations can be
approximated by using (128) with the truncated fields. The
vacuum of the formally exact theory is the trivial Fock
vacuum if the interaction commutes with the kinematic
subgroup. When the kinematic invariance is broken, the
lowest mass eigenstate of the truncated P− is not neces-
sarily the Fock vacuum; however, the Fock vacuum should
become the lowest mass state in the infinite-volume, zero-
resolution limit. This suggests that using trivial Fock
vacuum might still be a good approximation.
The basis discussed in this work is not the only possible

basis choice and may not be the best option for treating the
transverse degrees of freedom for fields in 3þ 1 dimen-
sions. In this work, the transverse degrees of freedom are
expanded in products of multiscale basis functions of
Cartesian coordinates, x and y. Truncations of this basis
break the rotational symmetry about the z axis. An
alternative is to expand the transverse degrees of freedom
in a basis consisting of products of functions of the polar
coordinates r and θ where x ¼ r cosðθÞ and y ¼ r sinðθÞ.
The basis functions in the θ variable can be taken as the
periodic functions, 1ffiffiffiffi

2π
p einθ. This choice maintains the

rotational symmetry, but does not give a multiresolution
treatment of the angle degree of freedom. A second option
is to use the multiresolution basis in the angle variable on
½0; 2π� with periodic boundary conditions. In this case, the
truncations will result in a discrete rotational symmetry that
depends on the resolution. In both cases, the radial degree
of freedom can be expanded in a multiresolution basis. The
only difference is that the radial functions have support on
½0;∞� rather than ½−∞;∞�. This requires replacing the
basis functions that have support at r ¼ 0 by linear
combinations of these functions that satisfy the boundary
conditions at the origin. The linear combinations in a
subspace of a given resolution can be constructed so they
are orthonormal on ½0;∞�, resulting in an orthonormal
basis on that subspace; however, the modified basis
functions near the origin in subspaces of different reso-
lution are no longer orthogonal. This results in additional
coupling of degrees of freedom on different scales near
r ¼ 0. This is because the exact boundary conditions at
r ¼ 0 involve functions of all resolutions.

XIII. SUMMARY AND OUTLOOK

This work introduced a multiresolution representation of
quantum field theory on a light front. This is a formally
exact representation of the field theory in terms of an

infinite number of discrete degrees of freedom that are
localized on the light front. Each degree of freedom is
associated with a compact subset of the light front. These
subsets cover the light front, and there are an infinite
number of them in every open subset on the light front. This
representation has the property that there are a finite
number of these degrees of freedom associated with any
finite volume and any given maximal resolution on the
light front.
Each degree of freedom or mode is represented by a field

on the light front integrated over a basis function of
compact support on the light front. The discrete fields
associated with a free-field theory are an irreducible set of
operators on the free-field Fock space. For interacting
theories with self-adjoint kinematically invariant inter-
actions, the spectral condition on Pþ implies that the
interaction cannot change the Fock vacuum. This means
dynamical operators like the Poincaré generators can be
expressed as functions of this irreducible algebra of fields
acting on the free field Fock space.
The Poincaré generators involve ill-defined products of

fields at the same point, so the formal interactions are not
well-defined self-adjoint operators on the Fock space. In
the multiresolution representation, the ultraviolet singular-
ities that arise from local operator products necessarily
appear as nonconvergence of infinite sums of well-defined
operator products. There are also infrared divergences that
appear in products of scaling function modes even after the
smearing. In the light-front case, the ultraviolet and infrared
singularities are constrained by rotational covariance, so
any strategy to nonperturbatively renormalize the theory
must treat these problems together.
Computations necessarily involve both volume and

resolution cutoffs, which result in a well-defined truncated
theory with a finite number of degrees of freedom. As long
as the interaction in the truncated theory vanishes at
pþ ¼ 0, the interaction will leave the Fock vacuum
unchanged. The variable pþ ¼ ẑ · pþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

p
approaches zero in the limit that −ẑ · p → þ∞, so it is
an infinite momentum limit, which involves high-resolu-
tion degrees of freedom. Requiring that the interaction
vanish at pþ ¼ 0 is a resolution cutoff. This can be realized
by discarding products of scaling function modes in the
interaction. These modes do not contribute to the operator
product when it is integrated over functions with vanishing
Fourier transforms at pþ ¼ 0.
Dynamical calculations evolve the fields to points off of

the light front. This evolution can be performed by iterating
the light-front Heisenberg field equations or by solving the
light-front Schrodinger equation. Both cases involve dis-
crete mathematics. Iterating the Heisenberg field equations
results in a representation of the field as an expansion in
normal products of discrete fields on the light front with xþ-
dependent coefficients. Because fields on the light front are
irreducible, the different discrete field operators cannot all
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commute; however, the commutator can be calculated
explicitly and analytically. Vacuum expectation values of
product of fields can be computed by evaluating the
solution of the Heisenberg equations in the Fock vacuum.
There are a number of problems involving free fields that

can be used to try to understand the convergence of
computational strategies in truncated theories. Free-field
theories have the advantage that they can be solved exactly,
so errors can be calculated by comparing exact computa-
tions to computations based on truncated theories. Among
the problems of interest is how is Poincaré invariance
recovered as the resolution is increased in a truncated
theory. Because the basis is local, this can be tested in a
finite volume. Methods for performing this test in the
corresponding wavelet representation of canonical field
theory were discussed in [25]. These methods utilize the
locally finite partition of unity property of the scaling
functions in the expression for the generators in terms of the
integrals over the energy-momentum and angular-momen-
tum tensor densities. In the light-front case, free fields
provide a laboratory to investigate the accuracy of kin-
ematic Lorentz transformations in truncated theories.
Another important problem is how efficiently can the
multiresolution representation of the light-front
Hamiltonian be block diagonalized by resolution. This
was studied for the case of the corresponding wavelet
representation of canonical field theory in [35]. One
conclusion of that work is that both volume and resolution
need to be increased simultaneously in order to converge to
a sensible energy spectrum of the Hamiltonian (i.e., so it
approaches a continuous spectrum that is unbounded
above). In addition, it was found that convergence to a
block diagonal form slowed as energy separation of the
modes decreased. Another calculation that should be done
is to compare the Wightman functions or commutator
functions of the truncated theories to the exact quantities.
The light-front representation has the advantage that
these can be computed without solving for an approximate
vacuum. Another interesting question is what is the con-
tribution of the product of the infrared singular parts of the
truncated fields to normal ordered products of free fields.
Does the normal ordering remove these contributions?
The next class of problems of interest are 1þ 1-dimen-

sional solvable field theories. These are interesting because
the dynamical equations in the multiresolution representa-
tion generate more complicated operators in the algebra of
fields on the light front. Reference [15] used Daubechies’
wavelets methods in a canonical representation of the field
theory to treat the X-Y model and spontaneous symmetry
breaking in the Landau Ginzburg model.
The real interest is to apply multiresolution methods to

realistic theories in 3þ 1 dimensions. These are computa-
tionally far more complex than problems involving free
fields or problem in low dimensions. There are several

kinds of problems of interest. These include bound state
problems, scattering problems, studies of correlation func-
tions, and extensions to gauge theories. While the discrete
nature of the multiresolution representation has some
computational advantages, they will not be of significant
help for these complex problems, especially since the
number of modes scale with dimension and number of
particles. One of the advantages of multiresolution methods
is that basis functions are self-similar. The result is that the
coupling strength of the various modes differs by different
powers of 2. A systematic investigation could help to
identify the most dominant modes in a given application.
This could be used to get a rough first approximation that
can be improved perturbatively. One interesting property of
the multiresolution representation of the theory is that it is
both discrete and formally exact. In a formally exact theory,
Haag-Ruelle scattering theory can be used to express
scattering observables as strong limits. Of interest is to
use the exact representation to develop an approximation
algorithm for computing scattering observables in this
discrete representation. This is not trivial, since the
time limits will not converge if they are computed after
truncation.
Bound state calculations could be computed by diago-

nalizing the mass operator on a subspace, similar to how
this is done using basis light-front quantization [47].
Variational methods could prove useful in this regard.
For gauge theories, the exact representation of the field

theory in terms of a countable number of discrete fields
with different resolutions suggest that a similar construc-
tion could be performed in using of gauge-invariant degrees
of freedom. To understand how this might work, imagine a
set of gauge-invariant Wilson placquets with a given lattice
spacing on a light front. The expectation is that on the light
front these form an irreducible algebra of operators of a
given resolution. Decreasing the lattice spacing by a factor
of 2 results in a new algebra that is an irreducible set of
operators for the increased resolution. The coarse-scale
algebra should be a subalgebra of the fine-scale algebra. In
the same way, that scaling functions on a file scale can be
expressed as wavelet and scaling functions on a coarse
scale, it can be anticipated that there is something like a
wavelet transform that generates the fine-scale algebra in
terms of generators for the coarse-scale algebra and
independent gauge-invariant operators that generate the
degrees of freedom in the fine-scale algebra that are not in
the coarse-scale algebra. As in the wavelet case, this could
be repeated on every scale, leading to a countable set of
independent operators that can generate placquets on all
scales. This should result in an irreducible set of gauge-
invariant operators on the light front, with a formally trivial
vacuum. While this construction is far from trivial, having a
formally exact representation of gauge theories in terms of
local gauge-invariant variables is a desirable goal.
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Another class of applications where the wavelet repre-
sentation may be useful is in quantum computing. The
fundamental property is that the local nature of the
interactions involving different discrete modes means that
transfer matrices for small time steps can be expressed as
simple quantum circuits. Some comments on using wavelet
discretized fields in quantum computing appear in

Refs. [29,33]. The advantage in the light-front case is
the trivial nature of the vacuum.
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