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A formally exact discrete multiresolution representation of quantum field theory on a light front is
presented. The formulation uses an orthonormal basis of compactly supported wavelets to expand the fields
restricted to a light front. The representation has a number of useful properties. First, light-front preserving
Poincaré transformations can be computed by transforming the arguments of the basis functions. The
discrete field operators, which are defined by integrating the product of the field and a basis function over
the light front, represent localized degrees of freedom on the light-front hyperplane. These discrete fields
are irreducible and the vacuum is formally trivial. The light-front Hamiltonian and all of the Poincaré
generators are linear combinations of normal ordered products of the discrete field operators with
analytically computable constant coefficients. The representation is discrete and has natural resolution and
volume truncations like lattice formulations. Because it is formally exact, it is possible to systematically

compute corrections for eliminated degrees of freedom.
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I. INTRODUCTION

A discrete multiresolution representation of quantum
field theory on a light front is presented. Light-front
formulations of quantum field theory have advantages
for calculating electroweak current matrix elements in
strongly interacting states in different frames. Lattice
truncations have proved to be the most reliable method
for nonperturbative calculations of strongly interacting
states, but Lorentz transformation and scattering calcula-
tions are not naturally formulated in the lattice representa-
tion. The purpose of this work is to investigate a
representation of quantum field theory that has some of
the advantages of both approaches, although this initial
work is limited to canonical field theory rather than gauge
theories.

In 1939, Wigner [1] showed that the independence of
quantum observables in different inertial reference frames
related by Lorentz transformations and space-time trans-
lations requires the existence of a dynamical unitary
representation of Poincaré group on the Hilbert space of
the quantum theory. Because there are many independent
paths to the future, consistency of the initial value problem
requires that a minimum of three of the infinitesimal
generators of the Poincaré group are interaction dependent.
In 1949, Dirac [2] introduced three “forms of relativistic
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dynamics” that are characterized by having the largest
interaction-independent subgroups.

Dirac’s “front-form dynamics” is the only form of
dynamics with the minimal number, 3, of dynamical
Poincaré generators. The interaction-independent subgroup
is the seven-parameter subgroup that leaves the hyperplane

xr=x"+h-x=0 (1)

invariant. The light-front representation of quantum
dynamics has several advantages. One is that the kinematic
(interaction-independent) subgroup has a three-parameter
subgroup of Lorentz boosts. The subgroup property means
that there are no Wigner rotations for light-front boosts. A
consequence is that the magnetic quantum numbers of the
light-front spin are invariant with respect to these boosts. A
second advantage is that the boosts are independent of
interactions. This means that boosts can be computed by
applying the inverse transform to noninteracting basis
states. These properties simplify theoretical treatments of
electroweak probes of strongly interacting systems, where
the initial and final hadronic states are in different Lorentz
frames.

In light-front quantum field theory [3-14], there are
additional advantages. These are consequences of the
spectrum of the generator

pr=p’+h-p20 (2)
of translations in the

x=x"—-h-x (3)
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direction tangent to the light front. The first property is that
free fields restricted to the light front are irreducible. This
means that both the creation and annihilation operators for
a free field can be constructed from the field restricted to the
light front. It follows that any operator on the free-field
Fock space can be expressed as a function of free fields
restricted to the light front. The second advantage is that
interactions that commute with the interaction-independent
subgroup leave the Fock vacuum invariant. This means that
it is possible to express all of the Poincaré generators as
operators on the free-field Fock space. There are ultraviolet
and infrared (p* =0) singularities in the light-front
Hamiltonian due to local operator products, which could
impact these properties; however, in an effective theory
with ultraviolet and infrared cutoffs, the interaction still
leaves the Fock vacuum invariant and the light-front
Hamiltonian can still be represented as a function of the
free fields on the light front.

Having an explicit vacuum along with an expression for
the light-front Hamiltonian,

P-=P'—P-n, (4)

in terms of the algebra of fields on the light front means that
it is possible to perform nonperturbative calculations by
diagonalizing the light-front Hamiltonian in the light-front
Fock space.

In a given experiment, there is a relevant volume and a
finite amount of available energy. The available energy
limits the resolution of the accessible degrees of freedom.
The number of degrees of freedom with the limiting
resolution that fits in the experimental volume is finite.
It follows that it should be possible to accurately calculate
experimental observables using only these degrees of
freedom.

Wavelets can be used to represent fields on the light front
as linear combinations of discrete field operators with
different resolutions. This provides a natural representation
to make both volume and resolution truncations consistent
with a given reaction. In addition, the representation is
discrete, which is a natural representation for computations.
Finally, the basis functions are self-similar, so truncations
with different resolutions have a similar form.

There are many different types of wavelets that have
been discussed in the context of quantum field theory [15—
36]. The common feature is that the different functions have
a common structure related by translations and scale
transformations. This work uses Daubechies’ wavelets
[37-41]. These have the property that they are an ortho-
normal basis of functions with compact support. The price
paid for the compact support is that they have a limited
smoothness. It is also possible to use a wavelet basis of
Schwartz functions that are infinitely differentiable, but
these functions do not have compact support.

This work is an extension to the light front of the wavelet
representations of quantum field theory used in
Refs. [25,28,35]. The notation and development of the
wavelet bases is identical to the development in these
references. The difference is that the algebra generated by
the discrete fields and conjugate generalized momenta in
these papers is replaced by the irreducible algebra of fields
on a light front. The light-front representation is formally
exact and has all of the advantages of any other represen-
tation of light-front field theories.

There are several motivations for considering this
approach. These include the following:

(1) Volume and resolution truncations can be performed

naturally, the resulting truncated theory is similar to
a lattice truncation [42,43], in the sense that it is a
theory involving a finite number of discrete degrees
of freedom associated with a given volume and
resolution.

(2) While the degrees of freedom are discrete, the field
operators have a continuous space-time dependence.
Kinematic Lorentz transformations can be computed
by transforming the arguments of the basis func-
tions. While truncations necessarily break kinematic
Lorentz invariance, kinematic Lorentz transforma-
tions can still be approximated by transforming the
arguments of the basis functions.

(3) Even though some truncations may lead to states
with energy below the Fock vacuum energy, the
error in using the free Fock vacuum as the lowest
mass state of the truncated theory is due to correc-
tions that arise from the discarded degrees of
freedom.

(4) Since the representation is formally exact and x* is a
continuous variable, there is a formulation of Haag-
Ruelle [44-46] scattering in this representation.
Approximation methods need to be developed in
the presence of truncations.

Some of the possible applications of the wavelet repre-
sentation are discussed in [25] in the context of canonical
field theory. There are a number of applications involving
free fields that are straightforward and should be instruc-
tive. The advantage of free fields is that they can be solved
and used as a testing ground in order to get an initial
understanding of the convergence of truncated theories.
One such application is understanding the restoration of
Poincaré invariance in truncated theories as the resolution is
improved. An advantage of the wavelet representation is
that this can be checked locally, i.e., in a small volume [25].
Understanding the restoration of Lorentz invariance is
important for approximating current matrix elements.
Another application involving free fields is to test the
convergence of free-field commutator functions or
Wightman functions based on truncated fields to the
exact expressions. These can be approximated by iterating
the Heisenberg field equations, which are simple in the
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free-field case. This could provide some insight into the
nature of convergence in interacting theories. In [35], flow
equation methods are used to block diagonalize the Hilbert
space of a truncated free-field theory by resolution, con-
structing an effective Hamiltonian that involves only
coarse-scale degrees of freedom, but includes the dynamics
of the eliminated degrees of freedom. This calculation
provided some insight into the complementary roles played
by volume and resolution truncations.

While the elementary calculations discussed above can
provide insight into the nature of approximations, the long-
term goal is to use the wavelet representation to perform
calculations of observables in 3 4 1-dimensional field
theories. Calculations in 3 + 1 dimensions are considerably
more complicated for interacting theories. One computa-
tional method is to use the fields to construct a basis by
applying discrete operators to the vacuum and then diag-
onalizing the light-front Hamiltonian in that basis. The
light-front representation has the advantage that it is not
necessary to first solve the vacuum problem. This method
should be useful for modeling composite states that are
spatially localized. This Hamiltonian approach is in the
same spirit as the basis light-front quantization approach
used in [47]. Variational methods could also be employed
for low-lying composite states. Another method that takes
advantage of the discrete nature of the wavelet representa-
tion is to use the light-front Heisenberg equations to
generate an expansion of the field as a linear combination
of products of fields restricted to the light front. Correlation
functions can be computed by evaluating products of these
fields in the light-front vacuum. In this case, while the
algebra is discrete, the number of terms grows with each
iteration. One of the advantages of the wavelet representa-
tion is that interactions involving different modes are
self-similar and differ only by multiplicative scaling coef-
ficients. A detailed study of the scaling properties could
help to formulate efficient approximations to the solution of
the light-front Heisenberg field equations by eliminating
irrelevant degrees of freedom. Another potential use of the
wavelet representation would be in quantum computing. In
the wavelet representation, the field is replaced by discrete
modes that only interact locally. This allows evolution over
short time steps to be represented by quantum circuits
involving products of local interactions.

This paper consists of 13 sections. The next section
introduces the notation that will be used in this work,
defines the light-front kinematic subgroup and the Poincaré
generators that generate both the kinematic and dynamical
Poincaré transformations. Section III discusses the irreduc-
ibility of free fields on the light front and properties of
kinematically invariant interactions. Section IV discusses
the structure of Poincaré generators on the light front using
Noether’s theorem. The wavelet basis is constructed from
the fixed point of a renormalization group equation in
Sec. V. Wavelet representations of fields restricted to the

light front are defined in Sec. VI. Section VII has a short
discussion on kinematic Poincaré transformations of
the fields in the light-front representation. In Sec. VIII,
the irreducibility of the light-front free-field algebra and the
triviality of the light-front vacuum are used to construct
vectors in the light-front Fock space. Dynamical equations
in the light-front wavelet representation are discussed in
Sec. IX. Dynamical computations require expressions for
the commutator of discrete fields on the light front, which
are computed in Sec. X. In Sec. XI, the coefficients of the
expansion of all ten Poincaré generators as polynomials of
discrete fields on the light front are computed. Section XII
discusses truncations and Sec. XIII gives a summary and
outlook.

II. NOTATION

The light front is a three-dimensional hyperplane that is
tangent to the light cone. It is defined by the constraint

xte=x+h-x=0. (5)

It is natural to introduce light-front coordinates of the four-
vector x*,

The components

X=(x7,x1) (7)

are coordinates of points on the light-front hyperplane. This

will be referred to as a light-front three-vector. In what

follows, the light front defined by fi = Z will be used.
The contravariant light-front components are

Xil = xi, (8)

and the Lorentz-invariant scalar product of two light-front
vectors is

X, =—xT

1 1
Xoyi=—oxtyT =Sy X Y
1
= E(x+Y+ +a7yo) +xly + 2y, 9)

For computational purposes, it is useful to represent four
vectors by 2 x 2 Hermitian matrices. The coordinate matrix
is constructed by contracting the four-vector x* with the
Pauli matrices and the identity

xt X 1
X = xtc, = # = —Tr(c,X
x'o, (XL x‘> W= (0, X)

x; = x4 ix? (10)

In this matrix representation, Poincaré transformations
continuously connected to the identity are represented by

A€SL(2,C) A=A%
(11)

X=X =AXAT+A
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The subgroup of the Poincaré group that leaves x* =0
invariant consists of pairs of matrices (A, A) in (11) of the

form
A_(a 0 > A_(O b*L)’ (12)
c 1/a b, b~

where a, ¢ and b, are complex and b~ is real. This is a
seven-parameter group. The SL(2, C) matrices with real a
represent light-front preserving boosts. They can be para-
metrized by the light-front components of the four velocity

v=p/m,

Vpt/m 0

Ap(p/m) =

pi/m 1 +
o /m /N pT/m

Vot ) (13)

- (MA/F 1/vo"

These lower triangular matrices form a subgroup. The
inverse light-front boost is given by

1/y/p*/m 0

__pi/m +
Ve VP

Ast(p/m) =

B 1/Vot 0

- <_UJ_/V vt V”+>’ Y
10 .

= () ) v =

w0

The corresponding dynamical transformations are

/\</1)=(1 l) U(A(2)) = '

0 1
(3 2)

Relations (17)-(20) define the infinitesimal generators

{PT, P, P2 E' E* K3, J3}

while the adjoint and the inverse adjoint of these
matrices are

¥ py/m
e

Af(P/m) =

0 1/v/pT/m
B (\/U_+ vj/\/v_+>

0 1/Vor 13)

__pi/m

1/\/p*/m e

0 \/pt/m

- (1/\/11_+ —vj/\/v—+>
oo NO

((Ap)) " (p/m) =

(16)

General Poincaré transformations are generated by ten
independent one-parameter subgroups. Seven of the one-
parameter groups leave the light front invariant. The
remaining 3 one-parameter groups map points on the light
front to points off of the light front. These are called
kinematic and dynamical transformations, respectively. The
kinematic one-parameter groups in the 2 x 2 matrix rep-
resentation and the corresponding unitary representations
of these groups are related by

W=, y) v =e 1)
oit2 L

A(/l)—( . e_?m> U(A(L)) = el (18)
a=(, 7)) vy =er (19
U(AQR)) = 24, (20)
M=y ) ve@) = e ell
U(AR)) = e "2, (22)
3
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of the kinematic transformations, while (21) and (22) define the infinitesimal generators
{P~,F',F?} (24)

of the dynamical transformations. With these definitions, the light-front Poincaré generators are related to components of
the angular-momentum tensor

T = (25)

by

E'=K'-J* E=K+J' F' =K'+ F=K-J. (26)

The inverse relations are

1 1 1 1
K! :§(E1+F1) KZ:E(E2+F2) J! :§(E2—F2) 12:§(F1—E1). (27)
|
F' and F? could be replaced by J' and J? as dynamical  with itself
generators.
The evolution of a state or operator with initial data on W2 = WHW, = M?s%. (33)
the light front is determined by the light-front Schrodinger
equation The Pauli-Lubanski vector has components
Wo="P.J W=HJ+PxK 34
AL e) (28) o
dxt 2 i or expressed in terms of the light-front Poincaré generators
or the light-front Heisenberg equations of motion Wt=pPJ-2+ (PxE)-1%, (35)
do(x*) i . W, =L (p+s . At
—_[p- =—(P F-P E)-(z-K P, (36
S =5 P OGN (29) 1 =5(PTEx ixE)—-(2-K)zZx (36)
When P~ is a self-adjoint operator, the dynamics is well- W-=PJ-2-(PxF)- i (37)
defined and given by the unitary one-parameter group (22). ) ) o
The Poincaré Lie algebra has two polynomial invariants, ~ [0 order to compare the spins of particles in different
The mass squared is frames, it is useful to transform both particles to their rest
frame using an arbitrary but fixed set of Lorentz trans-
M2 —prp-— le ’ (30) formations parametrized by the four velocity of the particle.

The light-front spin is the angular momentum measured in
the particle’s or system’s rest frame when the particle or
system are transformed to the rest frame with the inverse
light-front preserving boosts (14),

which gives the light-front dispersion relation

M? + P?
pr= (31) .
p . . (ExP)-z W*
S'Z:J‘Z—T:F, (38)
The other invariant is the inner product of the Pauli-
Lubanski vector, s, = (W, —P,WH/PH)/M. (39)
WH — leﬂm/; P, Ja/b (32) The components of the light-front spin can also be

expressed directly in terms of J*,
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st = A, (PIM)(AG ), (P/M)I,  (40)

where in (40) the P/M in the Lorentz boosts are operators.

II1. FIELDS

Light-front free fields can be constructed from canonical
free fields by changing variables p — p, where p :=
(p*, p', p?) are the components of the light-front momen-
tum conjugate to X. The Fourier representation of a free
scalar field of mass m and its conjugate momentum
operator are

7*a(p) + e~"*a’ (p)).

1 dp .
9=t |

@)
() =~ g [ a0 5P ) e o),
@)

where  ,,(p) = \/m>+p> is the energy of a
particle of mass m, p is its three-momentum, and

x:pi=—0,([p)x°+p-x

Changing variables from the three momentum, p, to the
light-front components, p = (p*, p!, p?), of the four
momentum gives the light-front Fourier representation

of ¢(x),
1 dp*6(p”)

\V2pt

P(x)=

ST dp 1 (¢*a(p)+ e~ (p)),

(43)
|

1 iptxT/2—ip, X -
ot =07 2) = (i [ 7Pl =0 )

The creation and annihilation operators can be read off of
this expression,

a(p) = \/Z0(pT)p(x* =0.p"p),  (51)

Pt
ST =0.—p".p.).  (52)

a'(p) =
Both operators are constructed directly from the field
restricted to the light front without constructing a gener-
alized momentum operator. This means that ¢(x) restricted
to the light front defines an irreducible set of operators. It
follows that any operator O on the Fock space that

where
‘8(17‘,1?2,102) _ ,(p)
apt.pt.p)l  p*
p-x——%<¥x++p+x‘> +pL-xy (44)
and

) =alpps) = a2 @)
It follows from
a(p).a’(p")] = 6(p — P') (46)
and (44) and (45) that
[a(P).a"(p")] = 6(p — B'). (47)

The spectral conditions
PE=H+P =M +P>*+ P >0, (48)

M4 P?
imply that it is possible to independently construct both
a(p) and a (p) from the field ¢(x* = 0, X) restricted to the
light front. This can be done by computing the partial
Fourier transform of the field on the light front,

dx  dx~

> (50)

commutes with ¢(x™ = 0,X) at all points on the light
front must be a constant multiple of the identity,

[p(x* =0.%),0] =0 — O = cl. (53)

An important observation is that the only place where the
mass of the field appears is in the expression for the
coefficient of x™. When the field is restricted to the light
front, x* — 0, all information about the mass (and dy-
namics) disappears.

This is in contrast to the canonical case because the
canonical transformation that relates free canonical fields
and their generalized momenta with different masses
cannot be realized by a unitary transformation [48].
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When these fields are restricted to the light front, they
become unitarily equivalent [10]. This is because dynami-
cal information that distinguishes the different representa-
tions is lost as a result of the restriction.

[p(x" =0.%).¢(y" =0.¥)]

Since the fields restricted to the light front are irreduc-
ible, the canonical commutation relations are replaced by
the commutator of the fields at different points on the
light front,

2z pt
i / dp*o(p™)
2n p 2

Note that while the x~ derivative gives

O_¢(x) is not the canonical momentum.

Interactions that preserve the light-front kinematic sym-
metry must commute with the kinematic subgroup. In
particular, they must be invariant with respect to trans-
lations in the x~ direction. This means that the interactions
must commute with P, which is a kinematic operator.
Since P™ =Y, P is kinematic, the vacuum of the field
theory is invariant with respect to these translations,
independent of interactions. This requires that

[P, V] =0 PT10) =0, (57)

which implies
PTVI|0) = VPT|0) =0, (58)

where |0) is the free-field Fock vacuum. This means that
V|0) is an eigenstate of P* with eigenvalue 0. Inserting a
complete set of intermediate states between V' and V in
(0|[VTV|0), the absolutely continuous spectrum of p;
cannot contribute to the sum over intermediate states
because p; =0 is a set of measure 0. This means that

V[0) = [0){0[V]0) (59)

or interactions that preserve the kinematic symmetry leave
the free-field Fock vacuum unchanged.

The observation that the interaction leaves the vacuum
invariant implies that it is an operator on the free-field Fock
space. The irreducibility of the light-front Fock algebra
means that the interaction can be expressed in terms of
fields in this algebra. The Poincaré generators, defined by
integrating the + components of the Noether currents that
come from Poincaré invariance of the action over the light
front, are also linear in this interaction. This means that it
should be possible to solve for the relativistic dynamics of
the field on the light-front Fock space.

i /dp*@(er) e P (T=yT) et (7 y7)

S(x -y)= (54)

———sin <1 pr(x — y‘)>6(xl —-y.) = —;LG(X_ =y7)o(x, —yyi). (55)

= —55()5_ —y7)8(xL —yu1), (56)

A more careful analysis shows that the interaction, while
formally leaving the light-front invariant, has singularities
at p™ =0, so the formal expressions for the interaction-
dependent generators are not well-defined self-adjoint
operators on the free-field Fock space. This is because
the interaction contains products of operator-valued
distributions which are not defined. Discussions of the
nontriviality of the light-front vacuum and the associated
“zero-mode” problem, which is the subject of many papers,
can be found in [7,49-55] and the references cited therein.

The expressions for the Poincaré generators are defined
on the free-field Fock space if infrared and ultraviolet
cutoffs are introduced, but the cutoffs break the Poincaré
symmetry. The nontrivial problem is how to remove the
cutoffs in a manner that recovers the Poincaré symmetry.

While the solution of this last problem is equivalent to
the unsolved problem of giving a nonperturbative definition
of the theory, cutoff theories should lead to good approx-
imations for observables on scales where the cutoffs are not
expected to be important.

IV. FORMAL LIGHT-FRONT FIELD DYNAMICS

The Lagrangian density for a scalar field theory is
1 1
LH)) = =50, p(x) = 3 () = V()
(60)

where 7#* is the metric tensor with signature (—, +, 4, +).
The action is

Am@=ﬂfwww» (61)

Variations of the field that leave the action stationary satisfy
the field equation,
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0% ¢(x)
8()60)2

= V2p(x) + m*p(x) + g;—g)) =0. (62)

Changing to light-front variables, the partial derivatives
become

I R R
070X 0x%0xt  ox0ox~ oxt ax- T
(63)
o0 Oxt 9 Ox 0 0 0
R T e R R e e L
(64)
Squaring and subtracting give
2 2
0 3 0 o 0 (65)

a2 " a(®)?  oxtox

It follows that the Lagrangian density (60) and the field
equation in light-front variables have the forms

L) = 20_9(x)0,9(x) =3 V19(x) - V. (x)

M~ V() (66)
and

— V2 p(x) + m?p(x 8V—(@:
40,.0_¢(x) = Vig(x) + ¢()+8¢(x) 0. (67)

Invariance of the action under infinitesimal changes in the
fields and coordinates

P(x) = ¢'(x') = p(x) + 6¢(x)

X = x4 6x#(x),

(68)

along with the field equation, leads to the conserved
Noether currents,

5'”]” (x) =0, (69)
where the Noether current is

0L(¢)

JH(x) = Ly6x, + 20,0)
u

(6¢(x) — ,6x).  (70)

The Noether currents associated with translational and
Lorentz invariance of the action are the energy-momentum,
T#, and angular-momentum, MHP | tensors,

8T =0 9,Mrb =0, (71)

where for the Lagrangian density (66)
™ = L(p(x)) + p(x)0" $(x), (72)
MHP = THaxP — TP xo, (73)

Integrating the 4+ component of the conserved current over
the light front, assuming that the fields vanish on the
boundary of the light front, gives the light-front conserved
(independent of x™) charges,

d d
L opi—g  Lgw—y, 74
dx* dx* (74)

where

dx | dx~ dx | dx~
PH :=/ XJ‘2x T+ :/%(TW_FTM) (75)

and

These are the conserved four-momentum and angular-
momentum tensors. They are independent of x™ and thus
can be expressed in terms of fields and derivatives of fields
restricted to the light front.

In order to construct the Poincaré generators, the first
step is to express the + component of the energy-momen-
tum tensor and angular-momentum tensors in terms of
fields on the light front,

T =40_¢(x)0_(x). (77)
T+ = =20_¢(x)0ip(x). (78)
T =Vi¢(x) - Vid(x) + m’d*(x) + 2V($(x).  (79)

M = 40_¢(x)0-p(x)x = (V. ¢(x) - V. h(x)
+ m2*(x) + 2V (p(x))x ", (80)

M = 40_p(x)0_p(x)x' +20_p(x)D,p(x)x*. (81)

MY = (V ¢(x) - Vi p(x) + m*¢*(x)
+2V(p(x))x' 4 20_p(x)0ip(x)x™, (82)

MY = =20_¢(x)0;p(x)x! +20_p(x)0;p(x)x'.  (83)

The Poincaré generators are constructed by integrating
these operators over the light front,
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pt—a4 / d"_f“ 0_p(x)0_(x), (84)

Pi— -2 / dx—f“ 0_p(x)9p(x), (85)

p= [ 90 ¥ + 00 + 2V (gL, (56

7= = [ 40 5000 0 = (Vo) Vapla) () + 2V (H)) (87)
7= [ B8 (40, g0 g + 20 OB (58)

ri- | L (9,000 - V1900) + m2R () + 2V (90)3 +20_HO ) ). (89)
Jil — / dx—;ﬂ L (220_p(x)D,p (X)) + 20_(x)D;p(x)xT). (90)

For free fields, these operators can be expressed in terms of the light-front creation and annihilation operators (51) and (52)
using the identities

/ ) = / W,ﬂwma(m, o1)
/ dx_f 1090 () = i / 0(p*)dp*dp.a' (p)p*a(p), (92)
/ dx_;lzﬁ D-H0H) == / 0(p*)dp*dp.a (p)p'a(p). (93)
/ L 000() = / W)ﬂwm(ﬁ)%(m. (94)

Using (91)—(94) in (84)—(90) gives the following expressions for the Poincaré generators for a free field in terms of the light-
front creation and annihilation operators:

Pt = [ ap*dp. o (p)p*a(h) (95)

P = [ dp @p.00)a (p)p'ath) (%)

P = [ap .o ()P aip) (97)

5= [ dp*dp.oh)a 5) (p+ (—21'8%) —xt wyz(ﬁ), (98)
1= [apr@powna @ (v (i) - )ato), (99)
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PLER (10 -2 (i) Jato).

Ji = /dp+d2pﬁ(ﬂ+)fl*(13) <pf (—iai,»—p’(—iaiﬂ))&(ﬁ)-

(100)

(101)

Since these are independent of x™, the expressions with an explicit x* dependence can be evaluated at x* = 0. These

expressions lead to the following identifications:

e

J_I:: Kﬂ +—J2:: Pﬂ

V. WAVELET BASIS

In this section, the multiresolution basis that is used to
represent the irreducible algebra of fields on the light front
is introduced. Wavelets provide a natural means for exactly
decomposing a field into independent discrete degrees of
freedom labeled by volume and resolution. In this repre-
sentation, there are natural truncations that eliminate
degrees of freedom associated with volumes and resolu-
tions that are expected to be unimportant in modeling a
given reaction.

While there are many different types of wavelets, this
application uses Daubechies [37,38] L = 3 wavelets. These
are used to generate an orthonormal basis of functions with
the following desirable properties: (1) all of the basis
functions have compact support, (ii) there are an infinite
number of basis functions with compact support inside of
any open set, (iii) the basis functions have one continuous
derivative, and (iv) polynomials of degree 2 can be
pointwise represented by locally finite linear combinations
of these basis functions.

In what follows, these basis functions will be used to
decompose fields restricted to a light front into an infinite
linear combination of discrete operators with arbitrarily fine
resolutions. The advantage of the light-front representation
is that the resulting discrete algebra is irreducible and the
vacuum remains trivial.

For Lagrangians that are polynomials in the fields, in the
wavelet representation all of the Poincaré generators can be
formally expressed as polynomials in the discrete fields on
the light front with coefficients that can be computed
analytically. While the polynomials are finite degree, there
are an infinite number of discrete field operators.

The construction of the wavelet basis starts with the
fixed-point solution of the renormalization group equation

2L—-1

s(x) = mDT's(x), (104)
=0

::Irl__JQZZIT

JIP=K+J =E, (102)
J2=K>-J'=F% (103)
[
where

Df(x)=+v2f(2x) and Tf(x):=f(x—1) (105)

are unitary scale transformations and translations. The fixed
point, s(x), is a linear combination of a weighted sum of
translates of itself on a smaller scale by a factor of 2. The
weights &, are constant coefficients chosen, so s(x) satisfies

/Tms(x)T”s(x) =34,, and

xh = ZcﬁT”s(x)k < L pointwise.  (106)

There are different weights 4, for different values of L. The
L =3 weights are the algebraic numbers in Table I.
Solving (104) is analogous to finding a fixed point of a
block spin transformation, except the averaging over blocks
is replaced by a weighted average.

The solution of the renormalization group equation (104)
is a fractal valued function that has compact support for
x € [0,2L — 1]. For L = 3, the solution has one continuous
derivative with support on the interval [0, 5]. Since the scale
can be changed by a general unitary scale transformation, a
scale is fixed by the convention

TABLE I.  Scaling coefficients for Daubechies L = 3 wavelets.
ho (1+ 10+ /5 +21/10)/16v2
hy (5+V10+3v/5 + 21/10)/162
hy (10 = 2v/10 + 2v/5 + 2/10)/16V2
hs (10 = 2y/10 - 21/5 + 21/10)/16V2
hy (5 + /10 - 3v/5 + 21/10)/16v/2
hs (1+ V10— /5 +2V10)/16v2
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(107)

/ s()dx = 1.

Because s(x) is fractal valued, it cannot be represented in
terms of elementary functions; however, it can be exactly
calculated at all dyadic rationals using the renormalization
group equation (104). It can also be approximated by
iterating the renormalization group equation starting with a
seed function satisfying (107). The evaluation of s(x) is not
necessary because most of the integrals that are needed in
field theory applications can be evaluated exactly using the
renormalization group equation. The integrals can be
expressed in terms of solutions of finite linear systems
of equations involving the numerical weights /; in Table 1.

The next step in constructing the wavelet basis is to
construct subspaces of L?(R) with different resolutions
defined by

o {or

The resolution is determined by the width of the support of
these functions, which for L = 3, is 5 x 27%. The functions

s (x) =

for fixed k, are orthonormal, have compact support on
[27%n,27%(n + 5)], satisfy

Zc DFT™s( §:|c,,|2 < oo}

(108)

DT (x)s(x). (109)

/s’,ﬁ(x)dx = 27k/2 (110)
and are locally finite partitions of unity
D oMk (x) = (111)

The subspace S* is called the resolution 27 subspace
of L*(R).

The scale transformation D has the following intertwin-
ing properties with translations and derivatives:

d d
—D=2D—.
dx dx

TD = DT? and (112)
Applying DT to the renormalization group equation,
using (112), gives

2L—1
E h Dk+1 T2n+1
=0

k+1
E , hls2n+l

which expresses every basis element of S* as a finite linear
combination of basis elements of S**! or

(113)

Sk c Sk (114)
This means that the lower resolution subspaces are sub-
spaces of the higher resolution subspaces. The orthogonal
complement of S in S¥*1 is called W*,

Sk+1

=S Wk, (115)

Since WK ¢ S¥*1, orthonormal basis functions wX(x) in
Wk are also linear combinations of the sk*!(x). These
functions are defined by

wh(x) = DFT"w(x), (116)
where w(x) is the “mother wavelet” defined by
2L-1
x)=_ gDT's(x) (117)
1=0

and the coefficients g; are related to the weight coefficients
h; by

g =("Vhy_o, 0<I<2L—1. (118)

The orthonormal basis functions w(x) for W* are called
wavelets. Since w (x) are finite linear combinations of the
skt1(x), they have the same number of derivatives as s(x).

w,,( ) also has the same support as s¥(x). Finally, it follows
from (106) that

0<m<L.

/xmwﬁ(x) =0 (119)
Equation (119) is equivalent to the condition (106).
Equation (115) means that the wavelet subspace W
consists of functions that increase the resolution of S
from 2% to 2-(k+1),

The inclusions (114) imply a decomposition of S¥*" into
an orthogonal direct sum of the form

Sk+n — Wk+n—l @ Wk+n—2 @ . @ Wk @ Sk, (120)
which indicates that the resolution of S* can be increased to
275" by including additional basis functions in the sub-
spaces {WK=1 WK}, This can be continued to arbi-
trarily fine resolutions to get all of L*(R),

L2(R)

Since all of the subspaces are orthogonal, an orthonormal
basis for L2(R) consists of

{Sﬁ<x)};°:—oo U {W:y(x) ;O:—oo.m:k

— Sk @R, Wh =g _ W, (121)

(122)
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for any fixed starting resolution 27% or

Wi ()} ——oo-

The basis (123) includes functions of arbitrarily large
support, while the basis (122) consists of functions with
support in intervals of width 27/(2L — 1) for [ > k.

The basis (122) is used with L = 3 Daubechies wavelets
[37,38]. Locally finite linear combinations of the L =3
scaling functions, s¥ (x), can be used to pointwise represent
polynomials of degree 2. The wavelets, w/,(x), are orthogo-
nal to these polynomials. The L = 3 basis functions have
one continuous derivative.

(123)

i .X+ Z ¢lmn

where £; are the basis functions,

&1(x) € {5 ()} o U Wi () 1o s

In what follows, the shorthand notation is used,

(125)

En(R) = &,_(x7)&,, (x)E,, () Z ZZZ
)
With this notation, (124) has the form
Zcbn )en (%), (127)

which gives a discrete representation of the field as a linear
combination of discrete operators with different resolutions
on the light front.

Each discrete field operator, ¢, (0), is associated with a
degree of freedom that is localized in a given volume on the
light-front hyperplane. In addition, there are an infinite
number of these degrees of freedom that are localized in
any open set on the light front.

While the fields are operator valued distributions, that
does not preclude the existence of operators constructed by
smearing with functions that have only one derivative. Note
that the support condition implies that the Fourier transform
of the basis functions are entire.

VIL. KINEMATIC POINCARE
TRANSFORMATIONS OF FIELDS IN THE
WAVELET REPRESENTATION

Since this representation is formally exact, kinematic
Poincaré transformations on the algebra of fields restricted
to the light front can be computed by acting on the basis

VI. WAVELET REPRESENTATION OF
QUANTUM FIELDS

In what follows, the basis (122) is used to expand
quantum fields restricted to a light front. It is useful to
think of the starting scale 27% in (122) as the resolution that
is relevant to experimental measurements. The higher
resolution degrees of freedom are used to represent shorter
distance degrees of freedom that couple to experimental-
scale degrees of freedom.

The basis (122) can be used to get a formally exact
representation of the field operators of the form

x7)En(x")E,(x?)  where ¢lmn(x+):/dzdex_fl(x_)ém(xl)fn(xz)qb(i"x+)7 (124)

functions. This follows from the kinematic covariance of
the field

UA, a)p(X, xt =0) U (A, a) = p((AX+4), x
for (A, a) in the light-front kinematic subgroup. Using the

discrete representation of the field on both sides of this
equation gives the identity

U(A.a)> ¢a(xt =0

(X)U' (A a)

(129)

This shows that kinematic transformations can be com-
puted exactly by transforming the arguments of the
expansion functions.

The transformation property of the discrete field oper-
ators restricted to a light front follows from the orthonor-
mality of the basis functions (129),

U(A,a)y (x* =0)U" Z¢m (x" =0)Unn(A,a),

(130)

where the matrix

(%) (131)

Unn(A,2) = / &x dxEn(AX +a

is a discrete representation of the light-front kinematic
subgroup.

This identity implies that in the wavelet representation
kinematic Lorentz transformations on the fields can be
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computed either by transforming the arguments of the basis
functions or by transforming the discrete field operators.

VIII. STATES IN THE WAVELET
REPRESENTATION

Because the algebra of free fields restricted to the light
front is irreducible and kinematically invariant interactions
leave the Fock vacuum unchanged, the Hilbert space for the
dynamical model can be generated by applying functions of
the discrete field operators, ¢,(x" =0), to the Fock
vacuum.

Smeared light-front fields can be represented in the
discrete representation as linear combinations of the dis-
crete field operators,

Wt =0 =Y [ Eridv (R EME =0).

(132)
Equation (132) can be expressed as
p(f.x+=0) anqbn =0),  (133)
where
for= [ Eridv ) (134)

States can be expressed as polynomials in the smeared
fields applied to the light-front Fock vacuum

> o ®(Fny-0) -+ $(fon, 0)]0).

This representation can be reexpressed as a linear combi-
nation of products of discrete fields applied to the Fock
vacuum

(135)

Z Cm1-~-mn¢m] (O)

The inner product of two vectors of this form is a linear
combination of n-point functions. For the free-field alge-
bra, the n-point functions are products of two-point
functions. The two-point functions have the form

- m, (0)[0). (136)

007 00(6.010) = [ “P5T L F g ).

(137)

This integral is logarithmically divergent if the Fourier
transforms of the smearing functions do not vanish at
pt=0. Since p™ =0 corresponds to infinite three-
momentum, this requirement is that the smearing functions
need to vanish for infinite three-momentum.

From (133) and (137), it follows that the inner product
above is a linear combination of two-point functions in the
discrete fields, ¢, (x™ = 0).

The basis functions &,,(x) have compact support which
implies that their Fourier transforms are entire functions of
the light-front momenta p. This means that they cannot
vanish in a neighborhood of p™ = 0; however, they can
have isolated zeroes at p™ = 0. For the wavelet basis
functions, w!,(x), the vanishing (119) of the first three
moments of the L = 3 wavelets implies that

1
~ _ I (=) I —
wm(p+)p+0—2ﬂl/2/wm(x Ydx~ =0

& 1

(139)

Since the Fourier transforms are entire, this means that they
have the form W', (p™) = (p*)3fL,(p™) where f1,(p*) is
entire. For the scaling function basis functions, s¥, (x), the

normalization condition (111) gives

1 1
Sm(Ph) preo = / m(x7)dx™ = 727 #0.

2712 2n
(140)
These results imply that
(Olgpm (x™ = 0)¢hn (x™ = 0)]0) (141)

is singular if both basis functions have scaling functions in
the x~ variable, but are finite if at least one of the basis
functions has a wavelet in the x~ variable.

Since the smearing functions, f(p), should all vanish at
pt =0, the discrete representation will involve linear
combinations of wavelets and scaling functions whose
Fourier transforms all vanish at p™ = 0. In computing
these quantities, the linear combinations of scaling func-
tions should be summed before performing the integrals.
This can alternatively be done by including a cutoff near
p™ =0, doing the integrals, adding the contributions, and
then letting the cutoff go to zero.

IX. DYNAMICS

The dynamical problem involves diagonalizing P~ on
the free-field Fock space or solving the light-front
Schrodinger (28) or Heisenberg equations (29). The two
dynamical equations can be put in integral form
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() [0) = ¥t = 0)]0) - £ / [P P()][0)dx™
(142)

or

O(x+) = O(x* = 0) +é/) AP, 0(xY)], (143)

where ¥(x* = 0) and O(x™ = 0) are operators in the light-
front Fock algebra.

The formal iterative solution of these equations has the
structure of a linear combination of products of discrete

J
[¢m(0)1 d)n (0)] = _i.émmlémznz /gm' ()C_)E()C_ - y_)én‘ (y_)dx_dy_'

Unlike the inner product, the commutator is always finite
since both &,,-(x7) and &,-(y~) have compact support.
The commutator (144) can be computed exactly using
the renormalization group equations. The computation
involves three steps. The first step is to express &,,-(x7)
and &,-(y™) as linear combinations of scaling functions on
a sufficiently fine common scale. The second step is to
change variables, so the commutator is expressed as a linear
combination of commutators involving integer translates of
the fixed-point solution s(x~) of the renormalization group
equation. The last step is to use the renormalization group
equation to construct a finite linear system relating the
commutators involving integer translates of the s(x7).

2L-1 2n+2L-1
Sﬁ(x) = Z hlslzcjzil(x) = Z hm—ZnanJr](x) =
=0 m=2n
and
2n+2L—-1

2L-1
wh(x) = D aishili(0) =
1=0

m=2n

While the matrices H,,.,, and G,,.,, are formally infinite, for
each fixed n, these are O unless 2n <m <2L — 1 + 2n.
Using powers of the matrices,

H™ = Z H, Hyy, - Hy o (149)

and G, the basis function can be represented as finite linear
combinations of finer resolution scaling functions

Z gm—2i1Sﬁ1+l ()C) =

fields, ¢,(0), in the light-front Fock algebra with x*-
dependent coefficients. What is needed to perform this
iteration are the initial operators ¥(x* = 0) and O(x™ = 0)
expressed as polynomials in the ¢, (0), the expression for
P~ as a polynomial in the ¢, (0), and an expression for the
commutator, ¢y, (0),$,(0)], of the discrete fields on the
light front.

X. THE COMMUTATOR

It follows from (55) that the commutator of the discrete
fields is

(144)

I
Applying D*T" to the renormalization group equation
and the expression for w(x) gives

i
DFT™s(x) = > hD*HIT?s(x) (145)
L=0
and
l
DFT"w(x) =Y gD*H 1T (x). (146)

L=0

These equations express s*(x) and wX(x) as linear combi-

nations of the s&1(x),

2n+2L-1
H,.,s&™(x)  where H,,, = h,,_, (147)
m=2n
2n+2L-1
Z Gn;msﬁjl ()C) where Gn;m = Gm-2n- (148)
m=2n
sk =" Hns, (150)
]
(151)

wy = E H?t_lelstrmv
It

where the sums in (150) and (151) are finite. Using these
identities, all of the integrals can be reduced to finite linear
combinations of integrals involving a pair of scaling
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functions, s¥(x) = 2¥2s(2Xx —n), on a common fine
scale, 2%,

What remains is linear combinations of products of
integrals of the form

/ sk (x)e(a —y)sk (v )da=dy

:/2k/2s(2kx‘—m)e(x‘—y‘)2k/2s(2ky‘—n)dx‘dy‘.

(152)
Changing variables
y~ =2k —n, x™ =2k —n, (153)
and noting
e(x™ —y7) = e(2kx™ = 2ky7), (154)
this becomes
[2tst—me =y sty —mdvdy =, (155)

/2"‘s(x’_ +n—m)e(x'~—y"")s(y")dx'~dy'==2" I[n—m],

(156)

I[n] = /s(x‘ +n)e(x” =y )s(y")dx"dy~.  (157)

I[n] can be expressed as a difference of two integrals,

tl = [ st | [0 = [T st ey
(158)

while the normalization condition (107) gives

[stam| [“som [

Adding (158) and (159) gives

) =2 [ s ) [ 500

If the support of s(x~ + n) is to the right of the support of
s(y7), the integral is 1 while if the support of s(x~ + n) is
to the left of the support of s(y~) the integral is —1. Thus,
for the L = 3 basis functions,

s(y‘)] dx~dy-=1. (159)

“Vdx-dy-—1.  (160)

1 n<=-5
In] —4<n<4.
-1 n>5

(161)

The I[n] for n € [—4, 4] are related by the renormalization

where group equations
In] = /s(x‘ +n)e(x™ =y )s(y7)dx"dy” =, (162)
2> hk/ (2x™ 4 2n — De(x™ — y7)s(2y™ — k)dx~dy™ =, (163)
72 hihy / (2x™ 4 2n — De(2x™ =2y )s(2y™ — k)2dx"2dy™ =, (164)
1
—Z hihy / s(x4+2n—De(x~ =y )s(y” —k)dx~dy =, (165)
th hk/ ~ 4 2n =1+ k)e(x —y)s(y )dx"dy” =, (166)
—Zh hd2n +k—1] = thH snhid[m Zam ol (167)
where
5
=2 hhy, -5<n<5. (168)
1=0
The numbers a, will appear again. The a, are rational numbers [56-58]. For L = 3, the nonzero a,, are
75 25 3
(l0:2 (11:(1_1:6—4 ay = d_3 = 128 (15261_5258. (169)
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The 9 x 9 matrix A,,, = d,_y, (=4 <m,n <4) has the
following rational eigenvalues 1=2,1,1.1.+
— & S0 it is invertible.

The nontrivial I[n] are solutions of the linear system,

Z Amnl[n}

(170)
n=—4
where
dm = as_om — A-5-2m- (171)
The solution of (170) is
—3.34201389¢ 400, n=—4
8.33333333¢ + 00, n=-3
—1.79796007¢ 401, n= -2
1.94444444¢ 401, n= -1
I[n] = 0.00000000e — 00, n=0 (172)
—1.94444444¢ 401, n=1
1.79796007¢ + 01, n =2
—8.33333333¢ + 00, n=3
3.34201389¢ + 00, n=4

While (172) is a numerical solution, the exact solution is
rational since both A,,, and d, are rational.

supports that are sufficiently separated, the integrals vanish
because the moments of wavelets vanish. This will also be
true of linear combinations of scaling functions that
represent functions that vanish at p* = 0.

XI. POINCARE GENERATORS

The other quantity needed to formulate the dynamics is
an expression for P~ or one of the other dynamical
Poincaré generators expressed in terms of operators in
the irreducible algebra. Since the generators are conserved
Noether charges, they are independent of x*, so the
generators can be expressed in terms of fields on the light
front. The discrete representations of the generators can be
constructed by replacing the fields on the light front by the
discrete representation (124), (127) of the fields. The
integrals over the light front become integrals over products
of basis functions and their derivatives. This section
discusses the computation of these integrals using renorm-
alization group methods.

A scalar ¢*(x) theory is used for the purpose of
illustration. In this case, the problem is to express all of
the generators as linear combinations of products of
discrete fields.

The construction of the Poincaré generators from
Noether’s theorem was given in Sec. I'V. Using the discrete
representation of fields, the light-front Poincaré generators
(84)—(90) have the following forms:

This solution, along with (161), can be used to construct Pt — Z m(0)pa (0): P . (174)
the commutator of any of the discrete field operators using
(145)—(155).
The general structure of the commutators is where
[#m(0)-¢n(0)] = Con Piin =2 / A dx,0_En(X)0_E,(R).  (175)
= (scale factors) x (powers of H,G) x I[n].
(173) =3 On(Oa(O):Phn (176)
Note that while this commutator looks very nonlocal, if
the scaling functions in (144) are replaced by wavelets with ~ where
|
Phn == [ dv 3.0 60(000,6n (%), (177)
= 1 hm(0)a(0):Pan D ¢hn,(0)¢n, (0)n, (0)¢bn, (0): Prs iy mom, - (178)
mn njnyngny
where
. (1 ] I B
Pm.n = dx~d X1 Evlgm(x) : VLgn(X) + Em gm(x)én(x> (179)
and
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Pr womn, = A / dr=dx &y (R)En, (X)En, (R)En. (),

:Z:¢m(0)¢n( K?nn + Z ¢n1 ¢n2( )(rbn;( )¢n4(0) nln N3Ny

n;nyngny

where
Khn = [ @@ (26,570 60(R00-60(8) = 35 Va6n(R) - V.a(R) = 5170 6 (060 5) )
and
Ky moan, = =4 [ i b, ()6, (%), (020, (9)
Setting x™ = 0, this becomes
Kin 2 / A dx X0 _Em(X)0_E0(R): K momm, = O.

For the remaining generators,

= Z :¢m<o)¢n (O) :Erln,n’

where
Eha = [ @210 6 (R00-60(3) +0-én(00160(005) = 2 [ ¥10_n(000-60 (),
= D000 0):Eh
where
Ehn = [ dv (2006 (R)0_6(8) + 0_tn(®)0:60 (8x7) = 2 [ d 2160 (%100 (X).
= S m OO0 Fh 3 i, O, O (01, O)3F
where
Pl = [ s (339,60 V2600 + 3 mPERIEE) + 0.6 ®)06(X) )
and
Fhnsnon, =1 [ ddx 316, (08, (0, (D6, (),
F2=;:¢m<0>¢n< F%,.+Z b, (0)¢bn, (0)¢pn, (0) b, (0): FR 1, myms
where
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1
Fin= /dx—dzxi (%xzvﬂfk (x) -V &(x) + Exzmsz(i)fl(i) + x_a—é:k(i)azfl(i)> (193)
and
B2 o= / dr=dx X2y ()6, (R)En, (X)En, (). (194)

All of these operators have the structure of linear combinations of normal products of discrete fields evaluated at x™ = 0

. . , - - s 3 . . ) . .
times constant coefficients, Py .. P n,» P ny Poynonsng: Kninos Jninys Enynys Fynys Fhynynsn,» Which are integrals

involving products of basis functions and their derivatives. The three-dimensional integrals that need to be evaluated to
compute these coefficients are products of 3 one-dimensional integrals that have one of the following eight forms:

/ ()&, (x) / 30, ()0 () / 30,8, (x)0,6, (). (195)
/ et (x)E,(x) / e, (X)En(x) / 330, (1)0,6, (1), (196)

/ dx&p, (x)&En, (X)E,, (X)E,, (x) / dxx&y, (%)&5,(X)8,, (X)E5, (%) (197)

|

In what follows, it is shown how all of these integrals can be After expressing the integrals in terms of scaling
computed using the renormalization group equation (104).  functions, s, (x), and their derivatives, the one-dimensional
The integrals (195)—(197) are products of basis functions integrals (195)—(197) can be expressed in terms of integrals
which may be scaling functions with scale 27 or wavelets involving products of the s,(x). A variable change x —
of scale 27%~/ for [ > 0. The same methods that were used  x’ = 2~'x can be used to express all of the integrals in terms
in the computation of the commutator function, (145)—  of translates of the original fixed point s(x). The scale

(151), can be used to express the integrals (195)-(197) as  factors for each type of integral are shown as follows:
linear combinations of integrals involving scaling functions

on a common scale fine scale, 27°.

[ xsux1sh09) = b, (198)

[ dsosu(sh) =2 [ axs (515,00 (199)

[ st =2 [ ax (55,0 (x), (200)

[ 5 (615,605, (605,60 = 2 [ s (208 (3150, (0050, 0 (201)

/ dxxsl, (x)sh (x) = 2~ ( / dxxs(x)$,_m(x) + mémﬂ), (202)

[ dxdush i) = [ dxtat m)s (515,000 (203)

/ dxxd), sl (x),s0 (x) = 2! / dx(x + m)s' (X)), (1), (204)

[ st ()5t ()5t ()5t ) = [t m 8150, (005, 3150, () (205)
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These identities express all of the integrals involving scale
27 scaling functions in terms of related integrals involving
the s,(x). The compact support of the functions s, (x)
means these integrals are identically zero unless the indices
and the absolute values of their differences are less than or
equal to 2L — 2 which is 4 for L = 3.

The integrals of the right side of (199)-(205) are the
following integrals:

mn = [ dxsy(x)s() m=n. (200

Dy[m] = / d %(x)sm(x) _4<m<4 (207)

Dafm] :/dx%( ) D) —asmsa (208
Ly [m][n][k] = /dxs(x)sm(x)sn(x)sk(x)

—4<m,nk,m—nm—kk—n<4, (209)

X[m] = / dovs(x)sn(x)  —4<m<d  (210)

Xy [m] = /dxx%(x)sm(x) _a<m<4, (1)

Xo ] =/dxx§( )%’l( ) —4<m<4, (212)

ILMMM=/MMMMW%@M@

-4 <m,nkm—nm—kk—n<4. (213)
The renormalization group equation in the form
5
= Z hV/2s(2x —2n 1) (214)
1=0

and a variable change x — x’ = 2x lead to the following
linear equations relating the nonzero values of these
integrals:

= Z am_an m] - Z Aanl[m}

(215)

m=— m=—4
=2 Z - 2nD2 =2 Z AanZ (216)

m=—4 m=—4

where a,,
5
=2 Mgl —5<m<S (217)
k=0

is the same quantity (168) and (169) that appeared in the
computation of the commutator function. A similar quan-
tity appears in the homogeneous equations relating the
nonzero ['4[m]|[n][k]’s,

Cy(ml[nllkl:=" " 2mhy by by Ty2m+ L, = [[2n+ 1, = 1)[2k+ 1, — 1) = ZA4 m.nkym' 0/ KDy [m/|[|[K], (218)
Lyl 1y=0 T
[
where 1
Lyclm][n][k] = 5 D Aglmondm n KTy [m') 0| [K]-,
Ag(m,n,k;m' ' K ZZh Pt s Pt —am st a1+ oot
(223)
(219)
! ! !/
The relations involving X[, X1[n], X2[n] and ', ][] K] ,,%;/ <z[:hlhm/_2m+lhn/_2n+lhk’—2k+ll) Ly [m'][n'][K].
have inhomogeneous parts,
(224)

1
m; Ay X[m EZZhIhI—Zn’ (220)
Z AnmXI ] + Zlhlhl—2n+le [m]’ (221)
m7—4 1
= Z AnmXZ[m} + 221h1h1—2n+mD2[m]’ (222)
m=—4 l

Since the 9 x 9 matrix A,,, := d,_,, (— 4 <m,n <4) has
eigenvalues 4 =2,1,4.1, +5. .35, — & it follows that
D, [n] and D,[n] are eigenvectors of A,,, with eigenvalues 1
and % respectively. The normalization is determined by the
equations discussed below. Equation (218) similarly im-
plies that I'y[m]|[n][k] is an eigenvector with eigenvalue 1 of
the matrix A, defined by the right-hand side of (218). The
normalization of I'y[m|[n][k] is also discussed below.
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The matrix (1 — %A) in (220) is invertible, so (220) is a
well-posed linear system for X[n], while the matrices
(1 —%A) and (I —A) in (221) and (222) are singular. To
solve them, the Moore-Penrose generalized inverse [59] is
applied to the inhomogeneous terms to get specific sol-
utions. These solutions are substituted back in the equations
to ensure that the inhomogeneous terms are in the range of
(I—1A) and (I — A), respectively, although this must be
the case since the solutions can also be expressed as
integrals. The general solutions of (221) and (222) can
include arbitrary amounts of the solution of the homo-
geneous equations which are eigenstates of A,,, with
eigenvalues 2 and 1, respectively. The contribution from
the homogeneous equation is determined by the normali-
zation conditions below.

The normalization conditions are derived from the
property that polynomials with degree less than L can
be pointwise represented as locally finite-linear combina-
tion of the s,(x). These expansions have the form

1= s5,(x), (225)
x =3 () +n)sy(x) = (x) + > nsy(x),  (226)
B =Y (@) 4 n)s,(x) = (02 +2(x) Y nsy ()
+ 3 ns,(x), (227)
where
(x") = / s(x)x"dx (228)

are moments of s(x). Differentiating (226) and (227) gives

1= Zns;(x),
x = {x) —l—%z n2s(x).

(229)

(230)

Multiplying (229) by s(x) and integrating the result give
|

I ][] = / s ()50 ()52 (2)

Fyu ] = / dxxs (1) 5 ()52 (2)

and I'3[m][n] is a solution of the eigenvalue problem

3[m][n] = Zas(m, n;m'n' )O3 [m'][n'],

with normalization (235) and

Z nD[n] = —1.

(231)
n=—4
Multiplying (230) by s'(x) and integrating give
4
> n2Dyfn] = -2. (232)

n=—4

These conditions determine the normalization of the
eigenvectors D;[n] and D,[n]. Note that the moments do
not appear in these normalization conditions, although all
moments of s(x) can be computed recursively using the
renormalization group equation and the normalization
condition (107). Using (229) in (211) and integrating by
parts gives

(233)

> X[ =-1.

n=—

Using (230) in (212) and integrating by parts gives

Z nX;[n] = —1.

n=—4

(234)

These conditions determine the contribution of the solution

of the homogeneous equations in the general solution.
The normalization conditions for T'y[m][n]|[k] are

obtained using the partition of unity property (225),

z Ly[m][n][k] = T3[n][k]; z [3[n][k] = 40,

m=—4 n=-—

(235)

> Tulmln)k] =Ty [n]lkl: > Ts[n][k] = X[k],

m=—4 n=-—4
(236)
where
—2L+2<mnm—-n<2L -2, (237)
—2L+2<m,n,m—-n<2L-2, (238)
(239)
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as(m,n;m'n’) = Zhlhm’—2m+lhn’—2n+l‘ (240)
1
I3 [m][n] satisfies
Csom][n] = as(m.n;m'n )Ty, [m'|[n]-. (241)
201
Z(Zlhzhmf_zmﬂhnf_zm)r3[m/nn'], (242)
m'n’ 1
with the normalization constraint
S 0, ][] = X[m]. (243)

These finite linear systems can be solved for all of the
integrals (195)—(197). The results for D1[n], D2[n], X[n],
X1[n], X2[n] for L = 3, which are needed to compute the
constant coefficients for the free-field generators, are given
below. The vector I'y[m]|[n][k] of coefficients for the
dynamical generators has too many components to display.
They can be computed by finding the eigenvector with
eigenvalue 1 of the 9° x 93 matrix ay[m][n][m’][n] with
normalization given by (235). The normalization condition
requires solving for the eigenvector with eigenvalues 1 of
the 92 x 92 matrix az[m][n][m'][n] using the normalization
|

XII. TRUNCATIONS

The value of the wavelet representation is that, while it is
formally exact, it also admits natural volume and resolution
truncations in the light-front hyperplane. Truncations
define effective theories that are expected to be good
approximations to the theory for reactions associated with
a volume and energy scale corresponding to the volume and
resolution of the truncations. The simplest truncation
discards degrees of freedom smaller than some limiting
fine resolution, 27/, as well as degrees of freedom with
support outside of some volume on the light front.

condition (235). Finally, Iy [m]|[n][k] be computed by
applying the Moore Penrose generalized inverse of
(I — a4) to the inhomogeneous term in (223) and adding
an amount of the solution of the eigenvalue problem
(2I — a4)X = 0 consistent with the normalization condi-
tion (236).

All the these quantities can alternatively computed by a
direct quadrature; however, the fractal nature of the basis
functions makes the renormalization group method dis-
cussed above preferable. The values of D1[n], D2[n], X[n],
X1[n], and X2[n| are given below.

D1[-4] = 555 D2[-4] = -5

DI[-3] = -5 | | D231 =5

DI[-2] =-3 || D2[-2] = 55

D1[-1] =32 D2[-1] = —33¢

D1[0] = 0.0 D2[0] =22 . (244)
P == || D21 =38

DI[2] =35 D2[2] = 1%

D1[3] = — 1585 D2[3] = -5

D1[4] = _29120 D2[4] = %

X0[—4] = —3.96222254¢ — 06 \ [ X1[—4] = 1.75026831¢ — 06 X2[-4] = —5.08087952¢ — 04

X0[=3] = —6.76219313¢ — 04 | | X1[-3] = —6.81293512¢ — 04 | | X2[-3] = —8.68468406¢ — 03

X0[—2] = 1.92128831¢ — 02 X1[-2] = —3.98947081¢ — 02 | | X2[-2] = 5.47476157¢ — 01

X0[—1] = —1.21043257¢ — 01 | | X1[—1] = 3.39841948¢ — 01 X2[-1] = =3.01673853¢ + 00

X0[0] = 1.02242228¢ -+ 00 X1[0] = —5.00000000¢ — 01 X2[0] = 6.95730703¢ + 00 (245)
X0[1] = —1.21043257¢ — 01 X1[1] = —1.08504743¢ + 00 X2[1] = —6.40481025¢ + 00

X0[2] = 1.92128831e — 02 X1[2] = 3.30305667¢ — 01 X2[2] = 2.29938859¢ + 00

X0[3] = —6.76219313¢ — 04 X1[3] = —4.31543229¢ — 02 X2[3] = —3.51494681¢ — 01

X0[4] = —3.96222254¢ — 06 X1[4] = —1.37161328¢ — 03 X2[4] = —2.19355544¢ — 02

In this regard, it has similar properties to a lattice
truncation. Unlike a lattice truncation, because the theory
is formally exact, it is straightforward to systematically
include corrections associated with finer resolution or
larger volumes. Some other appealing features are that
the truncated fields have a continuous space-time depend-
ence and can be differentiated, so there is no need to use
finite difference approximations. Finally, it is possible to
take advantage of some of the advantages of the light-front
quantization.

One problem that is common to lattice truncations of
field theory is that truncations break symmetries. In the
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light-front case, truncations break the kinematic covari-
ance. One consequence is that transforming the truncated
field covariantly using (128) is not the same as trans-
forming the truncated field using the matrix (130) and
truncating the result. The difference between these two
calculations is due to the discarded degrees of freedom,
which should be small for a suitable truncation. This
suggests that kinematic Lorentz transformations can be
approximated by using (128) with the truncated fields. The
vacuum of the formally exact theory is the trivial Fock
vacuum if the interaction commutes with the kinematic
subgroup. When the kinematic invariance is broken, the
lowest mass eigenstate of the truncated P~ is not neces-
sarily the Fock vacuum; however, the Fock vacuum should
become the lowest mass state in the infinite-volume, zero-
resolution limit. This suggests that using trivial Fock
vacuum might still be a good approximation.

The basis discussed in this work is not the only possible
basis choice and may not be the best option for treating the
transverse degrees of freedom for fields in 3 + 1 dimen-
sions. In this work, the transverse degrees of freedom are
expanded in products of multiscale basis functions of
Cartesian coordinates, x and y. Truncations of this basis
break the rotational symmetry about the z axis. An
alternative is to expand the transverse degrees of freedom
in a basis consisting of products of functions of the polar
coordinates r and 6 where x = rcos(6) and y = rsin(0).
The basis functions in the @ variable can be taken as the

periodic functions, J#z—”e"”e. This choice maintains the

rotational symmetry, but does not give a multiresolution
treatment of the angle degree of freedom. A second option
is to use the multiresolution basis in the angle variable on
[0, 27] with periodic boundary conditions. In this case, the
truncations will result in a discrete rotational symmetry that
depends on the resolution. In both cases, the radial degree
of freedom can be expanded in a multiresolution basis. The
only difference is that the radial functions have support on
[0, 00] rather than [—oo, oo]. This requires replacing the
basis functions that have support at »r =0 by linear
combinations of these functions that satisfy the boundary
conditions at the origin. The linear combinations in a
subspace of a given resolution can be constructed so they
are orthonormal on [0, oo, resulting in an orthonormal
basis on that subspace; however, the modified basis
functions near the origin in subspaces of different reso-
lution are no longer orthogonal. This results in additional
coupling of degrees of freedom on different scales near
r = 0. This is because the exact boundary conditions at
r = 0 involve functions of all resolutions.

XIII. SUMMARY AND OUTLOOK

This work introduced a multiresolution representation of
quantum field theory on a light front. This is a formally
exact representation of the field theory in terms of an

infinite number of discrete degrees of freedom that are
localized on the light front. Each degree of freedom is
associated with a compact subset of the light front. These
subsets cover the light front, and there are an infinite
number of them in every open subset on the light front. This
representation has the property that there are a finite
number of these degrees of freedom associated with any
finite volume and any given maximal resolution on the
light front.

Each degree of freedom or mode is represented by a field
on the light front integrated over a basis function of
compact support on the light front. The discrete fields
associated with a free-field theory are an irreducible set of
operators on the free-field Fock space. For interacting
theories with self-adjoint kinematically invariant inter-
actions, the spectral condition on P implies that the
interaction cannot change the Fock vacuum. This means
dynamical operators like the Poincaré generators can be
expressed as functions of this irreducible algebra of fields
acting on the free field Fock space.

The Poincaré generators involve ill-defined products of
fields at the same point, so the formal interactions are not
well-defined self-adjoint operators on the Fock space. In
the multiresolution representation, the ultraviolet singular-
ities that arise from local operator products necessarily
appear as nonconvergence of infinite sums of well-defined
operator products. There are also infrared divergences that
appear in products of scaling function modes even after the
smearing. In the light-front case, the ultraviolet and infrared
singularities are constrained by rotational covariance, so
any strategy to nonperturbatively renormalize the theory
must treat these problems together.

Computations necessarily involve both volume and
resolution cutoffs, which result in a well-defined truncated
theory with a finite number of degrees of freedom. As long
as the interaction in the truncated theory vanishes at
pT =0, the interaction will leave the Fock vacuum
unchanged. The variable p™=12-p++/m>+p?
approaches zero in the limit that —Z - p — o0, so it is
an infinite momentum limit, which involves high-resolu-
tion degrees of freedom. Requiring that the interaction
vanish at p* = 0 is a resolution cutoff. This can be realized
by discarding products of scaling function modes in the
interaction. These modes do not contribute to the operator
product when it is integrated over functions with vanishing
Fourier transforms at p™ = 0.

Dynamical calculations evolve the fields to points off of
the light front. This evolution can be performed by iterating
the light-front Heisenberg field equations or by solving the
light-front Schrodinger equation. Both cases involve dis-
crete mathematics. Iterating the Heisenberg field equations
results in a representation of the field as an expansion in
normal products of discrete fields on the light front with x*-
dependent coefficients. Because fields on the light front are
irreducible, the different discrete field operators cannot all
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commute; however, the commutator can be calculated
explicitly and analytically. Vacuum expectation values of
product of fields can be computed by evaluating the
solution of the Heisenberg equations in the Fock vacuum.

There are a number of problems involving free fields that
can be used to try to understand the convergence of
computational strategies in truncated theories. Free-field
theories have the advantage that they can be solved exactly,
so errors can be calculated by comparing exact computa-
tions to computations based on truncated theories. Among
the problems of interest is how is Poincaré invariance
recovered as the resolution is increased in a truncated
theory. Because the basis is local, this can be tested in a
finite volume. Methods for performing this test in the
corresponding wavelet representation of canonical field
theory were discussed in [25]. These methods utilize the
locally finite partition of unity property of the scaling
functions in the expression for the generators in terms of the
integrals over the energy-momentum and angular-momen-
tum tensor densities. In the light-front case, free fields
provide a laboratory to investigate the accuracy of kin-
ematic Lorentz transformations in truncated theories.
Another important problem is how efficiently can the
multiresolution  representation of the light-front
Hamiltonian be block diagonalized by resolution. This
was studied for the case of the corresponding wavelet
representation of canonical field theory in [35]. One
conclusion of that work is that both volume and resolution
need to be increased simultaneously in order to converge to
a sensible energy spectrum of the Hamiltonian (i.e., so it
approaches a continuous spectrum that is unbounded
above). In addition, it was found that convergence to a
block diagonal form slowed as energy separation of the
modes decreased. Another calculation that should be done
is to compare the Wightman functions or commutator
functions of the truncated theories to the exact quantities.
The light-front representation has the advantage that
these can be computed without solving for an approximate
vacuum. Another interesting question is what is the con-
tribution of the product of the infrared singular parts of the
truncated fields to normal ordered products of free fields.
Does the normal ordering remove these contributions?

The next class of problems of interest are 1 + 1-dimen-
sional solvable field theories. These are interesting because
the dynamical equations in the multiresolution representa-
tion generate more complicated operators in the algebra of
fields on the light front. Reference [15] used Daubechies’
wavelets methods in a canonical representation of the field
theory to treat the X-Y model and spontaneous symmetry
breaking in the Landau Ginzburg model.

The real interest is to apply multiresolution methods to
realistic theories in 3 + 1 dimensions. These are computa-
tionally far more complex than problems involving free
fields or problem in low dimensions. There are several

kinds of problems of interest. These include bound state
problems, scattering problems, studies of correlation func-
tions, and extensions to gauge theories. While the discrete
nature of the multiresolution representation has some
computational advantages, they will not be of significant
help for these complex problems, especially since the
number of modes scale with dimension and number of
particles. One of the advantages of multiresolution methods
is that basis functions are self-similar. The result is that the
coupling strength of the various modes differs by different
powers of 2. A systematic investigation could help to
identify the most dominant modes in a given application.
This could be used to get a rough first approximation that
can be improved perturbatively. One interesting property of
the multiresolution representation of the theory is that it is
both discrete and formally exact. In a formally exact theory,
Haag-Ruelle scattering theory can be used to express
scattering observables as strong limits. Of interest is to
use the exact representation to develop an approximation
algorithm for computing scattering observables in this
discrete representation. This is not trivial, since the
time limits will not converge if they are computed after
truncation.

Bound state calculations could be computed by diago-
nalizing the mass operator on a subspace, similar to how
this is done using basis light-front quantization [47].
Variational methods could prove useful in this regard.

For gauge theories, the exact representation of the field
theory in terms of a countable number of discrete fields
with different resolutions suggest that a similar construc-
tion could be performed in using of gauge-invariant degrees
of freedom. To understand how this might work, imagine a
set of gauge-invariant Wilson placquets with a given lattice
spacing on a light front. The expectation is that on the light
front these form an irreducible algebra of operators of a
given resolution. Decreasing the lattice spacing by a factor
of 2 results in a new algebra that is an irreducible set of
operators for the increased resolution. The coarse-scale
algebra should be a subalgebra of the fine-scale algebra. In
the same way, that scaling functions on a file scale can be
expressed as wavelet and scaling functions on a coarse
scale, it can be anticipated that there is something like a
wavelet transform that generates the fine-scale algebra in
terms of generators for the coarse-scale algebra and
independent gauge-invariant operators that generate the
degrees of freedom in the fine-scale algebra that are not in
the coarse-scale algebra. As in the wavelet case, this could
be repeated on every scale, leading to a countable set of
independent operators that can generate placquets on all
scales. This should result in an irreducible set of gauge-
invariant operators on the light front, with a formally trivial
vacuum. While this construction is far from trivial, having a
formally exact representation of gauge theories in terms of
local gauge-invariant variables is a desirable goal.
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Another class of applications where the wavelet repre-
sentation may be useful is in quantum computing. The
fundamental property is that the local nature of the
interactions involving different discrete modes means that
transfer matrices for small time steps can be expressed as
simple quantum circuits. Some comments on using wavelet
discretized fields in quantum computing appear in

Refs. [29,33]. The advantage in the light-front case is
the trivial nature of the vacuum.
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