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Electron-positron pair production in spatially and temporally inhomogeneous electric and magnetic
fields is studied within the Dirac-Heisenberg-Wigner formalism (quantum kinetic theory) through
computing the corresponding Wigner functions. The focus is on discussing the particle momentum
spectrum regarding signatures of Schwinger and multiphoton pair production. Special emphasis is put on
studying the impact of a strong dynamical magnetic field on the particle distribution functions. As the
equal-time Wigner approach is formulated in terms of partial integro-differential equations an entire section
of the manuscript is dedicated to present numerical solution techniques applicable to Wigner function
approaches in general.
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I. INTRODUCTION

The creation ofmatter out of thevacuum is one of themost
exciting concepts of high-energy physics. In particular
strong-field quantum electrodynamics (QED) is perfectly
suited to study the generation of matter through energy,
because it provides a comparatively clean setting [1–3].
The main issue is to create the right laboratory conditions

as it takes extremely strong field strengths in order to see
any form of signal of quantum vacuum nonlinearities [4–7].
However, as laser technology has significantly advanced
over the last years probing the quantum vacuum in an earth-
based laboratory seems to be in reach [8–10]. In fact, the
research field has recently gained interest to the extent that
upcoming laser facilities already prepare for high-intensity
experiments [11–13].
In the context of particle creation, it has been shown

already that matter can indeed be created in a lepton-photon
collider. It was demonstrated that highly energetic elec-
trons, if subjected to huge electric fields, emit photons in
the multi-keV regime which, in turn, interact with the light
beam itself eventually forming an electron-positron pair
[14,15]. On the other hand, the Schwinger effect the
depletion of the quantum vacuum in constant background
fields, has been predicted 90 years ago [3], but still remains
untested. Only recently it was suggested that both mecha-
nism could be utilized together in a multibeam scenario

leading, in theory, to a tremendous increase in the creation
rate [16]. For further reviews on pair production in general
see Refs. [17–20].
Due to the highly complex nature of the subject, only a

few analytical results can be found [21–23]. Hence, we
have to rely on numerical approaches in order to describe
pair production accurately. Over the timespan of approx-
imately 20 years we have seen the rise of an abundance of
computational methods, all performing very well in certain
parameter regions [24–27]. One common trait, however,
was that they worked best for homogeneous electric fields
as it was argued that the chances to produce particles should
be highest in the vicinity of the focus of two crossed beams
where the magnetic field vanishes. In particular the so-
called quantum kinetic theory (QKT) proved to be very
successful under these special circumstances [28–31]. Only
recently, numerical solvers have been improved to the point
that it is now possible to take into account the spatial
inhomogeneity of laser beams [32–39] beyond any semi-
classical approximations [40–42]. Performing calculations
with these tools revealed additional features of strong
field pair production; particle self-bunching [33], ponder-
omotive effects [43] and spin-field interactions [44].
Furthermore it was shown that disregarding the spatial
finiteness of a laser pulse can lead to spurious effects in the
particle spectrum [45,46].
In order to fully account for the spatial inhomogeneity

of background fields we rely on the so-called Dirac-
Heisenberg-Wigner (DHW) formalism [47–49]. Its major
advantage is its flexibility, because the formalism allows us
to study the pair production process for any given back-
ground field. Once the structure of electric and magnetic
fields has been established the formalism acts as a black
box automatically incorporating all possible production and

*c.kohlfuerst@hzdr.de

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 101, 096003 (2020)

2470-0010=2020=101(9)=096003(24) 096003-1 Published by the American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.101.096003&domain=pdf&date_stamp=2020-05-08
https://doi.org/10.1103/PhysRevD.101.096003
https://doi.org/10.1103/PhysRevD.101.096003
https://doi.org/10.1103/PhysRevD.101.096003
https://doi.org/10.1103/PhysRevD.101.096003
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


interactions mechanisms. Furthermore, as the DHW for-
malism is deduced a priori from a Lagrangian level no
models or assumptions are needed. The only drawback is
that a computational solver based on the Wigner formalism
is generally very resource-hungry, as one solves for the
time evolution of a multidimensional partial differential
equation. To overcome these issues in order to make
simulations feasible novel computational techniques have
to be applied.
Although various articles on theWigner formalism and its

applications have been published in recent years [50–53], a
compendium containing methods and techniques to suc-
cessfully treat the corresponding equations of motion with
computationalmethods is not available. The intention of this
article therefore is to introduce various computational
solution techniques that are applicable to solving them. In
this context, we discuss caveats of the formalism and bring
up ways to overcome them. This is done in addition to
discussions on the solvers’ effectiveness and overall per-
formance including considerations on noise suppression.
We apply all these novel techniques in order to compute

pair production in a regime where tunneling as well as
absorption effects are important. In particular, we study the
impact the magnetic field has on the production yield and
thus on the particles’momentum spectrum. Furthermore, as
the whole creation process is very sensitive to variations in
the background field, e.g., a small change in one parameter
can mean a different creation mechanism becomes favored
thus heavily altering the spectrum, we rigorously analyze
slightly different field configurations eventually improving
our understanding of magnetic field effects in particle
creation scenarios in general.
In short, this manuscript is organized as follows. We first

introduce a quite general model of a background field,
which serves as the connection point for the discussion on
the characteristics of the various production mechanism,
see Sec. II. In Sec. III we introduce the DHW formalism
and in Sec. IV we describe how to solve the governing set
of equations of motion efficiently. In the main part of this
manuscript, Sec. V, the numerical results are discussed.
Eventually, a conclusion is given in Sec. VI.
Throughout this paper we use natural units ℏ ¼ c ¼ 1

and express all quantities in terms of the electron mass
m (¼ meþ ¼ me− ).

II. MOTIVATION

A virtual electron-positron pair is formed due to the
omnipresence of vacuum fluctuations, where the scale is
determined by the Compton time τC ¼ 1=me− ≈ 10−21 s
and Compton length of an, in this case, electron
λC ¼ 1=me− ≈ 10−12 m.
The main task is to prevent these two particles from

recombining. In this way, a virtual pair is turned into two
separate particles. In order to do so, a strong electromag-
netic field is employed acting on the charge carriers. There

are now two different ways to pump energy into the system.
Either via providing enough work to allow for tunneling
(Schwinger effect) or due to the absorption of energy given
by the individual photons forming the background field
(multiphoton pair production). These effects are not mutu-
ally exclusive, thus depending on the background field any
combination of mechanisms is possible.
The probabilities for such an event to happen scale with

the critical field strength

Ecr ¼
m2

e

e
≈ 1.3 × 1016 V=cm: ð1Þ

It is defined as the minimal work that has to be done by the
field over one Compton length in order to create one pair
2eEcrλC ¼ me− þmeþ . The factor of 2 is due to the fact,
that electrons and positrons have opposite charge thus they
are accelerated in opposite directions, too.

A. Model for the fields

The ultimate goal of this article is to study the conse-
quences of applying an additional magnetic field to the
particle creation process and investigate how the different
creation mechanism are affected by it. As we want to
smoothly interpolate between Schwinger and multiphoton
pair production we employ a toy model of the form of

Aðt; zÞ ¼ Aðt; zÞex
¼ ε

ω
exp

�
−
z2

λ2

�
exp

�
−
tk

τk

�
sin ðωtÞex ð2Þ

and derive electric and magnetic fields accordingly

Eðt; zÞ ¼ −∂tAðt; zÞ ¼ Eðt; zÞex
¼ ε

ω
exp

�
−
z2

λ2

�
exp

�
−
tk

τk

�

×
ðktk−1 sin ðωtÞ − ωτk cos ðωtÞÞ

τk
ex; ð3Þ

Bðt; zÞ ¼ ∇ ×Aðt; zÞ ¼ Bðt; zÞey
¼ −

ε

ω
exp

�
−
z2

λ2

�
exp

�
−
tk

τk

�
2z sin ðωtÞ

λ2
ey: ð4Þ

Here, ε gives the peak field strength in terms of the critical
field strength m2=e, ω states the field frequency and τ
describes the pulse length. Moreover, we have decided to
use a variable envelope function, exp ð− tk

τk
Þ, in order to have

better control over the number of cycles in the field. This
choice makes it indeed very easy to switch from few-cycle
to prolonged many-cycle pulses, c.f. Fig. 1. More specifi-
cally, for k ¼ 2 we obtain a Gaussian envelope function,
exp ð− t2

τ2
Þ, leading to the background field to slowly build

CHRISTIAN KOHLFÜRST PHYS. REV. D 101, 096003 (2020)

096003-2



up. In contrast, for k ¼ 6, the temporal envelope function is
given by a super-Gaussian, exp ð− t6

τ6
Þ, displaying an

extended plateau region elevating the number of subcycles
in the field when keeping τ fixed. The parameter λ, on the
other hand, controls the extent of the peak in spatial
direction and indirectly also defines the peak strength of
the magnetic field, where a smaller λ accounts for higher
magnetic field strengths.
Technically, Eqs. (2)–(4) describe a head-on collision of

two identical, linearly polarized laser beams within a
quasidipole approximation. To be more specific, we have
two nonpropagating pulses e�ikzz ≈ 1þOðkzÞ each con-
sisting of left- and right-handed waves that form a tempo-
rally and spatially localized interference pattern mimicking
the region of highest intensity in a realistic setup. In this
context, we can therefore interpret the background field as
incoming spherical waves with angular momentum j ¼ 1
(electric dipole). Moreover, the electric field (3) still
accounts for the individual photon energies in the form
of the field frequency ω.
Naturally, one were also to assume that photons would

transfer linear momentum to the created particles. Our
model (2), however, does not take into account the photon’s
linear momentum as we are only interested in basic particle
behavior in presence of a strong magnetic field. In order to
allow for a nonzero photon momentum one would have to
go beyond the dipole approximation and examine pair
production in, e.g., a standing wave

Aðt; zÞ ∼ sin ðωtÞ cos ðωzÞ: ð5Þ

One of the reasons we have decided to not use such a model
is that a standing wave pattern creates the opportunity for
simultaneous pair production at a multitude of locations.
This would render any analysis on specific details of the
production process unclear, because in a phase-space
approach every bunch of particles would be stacked on
top of each other leading to a confusing particle spectrum.

Given the definition of the background field (3)–(4)
we can already discriminate between the Schwinger
effect and multiphoton pair production using the Keldysh
parameter [54]

γ ¼ mω

eε

�≪1 Schwinger

≫1 Multiphoton
ð6Þ

As γ was first introduced for infinitely long fields it does not
take the temporal envelope into account. In our case, this
means that in addition to the choice of ε andω the shapeof the
envelope function is a major contributing factor.

B. Regimes of pair production

In the following, we will briefly introduce the different
regimes of pair production (Schwinger, multiphoton and
intermediate) and discuss their characteristic signatures in
the momentum spectrum.

1. The Schwinger effect

The Schwinger regime applies when a strong background
field is employed over a sufficiently long period of time in
order to allow the particle to tunnel through the Coulomb
barrier. Aswework exclusively with linearly polarized fields
we can adopt the notion in Refs. [55,56] (describing the
conceptually similar qq̄-string breaking) yielding

Pðt; z; pzÞ ¼
eaðt; zÞ
4π2

exp

�
−
πðm2 þ p2

zÞ
eaðt; zÞ

�
; ð7Þ

where a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
ðjB2 − E2j − ðB2 − E2ÞÞ

q
. The key aspects of

the probability rate Pðt; z; pzÞ are, that (i) particles are
produced at timeswhen the electric field is strong and (ii) that
these particles have zero initial parallel momentum px. A
nonvanishing initial transversal momentum pz is possible.
However, it comes with a penalty in terms of likeliness, see
the exponential term m2 þ p2

z .
After creation, these particles are exposed to strong forces

due to the extreme strength of the background field. As we
are primarily interested in the momentum spectrum at final
times (when the electromagnetic field is switched off) we
have to account for these field-particle interactions. The
simplest way to achieve such a description is by applying a
single-trajectory formalism, where electrons/positrons are
considered to be semiclassical pointlike particles, which
follow classical paths [57]. Excluding any kind of inter-
action between generated particles, thus naturally ignoring
quantum interferences and particle collisions, these trajec-
tories can then be tracked and evaluated.
Based on the works in Refs. [58–60], in Ref. [44] such a

semiclassical formalism has been established1

FIG. 1. Illustration of the two different temporal envelopes used
in the manuscript. For pulse lengths of τ ¼ 25 m−1 (Gaussian)
and τ ¼ 75 m−1 (super-Gaussian) we find that around τ ≈
125 m−1 both fields take on similar values.

1In this specific article we neglect spin-orbit interactions due to
its small effect.
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∂z
∂t ¼ pzðtÞ; ð8Þ

∂px

∂t ¼ eEðt; zðtÞÞ − pzðtÞeBðt; zðtÞÞ
γðtÞ ; ð9Þ

∂pz

∂t ¼ þpxðtÞeBðt; zðtÞÞ
γðtÞ þ s

∂zeBðt; zðtÞÞ
γðtÞ ; ð10Þ

with the Lorentz factor γðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2

x þ p2
z

p
and the

particle spin s.
We can already deduce that in case of a quasihomoge-

neous configuration and therefore a vanishing magnetic
field the particle trajectory can be easily calculated

pxðtÞ ¼ Aðt0Þ − AðtÞ; ð11Þ

pzðtÞ ¼ pz;0 ¼ const; ð12Þ

where t0 gives the particle’s time of creation.
If the temporal structure of the electric field exhibits

multiple peaks it essentially acts as a double-slit in time
reflecting the particle’s quantum statistics, see Refs. [61,62]
for a more profound discussion. Alternatively, one can
interpret the final distribution as the sum over trajectories
with the particles initial time of existence as starting points
[44]. Quantum interferences are then obtained through
summing up the quantum phases these particles have
picked up when exposed to the background field [63].
If a strong magnetic field is present, however, these

trajectories are altered significantly. Speaking in terms of
Eqs. (8)–(10), as soon as a particle has acquired a parallel
momentum px, the magnetic force automatically converts it
to transversal momentum pz. As such the particle is pushed
into direction�z. This happens the quicker the stronger the
magnetic field is. Interestingly, if the particle leaves the
strong-field region at times of high acceleration, it cannot
be pushed back once it reaches regions of low field
strengths. As a result this particle is basically unaffected
by variations of the background field at later times.
The spin force term FS ¼ s∂zeBðt; zðtÞÞ in Eq. (10) is an

interesting addition to the classical Lorentz force equations,
because it allows for symmetry-breaking phenomena. In
the vein of Ref. [44], we have decided to work in 2þ 1
dimensions in order to keep the volume of the phase-space
on a numerically manageable level. As a side effect, there
are multiple ways to define QED (reducible or irreducible
representation). To keep the calculations as simple as
possible we have opted for one of the 2—spinor repre-
sentation. As a result, the spin in our calculations is fixed,
thus a spatially rapidly varying magnetic field can indeed
break the symmetry in transversal direction.

2. Multiphoton pair production

Contrary to the Schwinger effect, multiphoton pair
production relies on a sufficient energy transfer from
photons to virtual pairs. Moreover, electrons and positrons
quiver within an oscillating background field resulting in an
increased potential energy. Only if the amount of trans-
ferred energy exceeds the pairs rest energy, a particle and an
antiparticle is formed. As energy has to be conserved, the
surplus of photon energy is directly converted to the
particle’s initial kinetic momentum. All in all, we can
define the effective energy of a particle as [64]

Eðpx;pzÞ¼
ω

2π

Z
π=ω

−π=ω
dt0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2þ

�
pxþ

eε
ω
sinðωt0Þ

�
2

þp2
z

s
:

ð13Þ

Correspondingly, energy conservation reads 2Eðpx; pzÞ ¼
nω with n being the number of absorbed photons.

3. Intermediate regime

For few-cycle pulses with rapidly varying time-depend-
ency or for background fields exhibiting aKeldysh parameter
of γ ≈ 1 neither Schwinger nor multiphoton effects domi-
nate. In such a case either no distinct signatures of Schwinger
nor multiphoton effects are visible or the particle spectrum
shows characteristics of both. Conceptually, it is, for exam-
ple, easily possible, that a virtual particle pair absorbs n
photons and is simultaneously pulled apart by the strong
background field resulting in interferences showing up in the
particle spectrum. Interactions of this kind are difficult to
calculate, thus they make the perfect case study to demon-
strate the power of kinetic approaches.
On a side note, the so-called dynamically assisted

mechanism, where photon absorption is used to effectively
lower the threshold for pair production, is quite similar. The
main difference is that the enhancement effect is much
more pronounced, because multiple fields are fine-tuned in
order to give a strong signal in the spectrum [16,65–67].

III. DHW FORMALISM

The DHW formalism is a very general method that
allows to study particle creation within arbitrary electro-
magnetic fields. In the context of this article, this means we
only have to develop one single numerical algorithm to
study the spectra produced through few-cycle as well as
many-cycle pulses.
As providing a detailed introduction into phase-space

methods in general is not the goal of this manuscript, we
only state the most important steps in deriving the DHW
formalism here. We recommend Ref. [47] for a more
profound introduction into quantum transport theories.
Additional information on quantum kinetic theories in
the context of particle creation can be found in
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Refs. [28,30]. A complete derivation of the equations of
motion has been performed in Ref. [68].
To save computational costs later, but without disregard-

ing magnetic fields, we introduce the QED Lagrangian in
2þ 1 dimensions

LðΨ;Ψ̄;AÞ¼ 1

2
ðiΨ̄γμDμΨ− iΨ̄D†

μγμΨÞ−mΨ̄Ψ−
1

4
FμνFμν;

ð14Þ

whereDμ¼ð∂μþ ieAμÞ andD†
μ¼ð∂μ

↼
−ieAμÞ. Additionally,

we have the vector potential Aμ, the electromagnetic field
strength tensor Fμν ¼ ∂μAν − ∂νAμ and the spinor fields Ψ
and Ψ̄. In an attempt to further reduce the computational
overhead we use only one 2-spinor basis2

γ0¼
�
1 0

0 −1

�
; γ1 ¼

�
0 i

i 0

�
; γ3 ¼

�
0 1

−1 0

�
ð15Þ

effectively cutting numerical costs in half. Varying with
respect to ψ (ψ̄ ) we obtain the (adjoint) Dirac equation

ðiγμ∂μ − eγμAμ −mÞΨ ¼ 0; ð16Þ

Ψ̄ði∂μ

↼
γμ þ eγμAμ þmÞ ¼ 0: ð17Þ

The backbone of the formalism is the density operator

Ĉαβðr; sÞ ¼ UðA; r; sÞ ½Ψ̄βðr − s=2Þ;Ψαðrþ s=2Þ�; ð18Þ

where we introduced the center-of-mass coordinate r and
the relative coordinate s. The Wilson line factor

UðA; r; sÞ ¼ exp

�
ie
Z

1=2

−1=2
dξAðrþ ξsÞs

�
ð19Þ

is essential to guarantee gauge invariance. The covariant
Wigner operator is then obtained via a Fourier transform
with respect to the relative coordinate s

Ŵαβðr; pÞ ¼
1

2

Z
d4seipsĈαβðr; sÞ: ð20Þ

In the following we will drop the indices in Ŵ to improve
readability.
In a rather lengthy calculation, see Ref. [47,68] for

details, we can combine the Wigner operator (20) with
Eqs. (16) and (17) to generate the operator equations

�
1

2
Dμ − iPμ

�
γμŴðr; pÞ ¼ −iŴðr; pÞ; ð21Þ

�
1

2
Dμ þ iPμ

�
Ŵðr; pÞγμ ¼ iŴðr; pÞ; ð22Þ

with the pseudodifferential operators

Dμ ¼ ∂r
μ − e

Z
1=2

−1=2
dξ F̂μνðr − iξ∂pÞ∂ν

p; ð23Þ

Pμ ¼ pμ − ie
Z

1=2

−1=2
dξ ξ F̂μνðr − iξ∂pÞ∂ν

p: ð24Þ

Due to the operator nature of the equations above, it is
difficult to use them in a numerical simulation.
In order to obtain computational feasible equations of

motion we therefore introduce a mean-field (Hartree)
approximation

hΦjF̂μνðrÞjΦi ≈ FμνðrÞ: ð25Þ

Consequently, the operator-valued electromagnetic field
strength tensor F̂μν is treated as a C-number field Fμν. In
fact, a direct evaluation of hΦjF̂μνðrÞĈðr; sÞjΦi would
introduce couplings to an arbitrary number of n-body
terms (BBGKY hierarchy). Only due to the mean-field
approximation we can safely truncate this hierarchy at the
one-body level [69].
In this study we are not interested in secondary effects,

thus we disregard backreaction, fermion-fermion collisions
as well as radiative emission altogether. Correspondingly,
the fields employed also do not fulfill Maxwell’s equations.
Instead, we fix electric and magnetic fields at every space-
time point and evaluate the particle production in a given
background. The mean-field approximation and, hence,
truncation at the one-body level gives us precisely this
limit. In short, the Hartree approximation effectively turns
an infinite hierarchy of coupled differential equations (n-
body problem) into a closed system, cf. Ref. [48] for an in-
depth analysis.
We proceed by taking the vacuum expectation value of

Eqs. (21) and (22). As a result of the Hartree approximation

hΦjF̂μνðrÞĈðr; sÞjΦi ≈ FμνðrÞhΦjĈðr; sÞjΦi; ð26Þ

Eqs. (21) and (22) are transformed into equations of motion
for the covariant Wigner function

Wðr; pÞ ¼ hΦjŴðr; pÞjΦi: ð27Þ

Working directly with the covariant Wigner function is
problematic, because it requires solving the equations of
motion at all points in time at once. This is certainly not
feasible in a real-time simulation, thus we choose a definite

2We perform all calculations in the xz-plane, thus we label the
third matrix γ3.
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frame to project on equal-time effectively reformulating
everything to an initial-value problem. In this way, we
obtain the equal-time Wigner function

wðt;x;pÞ ¼
Z

dp0

2π
Wðr; pÞ; ð28Þ

which we decompose into Dirac bilinears

wðt;x;pÞ ¼ 1

2
ð1sþ γ0v0 þ γ1v1 þ γ3v3Þ: ð29Þ

This makes it easy to interpret the quantities s as mass
density, v0 as charge density and v1, v3 as the current
density.
Finally, we obtain a coupled set of differential equations

for the equal-time Wigner coefficients, cf. Refs. [68],

Dtv0 þDxv1 þDzv3 ¼ 0; ð30Þ

Dts − 2Πxv3 þ 2Πzv1 ¼ 0; ð31Þ

Dtv1 þDxv0 − 2Πzs ¼ −2v3; ð32Þ

Dtv3 þDzv0 þ 2Πxs ¼ 2v1; ð33Þ

with the pseudodifferential operators

Dt ¼ ∂t þ e
Z

1=2

−1=2
dξ Eðt;xþ iξ∇pÞ · ∇p; ð34Þ

Dx ¼ ∂x þ e
Z

1=2

−1=2
dξ Bðt;xþ iξ∇pÞ∂pz

; ð35Þ

Dz ¼ ∂z − e
Z

1=2

−1=2
dξ Bðt;xþ iξ∇pÞ∂px

; ð36Þ

Πx ¼ px − ie
Z

1=2

−1=2
dξ ξBðt;xþ iξ∇pÞ∂pz

; ð37Þ

Πz ¼ pz þ ie
Z

1=2

−1=2
dξ ξBðt;xþ iξ∇pÞ∂px

: ð38Þ

The initial conditions are given by the vacuum solution

svacðpÞ ¼ −
2ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ p2
p ; v1;3vacðpÞ ¼ −

2pffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2

p : ð39Þ

IV. NUMERICAL SOLUTION TECHNIQUES

One of the aims of this manuscript is to demonstrate how
to solve the equations of motion (30)–(33) effectively.
Although a brute-force calculation might be successful,
running such simulations is computationally expensive and
numerically quite unstable. To combat these issues we have

developed various solution techniques that certainly help to
speed-up the calculations while reducing the computational
load and still maintaining a high accuracy. It is worth
mentioning that all methods and numerical recipes intro-
duced in this manuscript can be easily applied to other
system (QED1þ1;…), too.

A. Preconditioning

In order to solve the differential equations (30)–(33) for a
configuration featuring fields of the form of Eqs. (3) and (4)
multiple preconditioning steps are in order. At first we
introduce modified Wigner components [33]

wv ¼ w − wvac ð40Þ

such that we obtain a set of inhomogeneous partial differ-
ential equations with vanishing initial conditions. In this
way, we proactively ensure that all components fall off at
the boundary already minimizing truncation errors.
Numerical feasibility can then be significantly improved

by establishing the relation

p ¼ q − eAðt; zÞ; ð41Þ

where Aðt; zÞ is the vector potential defined previously (2).
In this way, we take into account so-called “minimal
coupling.” More specifically, we switch from kinetic
momenta p to canonical momenta q. Naturally, the deriva-
tive terms have to be transformed, too

∂t → ∂t − eEðt; zÞ · ∇q; ð42Þ

∂z → ∂z þ eBðt; zÞ∂qx : ð43Þ

The most prominent advantage of this transformation is the
change in the time-development operator

Dt →Dt ¼ ∂t þΔE

¼ ∂t þ e
Z

1=2

−1=2
dξðEðt; zþ iξ∂qzÞ−Eðt; zÞÞ ·∇q:

ð44Þ

As is immediately obvious from a Taylor expansion of the
derivative operator

ΔE ≈
�X∞

n¼0

ð−1ÞnEð2nÞðt; zÞ
4nð2nþ 1Þð2nÞ! −Eðt; zÞ

�
· ∇q; ð45Þ

where Eð2nÞ denotes the 2nth derivative with respect to z,
the leading term in Eqs. (44) is of the order of OðE00ðt; zÞÞ.
Hence, quasihomogeneous quantum kinetics is already
incorporated in the transformed equations. In particular,
in the limit of a locally constant vector potential,
Eðt; zþ iξ∂qzÞ ≈Eðt; zÞ and Bðt; zþ iξ∂qzÞ ≈ 0, the
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momentum derivatives vanish, thus one is left with a partial
differential equation in t and z. If one employs a local
constant field approximation (LCFA) the derivatives with
respect to z vanish, too [33].
Eventually, we change the geometry of the domain

we work in. The Eqs. (30)–(33) are defined on an open
domain z ∈ ð−∞;þ∞Þ. Due to the change of variables
(40) and the fact, that we use localized fields (3) the region
of interest is clearly finite. Hence, we truncate the length of
the domain z ∈ ½−Lz;þLz� to minimize memory require-
ments. The same holds for the momentum variables qx
and qz.

B. Background fields

In the code, we only specify the time-dependence of the
electric field analytically. Time dependence of the magnetic
field and thus of the vector potential are calculated numeri-
cally by adding one term of the form of dA

dt ¼ −EðtÞ to the
system of differential equations.
In previous studies [33,44] an analytical form of the

differential operators has been used. Such an approach is
highly inflexible and one has to deal with cancellation
effects in the antiderivative. A better way is to perform the
integration with respect to ξ numerically and store the result
in a lookup table.

C. Spectral solver

In order to solve the equations of motion a combination of
a spectral solver (phase-space) and a finite-difference solver
(time dependency) is used. To be more specific, we employ
pseudospectral methods at every time step to achieve
optimal accuracy at minimal grid size in the phase-space
domain. The general idea of using a pseudospectral solver is
to solve the system of equations in phase-space, but evaluate
derivatives via multiplications in Fourier space, cf. Fig. 2. In
this way, exponential accuracy can be achieved [70]. Time
integration is done using a Dormand-Prince Runge-Kutta
integrator of order 8(5,3) [71].
A generic derivative is calculated in the following way

FT −1
�
FT

�
dn

dxn
fðxÞ

��
¼ FT −1½ðikÞnf̂ðkÞ�; ð46Þ

where f̂ðkÞ denotes a Fourier transformed quantity.
Derivatives with respect to z and qx are evaluated in this
way. Pseudodifferential operators (34)–(38) and therefore
derivatives with respect to qz are evaluated differently. For a
generic function Gðzþ iξ∂qz ; tÞ ¼ GtðtÞGxðzþ iξ∂qzÞ we
write

FT −1½FT ½Gðzþ iξ∂qz ; tÞwvðz; qx; qzÞ��
¼ GtðtÞFT −1½Gxðz − ξkqzÞŵvðz; qx; kqzÞ�: ð47Þ

In contrast to previous studies [43,44] this technique has
been applied to evaluate derivatives of the inhomogene-
ities, too.
The use of fast Fourier transforms (FFTs) accelerates the

simulations tremendously [70,72]. Only downside is that
we have to have Fourier basis functions namely sin ðkxÞ
and cos ðkxÞ. This choice of basis functions requires (i) an
equidistant discretization of the domain and (ii) periodic
boundary conditions. Alternatively, Chebychef polyno-
mials can be used, which have the advantage that they
can be used together with a nonperiodic grid. However,
they demand a discretization where the point density is
highest at the boundaries. As we wanted to have a high
resolution at the center of the domain to capture as many
physical effects as possible we chose equidistant point
sampling.
A further improvement on lattice point distribution is

given by the fact, that we can in principle introduce any
bijective transformation of the Eqs. (34)–(38) and then
solve a similar set of equations of motion. The solution to
the original problem is then simply given by retransforming
the results once the simulation has finished. In our case, we
introduce the transformations

qx ¼
2Lq

π
arctan

�
1

αq
tan

�
π

2Lq
q̃x

��
; ð48Þ

z ¼ 2Lz

π
arctan

�
1

αz
tan

�
π

2Lz
z̃

��
; ð49Þ

where Lq (Lz) gives the length of the domain in qx (z)-
direction and αq (αz) controls the strength of the deforma-
tion. In this way, we can (i) achieve a much better

FIG. 2. Sketch of the integration scheme employed to find
solutions for the set of equations of motion. At every time step ti
derivatives with respect to coordinates x and momenta p are
calculated via pseudospectral methods. Using a Fourier transform
FTx;p derivative operators are converted into multiplicative
factors. Advancing in time by one step Δt is done in coordi-
nate-momentum space.
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convergence rate and (ii) we are still allowed to use a
customized rasterization of the domain. The derivative
operators transform accordingly

∂qx ¼
�
αq cos

�
π

2Lq
q̃x

�
2

þ 1

αq
sin

�
π

2Lq
q̃x

�
2
�
∂ q̃x ; ð50Þ

∂z ¼
�
αz cos

�
π

2Lz
z̃

�
2

þ 1

αz
sin

�
π

2Lz
z̃

�
2
�
∂ z̃: ð51Þ

Keep in mind, however, that the grid in z̃ and q̃x is regular,
the grid in the physical domain ðz; qxÞ is not. Regarding
periodic boundary conditions, we observe that due to the
transformation to modified Wigner components (40) all
quantities fall off for larger values of z̃, q̃x or qz. We
can thus truncate the domain at points where the coef-
ficients supposedly vanish yielding a finite domain of size
Lz̃ × Lq̃x × Lqz . Then we set z̃1 ¼ z̃Nz

, q̃x;1 ¼ q̃x;Nqx
and

qz;1 ¼ qz;Nqz
, where Nz, Nqx and Nqz give the total number

of grid points in z̃, q̃x and qz, respectively.
While momentum and spatial derivatives have to be

evaluated at every single time step (often multiple times),
the overall time evolution can be calculated in a straight-
forward way, see Fig. 2. First, a starting point tvac of the
simulation has to be determined. Ideally, the vector
potential as well as the fields are still zero at this point
such that one is left with the pure vacuum state. However,
background fields may have infinite support making a
truncation of the time domain necessary. To minimize the
error due to such a truncation, while not needlessly
increasing computing time, we have set the initial times
to t� ¼ −6τ (Gaussian envelope) and t� ¼ −2τ (super-
Gaussian).
The actual time stepping tiþ1 ¼ ti þ Δt might be done

through explicit or implicit methods. We have chosen a
higher-order explicit stepper, because it seems to be the
ideal compromise between accuracy and run time.
Specifically, we neither have to allocate additional memory
due to the overhead in terms of inverting the derivative
matrix nor do we have to solve the corresponding algebraic
equations. On the other hand, we still obtain high accuracy
using an 8th-order method with error-correction.
As we are only interested in the particle’s momentum

spectrum, simulations terminate once the background fields
vanish, here t� ¼ −t�.

D. Filters

Due to the fact, that we want to apply the procedure
introduced in Eq. (47) only trivial transformations in qz are
feasible. Consequently, we have to use an equidistant grid
in qz, thus we are automatically limited to a small domain
Lqz . In turn, we have to account for the fact that the Wigner
coefficients may not fall off sufficiently fast, thus the

requirement for periodic boundary conditions could be
in conflict with domain truncation. More specific, there
could be a significant discrepancy between coefficients
defined at the now neighboring points qz;Nqz−1

; qz;1 and qz;2
resulting in Gibbs phenomenon induced effects, e.g., an
artificial growth of the coefficients w.
To avoid the creation of spurious patterns or a wrong

sampling of high-frequency modes so-called antialiasing
methods are employed, see Refs. [70,73] for a more
detailed analysis. First, we introduce an artificial dampen-
ing factor at every time step, which is fairly easy to
implement as we only have to modify the prefactor of
the ∂qz-derivative to

wqz ¼ exp

�
−
�
qz;i
qz;1

�
2Nw

�
; ð52Þ

with Nw ∈ N.
Second, to resolve any additional problems regarding

high-order modes we cut the upper part of the Fourier
spectrum at the end of a simulation (at the last time step tf,
but before evaluating any observables). The combination of
applying these filters proved to work excellently, as it was
possible to avoid the appearance of any nonphysical terms
in the final distribution functions. On a side note, in
previous calculations [44] the highest order modes have
been terminated at each time step. However, that technique
seemed to fail when applied to spatially strongly inhomo-
geneous, long pulsed fields as spurious artifacts started to
show up at long run times.
Unfortunately, for configurations that require a long

runtime, none of these methods work sufficiently well.
In such a case it seems as if the only even remotely
successful way is to sacrifice some resolution in direction
of qz and expand the total domain size. As the source of
these artificial oscillations is the jump at the boundary, any
artifacts associated with it will start at �Lqz and then
propagate toward the center. If the domain, however, is
large enough, the time it takes for these oscillations to reach
the real particle distributions is so long that we can safely
stop the simulation at times tf, where we still have an intact
particle signal. Of course, before evaluating any observ-
ables the Wigner components at all higher transversal
momenta have to be artificially set to zero.

E. Observables

The DHW formalism only allows to solve for the Wigner
coefficients w. As we are, however, mainly interested in
observables we have to rearrange these coefficients in order
to obtain particle distribution functions. The total energy is
given by

E¼
Z

dΓðsvþqxvv;1þqzvv;3Þþ
1

2

Z
dzðE2þB2Þ ð53Þ
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with the phase-space volume element dΓ. Correspondingly,
the particle number density at asymptotic times
tf ðAðt → ∞; zÞ → 0;A0ðt → ∞; zÞ → 0Þ reads

fðz; qx; qzÞ ¼
sv þ qxvv;1 þ qzvv;3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ q2x þ q2z
p : ð54Þ

Accordingly, the particles momentum spectrum is given by

fðqx; qzÞ ¼
Z

dzfðz; qx; qzÞ ð55Þ

as well as

fðqxÞ ¼
Z

dqzfðqx; qzÞ; ð56Þ

fðqzÞ ¼
Z

dqxfðqx; qzÞ: ð57Þ

The total particle number is then given by

N ¼
Z

dqxdqzfðqx; qzÞ: ð58Þ

Note, that we have already transformed the data obtained
from the simulation to ordinary spatial coordinates and
canonical momenta fz; qx; qzg, because it is easier to
discuss the results in terms of a physical basis.
As the particle yield is naturally higher the further the

electric field is extended we have to normalize the rates to
allow for a fair comparison between results with different λ.
The problem is that in principal Schwinger effect, multi-
photon pair production and assistance mechanism all
demand different normalization. The compromise was to
normalize parallel fðpxÞ as well as transversal fðpzÞ
distribution functions in terms of semiclassical expectation
values

Ncl ¼
Z

dtdzaðt; zÞ32e− m2π
eaðt;zÞ ð59Þ

with a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
ðjB2 − E2j − ðB2 − E2ÞÞ

q
due to its simplicity

and its capability of taking into account the electric field’s
spatial finiteness as well as the magnetic field’s attribute to
suppress pairs to form. In the limit of pure Schwinger pair
production Eq. (59) is even exact. Moreover, signatures of
multiphoton particle creation generally extent nonlinearly
in transversal direction thus we display such results in 2d
contour plots, where no particular normalization is needed.

F. Error tolerance

By running simulations within such highly complex
systems we naturally introduce errors at every step in the
computation. This includes errors due to truncating the

computational domain, performing the time integration
numerically or because of aliasing effects due to having
only a finite number of grid points in each direction. Hence,
error control and extensive testing of results by, e.g.,
running the same configuration multiple times while only
changing the numerical parameters is mandatory.
The crucial point in calculating observables, however, is

given by the fact that the particle signal is generally only
acquired after summing up all relevant Wigner compo-
nents, cf. evaluating Eqs. (54)–(58). The reason is, that each
of sv, vv;1 and vv;3 not only holds the information of the
particle spectrum but also the information for additional
observables, cf. Ref. [47]. As a consequence, the fraction of
the particle spectrum on a Wigner component might easily
be lower than 1%. Hence, when calculating particle
distributions one technically extracts subleading contribu-
tions, which turns this final step into a delicate process.
In this regard, in order to make sure that our results are

stable we have to repeat every calculation on finer and finer
grids and compare the outcome. For the configurations
evaluated in this work, we aimed at a 1% accuracy for the
particle yield N. Obtaining the particle spectrum to such an
accuracy is much harder to achieve as local particle
distributions can fluctuate strongly. It is therefor no surprise
that for individual points in the spectrum the local error can
be much higher; here Oð10%Þ.

V. RESULTS

One big goal of this manuscript is to provide some
insight into particle creation and, consequently, particle
dynamics in high-intensity electromagnetic background
fields. We discuss the final particle momentum spectra
with respect to the different creation mechanisms and show
how to interpret certain features by simple means. On a side
note, the full set of data in terms of contour plots of the
particle distribution function fðpx; pzÞ is attached at the
end of the manuscript, cf. Sec. VII..

A. Tunneling-dominated pair production

To obtain a clear qualitative picture of particle creation
via tunneling we employ slowly varying, few-cycle fields
with a peak field strength of eε ¼ 0.5m2 as well as
eε ¼ 0.2m2, respectively.
Both field configurations have in common that particles

are predominantly produced via tunneling. Reason is that,
although the Keldysh parameter (γ ¼ 1, γ ¼ 0.4) might
indicate that both particle creation mechanism are impor-
tant, the total pulse length is quite short τ ¼ 25 m−1 and the
envelope function does not allow for many subcycles. As a
result multiphoton effects are suppressed, thus the spectra
can be nicely described through a semiclassical single-
trajectory picture. Nevertheless, the temporal variation in
the field is sufficiently strong such that one cannot observe

EFFECT OF TIME-DEPENDENT INHOMOGENEOUS MAGNETIC … PHYS. REV. D 101, 096003 (2020)

096003-9



the “pure” Schwinger effect, see the deviations in the
normalized total yield in Fig. 3.
The simple man’s model introduced in Ref. [44] states

that particles are produced in regions where Eðt; zÞ2 −
Bðt; zÞ2 > 0 holds (if E ·B ¼ 0) and the higher the
effective field strength Eðt; zÞ2 − Bðt; zÞ2 the higher the
chance for pair production. For a field with a Gaussian
envelope, pulse length τ ¼ 25 m−1 and frequency ω ¼
0.2 m only three peaks are really capable of producing
a sizable amount of particles. More specifically, given
that z ¼ 0 the field is strongest at t ¼ 0, while at t ¼
�13.7 m−1 it reaches ∼75% of its maximum value. Due to
the Schwinger effect’s exponential suppression by the
effective field strength every other peak can be considered
as minor, thus they can be safely neglected in the further
discussion.
In a quasihomogeneous calculation (λ ¼ 1000 m−1), see

the solid blue curves in Fig. 3, we obtain a broad peak
superposed by oscillations in fðpxÞ and an exponentially
declining distribution in pz. Assuming, that for this
configuration we can neglect the magnetic field and
consider the electric field as homogeneous in z, we can
solve the set of equations (30)–(33) analytically. As
particles in the simple man’s model (7)–(10) are created
with zero initial parallel momentum px;i the final particle

momentum px;f solely depends on the strength of the
vector potential at the time of creation t0. Hence, we can
easily calculate the reference points for the final distribu-
tion. Unsurprisingly, pair creation at t0 ¼ 0 translates into a
peak at px;f ¼ 0. At t ¼ �3.25 m−1 the electric field still
has 75% of its maximal strength translating into a 90%
smaller chance for pair production (7). Consequently, if a
particle was created at t0 ¼ 3.25 m−1 it would obtain a final
momentum of px;f ¼ 2.98 ε=Ecr m, thus roughly determin-
ing the point where the particle density has fallen off by
90%. Particles created at the two side maxima of the
electric field (t ¼ �13.7 m−1) acquire a final momentum of
px;f ¼ �1.44 ε=Ecr m. Hence, particle bunches stemming
from main and side peaks in Eðt; zÞ are clearly overlapping.
Moreover, one would expect these particles to carry differ-
ent phase information due to their different times of
creation, c.f. Refs. [40] for a quantum field theoretical
explanation and Refs. [63,74] for discussions in the context
of atomic ionization. Adding up the individual contribu-
tions then automatically results in quantum interferences.
As λ decreases the magnetic field strength rises and thus

the overall impact of the magnetic field increases.
Pictorially speaking, the magnetic field between the three
main peaks in Eðt; zÞ acts as an accelerator in direction of
pz. However, as Bðt; zÞ is oscillating in space and time,

FIG. 3. Particle distribution functions fðpxÞ (top) and fðpzÞ (bottom) normalized by the expected production rate in local constant
field approximation. Due to the fact, that the field is polarized along ex quantum interferences show up in parallel direction px only. The
smaller λ the higher the magnetic peak field strength and, in turn, the stronger particles are accelerated along pz-direction. As for
λ ¼ 3 m−1 particle bunches do not occupy the same region in phase-space any more, the interference pattern vanishes. Both simulations
feature a temporal pulse length of τ ¼ 25 m−1 and a frequency of ω ¼ 0.2 m.
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particles created at subsequent peaks are accelerated in
opposite directions. As a result, those particles do not share
the same phase space at final times any more. Averaging
over particle paths with similar phase information, how-
ever, does not result in quantum interference ultimately
leading to a smooth distribution function, cf. the grey
dotted curve in Fig. 3.
The distribution function fðpzÞ can be very well under-

stood in the same way assuming that (i) particle creation is

exponentially suppressed with exp ð− m2þp2
z

eε Þ, see Eq. (7),
and (ii) it takes a strongmagnetic field to deflect the particles
significantly. In case of a vanishing magnetic field the
transversal particle spectrum fðpzÞ shows a Gaussian
distribution, see Fig. 3. The absence of quantum interfer-
ences is given due to the fact that although all particles have
picked up a phase, the distribution of the phase information
only varies in direction of px. Hence, when summing over
the phases in direction of pz no interference pattern appears.
For strong magnetic fields the peak at pz ¼ 0 splits

into two weakly pronounced peaks at pz ≈�0.6 m
(eε ¼ 0.2 m2) and pz ≈�1.25 m (eε ¼ 0.5 m2). These
two peaks are not equal in height clearly favoring the
ones at pz > 0, respectively. The reason for this asymmetry
lies in our choice of representation as this has intrinsically
fixed the particle spin, see Sec. III. Hence, despite the fact
that Aðt; zÞ is symmetric in z performing all calculations for
only one 2-spinor basis and, therefore, neglecting half of all
electrons and positrons automatically results in an uneven
particle distribution in phase-space. As a consequence the
spatially varying magnetic field introduces a net force in
one transversal momentum direction (8)–(10).
In summary, smooth particle distributions superposed by

quantum interferences are clear signatures of the Schwinger
regime. Furthermore, the momentum spectrum can be
understood under the assumptions, that the effective field
strength Eðt; zÞ2 − Bðt; zÞ2 determines the chances for
particle creation and particles, once created, follow semi-
classical trajectories.

B. Absorption-dominated pair production

In a multicycle field the virtual pair can obtain energy
from the background field via absorbing photons. If the
total energy gain is higher than the production threshold an
electron-positron pair is created. The decisive quantities are
the number and energy of the absorbed photons nω as well
as the particle’s rest energy plus a modification factor due to
the oscillatory motion of the particle, see Ref. [75].
Furthermore, if an l-photon process could occur there is
also the chance for lþ s-photon absorption. In such a case,
particles are created with higher kinetic momenta and a
different angular momentum profile [76]. As a result, the
final particle distribution is given by multiple ellipses of
fixed energy En, where n gives the number of photons
initially involved in the process.

Employing a background field with a field strength of
eε ¼ 0.5 m2 and a field frequency of ω ¼ 0.5 m we find
many characteristic traits of photon absorption in the
particle distribution function, see Fig. 4. These structures
are thus best discussed in terms of energy conservation. The
only energy source is given by the absorption of photons
nω. The total absorption energy must be equal the total
particle energy En, which is given by the particles’ rest
energy plus their ponderomotive energy. The former can be
stated easily as E ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

x þ p2
z

p
, while the latter

depends on the fields’ strength, frequency and polarization
direction, cf. Ref. [64] for a complete derivation. Here, the
oscillations in the electric field only lead to a modification
of the particles’ parallel momentum component

Eðpx;pzÞ¼
ω

2π

Z
π=ω

−π=ω
dt0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2þ

�
pxþ

eε
ω
sinðωt0Þ

�
2

þp2
z

s
:

ð60Þ

FIG. 4. Nonlinearly scaled particle momentum spectrum
fðpx; pzÞ for large (top) and small (bottom) spatial extent λ.
Electric field strength eε ¼ 0.5 m2, pulse length τ ¼ 25 m−1 and
field frequency ω ¼ 0.5 m are fixed. Due to the presence of a
strong field and the high photon energies particles are predomi-
nantly created along ellipses. For a vanishing magnetic field (top)
multiphoton peaks as well as a pronounced interference pattern are
clearly visible. A strong magnetic field disturbs these patterns and
additionally applies a strong force in perpendicular direction�pz.
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As a result the various absorption channels form ellipses in
the particle phase-space instead of circles as one would
naively expect.
For the sake of a better understanding of the interference

pattern we display the particle distribution along the
ellipses in Fig. 5. Note, that we have used linear inter-
polation techniques to illustrate the distribution function
fðpx; pzÞ as a function of the polar angle ϑ, where ϑ is
defined as the ejection angle with respect to the fields’
polarization direction. We immediately see, that lines with
an odd number of photons are strongest at ϑ ¼ 0 and ϑ ¼ π
(pz ¼ 0) and show side maxima at ϑ ¼ �π=2 (px ¼ 0). In
turn, an even photon number corresponds to minima at
ϑ ¼ −π=2 and ϑ ¼ þπ=2 (dotted orange line).
This behavior can be very well understood considering

that the toy model given in Eq. (2) still describes fields
within the dipole approximation. As parity as well as
charge parity has to be conserved, the dipole approximation
allows us to discuss the particles’ angular distribution by
simply counting the number of possible final quantum
states. To be more specific, the intrinsic parity of an
electron-positron pair is (−1). The particles’ orbital
momentum contributes by an additional factor ð−1ÞL.
Charge conjugation symmetry gives ð−1ÞLþS depending
on the particles’ spin orientation (S ¼ 0 or S ¼ 1,
cf. Ref. [57]). For the incoming photons we have C-parity
ð−1Þn and parity (−1) due to the fact that only electric
dipole transitions are possible. Nevertheless, upon absorp-
tion every photon transports a unit of angular momentum to
the pair ΔL ¼ �1. The change in the magnetic quantum
number is zero though, because Eq. (2) only describes
linearly polarized waves.
An n-photon process therefor requires a parity of (þ1)

for an even number of photons and (−1) for an odd number.
Consequently, if n is even L has to be odd. Performing a

partial wave analysis [57] we find that the final particle
state can be conveniently written in terms of Legendre
polynomials

ψðϑÞ ¼
Xn
L

bLPLðcosϑÞ: ð61Þ

In this case, L is odd thus the sum in Eq. (61) is over the
Polynomials with L odd only. At vanishing parallel
momentum we have ϑ ¼ �π=2 for which all these remain-
ing Legendre polynomials vanish. As a result, in a pure
multiphoton absorption process with an even number of
photons, neither electrons nor positrons can be emitted in a
90 degree angle.
Besides, these structures in the spectrum are very

sensitive to an external magnetic field. With increasing
magnetic field strength the particles are accelerated in
transversal direction similarly to the results displayed in
Sec. VA. The most notable difference is the intact
symmetry in pz even for extremely strong magnetic fields.
The reason is that in this case the particle formation time is
much longer, thus it is impossible to attribute a peak in
Eðt; zÞ with a peak in fðpx; pzÞ. Consequently, particle
trajectories are not unevenly separated and as a result the
symmetry in pz is not broken.

C. Multimechanism pair production

In the following, we discuss field configurations that
combine multi-cycle pulses with high field strengths to
enhance Schwinger pair production via absorption effects
and vice versa. In order to do so we employ a super-
Gaussian envelope function to ensure that the background
operates close to its maximum value for multiple field
cycles. The consequences are twofold. At the one hand,
chances for Schwinger pair production increase, because
also the “side peaks” can produce a sizable amount of
particles. On the other hand, a higher amount of significant
field oscillations also increases the likelihood of n-photon
absorption processes.

1. Quasihomogeneous fields

As one can see in Fig. 6 the calculated particle spectrum
indeed displays a mixture of exponentially decaying
as well as elliptical structures. At vanishing particle
momentum we obtain an interference pattern typical for
tunneling-enhanced pair production. To be more specific,
the field configuration under consideration (super-Gaussian
envelope with eε ¼ 0.2 m2 and ω ¼ 0.2 m) is at the edge
of seeing the 12-particle channel directly. Nevertheless, the
absorption of 12 photons creates a highly excited state. As
this is the equivalent of lowering the threshold by the same
amount subsequent tunneling is barely suppressed. In this
way the onset of a new channel can be seen very well even
below the threshold. On a side note, the particle distribution

FIG. 5. Normalized radial distribution function f̄ðϑÞ for
various n-photon channels for a configurationwith field frequency
ω ¼ 0.5 m, field strength eε ¼ 0.5 m2 and pulse length
τ ¼ 25 m−1. The higher the photon number n the more min-
ima/maxima in the spectrum are visible. In particular at ϑ ¼ �π=2
we have alternating extrema. The variable ϑ rotates clockwisewith
starting point ðpx;n; 0Þ.
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falls off exponentially in transversal direction, which is a
clear sign for tunneling.
We analyze this area using the simple man’s model. As

the model’s output is a smooth particle density peaked at
vanishing momenta we can easily obtain the equipotential
lines, where the distribution function holds 10% of its
maximal value. In case of eε ¼ 0.2 m2 we obtain the shape
parameters a ¼ 0.375 and b ¼ 0.3. This is extremely close
to the values obtained from the DHW calculation: p�

x ¼
0.34 and p�

z ¼ 0.27.
Similar holds for the widespread particle distribution in

px for strong fields, see Fig. 7. In terms of the simple man’s
model particles are produced around the main peaks of the
electric field tk ¼ kπ

ω with k ¼ −2;−1;…2. In a quasiho-
mogeneous setup, a particle created exactly at one of these
peaks acquires nearly no net momentum due to the almost
flat envelope. However, the high field strength of eε ¼
0.5 m2 allows for easy particle production at the slopes,
too. For example, at t̃ ¼ 2.25 m−1 the electric field shows a

local field strength of Eðt̃; 0Þ ¼ 0.4Ecr. As the vector
potential is highly nonzero at t̃, particles created at this
instant in time are strongly accelerated up to a final
momentum of px;f ≈ 1.09 m. As a result, a sizable amount
of particles can be found even at large parallel momenta,
e.g. fðpx ≈ 1.1mÞ ≈ 1

4
fð0Þ.

In addition, elliptical structures appear at higher particle
momenta in Figs. 6–7, which can be interpreted as 13þ and
20þ photon absorption processes, respectively. The cor-
responding analysis using fits to determine the correspond-
ing effective energy of the elliptic particle distributions in
comparison with the predictions from the effective energy
model is given in Tables I and II. The most surprising result
is that simulation and model deviate slightly in assessing
the particles final transversal momentum (Δpz ∼ 5%).
Predictions for the parallel momenta perfectly agree with
the simulation for all above-threshold peaks, while for each
of the lowest ellipses the model underestimates the final
value by up to ∼9%. It is very likely that for such low

FIG. 6. Particle distribution fðpx; pzÞ for a background field
featuring a field strength of eε ¼ 0.2 m2, a super-Gaussian
envelope with pulse length τ ¼ 75 m−1, a field frequency of ω ¼
0.2 m and a spatial extent of λ ¼ 1000 m−1 (top) as well as λ ¼
20 m−1 (bottom). The spectrum shows a Schwinger-like distri-
bution (within white dashed area) as well as multiphotonlike
patterns (ellipses).

FIG. 7. Particle distribution fðpx; pzÞ for a background field
featuring a field strength of eε ¼ 0.5 m2, a super-Gaussian
envelope with pulse length τ ¼ 75 m−1, a field frequency of ω ¼
0.2 m and a spatial extent of λ ¼ 1000 m−1 (top) as well as λ ¼
20 m−1 (bottom). The main structure (cigar shaped area) is
superposed by multiple ellipses stemming from multiphoton pair
production giving rise to additional quantum interferences.
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energies remnants of tunneling influence the final particle
momentum.
Similarly to the previously presented case for highly

oscillating fields, we display the multiphoton structures
obtained for the strong field configuration in terms of radial
distribution functions, see Fig. 8. Due to the large photon
count n the maximal orbital angular momentum particles
can acquire is much higher than in the previous case. As a
result, these functions show a large number of side peaks.
Moreover, multiphoton and tunneling distributions inter-
fere making an evaluation based on conservation laws
difficult. The wild pattern around ϑ ¼ π are a remnant of
this superposition. Nevertheless, the considerations on
parity and C-parity still hold approximately. Hence, the
n ¼ 20 channel still exhibits local minima at ϑ ¼ −π=2
and ϑ ¼ þπ=2.

2. Strong magnetic fields

In multicycle fields the particles’ phase-space occupancy
is much more involved, thus quantum interferences form
easily. Nevertheless, when exposed to strong forces due to
the magnetic field, particle bunches are accelerated in
direction of pz. However, they are boosted in such a
way that their relative quantum phases hardly change. In
fact, all the individual peaks in the particle distribution

function for quasi-homogeneous fields can still be linked to
the peaks observable in the spectrum for strong magnetic
fields, cf. Fig. 7. What changes are the positions of these
peaks in the spectrum as well as their relative size.
The distribution function for parallel momenta fðpxÞ,

see the blue solid line in Fig. 9, indicates that the Schwinger
effect is the main source of particle production. In Sec. VA
we have already established, that a smooth distribution
function superposed by quantum interferences are typical
signs of tunneling pair production. The difference here is
that we observe an irregular pattern on top of a broad
spectrum. We interpret the data such that particles mostly
tunnel through the Coulomb barrier, thus also the smooth
decrease in fðpzÞ for small momenta pz, c.f. Fig. 10. The
irregular oscillations that superpose the smooth tunneling
spectrum, cf. Fig. 9, are caused by multiphoton processes
which includes assisted tunneling. These patterns are

TABLE I. Table showing the effective energy of the particles
created through the absorptionmechanism. In order to compare the
outcome of the simulation with the effective energy model we fit
ellipses to the particle spectrum. This gives us the shape parameters
a and b. The parameters p�

x and p�
z determine the ellipses of

equal effective energy Eðp�
x; p�

zÞ. Background field: eε ¼ 0.2 m2,
τ ¼ 75 m−1 (super-Gaussian envelope), ω ¼ 0.2 m.

n a b p�
x p�

z

13 0.56 0.49 0.52 0.45
14 0.80 0.67 0.78 0.68
15 0.98 0.83 0.97 0.87

TABLE II. Comparison of the effective energy model with the
outcome of the simulation for particles created through the
absorption mechanism. We fit ellipses to the particle spectrum
in order to obtain the shape parameters a and b. The parameters
p�
x and p�

z determine the ellipses of equal effective energy
Eðp�

x; p�
zÞ. Background field: eε ¼ 0.5 m2, τ ¼ 75 m−1 (super-

Gaussian envelope), ω ¼ 0.2 m.

n a b p�
x p�

z

20 0.70 0.46 0.64 0.44
21 1.07 0.80 1.06 0.75
22 1.35 1.05 1.36 0.98
23 1.60 1.21 1.60 1.18
24 1.80 1.39 1.80 1.36
25 1.99 1.45 1.98 1.52

FIG. 8. Normalized radial distribution function f̄ðϑÞ for various
above-threshold signals in momentum space for a background
field with peak field strength eε ¼ 0.5 m2, pulse length τ ¼
75 m−1 (super-Gaussian envelope) and frequency ω ¼ 0.2 m.
Due to the high intensities the threshold for pair production is
increased thus particles acquire less kinetic energy. Here,
the photon numbers n correspond to effective energies of
E20 ¼ 0.65 m, E21 ¼ 1.06 m, E22 ¼ 1.36 m and E23 ¼ 1.60 m.

FIG. 9. Normalized particle distribution as a function of parallel
momentumpx. The oscillations in fðpxÞ are composed of multiple
frequencies, which vanish the smaller λ gets and thus the stronger
the applied magnetic field becomes. Parameters: eε ¼ 0.5 m2, τ ¼
75 m−1 (super-Gaussian envelope), ω ¼ 0.2 m.
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still visible if the spatial extent is chosen to be small
λ ¼ 20 m−1. Only at extreme values, λ ¼ 5 m−1, where
pair production in general starts to break down, see
Table III, the interferences fade away.
We complete this section by comparing the total particle

yield N for the configuration eε ¼ 0.5 m2, τ ¼ 75 m−1

(super-Gaussian envelope), ω ¼ 0.2 m for different values
of λ. Similar investigations have already been performed for
short, high-intensity fields [77]. However, as the particle
spectrum in this setup shows clear signatures of Schwinger
as well as multiphoton pair production, cf. Fig. 7, it is an
ideal candidate for a study of the impact of magnetic fields
on the general creation rate. Naively, one would expect that
local pair production rates are independent of the overall

size of the background. Hence, calculating the particle yield
for a quasihomogeneous field Nhom and rescaling it
according to the width of the spatial envelope function
should give a good estimate for the actual particle number
N. Here, this would amount to a linear volume scaling of
the particle yield. This assumption is indeed true for wide
fields λ ≥ 20 m−1.
For strongly focused fields, one might expect a faster-

than-linear decrease due to the fact that the regions
of significantly high effective field strength aðt; zÞ2 ∝
Eðt; zÞ2 − Bðt; zÞ2 shrink nonlinearly, cf. the semiclassical
particle expectation value Ncl, cf. Eq. (59). However, study-
ing the normalized yield ΔNcl in Table III we find that for
low values of λ the particle yield decreases much faster than
expected. This might be a hint toward a critical point in a
time-dependent, spatially inhomogeneous, high-intensity
field [78]. Such an investigation, however, is beyond the
scope of this article, and will be addressed elsewhere.

VI. CONCLUSION AND OUTLOOK

This study on pair production in inhomogeneous electro-
magnetic fields mark a significant step forward in dem-
onstrating the capabilities of the Wigner formalism in
general. Especially the possibility to perform calculations
for almost arbitrarily focused backgrounds is a clear sign
that quantum kinetic approaches are a valuable asset toward
understanding quantum field theories in general.
To be more specific, we have adopted the Dirac-

Heisenberg-Wigner formalism for large-scale computations
by taking into account novel numerical methods. In this
way, it was possible to calculate the particle creation rates
as well as their momentum spectra in inhomogeneous
electromagnetic fields. In this regard, we have significantly
expanded the capabilities of quantum kinetic approaches
such that we could finally study the impact of a strongly
inhomogeneous, time-dependent magnetic field on pair
production processes even in long-pulsed fields.
By thoroughly analyzing the so acquired data we were

able to identify signatures of Schwinger as well as multi-
photon effects in an intermediate regime, where no creation
mechanism is dominant. We further demonstrated how
much impact the temporal envelope has on the final particle
distributions as we could easily enhance and suppress
certain signatures by simply switching from a Gaussian to a
flat-top envelope.
In the course of this study we also observed symmetry-

breaking due to spin-field interactions in tunneling-
dominated regions as well as vanishing above-threshold
peaks in absorption-dominated areas. For strong, multi-
cycle field we were able to show that quantum interference
patterns are preserved even in the presence of strong
magnetic fields. Only if the spatial extent of the electric
field is of the order of the Compton wavelength of the pair,
these interferences vanish as the pair production process
breaks down independent of the regime.

FIG. 10. Normalized particle distribution function f̄ðpzÞ for
multiple values of λ (smaller λ corresponds to highermagnetic field
strength). The change in the distributions with increased magnetic
field strength can be understood as a two-step process. For weak
magnetic fields particles that have already been accelerated by the
electric field are deflected by the magnetic field in direction of pz.
The stronger the magnetic field becomes the stronger the effect. At
a certain limit (λ ∼ 10 m−1) the particle rate drops considerably and
a strongmagnetic field prevents a clear signal to form.Additionally,
for high magnetic field strengths the symmetry in pz is broken.
Field parameters: eε ¼ 0.5 m2, τ ¼ 75 m−1 (super-Gaussian
envelope), ω ¼ 0.2 m.

TABLE III. Table displaying the total particle number N as a
function of the spatial extent λ. All other field parameters have been
kept fixed at eε ¼ 0.5 m2, τ ¼ 75 m−1 (super-Gaussian envelope)
andω ¼ 0.2 m.Forcomparison, for everyvalueofλ thedeviation to
a linear extrapolation of the locally homogeneous result Nhom=λ ¼
0.05336 m is shown, ΔNlin ¼ 1 − Nhom=NðλÞ. Additionally, we
display the deviation from a classical scaling of the particle yield
ΔNcl ¼ 1 − ½Nðλ ¼ 1000Þ=Nclðλ ¼ 1000Þ�=½NðλÞ=NclðλÞ�.
λ N ΔNlin [%] ΔNcl [%]

1000 53.36 0 0
100 5.29 −0.87 −0.58
50 2.70 1.19 1.74
35 1.85 −0.95 −0.19
20 1.05 −1.64 −0.77
10 0.50 −6.72 −3.09
5 0.196 −36.12 −19.73
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APPENDIX

1. Accuracy tests

This work is entirely based on a highly sophisticated
framework that revolves around solving complicated, high-
dimensional partial differential equations. As evaluating
these equations is especially difficult in the intermediate
regime, as presented in the main body of the text, quite
naturally questions arise about the accuracy of the method
presented. In the following, we thus provide data to
perform a comparison between simulation and analytical
result. We have chosen to use a background field of Sauter
type

EðtÞ ¼ εsech2ðt=τÞ; ðA1Þ

because the electric field is compatible with boundary
conditions imposed in a numerical evaluation. The corre-
sponding particle distribution function F can be evaluated
analytically [79] leading to the following expression

F ðqÞ ¼ 2 sinh ðπτ
2
ð2eετ þ ωðq; 0Þ − ωðq; 1ÞÞÞ sinh ðπτ

2
ð2eετ − ωðq; 0Þ þ ωðq; 1ÞÞÞ

sinh ðπτωðq; 0ÞÞ sinh ðπτωðq; 1ÞÞ ; ðA2Þ

where

ωðq; uÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q2z þ ðqx þ eετð2u − 1Þ; Þ

q
ðA3Þ

and the variable u denotes time; u ¼ 0 (u ¼ 1) labels the
starting (end) point of the calculation.
Equation (A2) is evaluated and its outcome is displayed

in Fig. 11 together with data points obtained through
solving the governing equations of motion in the DHW
formalism numerically (upscaled by a factor of 2 due to the
spin degree of freedom). Here, the parameters describing
the background field are given by eε ¼ 0.5 m2 and
τ ¼ 10 m−1. At peak value (px ¼ −5m, pz ¼ 0) evaluating
Eq. (A2) we obtain F ¼ 0.0039722. The mean relative
error MRE of the numerical result is below 0.1%.
For further comparisons with other numerical methods,

cf. Ref. [44] for a qualitative comparison on background
fields within the Schwinger regime or Ref. [80] for a

detailed study on the advantages and disadvantages of the
phase-space formalism in comparison with solving the
Dirac equation directly.

2. Convergence tests

This work was aimed at investigating pair production in
the intermediate regime, where both tunneling as well as
photon absorption processes play a crucial role in deter-
mining the particle production rate. Consequently, perform-
ing numerical calculations for such configurations is
costly as one has to account for both mechanism at
all times.
In order to check plausibility of our results we use fits

and perform systematic convergence tests by running
simulations with the same background configuration on
different grids. In the following section we detail our choice
of numerical parameters and discuss accuracy, run times
and memory requirements of our solver. Special emphasis

FIG. 11. Comparison of the particle distribution functions
fðpx; pz ¼ 0Þ and fðpx ¼ 0; pzÞ for a homogeneous background
field of Sauter type with peak field strength eε ¼ 0.5 m2 and
pulse length τ ¼ 10 m−1. Simulation (DHW) and analytical
result are in good agreement (MRE below 0.1%).
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is on the lattice domain size as it is generally the limiting
factor in terms of numerical feasibility.
In this work we have 10 independent parameters that

only serve as control parameters to make adjustments in the
simulations. Specifically, the parameters Nz̃, Nqx and Nqz
give the number of grid points in spatial (z̃) and momentum
(qx, qz) directions. The total interval lengths in each
direction are defined in terms of Lz̃, Lqx and Lqz with αz
and αq specifying the grid deformation with respect to an
equidistant grid. Additionally, time integration is done per
adaptive time stepping, where we have specified a relative
RelTol as well as an absolute error tolerance AbsTol; we
used RelTol ¼ AbsTol ¼ 10−8.
In the following we discuss convergence of our calcu-

lations in particular for the total particle number N as a
function of the lattice size. As a complete check would still
amount to an unfeasibly large three-dimensional parameter
space we decided to display the results for three one-
dimensional subspaces, cf. Fig. 12. The benchmark result
for this comparison is given by extrapolating the locally
homogeneous result Nhom. Although such an extrapolation
does not give any insight into the particle distribution and,
furthermore, certainly breaks down for narrow fields it still
holds as a reasonably good approximation for this specific
configuration Nðλ ¼ 20Þ.
By comparison with the result obtained for high reso-

lution we observe that the accuracy improves with grid size
as expected. Furthermore, we deduce that the three direc-
tions are not equally important for achieving a specific
accuracy in the final result with the parallel momentum px
being the least important. The simple reason is that for
narrow fields we have to resolve physical processes on two
different scales in coordinate space. Particles are created at
places where the electric component of the background
field is strong. Here, the region in the vicinity of the center

where pair production is likely to happen is given by OðλÞ.
However, with time these particle are pushed out of their
respective region of creation and accelerated outwards into
free space. Consequently, we have to account for the
intricacies in the pair production process at a scale λ and
also for the particle motion which could require a much
larger domain size Oðp × tfÞ. For example, for a field
configuration with eε ¼ 0.5 m2, λ ¼ 20 m−1 and τ ¼
75 m−1 (super-Gaussian) the domain length in z has to
be at least ∼10 × λ (final time tf ¼ 150 m−1).
The number of grid points in the transversal momentum

component Nqz generally have to be higher than the grid
points in qx due to the presence of nonlocal derivative
operators (34)–(38). The pseudospectral time-derivative
operator, for example, is given by

Dt ¼ ∂t þ e
Z

1=2

−1=2
dξEðt; z̃þ iξ∂qzÞ∂qx : ðA4Þ

While discretization in qx can be basically done arbitrarily,
the presence of terms of the form Eðt; z̃þ iξ∂qzÞ require an
equidistant stepping in qz. Consequently, in order to cover
the same interval Lq while maintaining the resolution
around the center a larger grid number Nqz is mandatory.
Secondly, we display the final particle spectrum for two

calculations employing a high resolution as well as a low
resolution, respectively., see. Figure 13. Although both
calculations deviate only slightly in their respective pre-
dictions for the total particle number N (high resolution:
N ¼ 1.056, low resolution: N ¼ 0.96), the difference in the
spectrum is remarkable. Not only is it hard to identify
spikes in the particle spectrum, due to the low resolution in
coordinate space the integration over all spatial variables
does not yield a non-negative distribution function thus
violating one of the fundamental principals of Wigner-Weyl
transforms. These details vanish when integrating over both
momentum variables px and pz, but they are essential for a
discussion in terms of particle distributions and momentum
spectra.
In the end, we want to give additional remarks on the

overall performance of our solver. Calculations have been
performed on the hemera cluster in Dresden and on the TPI
cluster in Jena. For each simulation 16 CPUs (processor:
Intel Xeon with ∼3.30 GHz processor base frequency)
have been used in parallel employing OpenMP to ensure
communication between the different cores. To calculate
distribution functions to significant accuracy for display
in this work lattice sizes of up to Nz × Nqx × Nqz ¼
385 × 384 × 768 have been employed. In combination
with a Runge-Kutta integrator of 8th order, which takes
12 evaluation steps per time step RAM usage was at
∼150 GB. The run time strongly varied; Oð1hÞ (wide
fields) to Oð3dÞ (narrow fields).

FIG. 12. Convergence of the total particle number N as a
function of the number of grid points per direction. The deviation
from the result obtained through an estimate employing a locally
homogeneous approximation is displayed in terms of the
mean relative error MREN. The field configuration is given by
λ¼20m−1, eε ¼ 0.5 m2, τ ¼ 75 m−1 (super-Gaussian envelope)
and ω ¼ 0.2 m.
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3. Hartree approximation and backreaction

Every charged particle possesses their own Coulomb
field. Given a sufficiently large amount of particles this
matter field can potentially counterbalance the external
field leading to a heavily screened electromagnetic field.
Furthermore, strongly accelerated electrons and positrons
can potentially act as source for high-energy photon
emission and trigger a cascade ultimately leading to
complete field depletion [81].
Fortunately, the DHW formalism allows one to

separate primary from secondary effects, thus providing

the opportunity to study pair production from a background
field separately. The big advantage of such an approach is
given by the much simpler governing equations of motion
and, correspondingly, drastically reduced computation time.
Nevertheless, as recent articles have shown that also secon-
dary effects have to be considered if an experimental setup
with lasers operating at the Schwinger limit is studied [81]we
want to evaluate the quality of the Hartree approximation.
Our simple estimate is based on the total energy E,

cf. Eq. (53),

E ¼ Ematter þ Efield

¼
Z

dΓðsv þ qxvv;1 þ qzvv;3Þ

þ 1

2

Z
dzðE2 þ B2Þ: ðA5Þ

To keep the discussion simple, we only take a closer look at
the configuration featured in Figs. 7 and 13 as it shows
contributions stemming from multiphoton as well as
tunneling mechanism (eε ¼ 0.5 m2, τ ¼ 75 m−1 (super-
Gaussian envelope), ω ¼ 0.2 m and λ ¼ 20 m−1).
Correctly normalized the total particle energy at asymptotic
times yields Ematter ¼ 0.077 m. In comparison, the total
energy stored in the field is given by

R
dtEfield ¼ 208 m.

However, this number is quite misleading as the secondary
field from the particles acts locally completely disregarding
any memory effects from the background field. A much
better comparison is therefore given by the energy density,
which at peak value is Efieldðt ¼ 0Þ ¼ 3.13 m yielding a
ratio of approximately ∼2%.
In Refs. [82,83], where backreaction is fully taken into

account it was found that in 1þ 1-dimensional configura-
tions an electric field close to the Schwinger limitm2=e can
indeed produce enough particles such that the combined
field of matter plus background is significantly weakened.
In this case, however, the energy density of the matter field
even exceeds the energy density of the external field.

4. Supplemental figures

Collection of figures not suited for publication in the
main body of the manuscript. Nevertheless, they carry
interesting information, thus we decided to present all data
available.

FIG. 13. Particle distribution function fðpx; pzÞ in a high-
resolution simulation (top) in comparison with the result
obtained through a low-resolution computation (bottom) for a
background field with spatial extent λ ¼ 20 m−1, peak field
strength eε ¼ 0.5 m2, pulse length τ ¼ 75 m−1 (super-Gaussian
envelope) and field frequency ω ¼ 0.2 m. Above a field-specific
threshold for the grid size, details in the interference pattern
become more pronounced while spurious signals and numerical
artifacts vanish.
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FIG. 14. Particle momentum distribution as function of parallel (px) and perpendicular (pz) momentum for various spatial extents λ.
From top to bottom: λ ¼ 1000 m−1, λ ¼ 20 m−1, λ ¼ 10 m−1, λ ¼ 5 m−1 and λ ¼ 3 m−1. Particles are created due to the Schwinger
effect and subsequently accelerated by electric and magnetic fields. The smaller λ the stronger the magnetic field thus the more particles
are pushed to nonvanishing transversal momenta. Further parameters: eε ¼ 0.2 m2, τ ¼ 25 m−1 and ω ¼ 0.2 m.
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FIG. 15. Particle spectrum as a function of parallel (px) and perpendicular (pz) momentum for various spatial extents λ. Particles are
created mainly via the Schwinger effect. The smaller λ the stronger the applied magnetic fields thus the stronger the distortion.
Additionally, quantum interference effects vanish. Parameters: eε ¼ 0.5 m2, τ ¼ 25 m−1, ω ¼ 0.2 m and, in terms of appearance,
λ ¼ 1000 m−1 (top), 20 m−1, 10 m−1, 5 m−1 and 3 m−1 (bottom). To improve readability we only show absolute values in the last plot.
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FIG. 16. Left: Particle distribution fðpx; pzÞ for various values of the spatial extent λ (and therefore the magnetic peak field strength).
We have chosen a peak field strength of eε ¼ 0.5 m2, a pulse length of τ ¼ 25 m−1, a field frequency of ω ¼ 0.5 m and a spatial
envelope parameter of λ ¼ ð1000; 10; 5; 1.5Þ m−1 (top to bottom). Schwinger as well as multiphoton pair production are visible (strong
peaks, elliptical shape of the distribution function). A strong magnetic field can deform the particle structure and break pz symmetry.
Right: Particle distribution fðpx; pzÞ for various values of the spatial extent λ ¼ ð1000; 50; 20; 10Þ m−1 (top to bottom) for field strength
eε ¼ 0.2 m2, pulse length τ ¼ 75 m−1 (super-Gaussian envelope) and field frequency ω ¼ 0.2 m. Due to the appearance of multiple
strong subcycles in the electric field signatures of multiphoton pair production are clearly visible (ring superposed by quantum
interferences). A strong magnetic field can destroy the rings, but the multipeak structure is still retained. To improve readability we only
show absolute values in the last plot.
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FIG. 17. Particle distribution fðpx; pzÞ in the intermediate regime for various values of the spatial extent λ ¼
ð1000; 100; 50; 35; 20; 10; 5Þ m−1 (left to right, top to bottom) for field strength eε ¼ 0.5 m2, pulse length τ ¼ 75 m−1 (super-
Gaussian envelope) and field frequency ω ¼ 0.2 m. The stronger the magnetic field the more the particles are accelerated in transversal
direction pz. To improve readability we only show absolute values in the last plot.
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