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The radiative correction to the beta function is comprehensively studied at the one-loop level in the
context of universal extra dimensions. Instead of using cutoffs to regularize one-loop divergences, the
dimensional regularization scheme is used. In this approach, large momenta effects are removed from
physical amplitudes by adjusting the parameters of the appropriate counterterms. The use of a SUðNÞ-
covariant gauge-fixing procedure to quantize the theory is stressed. One-loop contributions of Kaluza-
Klein (KK) excitations are characterized by discrete KK sums and continuous momenta sums, which can
diverge. Two types of ultraviolet divergences are identified, one arising from poles of the gamma function
and associated with short-distance effects in the usual four-dimensional spacetime manifold and the other
emerging either from poles of the one-dimensional Epstein function or from the gamma function and
corresponding to short-distance effects in the compact manifold. We address the cases of 5 and 4þ n
dimensions (n ≥ 2) separately. In five dimensions, the one-dimensional Epstein function is convergent, so
the usual counterterm renormalizes the vacuum-polarization function. For 4þ n dimensions, the one-
dimensional Epstein function is divergent, so renormalization is implemented by interactions of canonical
dimension higher than 4, already present in the effective theory. The polarization function is renormalized
using both a mass-dependent scheme and a mass-independent scheme, with extra-dimensions effects
decoupling in the former case but not in the latter. The beta function is calculated for an arbitrary number of
extra dimensions. Our main result is that Yang-Mills theory remains perturbative at the one-loop level,
which is in disagreement with the results obtained in the literature by using a cutoff regulator, which
suggest that Yang-Mills theory in more than four dimensions ceases to be perturbative. We emphasize the
advantages of a mass-dependent scheme in this type of theories, in which decoupling is manifest.
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I. INTRODUCTION

The use of extra dimensions in model building
started with the works by Nordström and Kaluza, who
attempted to unify electromagnetism and gravity by assum-
ing the existence of a spatial extra dimension [1,2].
Nevertheless, it was Klein who realized, for the first time,
that compactification could be used to explain the lack of
observations of extra dimensions [3]. The ulterior birth of
string theory, as a theory of strong interactions [4–10],
would eventually endow great relevance to formulations of
extra dimensions. The original string-theory formulation
already had this ingredient, as 26 spacetime dimensions
were required to ensure unitarity [11]. The introduction of
fermions in string theory [12], which came along with the

discovery of supersymmetry [12,13], and the presence of a
massless particle of spin 2 [14], to be identified as the
graviton, were two main elements of superstring theory
that motivated its use to achieve a quantum theory of
gravity, always with the complicity of extra dimensions.
Remarkably, the critical dimension of superstring theory
turned out to be just 10, as it was shown by Schwarz [15].
The introduction of the Green-Schwarz mechanism [16], to
eliminate quantum anomalies arising in string theory, then
triggered the first superstring revolution, during which five
consistent superstring formulations were given [17–20].
Furthermore, a connection, through compactification,
between superstring theory, featuring a six-dimensional
Calabi-Yau extra-dimensional manifold [21], and four-
dimensional supersymmetry was established [22]. A sec-
ond superstring revolution started with the emergence of
the M theory, by Witten [23], who showed that the five
superstring formulations known at the time are limits of this
single theory, which is a unifying fundamental theory set in
11 spacetime dimensions. The existence of D-branes,
proposed by Polchinski [24] for the sake of string duality,
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was a major event. It was also shown that supergravity
in 11 dimensions is a low-energy limit of the M theory
[25,26]. The AdS=CFT correspondence, which establishes
a duality of five-dimensional theories of gravity with gauge
field theories set in four dimensions [27], is a quite
important result with remarkable practical advantages
regarding nonperturbative physics. Among the events
and advances experienced by string theory throughout
the years, and a plethora of papers on the matter, we wish
to emphasize that its development is the one that got
modern physics used to extra dimensions.
Considerable interest in the phenomenology of extra

dimensions arose because of the works by Antoniadis et al.
and Arkani-Hamed et al. [28–30], who, motivated by the
hierarchy problem, proposed the existence of large extra
dimensions, responsible for the observed weakness of the
gravitational interaction, at the stunning scale of a milli-
meter. Shortly after, Randall and Sundrum initiated an
important branch of extra-dimensional models, the so-
called models of warped extra dimensions, in which the
hierarchy problem was tackled by introducing a spatial
extra dimension and assuming that the associated five-
dimensional spacetime is characterized by an anti-de Sitter
structure [31,32]. The present paper is developed within
another well-known extra-dimensional framework, dubbed
universal extra dimensions [33] (UED), proposed by
Appelquist et al. [33] and characterized by the assumption
that every field of a given formulation depends on all the
coordinates of the spacetime with extra dimensions. The
work by these authors included the formulation of a field
theory with the structure of the four-dimensional Standard
Model but defined, rather, on a spacetime with compact
spatial extra dimensions, where all the dynamic variables
are assumed to propagate, thus leading to an infinite set of
Kaluza-Klein (KK) modes per each extra-dimensional
field.1 The present investigation takes place around
Yang-Mills (YM) theories defined in a spacetime compris-
ing 4þ n dimensions, with the assumption that the n extra
dimensions are compact and universal. Investigations on
theoretical and phenomenological aspects of extra-
dimensional Yang-Mills theories have been explored and
reported in Refs. [36–41]. In models of universal extra
dimensions, conservation of extra-dimensional momentum
yields, after integrating out the extra dimensions, four-
dimensional KK effective field theories in which KK parity
is preserved,with the consequence that, from the perspective
of the Feynman-diagrams approach, the very first effects
from the KK modes on low-energy Green’s functions (and
thus on low-energy observables) occur at one loop [33].
Such a feature is particularly relevant in the case of physical
observables and processes that, within the context of the
Standard Model in four dimensions, can take place

exclusively at loop orders. An appealing characteristic of
these models is the small number of added parameters,
which are a high-energy compactification scale, R−1, and
the number of extra dimensions, n. Moreover, universal-
extra-dimensions models include dark matter candidates
[42–45], which would be either the firstKK excited mode of
the photon or that corresponding to the neutrino.
To write down an effective Lagrangian that extends the

Standard Model in the UED approach, a series of nontrivial
steps must be implemented at the classical level. It is worth
analyzing in some detail how this effective theory is
constructed in order to have a broader understanding of
its implications at the quantum level. Here, we focus on a
pure (without matter fields) YM theory, whose technical
details can be found in Ref. [46]. At some energy scale Λ,
which is assumed to be far above of the compactification
scale R−1, one proposes an effective theory governed by the
extended group ISOð1; 3þ nÞ × SUðN;M4þnÞ, where
ISOð1; 3þ nÞ is the Poincaré group defined on the
(4þ n)-dimensional flat manifoldM4þn ¼M4×N n, with
M4 the usual spacetime manifold and N n a Euclidean
manifold. Note that SUðN;M4þnÞ and SUðN;M4Þ
coincide as Lie groups, but they differ as gauge groups
because they have a different number of connections.
The most general effective Lagrangian that respects the
ISOð1; 3þ nÞ × SUðN;M4þnÞ symmetry can bewritten as
Leffðx; x̄Þ ¼ LYM

ðd≤4þnÞðx; x̄Þ þ Lðd>4þnÞðx; x̄Þ, with x ∈ M4

and x̄ ∈ N n. The first term of this Lagrangian corresponds
to the (4þ n)-dimensional version of the usual YM theory,
which contains interactions of canonical dimension less than
or equal to 4þ n, while the second term includes all
interactions of canonical dimension higher than 4þ n that
are compatible with these symmetries, since the theory is
nonrenormalizable in the usual sense. From dimensional
considerations, the interactions that appear in the
Lðd>4þnÞðx; x̄Þ Lagrangian will be multiplied by inverse
powers of the high-energy scale Λ ≫ R−1, so they will be
naturally suppressed with respect to those that constitute
the LYM

ðd≤4þnÞðx; x̄Þ Lagrangian, which do not depend on this
scale. This means that this Lagrangian determines the
dominant contributions to physical observables. This fact
will play a central role in our quantum analysis at the one-
loop level. Note that the coupling constant g4þn that appears
in this Lagrangian is dimensionful and must be rescaled to
obtain the correct dimensionless YM coupling.
To describe physical phenomenon below the compacti-

fication scale, we need go from the ISOð1; 3þ nÞ ×
SUðN;M4þnÞ description to a description based in the
usual ISOð1; 3Þ × SUðN;M4Þ symmetry, for which it is
necessary to implement a procedure of hiding of symmetry.
To hide symmetry ISOð1; 3þ nÞ × SUðN;M4þnÞ in sym-
metry ISOð1; 3Þ × SUðN;M4Þ, we need to implement two
canonical maps, one that transforms covariant objects of
ISOð1; 3þ nÞ into covariant objects of ISOð1; 3Þ, the other

1Models of universal extra dimensions have been reviewed in
Refs. [34,35].
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that allows us to hide, through a general Fourier series, any
dynamic role of subgroup ISOðnÞ ⊂ ISOð1; 3þ nÞ [46].
The zero modes of such series are identified with the gauge
fields and gauge parameters of the usual YM theory. To
match the zero modes with those of the usual theory, the
dimensionful coupling constant g4þn must be rescaled to
identify the four-dimensional coupling g ¼ g4þn=ð2πRÞn2.
This procedure, which is qualitatively discussed in the
next section, leads to an effective field theory governed by
the usual ISOð1; 3Þ × SUðN;M4Þ groups. After compac-
tification and integration on the x̄ coordinates, the
LYM
ðd≤4þnÞðx; x̄Þ Lagrangian, which does not depend on

the Λ scale, unfolds into two terms: one that corresponds

to the usual four-dimensional theory, Lð0Þ
YMðxÞ, and the other

that contains interactions between usual fields and KK
excitations, LKK

ðd≤4ÞðxÞ. The important point to be empha-

sized is that, like Lð0Þ
YMðxÞ, the LKK

ðd≤4ÞðxÞ Lagrangian only

contains interactions of canonical dimension less than or
equal to 4, so they cannot depend on the high-energy scale
Λ. This means that the LKK

ðd≤4ÞðxÞ Lagrangian only can

depend on the compactification scale R−1 through masses
of the KK excitations. This is the reason why this
Lagrangian has a dominant role in phenomenological
predictions, even though its effects first appear at the
one-loop level. Another point worth noting is that, like

Lð0Þ
YMðxÞ, the interactions contained in the LKK

ðd≤4ÞðxÞ
Lagrangian are dictated by the SUðN;M4Þ gauge group,
so we can expect well-behaved loop amplitudes. As far as
the Lðd>4þnÞðx; x̄Þ Lagrangian is concerned, it unfolds into
two infinite Lagrangians: one that depends only on zero

modes fields, Lð0Þ
ðd>4ÞðxÞ, which contains all interactions of

canonical dimension higher than 4 that respect the usual
symmetry, and the other one that mixes interactions
between zero modes and KK excitations. Although the

Lð0Þ
ðd>4ÞðxÞ Lagrangian can generate at tree level the same

low-energy observables that can be induced by the
LKK
ðd≤4ÞðxÞ Lagrangian at the one-loop level, its contribution

is subdominant due to the suppression factor introduced by
the high-energy scale Λ. This means that in this type of
theories any physically interesting contribution on low-
energy observables will necessarily arise from one-loop
effects induced by the Lagrangians of canonical dimension

less than or equal to 4, namely, Lð0Þ
YMðxÞ and LKK

ðd≤4ÞðxÞ. In
this work, we will focus on this type of contributions.
At the one-loop level, the amplitudes characterizing KK

contributions are proportional to a discrete sum and a
continuous sum as well, that is,

P
ðkÞ

R
d4k, where the

symbol
P

ðkÞ represents a multiple sum running over
discrete vectors defined on the compact manifold. The
higher multiplicity of such discrete sums is the dimension
of the compact manifold, n. Since discrete and/or

continuous sums may diverge, a regularization scheme
must be adopted. This is a crucial issue on which we will
focus our attention. In the literature [33,47,48], one-loop
calculations of KK contributions to some observables have
been presented in the cases of one and two extra dimen-
sions using as a regulator an explicit cutoff. This approach
makes sense, since in an effective theory we must only
include momenta below a certain energy scale and exclude
those effects that are above it. Following this premise,
integrals are solved using a cutoff, while only a few of the
first KK modes of infinite sums are kept. This procedure
used in Refs. [33,47,48] seems to be motivated by Wilson’s
approach to renormalization theory, which introduces a
cutoff to divide the fundamental path integral into its low-
energy and high-energy parts [49], although the authors
only keep the low-energy effects. This scheme leads, of
course, to physical observables that are highly dependent
on the regulator. This can invalidate the perturbation
expansion even if the four-dimensional coupling constant
is small. Based on these results, it is generally assumed in
the literature that YM theories in more than four dimen-
sions become strongly interacting. This result has such
strong implications that are is worth reviewing more
carefully. Using a cutoff as regulator to extract the low-
energy effects of the theory leads to the suspicion that
something could be wrong. The main goal of this work is to
address this problem from a different perspective of
effective theories. The first thing we must do is introduce
a good regularization scheme, bearing in mind that we will
face a new series of complications that are not present in
conventional effective theories, which is evidenced by the
presence of infinite discrete sums in the one-loop ampli-
tudes. Although the cutoff schemes are very intuitive, they
are not really good regulators because they make it difficult
to keep the symmetries of the theory, especially gauge
invariance, which is the essence of YM theories. Definitely,
a cutoff is a bad regulator, which should not be used in
theories with a high content of symmetries, like the YM
theories. Although various regularization schemes are
available, we know from renormalization theory that it is
crucial to subtract off the infinities with a procedure that
preserves all the symmetries of the original theory. In line
with this observation, we will adopt the dimensional
regularization scheme [50,51], which has proven to be
the best existing regularization scheme, mainly because it
preserves the gauge and Poincaré symmetries. The adop-
tion of this regularization scheme may give the impression
that we are going against the genuine spirit of effective
theories, since dimensional regularization keeps momenta
arbitrarily high. However, as has already been shown in the
literature [52–55], undesirable contributions, that is, the
effects of very high energies, can be removed from physical
observables by adjusting the parameters of appropriate
counterterms. The required counterterms are already avail-
able in the effective Lagrangian, since it contains all
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interactions that respect the symmetries of the theory. In the

case at hand, the Lð0Þ
ðd>4ÞðxÞ Lagrangian can generate all the

necessary counterterms, since it induces at the tree level all
interactions between zero modes fields that are compatible
with the standard symmetry ISOð1; 3Þ × SUðN;M4Þ.
A significant complication of field models of extra

dimensions is related to the types of divergences that can
arise. An infinite number of KK-mode fields, circulating in
the loops of contributing Feynman diagrams, occurs, and,
moreover, there are two spaces, namely, the usual spacetime
manifold and the compact extra-dimensional manifold, so
thinking of short-distance effects in both spaces makes
sense. A detailed discussion on the matter, in the somewhat
simpler context of extra-dimensional quantum electrody-
namics, has been recently carried in Ref. [56]. As we discuss
below, in the same way that there are two spaces, there are
also two types of divergences, so the key to tackle the
problem relies on establishing a connection between the two
sorts of divergences and the two types of spaces. Such a
connection is already suggested by the fact that the one-loop
amplitudes characterizing KK contributions are propor-
tional, as already mentioned, to a discrete sum and a
continuous sum as well, that is,

P
ðkÞ

R
d4k. Since discrete

and/or continuous sums may diverge, we simultaneously
regularize them using the dimensional regularization
scheme. This means that all values of both discrete and
continuous momenta will be kept. As will be seen through-
out the paper, the dimensional regularization scheme
becomes central to our work. An important result is that
the discrete sums thus regularized can naturally be expressed
in terms of multidimensional Epstein functions [57]. In this
regularization scheme, divergences from continuous sums
manifest as poles of the gamma function in the limit as the
parameter ϵ ¼ 4 −D goes to zero. We show that the
divergences associated with discrete sums emerge alter-
nately either as poles of the one-dimensional Epstein
function or as poles of the gamma function. It is in this
sense that we talk about the existence of two types of
divergences. Since these divergences originate in discrete
sums, we argue that such types of divergences correspond to
short-distance effects of the KK excitations in the compact
manifold, so they are genuine ultraviolet divergences that
can be removed by renormalization. TheKKexcitations also
induce divergences that emerge through poles of the gamma
function, which have to do with short-distance effects in the
usual spacetime manifold. Showing that both types of
divergences can consistently be handled by renormalization
is a main objective of the present work. In general, KK
excitations can induce both types of divergences, except in
the special case of only one extra dimension, since the one-
dimensional Epstein function is convergent. Thus, the cases
n ¼ 1 andn ≥ 2 are addressed separately. Forn ¼ 1, wewill
show that, at the one-loop level, the counterterms of the
usual theory, describing the zero modes, are enough to
remove ultraviolet divergences from the KK theory.

However, for n ≥ 2, short-distance effects in both the usual
spacetime and the compact manifold may be present, so the
usual counterterms do not suffice to remove both types of
divergences. The reason is that divergences from short-
distance effects in the compact manifold appear as coef-
ficients of polynomials in the external momentum, which
suggests that these effects are associated with Lagrangian
terms of canonical dimension higher than 4. To generate
appropriate counterterms, renormalization is implemented
by considering interactions which are nonrenormalizable,
according toDyson’s criterion. As already commented, such
interactions are already available in the effective KK
Lagrangian, which is constituted by all the interactions
governed by the symmetries of the theory.
Asymptotic freedom is a remarkable aspect of quantum

chromodynamics, taking place in the context of the
SUð3ÞC-invariant YM theory description of strong inter-
actions [58–60]. This physical phenomenon, by which
collisions involving hadrons display a pointlike-particle
behavior of constituent quarks in case of large momentum
transfer, occurs in the presence of a negative Callan-
Symanzik beta function [61,62], β, which is identified from
the ultraviolet structure of loop corrections to the gauge-
field propagator. This beta function then provides, at the
desired loop order, an estimation for the running strong
coupling constant αs, in accordance with the renormaliza-
tion group equation, that is compatible with perturbation
theory at sufficiently large momentum transfer q2. In the
one-loop approximation, αsðq2Þ is expressed as

αsðq2Þ ¼
αsðμ2Þ

1þ αsðμ2Þβ log q2

μ2

; ð1:1Þ

with μ denoting the renormalization scale. In the context
of SUð3ÞC-invariant chromodynamics, the first calculation
of a negative beta function, at the one-loop order, was
reported in Ref. [58], whose result established asymptotic
freedom of quarks and gluons. Ulterior calculations of the
beta function at two, three, and even four loops were
carried out afterward [63–68]. The presumed occurrence
of KK excited modes, as a low-energy manifestation of
extra dimensions, plays a role in the definition of the beta
function. The efforts of the present investigation are
aimed at the estimation of effects produced by the
presence of universal extra dimensions on the beta
function, which is done through a calculation, at one
loop, of the contributions from the KK excited modes
that originate in the (4þ n)-dimensional gauge fields of
the SUðN;M4þnÞ theory.
A major objective of the present work is the calculation

and characterization of the impact, at the one-loop level, of
universal extra dimensions on the beta function of YM
theories. For this purpose, we take gauge symmetry,
the dimensional regularization scheme, and decoupling
between physical scales as guiding principles. To this
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aim, we quantize the KK theory by using a SUðN;M4Þ-
covariant gauge-fixing procedure. The Background Field
Method [69,70] is used to fix the gauge for zero modes,
which are the four-dimensional YM fields, while for
KK excited modes, a covariant gauge [41] is considered.
The construction of a SUðN;M4Þ-invariant quantum
Lagrangian considerably simplifies the calculation of the
beta function. Regarding the control of divergences, we
already have emphasized the importance of using dimen-
sional regularization to preserve the original symmetries of
the theory and implementing renormalization to remove the
effects of large discrete and continuous momenta. In
Ref. [56], some of us showed, for the first time, the
advantages of using the dimensional regularization scheme
to simultaneously regularize the continuous and discrete
sums. On the other hand, we demand extra-dimensions
effects to be of decoupling nature; that is, we require them
to vanish from physical quantities and renormalized ampli-
tudes at low energies, in accordance with the Appelquist-
Carazzone decoupling theorem [71]. The renormalized
vacuum-polarization function, in our gauge-invariant quan-
tization procedure, and the beta function shall be quantities
subjected to this requirement. Decoupling of new physics
effects means that these quantities must reduce to the usual
ones in the limit of a very large compactification scale.
Fulfillment of this requirement depends crucially on
renormalization scheme. We note that a mass-dependent
scheme must be followed to achieve this goal. If these goals
are achieved, we will have shown that Yang-Mills theory in
more than four UEDs remains perturbative at the one-
loop level.
The rest of the paper has been organized as follows. In

Sec. II, we discuss the main features of YM theories with an
arbitrary number of extra dimensions. In this section, we
will focus more on the conceptual part, avoiding, as much
as possible, getting into the technical details. Section III is
devoted to presenting the calculations needed for our study
of the phenomenon of asymptotic freedom. The gauge-
covariant scheme to quantize the theory is discussed to
some extent. Some properties of zeta functions are pre-
sented, and a number of relevant expressions for our work
are derived. In Sec. IV, the beta function is derived using
both a mass-independent scheme and a mass-dependent
scheme. Finally, in Sec. V, we summarize or main results
and present final remarks.

II. EXTRA-DIMENSIONAL YANG-MILLS
THEORY AND ITS KALUZA-KLEIN

LAGRANGIAN

In general, field theories are defined by symmetries and
dynamic variables [55]. While a variety of symmetries
relevant to this purpose is available, spacetime and gauge
symmetries, in particular, turn out to be essential elements
for the definition of field-theory descriptions. For instance,
even though most models are set under the assumption that

Lorentz symmetry holds, effective field theories with the
ingredient of Lorentz-invariance nonconservation, inspired
by the spontaneous breaking of Lorentz symmetry in string
theory formulations [72,73] and by the occurrence of
Lorentz violation in noncommutative field theory [74],
have been propounded [75–77]. On the other hand, the
choice of the gauge-symmetry group has more often
become the defining trademark of field theory models.
For instance, the Lagrangian terms constituting the
Standard Model are determined, in part, by the gauge
group SUð3ÞC × SUð2ÞL × Uð1ÞY . This is also the case of
models that involve left-right symmetry [78–83], which are
based on SUð2ÞL × SUð2ÞR × Uð1ÞB−L. Moreover, the
main feature of the so-called 331 models [84,85] is a
particular gauge group, in this case SUð3ÞC × SUð3ÞL×
Uð1ÞX. Also, theories of grand unification, based on the
symmetry group SU(5), were explored and thoroughly
discussed [86,87]. The consideration of spacetime mani-
folds with extra dimensions has opened alternative paths
to define field-theory models.2 In the present study, we
work within the framework set by (4þ n)-dimensional YM
theories, by which we refer to a replica of the SUðN;M4Þ-
invariant pure-gauge theory, but with all its field content
and symmetries defined on the spacetime with the n extra
dimensions, which we assume to be spatial-like and
universal. In this section, we briefly discuss this extra-
dimensional YM theory, with focus on those aspects that
are relevant for the calculation of beta-function contribu-
tions that we are about to execute. We develop our
discussion in the general context of n extra dimensions,
which, of course, can be straightforwardly particularized to
the case n ¼ 1. We spare the reader from the whole bunch
of specific details characterizing this formulation and
suggest Refs. [36–41,56] for more detailed discussions
on the matter.
First consider, in general, a spacetime comprising

one timelike dimension and 3þ n spatial-like dimen-
sions. Assume that, at some high-energy scale (short
distances), this spacetime can be characterized by a
(4þ n)-dimensional manifold M4þn with metric gMN ¼
diagð1;−1;…;−1Þ. Here and in what follows, capital
spacetime indices, like M, N, take the values3

0; 1; 2; 3; 5;…; 4þ n. Think of a field-theory formula-
tion defined on this manifold and governed by the extra-
dimensional Poincaré group ISOð1; 3þ nÞ. Imagine a
process in which we study nature at increasing distances,
starting from the aforementioned high-energy scale.
While at a certain range of high-energy scales the proper
field-theory description is invariant with respect to

2Field-theory models of extra dimensions extend the 4-
dimensional standard model (4DSM) in the direction of space-
time symmetry groups.

3Note that a convention in which the first extra dimension is
labeled by M;N ¼ 5 has been used.
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ISOð1; 3þ nÞ, we assume that the afore-described process
leads us to a lower-energy scale at which n out of the
3þ n spatial-like dimensions display a compact nature. It
is said that these n dimensions are compactified. At this
energy scale, also called the compactification scale, an
appropriate field-theory formulation is not governed by
the (4þ n)-dimensional Poincaré group anymore. Besides
being a theoretical possibility, the ingredient of compac-
tification has the practical use of explaining the absence of
measurements of extra dimensions [88–96]. A variety of
geometries, suitable for compactified extra dimensions, is
available [97–101]. In general, all the symmetries and
dynamic variables constituting a sensible physical
description at this lower-energy scale are different.
From here on, x and x̄ denote, respectively, coordinates

for the four standard spacetime dimensions and the n extra
dimensions. In this context, consider any dynamic variable,
generically denoted by χðx; x̄Þ, which we assume to be a
tensor field with respect to the (4þ n)-dimensional Lorentz
group. Now, we break ISOð1; 3þ nÞ invariance by imple-
menting compactification, for which we assume that each
extra dimension is compactified on an orbifold S1=Z2

characterized by a radius Rj, with j ¼ 1; 2;…; n. This
compactification scheme induces periodicity properties on
χ, with respect to the extra-dimensional coordinates x̄.
Moreover, it allows for the assignment to χ of definite-
parity properties, with respect to reflections x̄ → −x̄.
The field χ is then expanded in terms of a complete

set of orthogonal functions ffðkÞE ðx̄Þ; fðkÞO ðx̄Þg, which
exclusively depend on extra-dimensional coordinates
x̄. Such an expansion runs over the multi-index
ðkÞ ¼ ðk1; k2;…; knÞ, where any kj is an integer number.
Furthermore, the labels “E” and “O” mean that the
corresponding function is even or odd under x̄ → −x̄.
Once this expansion has been implemented on every field
χ, the extra-dimensional coordinates x̄ no longer label
degrees of freedom, which are now characterized by the KK

index ðkÞ. Each function fðkÞE or fðkÞO , in the χ expansion, lies

multiplied by a coefficient χðkÞE ðxÞ or χðkÞO ðxÞ, respectively.
These fields, which depend only on the four-dimensional
coordinates x of the noncompact spacetime dimensions, are
the new four-dimensional dynamic variables, the KK
modes, suitable for the physical description after compac-
tification. Assume that a constant function, fð0Þ, belongs to
ffðkÞE ; fðkÞO g. This function, trivially even under x̄ → −x̄,
comes with a four-dimensional field χð0ÞðxÞ. Fields χð0Þ,
known as KK zero modes, are identified as the dynamic
variables that constitute the low-energy description. The
fields χðkÞ, with ðkÞ ≠ ð0Þ, are known as KK excited modes
and are interpreted as degrees of freedom that reflect the
presence of extra dimensions from a four-dimensional
effective-theory viewpoint. Thus, only x̄-even extra-
dimensional fields χ yield low-energy dynamic variables.

The specific set ffðkÞE ; fðkÞO g is determined, in part, by
the geometry of the extra dimensions, but an extra-
dimensional observable is also required to this end. This
is the case of the Casimir invariants of ISOðnÞ, among
which we choose P̄2, with P̄ the momentum operator along
the extra dimensions. Being a Hermitian operator, P̄2 has
an associated orthogonal set of eigenkets fjp̄ðkÞig, with
real eigenvalues ðp̄ðkÞÞ2 ¼ p̄ðkÞ · p̄ðkÞ. The P̄2 eigenkets

then define ffðkÞE ; fððkÞO g from the wave function relations

fðkÞE;O ¼ hx̄jp̄ðkÞi. Using such relations, together with appro-
priate boundary conditions, fðkÞE and fðkÞO are determined to
be normalized trigonometric functions, so that the field χ is
Fourier expanded, with the following two disjoint cases:
even parity:

χðx; x̄Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2πÞnRp χð0ÞðxÞ

þ
X
ðkÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ð2πÞnR

s
χ
ðkÞ
E ðxÞ cosfp̄ðkÞ · x̄g; ð2:1Þ

odd parity:

χðx; x̄Þ ¼
X
ðkÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ð2πÞnR

s
χ
ðkÞ
O ðxÞ sinfp̄ðkÞ · x̄g: ð2:2Þ

In these equations, we denoted R ¼ R1R2 � � �Rn. We
have defined discrete extra-dimensional momenta p̄ðkÞ ¼
ðk1=R1; k2=R2;…; kn=RnÞ as well. The symbol

P
ðkÞ ¼P

k1

P
k2 � � �

P
kn represents a multiple sum that runs over

every discrete vector ðkÞ labeling an independent field
χðkÞ, with the additional restriction that ðkÞ ≠ ð0Þ ¼
ð0; 0;…; 0Þ. That is, this notation summarizes a total
of 2n − 1 different series as follows:

X
ðkÞ

TðkÞ ¼
X∞
k1¼1

Tðk1;0;…;0Þ þ � � � þ
X∞
kn¼1

Tð0;…;knÞ

þ
X∞

k1;k2¼1

Tðk1;k2;0;…;0Þ þ � � � þ
X∞

kn−1;kn¼1

Tð0;…;0;kn−1;knÞ

..

.

þ
X∞

k1;…;kn¼1

Tðk1;…;knÞ: ð2:3Þ

Whereas positions of Fourier indices in the entries of ðkÞ
are not relevant, the number of occupied entries makes
a difference. So, in practice, one can use the following
definition:
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X
ðkÞ

¼
Xn
l¼1

�
n

l

�X∞
k1¼1

� � �
X∞
kl¼1

: ð2:4Þ

Note that such an effective theory, often referred to as KK
theory, is defined only in four dimensions of spacetime;
once the extra dimensions have been compactified and the
dynamic variables Fourier expanded, thewhole dependence
on extra dimensional coordinates in the action SYM4þn ¼R
d4þnxLYM

4þnðx; x̄Þ lies within trigonometric functions,
which can be straightforwardly integrated out, leading to
a Lagrangian,

LYM
KK ðxÞ ¼

Z
dnx̄LYM

4þnðx; x̄Þ; ð2:5Þ

defined in four spacetime dimensions.
We start by considering a YM theory set on a (4þ n)-

dimensional spacetime with those features previously
described and which is governed by the extended
groups ISOð1;3þnÞ×SUðN;M4þnÞ. The gauge-symmetry
group introduces N2 − 1 connections, denoted asAa

Mðx; x̄Þ,
where a ¼ 1; 2;…; N2 − 1 is the gauge index. The theory to
be addressed is then given by the Lagrangian term

LYM
4þn ¼ −

1

4
F a

MNF
aMN þ Lðd>4þnÞðF ;DF Þ; ð2:6Þ

where Lðd>4þnÞðF ;DFÞ includes all interactions which
have canonical dimension higher than 4þ n and which
are compatible with the ISOð1; 3þ nÞ × SUðN;M4þnÞ
symmetry. This must be so because the theory is non-
renormalizable in the usual sense. This effective
Lagrangian is given in terms of the SUðN;M4þnÞ YM
curvature components F a

MN and its derivatives, defined as
usual [102],

F a
MN ¼ ∂MAa

N − ∂NAa
M þ g4þnfabcAb

MA
c
N; ð2:7aÞ

Dab
M ¼ δab∂M − g4þnfabcAc

M; ð2:7bÞ

with fabc the structure constants of the group. The
SUðN;M4þnÞ coupling constant, g4þn, is dimensionful,
with units ðmassÞ−n=2.
Having defined the Lagrangian term LYM

4þn, we imple-
ment compactification through a couple of canonical
transformations to go from the (4þ n)-dimensional per-
spective to the KK effective theory, set in four spacetime
dimensions. Because of compactification, Aa

M, which at
first was a (4þ n)-vector of SOð1; 3þ nÞ, is split into the
SOð1; 3Þ 4-vector Aa

μ and the set of SOð1; 3Þ scalar fields
fAa

5;A
a
6;…;Aa

4þng. From now on, we utilize greek indices
like μ, ν ¼ 0, 1, 2, 3 to denote four-dimensional Lorentz
indices and use indices μ̄; ν̄ ¼ 5; 6;…; 4þ n to label
extra-dimensions coordinates. The implementation of the

afore-alluded splitting is a canonical transformation that
maps covariant objects of SOð1; 3þ nÞ into covariant
objects of SOð1; 3Þ [39,40]. To land on a KK effective
Lagrangian consistently comprising the low-energy theory,
namely, the YM theory in four dimensions, we assume that
Aa

μ is even with respect to x̄ → −x̄, but the definite parity of
the scalar fields Aa

μ̄ under such a transformation is taken to
be odd. Equations (2.1) and (2.2) embody a second
canonical transformation [39,40], which, after implemen-
tation, yields sets of KK modes, recognized as dynamic
variables of the KK Lagrangian. Furthermore, as a by-
product of the last canonical transformation, the dimen-
sionless quantity g ¼ g4þn=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2πRÞnp
is identified as the

SUðN;M4Þ coupling constant. The whole set of KK
modes, together with the two canonical maps generating
them, is illustrated in Eq. (2.8):

Aa
Mðx; x̄Þ ↦

8<
:Aa

μðx; x̄Þ ↦ Að0Þa
μ ðxÞ; AðkÞa

μ ðxÞ
Aa

μ̄ðx; x̄Þ ↦ AðkÞa
μ̄ ðxÞ:

ð2:8Þ

After usage of the canonical maps, and subsequent
straightforward integration of the extra dimensions in the
action, the four-dimensional KK Lagrangian term LYM

KK ¼R
dnx̄LYM

4þn arises. The effective-theory description pro-
vided by LYM

KK is characterized by low-energy symmetries,
among which four-dimensional Poincaré invariance is
central. With respect to the Lorentz group SOð1; 3Þ, the
KK fields Að0Þa

μ and AðkÞa
μ are 4-vectors, whereas the AðkÞa

μ̄

are scalars. About gauge symmetry, the effectuation of
compactification entails the occurrence of hidden sym-
metries [39]. Originally characterized by the gauge group
SUðN;M4þnÞ, set on 4þ n spacetime dimensions, the
(4þ n)-dimensional Yang-Mills theory has been mapped
into a KK theory that manifests gauge invariance corre-
sponding to the low-energy group SUðN;M4Þ, defined on
four spacetime dimensions. Collaterally, the gauge trans-
formations of the (4þ n)-dimensional connections Aa

M
split into two disjoint sets of four-dimensional gauge
transformations [36–41]: standard gauge transformations,
which constitute the gauge group SUðN;M4Þ and with

respect to which KK zero mode Að0Þa
μ behaves as a gauge

field, and nonstandard gauge transformations, under

which KK excited modes AðkÞa
μ are sort of like gauge

fields, in the sense that they follow a transformation that is
reminiscent of a gauge transformation, but which does not
correspond to SUðN;M4Þ. Furthermore, let us remark that

KK excited modes AðkÞa
μ are not connections of

SUðN;M4Þ, but, rather, they transform as matter fields,
in the adjoint representation of this group [36–41]. Hence,
gauge symmetry governing the KK effective theory does
not forbid the presence of mass terms for vector KK-

excited-mode fields AðkÞa
μ . This is to be contrasted with the
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situation of KK zero modes Að0Þa
μ , which, being four-

dimensional gauge fields, are restricted to be massless. All
scalar KK modes, on the other hand, transform as matter
fields with respect to both sets of gauge transformations;

the scalar fields AðkÞa
μ̄ are, in spite of their gauge origin,

matter fields under SUðN;M4Þ, which opens the possibil-
ity for them to become massive.
A remarkable outcome of compactification is the occur-

rence of mass terms for the whole set of KK excited modes,
which we refer to as the KK mass-generating mechanism,
or KK mechanism for short. To illustrate more explicitly the
consequences of this mechanism, we present the effective
Lagrangian that results after compactification of the
(4þ n)-dimensional version of the pure Yang-Mills theory.
So, after integrating over the extra coordinates in (2.5), we
have an effective Lagrangian given by

LYM
KK ¼ LYM

KKðd≤4Þ þ Lðd>4Þ; ð2:9Þ

where LYM
KKðd≤4Þ contains only interactions of canonical

dimension less than or equal to 4, which emerge from
compactification of the (4þ n)-dimensional version of the
YM theory. This Lagrangian can conveniently be written as

LYM
KKðd≤4Þ ¼ LYM

v-v þ LYM
v-s þ LYM

s-s ; ð2:10Þ

where

LYM
v−v ¼ −

1

4
F ð0Þa

μν F ð0Þμν
a −

1

4

X
ðkÞ

F ðkÞa
μν F ðkÞμν

a ; ð2:11aÞ

LYM
v-s ¼ 1

2

X
ðkÞ

F ðkÞa
μν̄ ðxÞF ðkÞa μ

ν̄ðxÞ; ð2:11bÞ

LYM
s-s ¼ −

1

4
F ð0Þa

μ̄ ν̄ F ð0Þμ̄ ν̄
a −

1

4

X
ðkÞ

F ðkÞa
μ̄ ν̄ F ðkÞμ̄ ν̄

a : ð2:11cÞ

The Lagrangian Lðd>4Þ in (2.9) arises from compactifica-
tion of Lðd>4þnÞ in (2.6), which contains all interactions of
canonical dimension higher than 4, which are compatible
with the standard symmetry ISOð1; 3Þ × SUð1;M4Þ.
In the above expressions, the curvature components

fF ð0Þa
μν ðxÞ;F ðkÞa

μν ðxÞg are given by

F ð0Þa
μν ¼ Fð0Þa

μν þ gfabc
X
ðkÞ

AðkÞb
μ AðkÞc

ν ; ð2:12aÞ

F ðkÞa
μν ¼ Dð0Þab

μ AðkÞb
ν −Dð0Þab

ν AðkÞb
μ

þ gfabc
X
ðrsÞ

ΔðkrsÞA
ðrÞb
μ AðsÞc

ν ; ð2:12bÞ

where

Fð0Þa
μν ¼ ∂μA

ð0Þa
ν − ∂νA

ð0Þa
μ þ gfabcAð0Þb

μ Að0Þc
ν ð2:13Þ

are the curvature components associated with the standard
gauge group SUðN;M4Þ. Note that the curvature compo-

nents fF ð0Þa
μν ðxÞ;F ðkÞa

μν ðxÞg transform in the adjoint repre-
sentation of this group. Then, the Lagrangian (2.11a)
contains the Yang-Mills term associated with the standard
SUðN;M4Þ group plus terms involving interactions among
connection components and matter fields. Note that

F ðkÞa
μν ðxÞ contains the kinetic terms for the matter fields.

As far as the curvatures fF ðkÞa
μν̄ ;F ðkÞa

μ̄ ν̄ ;F ð0Þa
μ̄ ν̄ g are con-

cerned, which transform in the adjoint representation of the
gauge group SUðN;M4Þ, they are given by

F ðkÞa
μν̄ ¼ Dð0Þab

μ AðkÞb
ν̄ þ pðkÞ

ν̄ AðkÞa
μ

þ gfabc
X
ðrsÞ

Δ0
ðrskÞA

ðrÞb
μ ðxÞAðsÞc

ν̄ ; ð2:14aÞ

F ðkÞa
μ̄ ν̄ ¼ pðkÞ

μ̄ AðkÞa
ν̄ − pðkÞ

ν̄ AðkÞa
μ̄

þ gfabc
X
ðrsÞ

Δ0
ðrskÞA

ðrÞb
μ̄ AðsÞc

ν̄ ; ð2:14bÞ

F ð0Þa
μ̄ ν̄ ¼ gfabc

X
ðkÞ

AðkÞb
μ̄ ðxÞAðkÞc

ν̄ : ð2:14cÞ

In the above expressions, Dð0Þab
μ is the covariant derivative

in the adjoint representation of SUðN;M4Þ. In addition, the
symbols ΔðrksÞ and Δ0

ðrksÞ are given by

ΔðrksÞ ¼
1

fð0ÞE

Z
2πRn

0

…

Z
2πR1

0

dnx̄fðkÞE ðx̄ÞfðsÞE ðx̄ÞfðrÞE ðx̄Þ;

ð2:15aÞ

Δ0
ðrksÞ ¼

1

fð0ÞE

Z
2πRn

0

…

Z
2πR1

0

dnx̄fðkÞO ðx̄ÞfðsÞO x̄ÞfðrÞE ðx̄Þ:

ð2:15bÞ

Note that the Lagrangians (2.11b) and (2.11c) correspond
to a scalar kinetic sector and to a scalar potential,
respectively. This means that masses for the gauge,

AðkÞa
μ ðxÞ, and scalar, AðkÞa

μ̄ ðxÞ, fields can arise from the
Lagrangians (2.11b) and (2.11c), respectively.
Any KK excited mode χðkÞ, labeled by a specific multi-

index ðkÞ, acquires a KK mass,

mðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
k1
R1

�
2

þ
�
k2
R2

�
2

þ � � � þ
�
kn
Rn

�
2

s
: ð2:16Þ
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Mass terms for vector KK fields AðkÞa
μ emerge in a

straightforward manner from Eqs. (2.11b) and (2.14a),
which contrasts with the case of scalar KK excited modes

belonging to the set fAðkÞa
5 ; AðkÞa

6 ;…; AðkÞa
4þng, with fixed KK

index ðkÞ, since mixings among all the fields of such a set
take place, as it follows from Eqs. (2.11c) and (2.14b).
The mixing for this set of scalar KK modes is given by the
real and symmetric mixing matrix MðkÞ, with entries

MðkÞ
μ̄ ν̄ ¼ m2

ðkÞδμ̄ ν̄ − p̄ðkÞ
μ̄ p̄ðkÞ

ν̄ . Things can be conveniently

arranged so that, denoting the orthogonal-diagonalization
matrix of MðkÞ by RðkÞ, the diagonalization4

ðRðkÞ TMðkÞRðkÞÞμ̄ ν̄ ¼ m2
ðkÞδμ̄ ν̄ð1 − δμ̄;4þnÞ can be executed.

Note that the eigenvalues of RðkÞ TMðkÞRðkÞ arem2
ðkÞ, except

for that corresponding to μ̄ ¼ ν̄ ¼ 4þ n, which is 0. The
null eigenvalue implies the presence of massless scalar KK

excited modes, which we denote as AðkÞa
G and which turn

out to be kind of pseudo-Goldstone bosons, in the sense
that a nonstandard gauge transformation that eliminates
them from the theory exists, indicating that such fields
represent unphysical degrees of freedom. After the change
of basis, induced by diagonalization, the resulting mass-
eigenfields basis involves, for any fixed KK index ðkÞ, the
set of scalar fields fA0ðkÞa

1 ; A0ðkÞa
2 ;…; A0ðkÞa

n−1g, all of them
with mass mðkÞ, and the aforementioned pseudo-Goldstone

bosons AðkÞa
G . Such a diagonalization, with the associated

set of resulting fields, is illustrated in Eq. (2.17):

fAðkÞa
μ̄ g4þn

μ̄¼5 ↦ AðkÞa
G ; fA0ðkÞa

n̄ gn−1n̄¼1: ð2:17Þ

The KK-mechanism procedure bears features that evoke
the Englert-Higgs mechanism (EHM) [103–105], respon-
sible for mass generation in the Standard Model. A gauge-
invariant scalar potential with degenerate minima, which
can be characterized by the set of points constituting a
hypersphere with radius determined by some vacuum
expectation value, is the starting point of the EHM. The
hypersphere points are connected to each other by gauge
symmetry associated to some groupG, of dimension dG, so
they represent physically equivalent vacuum states. To pick
one of such minima, a specific constant vector, associated
to a particular point on the hypersphere, is taken. Such a
choice induces a map G ↦ H that breaks the gauge group
G down into one of its subgroupsH ⊂ G, of dimension dH.
This procedure breaks dG − dH generators of G, thus
leaving dH unbroken generators. Any gauge field pointing
toward the direction defined by a broken generator
becomes massive, which yields the emergence of an
associated pseudo-Goldstone boson. Hence, the resulting
set of fields involves dG − dH massive gauge fields and the

same number of pseudo-Goldstone bosons. On the other
hand, the dH gauge fields pointing along directions
corresponding to unbroken generators remain massless
and are the connections of the gauge subgroup H, which
governs the resultant theory. So, the remaining dH unbro-
ken generators define the Lie algebra of H. Regarding the
KK mechanism, note that the complete set of orthogonal

functions ffðkÞE ; fððkÞO g is not unique. To pick a particular set,
an extra-dimensional observable, namely, the ISOðnÞ
Casimir invariant P̄2, was utilized, though other options,

yielding different sets ffðkÞE ; fððkÞO g, are available. The
definition of a such a set determines a canonical trans-
formation that maps the extra-dimensional fields into the
four-dimensional KK modes, thus defining a theory gov-
erned by four-dimensional Poincaré invariance. In other
words, the map ISOð1; 3þ nÞ → ISOð1; 3Þ takes place.
Furthermore, while the extra-dimensional theory is invari-
ant with respect to some gauge group defined on the
spacetime with extra dimensions, after this map, the
resulting theory is manifestly governed by a gauge group
characterized by the same generators, though defined in
four dimensions. Consider a connection of the gauge group
in extra dimensions and assume that it has been mapped
into its set of KK modes. The corresponding KK zero mode
points along the direction of the constant function
fð0Þ ¼ hx̄jp̄ð0Þi, determined by the P̄2 eigenket jp̄ð0Þi.
The zero mode remains massless and transforms as a
gauge field with respect to the four-dimensional gauge
group, which resembles what happens with the gauge fields
pointing toward the directions associated to unbroken
generators in the EHM. Moreover, the remaining 2n − 1

eigenkets jp̄ðkÞi, with ðkÞ ≠ ð0Þ, are analogues of the
broken gauge-group generators from the EHM, in the

sense that they define independent directions fðkÞO and

fðkÞE along which vector fields with masses acquired by
the KK mechanism are directed, with the presence of the
same number of associated pseudo-Goldstone bosons. It is
worth emphasizing that, in contrast with the case of the
EHM, the KK mechanism does not involve broken gauge
generators, since the extra-dimensional and the four-dimen-
sional gauge groups share the same generators.

III. ONE-LOOP CALCULATION

The purpose of this section is to present the calculation
of the one-loop contribution of the KK modes to the
tensor polarization associated with the zero-mode gauge

field Að0Þa
μ .

A. Gauge-fixed renormalized action

Our goal is the calculation, at one loop, of the beta
function associated to the gauge group SUðN;M4Þ, in the
context of the KK theory discussed in the previous section.
To this aim, we are interested in those couplings that4In this equation, the repeated index μ̄ is not summed.
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contribute at one loop to low-energy Green’s functions,
characterized by Feynman diagrams in which the external

fields are exclusively zero-mode gauge fields Að0Þa
μ . Such

Lagrangian terms include KK excited-mode vector fields

AðkÞa
μ and scalar fields A0ðkÞa

n̄ , but note that contributions

from the zero mode Að0Þa
μ must be considered as well [102].

So, an effective action Γ½Að0Þ�, which results from integrat-

ing out quantum fluctuations of Að0Þa
μ and KK excited-mode

fields, is defined and calculated.
We address gauge fixing in the KK theory within the

framework of the Becchi-Rouet-Stora-Tyutin (BRST) for-
malism. The extended-action proper solution for the four-
dimensional gauge group SUðNÞ has been discussed in
detail in Ref. [106], while a generalization to extra
dimensions and the corresponding KK theory are found
in Refs. [36,38,41]. In this approach, gauge fixing in the
Standard Model in extra dimensions has been discussed in
Refs. [107,108]. The implementation of these techniques to
the (4þ n)-dimensional YM theory and its KK effective
description yields the quantum Lagrangian

LYM
QKK ¼ LYM

KK þ LGF
KK þ LG

KK þ Lð0ÞYM
c:t: þ LKK

c:t: ; ð3:1Þ

where LYM
KK is the classical Lagrangian, Eq. (2.9); LGF

KK is
the gauge-fixing term; and LG

KK is the corresponding

ghost-antighost sector. In addition, Lð0ÞYM
c:t: is the usual

YM counterterm, whereas LKK
c:t: contains the remaining

counterterms of the effective theory.

B. Gauge fixing in the Kaluza-Klein theory

Field formulations aimed at furnishing sensible quantum
descriptions of nature are usually built on the grounds of
gauge symmetry. The essence of gauge symmetry resides in
the presence of more degrees of freedom than those strictly
required by some given system for its description [109].
Gauge transformations link a whole family of different
mathematical configurations which, in order for gauge
symmetry to make physical sense, must lead to the exact
same physical results. In other words, any observable
intended to be genuinely physical must be gauge indepen-
dent. Even though gauge symmetry is a main element for
the definition of field theories, it turns out that quantization
requires gauge fixing to be carried out, which means
choosing a specific gauge, thus resulting in a formulation
that is not gauge invariant anymore.
Being associated to local symmetry groups, gauge

transformations are defined by functions, known as gauge
parameters, which depend on spacetime coordinates. The
selection of a set of specific spacetime-dependent functions
to play the role of gauge parameters fixes the gauge,
establishing a particular gauge configuration. A systematic
path to pick a gauge, among the so-called linear gauges,
was developed long ago by the authors of Ref. [110]. In

their approach, gauge fixing is parametrized by a gauge-
fixing parameter, usually denoted as ξ, whose different
values correspond to different gauges. In such an approach,
the Landau gauge, ξ ¼ 0, and the Feynman-’t Hooft gauge,
ξ ¼ 1, are commonly utilized. When massive gauge fields
are present, a customary choice is the unitary gauge, which,
in this scheme, is obtained by taking the limit as ξ → ∞.
The field-antifield formalism and the BRST symmetry

constitute an efficacious mean through which the quanti-
zation of gauge systems can be achieved [106,111–118]. In
this framework, the field content defining some gauge
theory gets systematically extended. First, a set of ghost
and antighost fields is added to the theory; more precisely,
per each gauge parameter participating in the theory, a
ghost-antighost pair is introduced. Also, a set of auxiliary
fields is included. Then, a further enlargement of the field
content takes place by the incorporation of antifields, one
per each field already defined. Moreover, a symplectic
structure, known as the antibracket is defined, with each
field-antifield pair being canonical conjugate variables.
The resultant increased set of fields is then understood to
define an extended action, which is assumed to satisfy the
Batalin-Vilkovisky master equation. BRST transforma-
tions, which include gauge transformations, are generated
by the extended action, governed by BRST symmetry.
Having established the master equation, the main objective
is the determination of a proper solution, which is
distinguished from other extended actions by suitable
boundary conditions connecting it with the original action,
previous to incrementation of the field content. The next
goal is gauge fixing, which is nontrivially performed
through the definition of a fermionic functional aimed at
the elimination of the whole set of antifields. The idea is to
kill two birds with one stone by getting rid of antifields and,
collaterally, fixing the gauge. This process ends with the
emergence of a quantum action, which depends on general
gauge-fixing functions. At this point, gauge invariance has
been completely removed in a general framework in which
sets of ad hoc gauge-fixing functions, with minimal
restrictions, can be defined to establish a particular gauge
configuration.
To put the gauge-fixing procedure that will be introduced

below in perspective, and also for clarity purposes, it is
convenient to present a brief discussion about the one-loop
renormalization of pure YM theories in the linear gauge
[110]. Bare quantities are related with renormalized

ones as follows: Að0Þa
Bμ ¼ ffiffiffiffiffiffi

ZA
p

Að0Þa
μ , Cð0Þa

B ¼ ffiffiffiffiffiffi
ZC

p
Cð0Þa,

C̄ð0Þa
B ¼ ffiffiffiffiffiffi

ZC
p

C̄ð0Þa, and gB ¼ ffiffiffiffiffi
Zg

p
g, with Cð0Þa and C̄ð0Þa

the ghost and antighost fields, respectively. The bare
Lagrangian is given by

Lð0Þ
QYM;B ¼ Lð0Þ

QYM þ Lð0ÞYM
c:t: ; ð3:2Þ
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where Lð0Þ
QYM is the renormalized quantum Lagrangian, given by

Lð0Þ
QYM ¼ −

1

4
Fð0Þa
μν Fð0Þμν

a −
1

2ξ
ð∂μA

ð0Þμ
a Þ2 þ C̄ð0Það−∂μDab

μ ÞCð0Þb; ð3:3Þ

while Lð0ÞYM
c:t: is the counterterm Lagrangian,

Lð0ÞYM
c:t: ¼ δA

4
ð∂μA

ð0Þa
ν − ∂νA

ð0Þa
ν Þð∂μAð0Þaν − ∂νAð0ÞaνÞ þ g

2
½ ffiffiffiffiffiffiffiffiffiffiffi

ZgZA

p ðδA − 1Þ þ 1�ð∂μA
ð0Þa
ν − ∂νA

ð0Þa
ν ÞfabcAð0ÞbμAð0Þcν

þ g2

4
½ZgZAðδA − 1Þ þ 1�fabcAð0Þb

μ Að0Þb
ν fadeAð0ÞdμAð0Þeν;

− δCC̄ð0Þa∂2Cð0Þa − ½ ffiffiffiffiffiffiffiffiffiffiffi
ZgZA

p ðδþ 1Þ − 1�gfabcC̄ð0Þa∂μðAð0Þb
μ Cð0ÞcÞ ð3:4Þ

with δA ¼ ZA − 1 and δC ¼ ZC − 1. The determination of
ZA, at a given order, is achieved through calculation of
vacuum polarization, whereas Zg, and hence the renormal-
ized coupling constant, requires the calculation of the
3- and 4-gauge-boson vertex functions. Note that this
Lagrangian has five counterterms, which depend on three
renormalization parameters, namely, ZA, ZC, and Zg. Thus,
there must be two relations among the counterterms. Such
relations emerge as a consequence of BRST symmetry
governing the quantum Lagrangian. In Abelian theories,
such as QED, the Ward identity ensures the equality, to all
orders of perturbation theory, between the fermion self-
energy counterterm and the vertex-function counterterm.
This in turn implies that ZeZ3 ¼ 1, where eB ¼ ffiffiffiffiffi

Ze
p

e and
ABμ ¼

ffiffiffiffiffi
Z3

p
Aμ, with e and Aμ the renormalized electric

charge and electromagnetic field, respectively. An impor-
tant goal of the present work is the introduction of gauge-

fixing procedures for the gauge fields Að0Þa
μ and AðmÞa

μ , such
that the relation ZgZA ¼ 1, analogous to the aforemen-
tioned Abelian property, holds, since this will considerably

simplify calculations. This relation implies that Fð0Þa
Bμν ¼ffiffiffiffiffiffi

ZA
p

Fð0Þa
μν , so the counterterm of this sector becomes

− δA
4
Fð0Þa
μν Fð0Þμν

a , which is gauge invariant. With this in
mind, we turn to discuss gauge-fixing procedures for the

gauge zero modes Að0Þa
μ and the KK excited modes AðkÞa

μ . In
both cases, SUðN;M4Þ gauge symmetry is maintained at
the level of the effective action Γ½Að0Þ�, thus simplifying the
determination of the beta function and the renormalized
coupling constant.
We write the gauge-fixing sector as LGF

KK ¼
LGFð0Þ
YM þ LGFðkÞ

KK , with

LGFð0Þ
YM ¼ −

1

2ξ
fð0Þafð0Þa; ð3:5Þ

LGFðkÞ
KK ¼ −

1

2ξ

X
ðkÞ

fðkÞafðkÞa: ð3:6Þ

As displayed in Eq. (3.5), gauge-fixing functions fð0Þa

define the gauge-fixing Lagrangian term LGFð0Þ
YM , exclu-

sively constituted by KK zero modes, thus being meant for
the specification of a gauge configuration among those
defined by the symmetry group SUðN;M4Þ. On the other

hand, LGFðkÞ
KK , shown in Eq. (3.6), is a gauge-fixing

Lagrangian made of both zero- and excited-mode KK
fields and is defined by gauge-fixing functions fðkÞa.
The purpose of LGFðkÞ

KK is to pick a gauge configuration
allowed by invariance associated to nonstandard gauge
transformations.
Symmetry with respect to nonstandard gauge trans-

formations can be removed from the KK effective
Lagrangian LYM

QKK without touching the gauge group
SUðN;M4Þ. The trick lies in noticing that only standard
gauge transformations are associated to this four-
dimensional gauge group. In this context, a set of gauge-
fixing functions fðkÞa, suitably defined to transform
covariantly under SUðN;M4Þ, shall get the job done.
So, we use the gauge-fixing functions

fðkÞa ¼ Dð0Þab
μ AðkÞbμ − ξmðkÞA

ðkÞa
G ; ð3:7Þ

given for the first time in Ref. [41]. Here, Dð0Þab
μ is the

covariant derivative of SUðN;M4Þ, in the adjoint repre-
sentation. Our choice of functions fðkÞa, given in Eq. (3.7),
thus leaves the issue of zero-mode gauge fixing to the

Lagrangian term LGFð0Þ
YM .

Implementation of the background field method [69,70]

on zero-mode gauge fields Að0Þa
μ is now carried out. To

this aim, gauge fields are conveniently rescaled as

gAð0Þa
μ → Að0Þa

μ , so the YM Lagrangian becomes

−
1

4
Fð0Þa
μν Fð0Þaμν → −

1

4g2
Fð0Þa
μν Fð0Þaμν: ð3:8Þ

Moreover, this redefinition of gauge fields Að0Þa
μ removes

coupling-constant factors from both the YM field strength
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and the YM covariant derivative, which are thus given as

Fð0Þa
μν ¼∂μA

ð0Þa
ν −∂νA

ð0Þa
ν þfabcAð0Þb

μ Að0Þb
ν and Dð0Þ

μ ¼ ∂μ−
Að0Þa
μ ta, respectively, with ta the SUðN;M4Þ generators

in some group representation. Next, we split the gauge field

Að0Þa
μ into a classical background field, Að0Þa

μ and a

fluctuating quantum field, Qð0Þa
μ , as Að0Þa

μ →Að0Þa
μ þQð0Þa

μ .

The classical field Að0Þa
μ is a fixed field configuration,

whereas the fluctuating fieldQð0Þa
μ is taken as an integration

variable in the functional integral. Furthermore, while Að0Þa
μ

is found to transform as a gauge field, Qð0Þa
μ does it as a

matter field in the adjoint representation of SUðN;M4Þ.
Such transformation laws are consistent with covariance

of the YM curvature, expressed after splitting as Fð0Þa
μν →

Fð0Þa
μν þDð0Þab

μ Qð0Þb
ν −Dð0Þab

ν Qð0Þb
μ þfabcQð0Þb

μ Qð0Þc
ν . In this

context, we implement a gauge-fixing procedure for

fluctuating quantum fields Qð0Þa
μ . We find it convenient

to fix the gauge covariantly with respect to the back-
ground gauge field, for which the zero-mode gauge-fixing
functions

fð0Þa ¼ Dð0Þab
μ Qð0Þbμ; ð3:9Þ

to be inserted in Eq. (3.5), are introduced.

C. New physics effects at one loop

Since interactions of canonical dimension greater
than 4 will not be considered in the one-loop calculation,
for the moment, we leave this type of interactions
aside and rather focus on the terms of the quantum
Lagrangian defined by (3.1) with canonical dimension less
than or equal to 4. As usual, we decompose the bare

Lagrangian into the renormalized Lagrangian and the
counterterm,

LYM
BKKðd≤4Þ ¼ LYM

QKKðd≤4Þ þ Lð0ÞYM
c:t: ; ð3:10Þ

where LYM
QKKðd≤4Þ is the renormalized quantum Lagrangian,

which is given by

LYM
QKKðd≤4Þ ¼ LYMð0Þ

KK þ LYMðkÞ
KK þ LGF

KK þ LG
KK: ð3:11Þ

The Lagrangian term LYMð0Þ
KK , in the right-hand side of this

equation, is interpreted as the four-dimensional YM theory,
defined, as usual [102], in four spacetime dimensions, but
modified by the implementation of the background-
field splitting previously discussed. This Lagrangian term

is thus given only in terms of background fields Að0Þa
μ and

fluctuation fields Qð0Þa
μ . The second Lagrangian term,

which has been denoted as LYMðkÞ
KK , is constituted by

couplings in which either both KK zero and excited modes
participate or only KK excited-mode fields are involved
[see Eqs. (2.11a)–(2.11c), (2.12a), (2.12b), (2.13), and
(2.14a)–(2.14c)]. An analogous separation is implemented

in the ghost-antighost sector, that is, LG
KK ¼ LGð0Þ

KK þ LGðkÞ
KK .

Then, we consider KK couplings comprising the sum of

zero-mode Lagrangian terms LYMð0Þ
KK þ LGFð0Þ

KK þ LGð0Þ
KK .

Besides fields AðkÞa
μ and Qð0Þa

μ , this equation includes
zero-mode ghost and antighost fields. Moreover, this
sum is a gauge-fixed Lagrangian with respect to the

fluctuating fields Qð0Þa
μ ; nonetheless, it is invariant under

background-field gauge transformations. Note that gauge

invariance of LGFð0Þ
KK implies gauge invariance of LGð0Þ

KK .
Taking the Feynman-’t Hooft gauge, these Lagrangian
terms are written as

LYMð0Þ
KK þ LGFð0Þ

KK þ LGð0Þ
KK ¼ 1

2g2
Qð0Þa

μ ðDð0Þab
ρ Dð0Þbcρgμν þ 2fabcFð0ÞbμνÞQð0Þc

ν þ C̄ð0ÞaðDð0Þab
μ Dð0ÞbcμÞCð0Þc þ � � � ð3:12Þ

In this expression, only couplings which contribute to vacuum-polarization Feynman diagrams, at one loop, have been
written explicitly, whereas the presence of other couplings is indicated by the ellipsis. Note that in the above expression
explicit gauge invariance is preserved.
From Eq. (3.11), we also take the sum of Lagrangian terms

LYMðkÞ
KK þ LGFðkÞ

KK þ LGðkÞ
KK ¼ 1

2

X
ðkÞ

AðkÞaμ
�
gμνðDð0Þab

ρ Dð0Þbcρ þ δbcm2
ðkÞÞ −

�
1 −

1

ξ

�
Dð0Þab

μ Dð0Þbc
ν þ 2gsfabcF

ð0Þm
μν

�
AðkÞcν

−
1

2

X
ðkÞ

A0ðkÞa
n̄ ½Dð0Þab

ρ Dð0Þbcρ þ δbcm2
ðkÞ�A0ðkÞc

n̄ −
1

2

X
ðkÞ

AðkÞa
G ½Dð0Þab

ρ Dð0Þbcρ þ δbcξm2
ðkÞ�A

ðkÞc
G

þ
X
ðkÞ

C̄ðkÞa½Dð0Þab
ρ Dð0Þbcρ þ δbcξm2

ðkÞ�CðkÞc þ � � � ; ð3:13Þ
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which, as it occurs with the zero-mode Lagrangian (3.12),
is manifestly invariant under standard gauge transforma-
tions. In this expression, C̄ðkÞa and CðkÞa are KK-excited-
mode ghost fields, which arise as part of the quantization
procedure [36,38,41]. We work in the Feynman-’t Hooft
gauge, which was chosen in the case of the standard theory
as well. A simplification introduced by this gauge consists

in the elimination, from LYMðkÞ
KK , of the term involving the

covariant-derivatives factor Dð0Þ
μ Dð0Þ

ν . Moreover, in this
gauge, the unphysical masses of pseudo-Goldstone bosons
and ghost fields are the same as those of the KK gauge and
scalar fields. The ellipsis in this equation represents other
couplings, which occur either with the involvement of both
KK zero and excited modes or among KK-excited-mode
fields only.
Since explicit gauge invariance is preserved in

the Lagrangians given by Eqs. (3.12) and (3.13), the

counterterm Lagrangian Lð0ÞYM
c:t: must be gauge invariant

as well, which implies the relation ZAZg ¼ 1. This

Lagrangian can be written as the sum of a gauge sector
and a ghost sector. However, in this gauge-invariant
approach to quantization, the ghost fields (and also the

Qð0Þa
μ fields) do not have to be renormalized because they

only appear inside loops. So, Eq. (3.4) reduces to

Lð0ÞYM
c:t: ¼ −

δA
4g2

Fð0Þa
μν Fð0Þμν

a : ð3:14Þ

We define the Lagrangian term Lβ as the sum of
Eqs. (3.12), (3.13), and (3.14), but with all the terms
indicated by ellipses, in such expressions, as well as those
of canonical dimension higher than 4, removed. We are
interested in integrating out, from Lβ, all the zero-mode

fluctuating quantum fields Qð0Þa
μ , ghost fields Cð0Þa, and

antighost fields C̄ð0Þa, together with all the KK excited
modes. With this in mind, the effective action Γ½Að0Þ� is
defined, by Eq. (3.15), as

eiΓ½A
ð0Þ� ¼

Y
ðkÞ

Y
x;a;μ;n̄

Z
DQð0Þa

μ DCð0ÞaDC̄ð0ÞaDAðkÞa
μ DA0ðkÞa

n̄ DAðkÞa
G DCðkÞaDC̄ðkÞa exp

�
i
Z

d4xLβ

�

¼ exp

�
i
Z

d4x

�
−1
4g2

Fð0Þa
μν Fð0Þμν

a þ Lð0ÞYM
c:t:

��
ðDetΔQð0Þ Þ−1

2ðDetΔCð0Þ Þþ1

×
Y
ðmÞ

ðDetΔAðmÞ Þ−1
2ðDetΔCðmÞ Þþ1ðDetΔ

A0ðmÞ
n̄
Þ−n̄

2ðDetΔ
A
ðmÞ
G

Þ−1
2: ð3:15Þ

Defining the effective LagrangianLeff
β by Γ½Að0Þ� ¼ expfi R d4xLeff

β g and performing Gaussian integrals, we write down the
equation

Z
d4xLeff

β ¼
Z

d4x

�
−1
4g2

Fð0Þa
μν Fð0Þμν

a þ Lð0ÞYM
c:t:

�
þ i
2
Tr logfgμν ⊗ ð−ðDð0ÞÞ2Þ þ 2iFð0Þa

μν ⊗ Ta
ag

− iTr logf−ðDð0ÞÞ2g þ i
2

X
ðkÞ

Tr logfgμν ⊗ ð−ðDð0ÞÞ2 −m2
ðkÞ · 1aÞ þ 2iFð0Þa

μν ⊗ Ta
ag

þ i

�
n
2
− 1

�X
ðkÞ

Tr logf−ðDð0ÞÞ2 −m2
ðkÞ · 1ag: ð3:16Þ

In this expression, the symbol “Tr” denotes a trace over
spacetime coordinates and over internal degrees of
freedom as well. We have used Kronecker-product symbols
to emphasize that the arguments of the logarithms are
different from each other, living in different spaces. The
notation 1a has been used for the identity matrix of size
ðN2 − 1Þ × ðN2 − 1Þ that corresponds to the adjoint rep-
resentation of the gauge group SUðN;M4Þ. Note that the
first and third traces, respectively, coming from contribut-

ing terms with zero-mode background fields Qð0Þa
μ in

Eq. (3.12) and with KK-excited-mode vector fields AðkÞa
μ

in Eq. (3.13), include the symbol gμν, which should

not be understood as a number, but rather as a 4 × 4 matrix
associated to the four-dimensional Lorentz group. In the

same sense, Fð0Þa
μν is also a 4 × 4 matrix. The second

trace in Eq. (3.16) has been generated by the zero-mode
ghost-antighost terms explicitly shown in Eq. (3.12).
The last trace, involving the factor n

2
− 1, is the total

contribution from KK scalars AðkÞa
n̄ , from pseudo-

Goldstone bosons AðkÞa
G , and from ghost and antighost

KK-excited-mode fields CðkÞa and C̄ðkÞa, all summed
together. Note that, in this covariant gauge-fixing pro-
cedure, the ghost-antighost contribution is minus twice the
scalar contribution.
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Consider the Fourier transform, Ãð0Þa
μ ðpÞ, of the vector field Að0Þa

μ ðxÞ, defined by

Að0Þa
μ ðxÞ ¼

Z
d4p
ð2πÞ4 e

−ip·xÃð0Þa
μ ðpÞ: ð3:17Þ

In terms of this Fourier transform, the one-loop correction given by

Z
d4x

�
−

1

4g2
Πloop

KK ðp2Þ
�
Fð0Þa
μν Fð0Þμν

a ¼ −
1

2g2

Z
d4p
ð2πÞ4 Ã

ð0Þa
μ ð−pÞÃð0Þb

ν ðpÞðp2gμν − pμpνÞδabΠloop
KK ðp2Þ þ � � � ð3:18Þ

is established. The idea is to calculate the traces in the effective Lagrangian given in Eq. (3.16), with the purpose of
expressing their sum in the form of Eq. (3.18), aiming at the identification of the Πloop

KK ðp2Þ loop polarization function. The
one-loop contribution to the polarization tensor Πμνab

KK 1L is given by

Πμνab
KK1LðpÞ ¼ iðp2gμν − pμpνÞδabΠloop

KK ðp2Þ: ð3:19Þ

Equations (3.20)–(3.23), displayed below, provide the traces defining
R
d4xLeff

β , in Eq. (3.16): KK-zero-modes
gauge trace:

i
2
Tr logfgμν ⊗ ð−ðDð0ÞÞ2Þ þ 2iFð0Þa

μν ⊗ Ta
ag ¼ i

2

Z
d4p
ð2πÞ4 Ã

ð0Þa
μ ð−pÞÃð0Þa

ν ðpÞ

× 4N

�
−
1

2

Z
d4q
ð2πÞ4

ðpμ þ 2qμÞðpν þ 2qνÞ
q2ðqþ pÞ2 −

Z
d4q
ð2πÞ4

ðp2gμν − pμpνÞ
q2ðqþ pÞ2 þ gμν

Z
d4q
ð2πÞ4

1

q2

�
þ � � � ; ð3:20Þ

KK-excited-modes gauge trace:

i
2
Tr logfgμν ⊗ ð−ðDð0ÞÞ2 −m2

ðkÞ · 1aÞ þ 2iFð0Þa
μν ⊗ Ta

ag ¼ i
2

Z
d4p
ð2πÞ4 Ã

ð0Þa
μ ð−pÞÃð0Þa

ν ðpÞ

× 4N

�
−
1

2

Z
d4q
ð2πÞ4

ðpμ þ 2qμÞðpν þ 2qνÞ
½q2 −m2

ðkÞ�½ðqþ pÞ2 −m2
ðkÞ�

−
Z

d4q
ð2πÞ4

ðp2gμν − pμpνÞ
½q2 −m2

ðkÞ�½ðqþ pÞ2 −m2
ðkÞ�

þ gμν
Z

d4q
ð2πÞ4

1

q2 −m2
ðkÞ

�
þ � � � ; ð3:21Þ

KK-zero-modes ghost-antighost trace:

−iTr logf−ðDð0ÞÞ2g ¼ −i
Z

d4p
ð2πÞ4 Ã

ð0Þa
μ ð−pÞÃð0Þa

ν ð−pÞ

× N
�
−
1

2

Z
d4q
ð2πÞ4

ðpμ þ 2qμÞðpν þ 2qνÞ
q2ðqþ pÞ2 þ gμν

Z
d4q
ð2πÞ4

1

q2

�
þ � � � ; ð3:22Þ

KK-excited-modes ghost-antighost trace:

−iTr logf−ðDð0ÞÞ2 −m2
ðkÞ · 1ag ¼ −i

Z
d4p
ð2πÞ4 Ã

ð0Þa
μ ð−pÞÃð0Þa

ν ð−pÞ

× N

�
−
1

2

Z
d4q
ð2πÞ4

ðpμ þ 2qμÞðpν þ 2qνÞ
½q2 −m2

ðkÞ�½ðqþ pÞ2 −m2
ðkÞ�

þ gμν
Z

d4q
ð2πÞ4

1

q2 −m2
ðkÞ

�
þ � � � ; ð3:23Þ

All the terms explicitly shown in Eqs. (3.20)–(3.23) are given in terms of loop integrals, which, after being regularized in a
gauge-invariant manner and then being solved through standard methods [50,52,102,119,120], fit into the structure of
Eq. (3.19). Ellipses in Eqs. (3.20)–(3.23), on the other hand, stand for terms not contributing to the polarization function
Πloop

KK ðp2Þ, in accordance with Eq. (3.19).
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D. Divergence structure

From Eqs. (3.20)–(3.23), the one-loop contribution to the tensor polarization can be written as

Πμνab
KK 1LðpÞ ¼ δabig2N

Z
d4q
ð2πÞ4

�
Tμν
V þ Tμν

S

q2ðqþ pÞ2 þ
X
ðkÞ

Tμν
V ðnÞ þ Tμν

S ðnÞ
½q2 −m2

ðkÞ�½ðqþ pÞ2 −m2
ðkÞ�

�
; ð3:24Þ

where the Tμν
V and Tμν

S Lorentz tensors represent the zero-mode gauge-field and ghost-antighost contributions, respectively,
which are given by

Tμν
V ¼ −2ð2qþ pÞμð2qþ pÞν þ 4ðpþ qÞ2gμν − 4ðp2gμν − pμpνÞ; ð3:25aÞ

Tμν
S ¼ ð2qþ pÞμð2qþ pÞν − 2ðpþ qÞ2gμν: ð3:25bÞ

On the other hand, Tμν
V ðnÞ represents the gauge KK-modes AðkÞa

μ contribution, while Tμν
S ðnÞ brings together the

contributions of the corresponding ghost-antighost a sort of pseudo-Goldstone boson associated with AðkÞa
μ , as well as

those contributions from physical scalars. They are given by

Tμν
V ðnÞ ¼ −2ð2qþ pÞμð2qþ pÞν þ 4½ðpþ qÞ2 −m2

ðkÞ�gμν − 4ðp2gμν − pμpνÞ; ð3:26aÞ

Tμν
S ðnÞ ¼

�
n
2
− 1

�
f−ð2qþ pÞμð2qþ pÞν þ ½2ðpþ qÞ2 −m2

ðkÞ�gμνg: ð3:26bÞ

So far, we have been talking about a quantum field
theory that is unusual in the sense that it comprises an
infinite number of fields, while no mention of conse-
quences that this could have on radiative corrections has
been made. As already commented in the Introduction, the
presence of such an infinite number of fields can become a
difficult problem to handle because eventually divergences
different from the usual ones may arise from the presence of
discrete and continuous sums

P
ðkÞ

R
d4k that emerge from

excited-modes contributions. If the number of KK excita-
tions were finite, no matter how large, we would be in a
conventional scenario of calculating the one-loop contri-
bution of a large, but finite, number of particles to a given
loop amplitude. However, in our case in which the number
of KK fields is infinite, the discrete sums nested in theP

ðkÞ symbol [see Eqs. (2.3) and (2.4)] may or may not
converge. The presence of both discrete and continuous
infinite sums is strongly linked to the existence of two
different spaces, namely, the usual four-dimensional
spacetime manifold and the compact n-dimensional mani-
fold, the presence of the infinite number of KK fields
having to do precisely with this new manifold. As it is
emphasized in the Introduction and commented for the first
time in Ref. [56], these types of divergences can be treated

as genuine ultraviolet divergences, which allow us to
handle them by renormalization in the context of an
effective theory [52–55].
To shed light on what the nature of the new kind of

divergences that can arise from the discrete sums nested in
the symbol

P
ðkÞ is, we address the problem from a different

perspective. The investigation of the present paper is
motivated by string theory, which is the spirit of KK
theories; that is, we assume that it represents the contri-
bution of an infinite number of KK particles. However,
technically speaking, the loop amplitudes, in which an
infinite number of excited KK modes circulate, may be
subjected to another interpretation. Before compactifica-
tion, consider some particle propagating in the 4þ n
spacetime dimensions. From this point of view, the discrete
momenta qμ̄ can be interpreted as the components of the
total momentum of such an extra-dimensional particle
along the compact manifold, that is, qM ¼ qμ þ qμ̄.
Thus, this new type of divergences, if present, can be
considered as genuine ultraviolet divergences in the sense
that they correspond to very-high-energy effects or, equiv-
alently, to very-short-distance effects. To show this, let us to
rewrite the expression given in (3.24) in the equivalent
manner

Πμνab
KK 1LðpÞ ¼ δabig2N

Z
d4q
ð2πÞ4

�
Tμν
V þ Tμν

S

q2ðqþ pÞ2 þ
X
ðqÞ

Tμν
V ðnÞ þ Tμν

S ðnÞ
½q2 − q̄2�½ðqþ pÞ2 − q̄2�

�
; ð3:27Þ
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where notation has been changed as m2
ðkÞ → m2

ðqÞ ¼
q̄μ̄q̄μ̄ ≡ q̄2. This expression suggests that sums over
discrete squared momenta q̄2 comprise very-high-energy
effects for KK indices ðqÞ with very large components, just
as it occurs for continuous sums over very large momenta
q. In other words, while very large continuous momenta qμ
characterize very-short-distance effects in the infinite mani-
foldM4, very-large-discrete momenta qμ̄ can be associated
with very-short-distance effects in the compact manifold,

since 1=
ffiffiffiffiffi
q̄2

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
R2=q2

q
→ 0 as q → ∞. So, when the

discrete sums diverge, we have a genuine ultraviolet
divergence. Later on, we will discuss how to distinguish
a type of ultraviolet divergence from the other.
We now proceed to regularize the expression given by

Eq. (3.27). As emphasized in the Introduction, we will
address the one-loop impact of the effective theory not from
the cutoff approach but using the dimensional regulariza-
tion scheme [50,51]. In the case under consideration, we
must also deal with the new type of divergences that can
arise from discrete sums. Our approach consists in

regularizing simultaneously both types of divergent quan-
tities, because, as previously argued, they have the same
origin in the sense that the sums in consideration involve
the magnitudes qμ and q̄μ̄, which are linked to the usual
and compact manifolds through Fourier transform (qμ) and
Fourier series (q̄μ̄). The main idea behind this is to
express the regularized

P
ðkÞ sums in terms of Epstein

zeta functions [57,121,122] defined in the complex
plane through analytic continuation. The inhomogeneous
l-dimensional Epstein function is defined as

Ec2
l ðsÞ ¼

X∞
ðk1;…;klÞ¼1

1

ðk21 þ � � � þ k2l þ c2Þs : ð3:28Þ

A special case corresponds to c ¼ 0, which leads to the
homogeneous Epstein function.
As usual, we promote the ordinary four-dimensional

spacetime to D dimensions. After that and once Feynman
parametrization has been implemented, Eq. (3.27) becomes

Πμνab
KK 1LðpÞ ¼ δab

g2N
ð4π2Þ

Z
1

0

dx
ð4πμ̂2Þ2−D

2

iπ
D
2

Z
dDq

� Tμν
ð0Þ

ðq2 − Δ2
ð0ÞÞ2

þ
X
ðkÞ

Tμν
ðkÞ

ðq2 − Δ2
ðkÞÞ2

�
; ð3:29Þ

where μ̂ is the scale associated with dimensional regularization, ϵ ¼ 4 −D, Δ2
ð0Þ ¼ −xð1 − xÞp2, and Δ2

ðkÞ ¼ m2
ðkÞ þ Δ2

ð0Þ.
In addition,

Tμν
ð0Þ ¼ −

�
2

�
1 −

2

D

�
q2 þ 2ð1 − xÞ2p2

�
gμν þ ð1 − 2xÞ2pμpν þ 4ðp2gμν − pμpνÞ ð3:30aÞ

Tμν
ð0Þ ¼ 2

�
1þD

2

���
2

D
− 1

�
q2 − ð1 − xÞ2p2 þm2

ðkÞ

�
gμν þ

�
1þ n

2

�
ð1 − 2xÞ2pμpν þ 4ðp2gμν − pμpνÞ: ð3:30bÞ

Once the integrals on the momentum space have been performed, the one-loop polarization function can be expressed as

Πloop
KK ðp2Þ ¼ g2N

ð4πÞ2
Z

1

0

dx

�
fðxÞΓ

�
ϵ

2

��Δ2
ð0Þ

4πμ̂2

�−ϵ
2

þ
�
fðxÞ − n

2
gðxÞ

�X
ðkÞ

Γ
�
ϵ

2

��Δ2
ðkÞ

4πμ̂2

�−ϵ
2
�
; ð3:31Þ

where fðxÞ ¼ 4 − gðxÞ, with gðxÞ ¼ ð1 − 2xÞ2. Note that the KK-modes contribution contains, besides the
gauge contribution characterized by the fðxÞ function, the contribution of n scalar matter fields, which correspond

to the n − 1 physical scalars AðkÞa
n̄ and the pseudo-Goldstone boson AðkÞa

G associated with the AðkÞa
μ gauge boson. Note

now that

X
ðkÞ

�Δ2
ðkÞ

4πμ̂2

�−ϵ
2

¼
�
R−2

4πμ̂2

�−ϵ
2X
ðkÞ

ðk2 þ c2Þ−ϵ
2 ¼

�
R−2

4πμ̂2

�−ϵ
2 Xn
l¼1

�
n

l

�
Ec2
l

�
ϵ

2

�
; ð3:32Þ

where in the last step Eqs. (2.4) and (3.28) have been used. In addition, c2 ¼ Δ2
ð0Þ

R−2 , where, for the sake of simplicity, the same
radii for the n orbifolds S1=Z2, R≡ R1 ¼ � � � ¼ Rn, have been assumed. Using this expression, the polarization function
(3.31) becomes
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Πloop
KK ðp2Þ ¼ g2N

ð4πÞ2
Z

1

0

dx

�
fðxÞΓ

�
ϵ

2

��Δ2
ð0Þ

4πμ̂2

�−ϵ
2

þ
�
fðxÞ − n

2
gðxÞ

��
R−2

4πμ̂2

�−ϵ
2 Xn
l¼1

�
n

l

�
Γ
�
ϵ

2

�
Ec2
l

�
ϵ

2

��
: ð3:33Þ

Since the l-dimensional Epstein function Ec2
l ðsÞ has poles at s ¼ l

2
; l−1

2
;…;− 1

2
;− 3

2
; � � �, except zero [123], it is clear that

Ec2
l ðϵ2Þ converges for ϵ → 0. However, the way this happens is subtle, which can be appreciated more clearly by expressing

the Epstein function in terms of the Riemann zeta function, whose properties are well known in the literature. An important
result [122] consists in expressing the l-dimensional Epstein function in terms of the one-dimensional Epstein function as

Ec2
l ðsÞ ¼

ð−1Þl−1
2l−1

Xl−1
p¼0

�
l − 1

p

�
ð−1Þpπp

2

Γðs − p
2
Þ

ΓðsÞ Ec2
1

�
s −

p
2

�
: ð3:34Þ

The reduction to the Riemann zeta function is achieved through the following power series in c2 [56,124],

Ec2
1 ðsÞ ¼

X∞
k¼0

ð−1Þk
k!

Γðkþ sÞ
ΓðsÞ ζð2kþ 2sÞc2k; ð3:35Þ

where the Riemman function is defined by

ζðsÞ ¼
X∞
n¼1

1

ns
; ð3:36Þ

which has a simple pole at s ¼ 1. We can see, from Eqs. (3.34) and (3.35), that finite terms which are the ratio of
two quantities that diverge when s tends to zero, as ζð1þsÞ

ΓðsÞ , arise for l > 1. This fact has nontrivial consequences when a

product of the form ΓðsÞEc2
l ðsÞ, as the one appearing in the polarization function (3.33), is considered. Using the above

results, we write

Xn
l¼1

�
n

l

�
Γ
�
ϵ

2

�
Ec2
l

�
ϵ

2

�
¼ 1

2n−1

Xn
r¼1

Xr

l¼1

�
n

l − 1

�
π

n−r
2

X∞
k¼0

ð−1Þk
k!

Γ
�
2kþ r − nþ ϵ

2

�
ζð2kþ r − nþ ϵÞc2k: ð3:37Þ

Note that this power series in c2 is actually a power series in
the external momentum p2. A careful analysis of this
expression leads us to conclude that there are two types of
divergences for ϵ → 0. One type of divergences, whose
main feature is to be independent of both the external
momenta and the compactification scale, can easily be
identified from the k ¼ 0 term in (3.37). This type of
divergences, which do not depend on the external mo-
mentum, are usual ultraviolet divergences that emerge from
short-distance effects in the standard manifold M4. An-
other type of ultraviolet divergences, different to the usual
ones in the sense that they emerge as coefficients of the

external momentum or, more precisely, from the ratio p2

R−2,
occurs for terms with k ≠ 0 in the series (3.37). This
can happen for an even integer 2kþ r − n ≤ 0 or for

2kþ r − n ¼ 1, which correspond to poles, when ϵ → 0,
of the gamma and Riemann functions, respectively. Note
that the products of the form Γð2kþr−nþ2

2
Þζð2kþ r − nþ 2Þ

converge when 2kþ r − nþ 2 ¼ −2;−4;− � � �, since the
negative even integers correspond to the so-called trivial
zeros of the Riemann zeta function. These types of
divergences, which arise from nonconvergence of products
Γðϵ

2
ÞEc2

l ðϵ2Þ, can also be considered as genuine ultraviolet
divergences because, as already commented, they corre-
spond to effects of large discrete momentum or, equiv-
alently, to short distances effects in the compact manifold.
For the analysis that follows, it is convenient to rewrite
the above expression so that it explicitly shows those terms
that are divergent. Once this rearrangement is implemented,
we get

Xn
l¼1

�
n

l

�
Γ
�
ϵ

2

�
Ec2
l

�
ϵ

2

�
¼ gð0ÞðnÞΓ

�
ϵ

2

�
ζðϵÞ þ Fð0ÞðnÞ þ

X½n2�
k¼1

�
fðkÞðnÞ

1ffiffiffi
π

p Γ
�
1þ ϵ

2

�
ζð1þ ϵÞ

þ gðkÞðnÞΓ
�
ϵ

2

�
ζðϵÞ þ FðkÞðnÞ

�
c2k þ Fðn; c2Þ; ð3:38Þ
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where

gð0ÞðnÞ ¼ 2

�
1 −

1

2n

�
; ð3:39aÞ

Fð0ÞðnÞ ¼
1

2n−1

Xn−1
r¼1

Xr

l¼1

�
n

l − 1

�
π

n−r
2 Γ

�
r − n
2

�
ζðr − nÞ; n > 1 ð3:39bÞ

FðkÞðnÞ ¼
1

2n−1

� Xn
r≠n−ð2k−1Þ;n−2k

�Xr

l¼1

�
n

l − 1

�
π

r−n
2 Γ

�
2kþ r − n

2

�
ζð2kþ r − nÞ; n > 1 ð3:39cÞ

Fðn; c2Þ ¼ 1

2n−1

Xn
r¼1

Xr
l¼1

�
n

l − 1

�
π

n−r
2

X∞
k¼½n

2
�þ1

ð−1Þk
k!

Γ
�
2kþ r − n

2

�
ζð2kþ r − nÞc2k: ð3:39dÞ

In the above expressions, the symbol ½n
2
� means the floor of

n
2
, that is, the largest integer less than or equal to n

2
. On the

other hand, the functions fðkÞðnÞ and gðkÞðnÞ are given by

fðkÞðnÞ ¼
1

2n−1

Xn−2kþ1

l¼1

�
n

l − 1

� ð−1Þk
k!

π
2k−1
2 ; ð3:40aÞ

gðkÞðnÞ ¼
1

2n−1

Xn−2k
l¼1

�
n

l − 1

� ð−1Þk
k!

πk: ð3:40bÞ

These functions have the following properties:

fðkÞð1Þ ¼ � � � ¼ fðkÞð2k − 1Þ ¼ 0; ð3:41aÞ

gðkÞð1Þ ¼ � � � ¼ gðkÞð2kÞ ¼ 0: ð3:41bÞ

These relations imply that in the case of only one extra
dimension no divergences associated with the power series
in p2 emerge, since in this case fðkÞð1Þ ¼ 0 and gðkÞð1Þ ¼ 0

for all k ¼ 1; 2;…. In the case n ¼ 2, gðkÞð2Þ ¼ 0 for all k,
but fð1Þð2Þ ≠ 0 and fðkÞð2Þ ¼ 0 for k ¼ 2; 3;…. If n ¼ 3,
besides fð1Þð3Þ ≠ 0, we have gð1Þð3Þ ≠ 0, but fðkÞð3Þ ¼ 0

and gðkÞð3Þ ¼ 0 for all k ¼ 2; 3;…. Thus, for n ¼ 2 and
n ¼ 3, divergences arise only in the first term (k ¼ 1) of the
power series in p2. However, for the cases n ¼ 4 and
n ¼ 5, divergences arise in the first (k ¼ 1) and second
(k ¼ 2) terms of the power series in p2; the case n ¼ 6 and
n ¼ 7 lead to divergences in the first (k ¼ 1), second
(k ¼ 2), and third (k ¼ 3) terms of the power series in p2;
and so on. As we will see below, the (3.38) decomposition
of the multidimensional Epstein functions will play and
central role in our analysis.
As already commented, the case n ¼ 1 is the only one

which does not have ultraviolet divergences arising from
short-distance effects in the compact manifold. In this case,
the expression (3.38) becomes

Γ
�
ϵ

2

�
Ec2
1

�
ϵ

2

�
¼ Γ

�
ϵ

2

�
ζðϵÞ þ Fð1; c2Þ; ð3:42Þ

where the Fð1; c2Þ function is free of ultraviolet divergen-
cies and is given by

Fð1; c2Þ ¼
X∞
s¼1

ð−1Þs
s

ζð2sÞc2s

¼ −
X∞
k¼1

log
�
1þ c2

k2

�

¼ log ðjΓð1þ icÞj2Þ; ð3:43Þ

where in the last step we used the software Mathematica,
by Wolfram [125], to perform the infinite sum.

IV. VACUUM POLARIZATION
AND BETA FUNCTION

Asymptotic freedom is a physical phenomenon in which
an interacting theory becomes asymptotically noninteract-
ing because of some coupling constant that decreases as
shorter distances are explored. This aspect, known to
characterize non-Abelian gauge theories [58–60] and
which is central for understanding the strong interaction,
is studied through renormalization-group techniques. It
turns out that beta functions corresponding to non-
Abelian gauge theories that include a sufficiently small
number of fermions are negative, which thus yield the
asymptotic-freedom behavior. The purpose of this section
is to investigate one-loop impact of universal extra dimen-
sions on the beta function.
The case n ¼ 1 involves features that make it worthy of

special attention, so we will divide our analysis into two
scenarios, one with only one extra dimension and the other
with an arbitrary number n ≥ 2 of extra dimensions.
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A. Case n= 1

As already discussed, in the case of one extra
dimension, no ultraviolet divergences from short-dis-
tance effects in the compact manifold arise. In other
words, the coefficients of p2k (or c2k) in (3.38) are all
finite. As we will see, this theory has much in common
with conventional field theories. An important aspect is
that any vertex function of canonical dimension higher
than 4 is free of ultraviolet divergences, which has been
explicitly verified in many phenomenological studies

[126–130]. This means that if only Green’s functions
with zero-mode fields as external legs are considered
and no interactions of canonical dimension higher than
4 are inserted in loop diagrams, the theory given by the
quantum Lagrangian (3.11) is self-contained, with a
counterterm given by Eq. (3.14) if a gauge-invariant
quantization procedure has been implemented, as in the
case at hand.
From Eqs. (3.14) and (3.33), the renormalized polari-

zation function is given by

Π5D
KKðp2Þ ¼ g2N

ð4πÞ2
Z

1

0

dx

�
fðxÞΓ

�
ϵ

2

��Δ2
ð0Þ

4πμ̂2

�−ϵ
2

þ
�
fðxÞ − 1

2
gðxÞ

��
R−2

4πμ̂2

�−ϵ
2

Γ
�
ϵ

2

�
Ec2
1

�
ϵ

2

��
− δA; ð4:1Þ

with Γðϵ
2
ÞEc2

1 ðϵ2Þ given by Eqs. (3.42) and (3.43). In this
expression, δA is the contribution of the gauge-invariant
counterterm (3.14). Note that, in this case, the only con-
tribution from matter fields comes from pseudo-Goldstone

bosons AðkÞa
G , associated to the gauge fields AðkÞa

μ .
In usual YM theories, the beta function is calculated by

using a mass-independent renormalization scheme, such as
MS or MS. In pure YM theories, without matter fields, the
beta function, besides being gauge independent, must be
scale independent. However, in our case, the mass spectrum
of the theory comprises a wide range of energies, thus
suggesting that usage of a mass-dependent scheme that
allows us to study the sensitivity of beta function to new
physics effects is suitable. To contrast differences, we will
calculate the beta function in both types of schemes.

1. Mass-independent scheme

We use the MS scheme, in which the counterterm is
determined by the pole of the divergence. From Eqs. (4.1)
and (3.42), we have

δA ¼ g2N
ð4πÞ2

�
11

3
þ
�
11

3
−
1

6

�
ζð0Þ

��
2

ϵ

�
; ð4:2Þ

where the contributions from the gauge field AðkÞa
μ and its

pseudo-Goldstone boson AðkÞa
G have been explicitly dis-

played. This aims at emphasizing that the longitudinal
components of the gauge fields behave as matter fields,
since their contributions have signs opposite to the con-
tributions from the transverse polarization states. It is
important to note that ζð0Þ ¼ P∞

k¼1 ¼ −1=2 quantifies
the usual ultraviolet divergences induced by the infinite
number of KK excited modes.
Using that, in this scheme, the one-loop beta function

can be calculated from the renormalization factor ZA in the
form, βðgÞ ¼ − 1

2
g2 ∂ZA∂g ¼ − 1

2
g2 ∂δA∂g , we then find that

β5DðgÞ ¼ βðgÞ
�
1þ

�
21

22

�
ζð0Þ

�

¼
�
23

44

�
βðgÞ; ð4:3Þ

where βðgÞ ¼ − g3

ð4πÞ2 ð11N3 Þ is the usual one-loop beta

function. From this result, we can appreciate that KK
excited modes globally contribute to the beta function as
matter fields. Operatively, this is caused by the negative
value of the Riemann function ζð0Þ.
In this scheme, the counterterm is given by

Π5D
KKðp2Þ ¼ −

g2N
ð4πÞ2

Z
1

0

dx
�
fðxÞ log

� Δ2
ð0Þ

4πe−γμ̂2

�
þ
�
fðxÞ − 1

2
gðxÞ

��
1

2
log

�
R−2

16π3e−γμ̂2

�
þ logðjΓð1þ icÞj2Þ

��
: ð4:4Þ

Note that new physics effects in both the beta function
and the renormalized polarization function are nondecou-
pling, which is a disconcerting result, since effects of
heavy physics must decouple. This suggests that a mass-
dependent renormalization scheme must be used.

2. Mass-dependent scheme

The result obtained above for the beta function in
a mass-independent scheme, which does not depend on
the compactification scale R−1, is surprising because, on
physical grounds, one would expect new physics effects to
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decouple in the limit of a very large compactification scale.
While simple to implement, mass-independent schemes
have the serious disadvantage that heavy particles do not
decouple at energies lower their masses, in accordance with
the Appelquist-Carazzone decoupling theorem [71]. Here,
we recalculate the beta function by using a mass-dependent

scheme. To determine the counterterm δA, we use the
renormalization condition

Π5D
KKðp2 ¼ −μ2Þ ¼ 0; ð4:5Þ

where μ is the scale of the kinematical point. This condition
leads to the counterterm

δA ¼ g2N
ð4πÞ2

Z
1

0

dx

�
fðxÞΓ

�
ϵ

2

�� Δ̄2
ð0Þ

4πμ̂2

�−ϵ
2

þ
�
fðxÞ − 1

2
gðxÞ

��
R−2

4πμ̂2

�−ϵ
2

Γ
�
ϵ

2

�
Ec̄2
1

�
ϵ

2

��
; ð4:6Þ

where Δ̄2
ð0Þ ¼ xð1 − xÞμ2 and c̄2 ¼ Δ̄2

ð0Þ
R−2 . The one-loop beta function is given by β5DðgÞ ¼ gμ2 ∂δA

∂μ2, so taking into account that

μ2 ∂
∂μ2 ð

Δ̄2
ð0Þ

4πμ̂2
Þ−

ϵ
2 ¼ − ϵ

2
and that μ2 ∂Ec̄2

1
ðϵ
2
Þ

∂μ2 ¼ − ϵ
2
c̄2Ec̄2

1 ð1þ ϵ
2
Þ, we then find

β5DðgÞ ¼ βðgÞ − g3N
ð4πÞ2

Z
1

0

dx

�
fðxÞ − 1

2
gðxÞ

�
c̄2Ec̄2

1 ð1Þ

¼ βðgÞ − g3N
ð4πÞ2

Z
1

0

dx

�
fðxÞ − 1

2
gðxÞ

�X∞
k¼1

xð1 − xÞμ2
m2

ðkÞ þ xð1 − xÞμ2 : ð4:7Þ

First all, note that the usual one-loop beta function of a pure
YM theory coincides in both mass-independent and mass-
dependent schemes, which implies that it is scale indepen-
dent. As far as the KK excited-modes contribution is
concerned, it is given by a growing positive function on
μ2=R−2, which can be explicitly calculated [125]:

X∞
k¼1

c̄2

k2 þ c̄2
¼ 1

2
½πc̄ cothðπc̄Þ − 1�: ð4:8Þ

Note that this function vanishes in the limit as c̄ → 0, which
is expected from the decoupling theorem [71]. Also, note
that it diverges for large c̄, though keep in mind that such a
scenario is beyond the range of validity of our effective
theory, which is valid for energies μ lower than the

compactification scale R−1. Since c̄2 ≪ 1, this function
can be expressed as a power series in c̄2, which behaves as
c̄2Ec̄2

1 ð1Þ ¼ ζð2Þc̄2 − ζð4Þc̄4 þ � � �. At first order in c̄2, the
beta function can be written as

β5DðgÞ ¼ βðgÞ
�
1þ

�
37

220

�
ζð2Þ

�
μ2

R−2

�
þ � � �

�
: ð4:9Þ

It is important to note that both the zero- and excited-modes
contributions have the same sign. Furthermore, the correc-

tion is of the order of ð0.276648Þð μ2

R−2Þ.
From Eqs. (4.1) and (4.6), the renormalized polarization

function can be written in the μ-scheme as follows:

Π5D
KKðp2Þ ¼ g2N

ð4πÞ2
Z

1

0

dx

�
fðxÞ log

�Δ̄2
ð0Þ

Δ2
ð0Þ

�
þ
�
fðxÞ − 1

2
gðxÞ

�X∞
k¼1

log

�m2
ðkÞ þ Δ̄2

ð0Þ
m2

ðkÞ þ Δ2
ð0Þ

��

¼ g2N
ð4πÞ2

Z
1

0

dx

�
fðxÞ log

�Δ̄2
ð0Þ

Δ2
ð0Þ

�
þ
�
fðxÞ − 1

2
gðxÞ

�
log

�				Γð1þ iΔ2
ð0ÞÞ

Γð1þ iΔ̄2
ð0ÞÞ

				
2��

: ð4:10Þ

The last term of this expression clearly shows the decou-
pling nature of new physics effects, since this term vanishes
in the limit of a very large compctification scale R−1. This
result must be compared with that obtained from the MS
scheme.

B. Case n ≥ 2

Previously, we have shown that in a YM theory with only
one extra dimension the usual counterterm δA is enough to
remove divergences if no loop insertions of canonical
dimension higher than 4 are introduced. Also, we have
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emphasized that for a number of extra dimensions equal
to or higher than 2, additional divergences arise as
coefficients of powers of external momentum. We have
argued that, since this type of divergences are associated
with discrete sums, they must be attributed to short-
distance effects in the compact manifold. However, these
divergences cannot be removed by the usual counterterm
δA, which means that additional interactions introducing
the required counterterms must be considered. Because
such divergences multiply powers of external momen-
tum, the new type of interactions must be of canonical
dimension higher than 4. Of course, this type of inter-
actions is not renormalizable in the power-counting
sense, but it is renormalizable in a wider sense, since
our effective Lagrangian includes all the interactions
allowed by symmetries, so there is a counterterm
available to cancel any divergence [52–55]. Because of
gauge invariance, the building blocks of such interac-
tions must be the YM curvature and its covariant
derivatives. With this in mind and taking into account
the result given by Eq. (3.38), the required bare
Lagrangian is of the form

LYMð4þnÞ
BKK ¼ LYM

QKKðd≤4Þ þ LYMð0Þ
KKðd>4Þ þ LYMð0Þ

c:t: þ LYMð0Þ
c:t:ðd>4Þ;

ð4:11Þ

where LYM
QKKðd≤4Þ and LYMð0Þ

c:t: are given by Eqs. (3.11) and

(3.14), respectively. Moreover, LYMð0Þ
KKðd>4Þ represents inter-

actions of canonical dimension higher than 4, which
induce the counterterms needed to remove the divergen-
ces generated at one loop by the Lagrangian LYM

QKKðd≤4Þ.
Such a Lagrangian can be written as

LYMð0Þ
KKðd>4Þ ¼

X½n2�
k¼1

λðkÞ
ðR−2Þk ðDα1 � � �DαkFμνÞaðDα1 � � �DαkFμνÞa:

ð4:12Þ

Note that our gauge-invariant renormalization scheme
implies that DBαi ¼ Dαi , since ZAZg ¼ 1. So, the corre-
sponding counterterm is gauge invariant as well and is
given by

LYMð0Þ
c:t:ðd>4Þ ¼

X½n2�
k¼1

δðkÞA

ðR−2Þk ðDα1 � � �DαkFμνÞaðDα1 � � �DαkFμνÞa;

ð4:13Þ

where δðkÞA ≡ ZAλBðkÞ − λðkÞ.
Then, up to one-loop order, the contribution from the

Lagrangian (4.12) to the polarization function is given by

Πð4þnÞD
KK ðp2Þ ¼

X½n2�
k¼1

λðkÞ

�
p2

R−2

�
k

þ Πloop
KK ðp2Þ − δA þ

X½n2�
k¼1

δðkÞA

�
p2

R−2

�
k

; ð4:14Þ

where the first term of this expression is the tree-
level contribution of the Lagrangian (4.12); the second
term represents the one-loop contribution induced
by the Lagrangian (3.11), which is given by
Eq. (3.33); the third term is the contribution of the
usual counterterm; and the last term represents the
contribution of the counterterms induced by interactions
of dimension higher than 4. To determine the ½n

2
� þ 1

counterterms, we proceed as in the case n ¼ 1, dis-
cussed above, by using both the MS scheme and the μ
scheme.

1. Mass-independent scheme

The counterterms are determined by the coefficients of
the poles of the divergences:

δA ¼ g2N
ð4πÞ2

�
11

3
þ
�
11

3
−
n
6

�
ζð0Þ

��
2

ϵ

�
; ð4:15aÞ

δðkÞA ¼ −
g2N
ð4πÞ2

X½n2�
k¼1

ð−1Þk½fðkÞðnÞ − gðkÞðnÞ�
Z

1

0

dx

�
fðxÞ − n

2
gðxÞ

�
½xð1 − xÞ�k: ð4:15bÞ

Note that the counterterm δA in this expression
is identical to that of Eq. (4.2), except for the value
of n. Consequently, the beta function is given by
βð4þnÞD ¼ βð22þn

44
Þ. It is evident that the new

physics effects do not decouple from the
beta function nor from the polarization function

Πð4þnÞD
KK ðp2Þ, as it occurs in the case of one extra

dimension.
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Mass-dependent scheme.—The structure of the new counterterms suggests to use the following renormalization
conditions:

Πð4þnÞD
KK ðp2 ¼ −μ2Þ ¼ 0; ð4:16aÞ

d
dp2

Πð4þnÞD
KK ðp2Þ

				
p2¼−μ2

¼ 0; ð4:16bÞ

..

.

d½n2�

dðp2Þ½n2� Π
ð4þnÞD
KK ðp2Þ

				
p2¼−μ2

¼ 0: ð4:16cÞ

From these renormalization conditions, the derivation of the counterterms for relatively large values of n does not seem to be
a simple task. Fortunately, the symmetry of the theory allows one to write closed expressions for any value of n. The
counterterms induced by interactions of canonical dimension higher than 4 can be determined, for any value of n, from the
expression

δ
ð½n
2
�−mÞ

A ¼ −λð½n
2
�−mÞ − Að½n

2
�−mÞðn; ϵÞ

−
Xm
k¼1

ð−1Þkð½n
2
� −mþ kÞ!

k!ð½n
2
� −mÞ! ½λð½n

2
�−mþkÞ þ δ

ð½n
2
�−mþkÞ

A þ Að½n
2
�−mþkÞðn; ϵÞ�

�
μ2

R−2

�

−
g2N
ð4πÞ2

Z
1

0

dx

��
fðxÞ

�
R−2

μ2

�½n
2
�−m

þ hðxÞ½−xð1 − xÞ�½n2�−m d½n2�−mFðn; c̄2Þ
dðc̄2Þ½n2�−m

��
; ð4:17Þ

where the definitions

hðxÞ ¼ fðxÞ − n
2
gðxÞ; ð4:18aÞ

AðkÞðn; ϵÞ ¼
g2N
ð4πÞ2

Z
1

0

dxhðxÞ
�
fðkÞðnÞ

1ffiffiffi
π

p Γ
�
1þ ϵ

2

�
ζð1þ ϵÞ þ gðkÞðnÞΓ

�
ϵ

2

�
ζðϵÞ þ FðkÞðnÞ

�
½−xð1 − xÞ�k ð4:18bÞ

have been introduced. Notice that the counterterms in
(4.17) are divergent through the quantity AðkÞðn; ϵÞ, which
contains divergences arising from short-distance effects in
the compact manifold. Also note that, in expression (4.17),

m goes from 0 to ½n
2
� − 1. So form ¼ 0, δ

½n
2
�

A is determined in

terms of λ½n
2
� and A½n

2
�ðn; ϵÞ. This result allows us to

determine δ
½n
2
�−1

A . In turn, δ
½n
2
�

A and δ
½n
2
�−1

A allow us to determine

δ
½n
2
�−3

A , and so on.
As far as the usual counterterm is concerned, it can be

derived, for any value of n, from the expression

δA ¼ g2N
ð4πÞ2

Z
1

0

�
fðxÞ

�
Γ
�
ϵ

2

��
Δ̄2

4πμ̂2

�−ϵ
2 þ

�
n
2

��
þ hðxÞ

�
Að0Þðn; ϵÞ þ

X½n2�
k¼0

ð−1Þkðc̄2Þk d
kFðn; c̄2Þ
dðc̄2Þk

��
; ð4:19Þ

where

Að0Þðn; ϵÞ ¼ gð0ÞðnÞ
�
R−2

4πμ̂2

�−ϵ
2

Γ
�
ϵ

2

�
ζðϵÞ þ Fð0ÞðnÞ: ð4:20Þ

This counterterm contains only divergences that arise from short-distance effects in the usual spacetime manifold. The
ultraviolet divergence of the zero mode appears in the first term of (4.19), proportional to fðxÞ, while the ultraviolet
divergences induced by the KK excited modes are contained in the factor Að0Þðn; ϵÞ.
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On the other hand, the renormalized polarization function is given by

Πð4þnÞD
KK ðp2Þ ¼ g2N

ð4πÞ2
Z

1

0

dx
�
fðxÞ

�
log

�Δ̄2
ð0Þ

Δ2
ð0Þ

�
−
�
n
2

��

þ hðxÞ
�
Fðn; c2Þ − Fðn; c̄2Þ −

X½n2�
k¼1

ðc2 − c̄2Þk d
kFðn; c̄2Þ
dðc̄2Þk

��
þ
X½n2�
k¼1

�
1

k!
dkδðkÞ

dðR−2

μ2
Þk
��

p2

μ2

�
k

: ð4:21Þ

We now proceed to derive the beta function. Of course, there is a beta function for each coupling constant, but we will
focus on the usual beta function, which emerges from the standard countererm (4.19). The usual beta function does not
depend on the scale, so the (4þ n)-dimensional beta function can be written as

βð4þnÞDðgÞ ¼ βðgÞ þ g2N
ð4πÞ2

Z
1

0

dxhðxÞc̄2 d
dc̄2

�X½n2�
p¼0

ð−1Þpðc̄2Þp d
pFðn; c̄2Þ
dðc̄2Þp

�
; ð4:22Þ

where the term p ¼ 0, within square brackets, corresponds to Fðn; c̄2Þ. To investigate the impact of extra dimensions on the
beta function, we need to determine the sign of the new physics contribution. The calculation of the derivatives on
the Fðn; c̄2Þ function is straightforward. In addition, both the finite sum on the index p and the parametric integral on the
variable x can be performed. Once this is done, we get

βð4þnÞDðgÞ ¼ βðgÞþ g2N
ð4πÞ2

1

2n−1

Xn
r¼1

Xr

l¼1

�
n

l− 1

�
π

n−r
2 ×

X∞
k¼½n

2
�þ1

Iðn;kÞSðn;kÞΓ
�
2kþ r−n

2

�
ζð2kþ r−nÞ

�
μ2

R−2

�
k

: ð4:23Þ

In this expression, Sðn; kÞ is the finite sum over the p index, which is given by

Sðn; kÞ ¼ 1

e

�
Γðkþ 1;−1Þ
Γðkþ 1Þ −

Γðk − ½n
2
�;−1Þ

Γðk − ½n
2
�Þ

�
; ð4:24Þ

where Γða; zÞ is the incomplete gamma function and e is the Euler-Napier constant. On the other hand, Iðn; kÞ is the
parametric integral over the x variable, which can be expressed as

Iðn; kÞ ¼
Z

1

0

dxhðxÞ½xð1 − xÞ�k ¼
ffiffiffi
π

p
22kþ1

Γðkþ 1Þð16kþ 22þ nÞ
ð2kþ 1Þð2kþ 3ÞΓðkþ 1

2
Þ : ð4:25Þ

Note that Iðn; kÞ > 0 for any value of n and k. In
fact, all the quantities that appear in Eq. (4.23) are
positive, with the exception of the sum Sðn; kÞ, which
is negative for k ¼ ½n

2
� þ 1, positive for k ¼ ½n

2
� þ 2, neg-

ative for k ¼ ½n
2
� þ 3, and so on. However, the contribution

to the beta function decreases considerably, in absolute

value, for increasing values of the k index. Then, the
contribution k ¼ ½n

2
� þ 1 dominates the contributions com-

ing from the other terms, which alternate positive and
negative signs but are insignificant in absolute value.
Keeping only the dominant contribution, Eq. (4.23)
becomes

βð4þnÞDðgÞ ¼ βðgÞ þ g2N
ð4πÞ2

1

2n−1

Xn
r¼1

Xr
l¼1

�
n

l − 1

�
π

n−r
2 I

�
n;

�
n
2

�
þ 1

�
S

�
n;

�
n
2

�
þ 1

�

× Γ
�
2½n

2
� þ r − nþ 2

2

�
ζ

�
2

�
n
2

�
þ r − nþ 2

��
μ2

R−2

�½n
2
�þ1

þ � � � ; ð4:26Þ

where the ellipsis denote subdominant terms. In this case,

S

�
n;

�
n
2

�
þ 1

�
¼ −1þ 1

e

Γð½n
2
� þ 2;−1Þ

Γð½n
2
� þ 2Þ < 0; ð4:27Þ

which means that βð4þnÞDðgÞ < 0.
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The above results show that the radiative correction
induced by the KK excitations has the same sign as that of
the usual theory, which means that the KK excitations
behave like genuine Yang-Mills fields. The new physics
effect decouples, since βð4þnÞDðgÞ → βðgÞ when R−1 goes
to infinity. This is the main result of the present work.

V. CONCLUSIONS

In the present paper, we have shown that Yang-Mills
theories in more than four universal extra dimensions
remain perturbative at the one-loop level. We have focused
the problem not from the very intuitive approach of using a
cutoff regulator but from the perspective of the dimensional
regularization scheme. In this approach, large contributions
of continuous and discrete momenta are kept, but they are
removed by adjusting parameters of appropriate counter-
terms, which are already available, since the effective
Lagrangian contains all interactions that respect the sym-
metries of the theory.
A comprehensive study of the beta has been

presented. The effective KK theory was quantized using
a SUðN;M4Þ-covariant gauge-fixing procedure, which
considerably simplifies the calculations. This class of
theories, which are characterized by an infinite number

of fields, generates loop amplitudes that involve discrete
and continuous sums

P
ðkÞ

R
d4k, each of which may

diverge for large discrete momentum kμ̄ or for large
continuous momentum kμ. We regularized both types of
potentially divergent sums by using the dimensional-
regularization approach, which allowed us to parametrize
the one-loop amplitudes as products Γðϵ

2
ÞEc2

l ðϵ2Þ, with

Ec2
l ðsÞ the l-dimensional Epstein zeta function representing

the regularized discrete sums. In our case, the multidimen-

sional Epstein functions depend on c2 ∝ p2

R−2, with p2 the
external momentum. It was argued that divergences arising
as poles of the Epstein function correspond to genuine
ultraviolet divergences, since they are associated with large
values of discrete momenta kμ̄ or, equivalently, with short-
distance effects in the compact manifold. Thus, this type of
divergences can be removed through renormalization, just
as it is done in the case of ultraviolet divergences emerging
from short-distance effects in the usual four-dimensional
spacetime manifold. Results available in the literature were
used to reduce Ec2

l ðsÞ into a finite sum of one-dimensional
Epstein functions. This result plays a relevant role because
it allows us to distinguish the two types of ultraviolet
divergences already commented. To see this, note that

Γ
�
ϵ

2

�
Ec2
l

�
ϵ

2

�
¼ Γ

�
ϵ

2

��
Ec2
1

�
ϵ

2

�
þ ð−1Þl−1

2l−1

Xl−1
p¼1

�
l − 1

p

�
ð−1Þpπp

2

Γðϵ
2
− p

2
Þ

Γðϵ
2
Þ Ec2

1

�
ϵ

2
−
p
2

��
: ð5:1Þ

The first term of this expression represents the usual
ultraviolet divergences induced by the KK excited modes,
since the Epstein function Ec2

1 ðϵ2Þ converges for ϵ → 0 and
does not depend on c2. The divergences arise exclusively
from the pole of the gamma function. The other type of
divergences arises from the second term of the above
expression. Since the factor Γðϵ

2
Þ is canceled by the

denominator of the sum over index p, divergences arise
from products Γðϵ

2
− p

2
ÞEc2

1 ðϵ2 − p
2
Þ of this sum when ϵ → 0.

It can be appreciated from this expression that for even
values of p divergences arise as poles of the gamma
function when ϵ → 0, while for odd values of p, diver-
gences emerge as poles of the one-dimensional Epstein
function in this limit, since Ec2

1 ðsÞ has poles at
s ¼ 1

2
;− 1

2
;− 3

2
; � � �. This is the type of ultraviolet diver-

gences which we have identified as short-distance effects in
the compact manifold. However, note that this type of
divergences does not exist in the five-dimensional theory,
since in this case l ¼ 1. Because this divergent Epstein
function depends on power of the external momentum, it
only can be associated with interactions of canonical
dimension higher than 4. Using gauge invariance as a
guide, we have introduced all interactions needed to

generate the required counterterms, which are already
available since the effective theory contains all the inter-
actions that respect the symmetries of the theory. To carry
out practical calculations, we have used another important
result of the literature that allows us to express the one-
dimensional Epstein function in terms of products of
gamma and Riemman functions through a power series
in c2. This expansion in powers of c2 is valid in our case
because this effective theory aims at the description of
physics at energies lower than the compactification scale
R−1. At this level, the poles of the Γðϵ

2
− p

2
ÞEc2

1 ðϵ2 − p
2
Þ

products translate into poles of both the Riemann and
gamma functions. This decomposition of the Epstein
function has a high practical value, since both the gamma
function and the Riemann zeta function already appear
in libraries of modern technical computing systems, such
as Mathematica. To be confident about our results, we
have systematically used this program for the present
investigation.
The case of one extra dimension was studied separately.

Our motivation to do this is that this theory has some
peculiarities that make it substantially different from the
more general case of an arbitrary number of extra dimen-
sions. An interesting property of the five-dimensional
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formulation is that no divergences associated with the one-
dimensional Epstein function emerge, so the only diver-
gences are the usual ultraviolet divergences generated by
the KK zero and excited modes. This means that the usual

counterterm − δA
4
Fð0Þa
μν Fð0Þμν

a (in our gauge-invariant quan-
tization scheme) is enough to remove divergences. Another
important property of this case is that all Green’s functions
of canonical dimension higher than 4 in which external legs
are all zero modes are free of ultraviolet divergences as long
as no interactions of dimension higher than 4 are inserted in
the loops. This has been verified in phenomenological
applications.
The beta function was studied in both the five-

dimensional and the (4þ n)-dimensional cases. The analy-
sis was performed in a mass-independent scheme and in a
mass-dependent scheme as well. In the former scheme, it
was found that neither the beta function nor the renormal-
ized polarization function exhibits decoupling of extra
dimensions effects, while in the latter scheme, the decou-
pling is manifest. In the (4þ n)-dimensional case, explicit
expressions for the counterterms, renormalized polarization
function, and beta function, valid for any value of n, were
presented. It was shown that the excited KK modes induce
a radiative correction that reinforces the value of the usual
beta function, since it has the same sign. On physical
grounds, this result was expected, since the KK excitations
of the YM zero mode are also gauge fields governed by the
non-Abelian symmetry. However, we have seen that
proving this fact is not a trivial task, mainly because
dimensional regularization must be used along with an
appropriate renormalization scheme.

The systematic use of multidimensional zeta functions
that arise from infinite discrete sums regularized in the
dimensional-regularization scheme played a central role in
our study. Our conclusion is that short-distance effects of
zero mode and excited modes in the spacetime manifold
arise as poles of the gamma function when ϵ ¼ 4 −D
approaches zero, while short-distance effects of excited
modes in the compact manifold emerge as poles of the one-
dimensional Epstein function.
We emphasize that our identification of two types of

ultraviolet divergences turns out to be natural from the
perspective that we have two different spaces, one infinite
and the other compact. We think that this fact, along with
our approach to this type of effective theories, constitutes
an important contribution of this work.
To finish, we would like to comment that our method for

handling divergences that arise (for n ≥ 2) from poles of
the Epstein function could be very useful in phenomeno-
logical studies of universal extra dimensions, especially in
some physical processes that are naturally suppressed in the
Standard Model, so they can be very sensitive to new
physics effects. This is the case of physical processes that
first arise at one loop, as rare Higgs boson decays or flavor
violation, which are free of short-distance effects in the
usual manifold, but not in the compact manifold for n ≥ 2.
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