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We present the conformal freeze-in (COFI) scenario for dark matter production. At high energies, the
dark sector is described by a gauge theory flowing toward a Banks-Zaks fixed point, coupled to the
Standard Model via a nonrenormalizable portal interaction. In the early Universe, a nonthermal freeze-in
process transfers energy from the standard model plasma to the dark sector. During the freeze-in, the dark
sector is described by a strongly coupled conformal field theory. As the Universe cools, cosmological phase
transitions in the Standard Model sector, either electroweak or QCD, induce conformal symmetry breaking
and confinement in the dark sector. One of the resulting dark bound states is stable on the cosmological
time scales and plays the role of dark matter. With the Higgs portal, the COFI scenario provides a viable
dark matter candidate with mass in a phenomenologically interesting sub-MeV range. With the quark
portal, a dark matter candidate with mass around 1 keV is consistent with observations. Conformal
bootstrap may put a nontrivial constraint on model building in this case.
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I. INTRODUCTION

Microscopic nature of dark matter is one of the central
open questions in fundamental physics which cannot be
addressed within the Standard Model (SM). Many theo-
retical ideas have been suggested, and an extensive exper-
imental effort is under way to test some of the proposals [1].
While the precise nature of the dark matter sector varies
greatly among the proposed models, all of them postulate
that dark matter consists of pointlike particles (e.g., weakly
interacting massive particles or axions), their bound states
(e.g., dark atoms), or particlelike extended objects (monop-
oles, Q-balls, etc.), both today and throughout its cosmo-
logical history. However, viable extensions of the SM exist
in which new physics sectors do not contain spatially
localized particlelike excitations at all [2]. A well-known
example is a conformal field theory (CFT) [3–5], where
scale invariance precludes the existence of stable finite-size
states. In this paper, we show how dark matter can arise
from a new physics sector which is described by a CFT
throughout most of its cosmological history.
An immediate objection to the idea of dark matter made

out of CFT “stuff” is that conformal invariance dictates that

the energy density of such stuff redshifts like radiation
(ρ ∝ a−4), rather than nonrelativistic matter (ρ ∝ a−3), as
the Universe expands. However, in any phenomenologi-
cally viable model, conformal invariance is at most
approximate and must be broken to some degree. In
particular, any interactions of the CFT sector with the
nonconformally invariant SM inevitably break the sym-
metry. Generically, such effects induce a “gap” mass scale,
below which the sector is no longer conformal and its
spectrum consists of spatially localized particle degrees of
freedom. Below, we will discuss a scenario in which dark
matter production in the early Universe occurs at temper-
atures above the gap scale, so that throughout the produc-
tion process the dark sector can be well approximated by a
CFT. At the same time, the gap scale, which is induced by
cosmological phase transitions in SM, is sufficiently large
so that the dark sector behaves as nonrelativistic matter
during CMB decoupling, structure formation, and today, as
required by observations.

II. PARTICLE PHYSICS FRAMEWORK

We extend the SM by postulating a dark sector, whose
fields do not carry SM gauge charges. The dark sector is
assumed to be invariant under the conformal group. It is
coupled to the SM via

Lint ¼
λCFT
ΛD
CFT

OSMOCFT; ð1Þ

where OSM is a gauge-invariant operator consisting only of
SM fields, OCFT is an operator within the dark-sector CFT,
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and ΛCFT is the energy scale where the CFT is replaced by
its ultraviolet (UV) completion. We will consider the
regime of small Wilson coefficient λCFT ≪ 1, where the
conformal symmetry breaking introduced by Eq. (1) can be
treated as a (technically natural) small perturbation. A UV
completion of the CFT that naturally generates λCFT ≪ 1 is
discussed below. IfOSM andOCFT have scaling dimensions
dSM and d, respectively, then

D ¼ dSM þ d − 4: ð2Þ
The dark-sector CFT may be strongly coupled, resulting in
large anomalous dimensions and noninteger d. A simple
and predictive scenario for CFT breaking in the infrared
(IR) is to consider SM operators with hOSMi ≠ 0, which
automatically triggers such breaking through the interac-
tion term in Eq. (1) if OCFT is relevant, d < 4. In this
scenario,OCFT must be a scalar operator, and CFT unitarity
then requires d ≥ 1. Two obvious choices for OSM, which
will be our focus in this work, are as follows:

(i) Higgs portal: OSM ¼ H†H (dSM ¼ 2)
(ii) Quark portal: OSM ¼ HQ†

LqR (dSM ¼ 4)
For both portals, hOSMi ≠ 0 in the IR, due to the Higgs
vacuum expectation value (VEV) and the QCD chiral
condensate. Conformal symmetry is broken at a scale
Mgap, for which dimensional analysis gives

Mgap ∼
�
λCFTv2

Λd−2
CFT

� 1
4−dðHiggs portalÞ;

Mgap ∼
�
λCFTvΛ3

QCD

Λd
CFT

� 1
4−d

ðquark portalÞ: ð3Þ

Once the conformal symmetry is broken, the spectrum
consists of particlelike excitations with masses ∼Mgap

which can be thought of as bound states of the original
CFT degrees of freedom. We assume that one of these
excitations is stable on cosmological time scales, for
example, due to a discrete symmetry. This is the particle
that will play the role of dark matter (DM). Regarding the
DM particle mass, wewill consider two possibilities. One is
that the DM particle is a generic bound state, with mass
mDM ¼ Mgap (up to order one factors). The second one is
that the DM particle is a pseudo-Goldstone boson (PGB) of
an approximate global symmetry spontaneously broken at
Mgap, similar to pions in QCD. In this case,mDM ≪ Mgap is
natural, with the DM mass dictated by the amount of
explicit symmetry breaking.
The strongly coupled, conformally invariant dark sector

of our model can arise from a weakly coupled, asymptoti-
cally free theory in the UV. This can be a simple SUðNcÞ
gauge theory with NF fermion flavors Qi, which flows
towards a Banks-Zaks (BZ) fixed point in the infrared [6].
The theory becomes strongly coupled, and approximately
conformal, at a scale ΛCFT. The interaction with the SM
starts out as

Lint ¼
1

MdU
U

OSMOBZ; ð4Þ

where OBZ is a gauge-invariant operator in the dark-sector
gauge theory, with a scaling dimension dBZ. Since
dU ¼ dSM þ dBZ − 4 > 0, this interaction is irrelevant,
and MU ≫ ΛCFT is required for consistency. At the scale
ΛCFT, this interaction term is matched to the one in Eq. (1),
with

λCFT ∼
�
ΛCFT

MU

�
dU

≪ 1: ð5Þ

For example, we may consider the quark bilinear operator
OBZ ¼ Q†

iQi, with dBZ ¼ 3. Our scenario requires that
this operator acquires a large anomalous dimension,
γBZ ∼Oð1Þ, at the IR fixed point. Such large anomalous
dimensions, with the sign consistent with our scenario,
have been observed in lattice studies of SUð3Þ gauge theory
with Nf ¼ 10 [7] and Nf ¼ 8 [8–12], as well as in analytic
scheme-independent calculations at higher orders in per-
turbation theory [13,14].
We note that in the case of Higgs portal for the special

value d ¼ 2, the theory we consider bears some superficial
resemblance to the “scale-invariant” dark sectors consisting
of massless, weakly coupled fields, considered in previous
studies (see e.g., [15,16]). However, the physics is com-
pletely different: our dark sector is strongly coupled, the
operator OCFT has a nonperturbatively large anomalous
dimension (which just happens to be an integer at this
special point) and is genuinely (not just classically) con-
formally invariant.
Since OCFT is a relevant operator, an additional sym-

metry must be invoked to avoid its appearance in the CFT
Lagrangian, which would lead to incalculable IR breaking
of the CFT that would generically dominate the effect of
Eq. (1). This may for example be a Z2 symmetry under
which OCFT is odd, explicitly broken only by the inter-
action with the SM.1 However, the operator product
expansion (OPE) of OCFT ×OCFT generally contains sin-
glet scalar operators, which are even under Z2 [17].
Numerical CFT bootstrap provides an upper bound on
the dimension of the lowest singlet scalar operator in the
OPE [17,18]. Requiring that no Z2-even relevant operators
are generated implies d > 1.61 [18]. Note that this bound is
model dependent and may be avoided if a larger symmetry
is used, or if operator coefficients are fine-tuned.

1Even with discrete symmetry, loops involving SM particles
will induce IR breaking of the CFT. For example, in the case of

Higgs portal, δLCFT ∼
λCFT
ΛD
CFT

Λ2
SM

16π2
OCFT, where ΛSM is the scale

where quadratic divergence in the Higgs loop is cut off, for
example, by compositeness or supersymmetry. This effect is
subdominant to the breaking due to Higgs VEV as long as
ΛSM ≲ 4πv, the usual condition for naturalness of the weak scale.
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Note that with the exception of the IR breaking of
conformal symmetry, the field theory model considered
here is identical to Georgi’s “unparticle” framework
[2,19]), with SM coupling to a scalar CFT operator. (For
earlier works on cosmology with unparticles, see [20–24].)
In other words, the dark sector behaves as an unparticle at
energy scales above Mgap and below ΛCFT.

III. COSMOLOGICAL EVOLUTION

We assume that after the end of inflation, the inflaton
decay reheats the SM sector to a temperatureTR, but the dark
sector is not reheated due to the absence of a direct coupling
to the inflaton. As the Universe expands and cools after
reheating, collisions and decays of SM particles gradually
populate the dark sector. AssumingMgap ≪ TR < ΛCFT, this
process occurs via production of CFT stuff (unparticles). The
dark sector cannot be described by Boltzmann equations,
since the concept of particle number density is not applicable
in the CFT. However, since the dark sector has many degrees
of freedom and they interact strongly among themselves, it
will be in a spatially isotropic thermal state. Rotational
symmetry dictates that the energy-momentum tensor of this
state has the formTμν ¼ diagðρCFT;−PCFT;−PCFT;−PCFTÞ,
while conformal invariance further requires PCFT ¼ 1

3
ρCFT.

The CFT energy density is given by

ρCFT ¼ AT4
D; ð6Þ

where TD is the temperature of the CFT sector, and A is an
order-one model-dependent constant. We will study a
scenario where TD ≪ T at all times, where T is the SM
plasma temperature; at the same time, TD > Mgap during
the period when the dark sector is populated, so that the
CFT description is appropriate.
On the SM side, the particle number is well defined and

the Boltzmann equations have the usual form, with colli-
sion terms describing the loss of SM particles due to
annihilations (SMþSM→CFT) and decays (SM → CFT),
and their creation due to inverse processes. The evolution of
the SM energy density ρSM follows from the Boltzmann
equations,

dρSM
dt

þ 3HðρSM þ PSMÞ
¼ −ΓEðSM → CFTÞ þ ΓEðCFT → SMÞ; ð7Þ

where H is the Hubble expansion rate, and ΓE are energy
transfer rates per unit volume. In our scenario, the CFT
sector will always remain at densities far below equilibrium
with the SM, and ΓEðCFT → SMÞ can be safely neglected.
The energy transfer rate from SM to CFT is given by

ΓEðSM → CFTÞ ¼
X
i;j

ninjhσðiþ j → CFTÞvrelEi

þ
X
i

nihΓði → CFTÞEi; ð8Þ

where the sums run over all SM degrees of freedom
coupled to the CFT. The cross sections and decay rates
can be evaluated using the technique of Georgi [2,19]. For
example, with the Higgs portal, the Higgs decay contri-
bution is given by

nhhΓðh → CFTÞEi ¼ fdλ2CFTv
2m2ðd−1Þ

h T
Λ2d−4
CFT

K2ðmh=TÞ; ð9Þ

where mh is the Higgs boson mass, fd¼2−2dπ1=2−2d ×
Γðdþ1=2Þ=ðΓðd−1ÞΓð2dÞÞ, and K2ðxÞ is the modified
Bessel function of the second kind. The annihilation
contribution (when T ≫ mh) is given by

n2hhσðhh → CFTÞvrelEi ¼ λ2CFT
d

2ð2πÞ2dþ1

T2dþ1

Λ2d−4
CFT

: ð10Þ

The CFT sector is populated at the time when the
energy density is dominated by relativistic SM matter,
PSM ¼ 1

3
ρSM, so that SM and CFT energy densities redshift

in the same way. The total energy of the two sectors can
only change due to work done against the expansion of the
Universe,

d
dt

ðρCFT þ ρSMÞ þ 4HðρCFT þ ρSMÞ ¼ 0: ð11Þ

Subtracting Eq. (7), we find that the CFT energy density
evolves according to

dρCFT
dt

þ 4HρCFT ¼ ΓEðSM → CFTÞ; ð12Þ

with the initial condition ρCFT ¼ 0 at T ¼ TR.
With minor simplifying assumptions, such as ignoring

the masses of colliding SM particles and the temperature
dependence of the effective number of SM degrees of
freedom g�, Eq. (12) can be solved analytically (see the
Appendix B for details). The qualitative behavior of ρCFT
with temperature is dictated by the dimension d of the
operator OCFT. For d above the critical dimension d� (see
Appendix A for details), most of the CFT energy is
produced at high temperatures, close to TR, by pair
annihilations of SM particles; the decay contribution, if
present, is subdominant.2 On the other hand, for d < d�,
contributions from both pair annihilations and decays (if
present) grow with decreasing T. The resulting CFT density

2For earlier work on freeze-in in the UV sensitive regime, see,
for example, [25].
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is IR dominated and can be calculated without knowledge
of UV quantities such as TR, as in the freeze-in scenario of
Refs. [26,27] (for review of variations of freeze-in models
and phenomenology, see [28]). We will focus on this case
for the rest of the paper. We call this scenario conformal
freeze-in, or COFI. The critical dimensions are d� ¼ 5=2
for the Higgs portal and d� ¼ 3=2 for the quark portal.
For both portals, production of CFT energy effectively

ceases soon after the SM temperature drops below the mass
of the particle coupled to the CFT: T ∼mh for the Higgs
portal3 and T ∼ ΛQCD for the quark portal. After that, ρCFT
redshifts as a−4, until the CFT temperature drops to
TD ∼Mgap. At that time, conformal symmetry is broken
and a confining phase transition takes place. We assume
that all of the energy stored in the CFT sector is transferred
to DM particles, on a time scale short compared to Hubble
at that time. IfmDM ≪ Mgap, the dark matter energy density
will continue to redshift as radiation until its temperature
drops below mDM, after which it behaves as nonrelativistic

matter. With these assumptions, the relic density can be
estimated analytically (see Appendix B). For example, for
the Higgs portal, the relic density is dominated by the Higgs
decay contribution and is given by

ΩDMh2

0.1
¼

�
mDM

1 MeV

��ðAf3dg−9=2� Þ1=4
10−5

��ðMgap

mh
Þð6−3d

2
Þ

10−12

�
; ð13Þ

where g� ∼ 100 is the number of relativistic SM degrees of
freedom at the weak scale. An example of the evolution of
CFT/DM energy density, for the Higgs portal scenario and
parameters that provide the observed DM relic density, is
shown in Fig. 1. This and all figures below are based on full
numerical solutions of Eq. (12), which is in good agreement
with Eq. (13).

IV. DARK MATTER PHENOMENOLOGY

Since the dark matter relic density is determined by IR
physics, and the dark matter mass and its interaction
strength are related through Eq. (3), the COFI scenario
is remarkably predictive. In particular, there is a nearly
universal relationship between the dark matter relic density
and the gap scale, with only a mild dependence on other
parameters. In the case of the Higgs portal, the observed
relic density is reproduced forMgap ∼ 1–10 MeV, while for
the quark portal, it is Mgap ∼ 10–100 keV.
If the DM particle is a generic bound state of a strongly

coupled theory with mDM ∼Mgap, its elastic self-scattering
interaction cross section can be estimated as σself ≈
1=ð8πM2

gapÞ. This is far too large, in both Higgs and quark
portal scenarios, to be consistent with bounds from galaxy
clusters such as the Bullet cluster [29,30]. We therefore
consider the case where the DM is a PGB, with mass
ratio r ¼ mDM=Mgap ≪ 1. The self-scattering cross section
scales as

σself ∼
m6

DM

8πM8
gap

¼ r6

8πM2
gap

; ð14Þ

where we assumed that self-scattering is mediated by states
with masses ∼Mgap (e.g., the counterparts of the ρmeson of
QCD), and derivative couplings of the PGB have been
taken into account. Modest values of r ∼ 0.01–0.1 are
sufficient to avoid the self-interaction bounds for param-
eters with viable ΩDM. This is illustrated in Figs. 2 and 3.
Another important phenomenological constraint is that

the DM should be cold, i.e., remain nonrelativistic during
structure formation [31]. This constraint is somewhat
weaker than in the case of SM sterile neutrinos,
m≳ 5 keV, because the CFT sector is colder than the
SM. Nevertheless, for the quark portal, the warm DM
bound rules out a significant part of the parameter space;
see Fig. 3. For the Higgs portal, the DM is heavier and this
bound is irrelevant.

FIG. 1. Top panel: energy density in the CFT plasma or dark
matter particles, as a function of the SM plasma temperature T, in
the Higgs portal scenario with ΛCFT ¼ 1.2 × 108 GeV and
MU ¼ 1017 GeV. Bottom panel: evolution of the CFT plasma
temperature, as a function of T, for the same parameters. At all
times, TD ≪ T, as required for the self-consistency of our
calculations.

3In the Higgs portal case, there is a residual quark/gluon-CFT
interaction below the weak scale, induced through integrating out
the Higgs. Numerically, its effect is subdominant.
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There are many experimental and observational con-
straints on the strength of CFT/DM coupling to the SM.
These include LHC searches for unparticles produced in qq̄
annihilations [32,33] or Higgs decays [34,35], bounds on

invisible meson decays involving unparticles from the B
factories [36–38], supernova SN1987a energy loss and
stellar cooling due to unparticle or DM emissions
[20,39,40], modification of the ionization history due to
energy injection by late-time DM annihilations [41–44],
diffuse x- and gamma-ray backgrounds [45], and spectral
distortion of the CMB blackbody distribution by early
energy injection [46]. We checked that our scenario is
easily consistent with all these bounds, due to a highly
suppressed coupling between the dark sector and the
SM. Note also that the big bang nucleosynthesis (BBN)
bound on the number of new light degrees of freedom [47]
does not apply, because TD ≪ T at the time of BBN.
On the theoretical side, there are several consistency

conditions that may further constrain the parameter space,
as shown in Figs. 2 and 3. The “naturalness” bound stems
from requiring that if TR < ΛCFT, then MU < MPl.
“Bootstrap” condition, d > 1.61, is explained in the para-
graph below Eq. (5). Both these bounds are model
dependent and may be modified or eliminated by the
choice of a UV completion of the CFT and symmetry
charge assignment for OCFT, respectively.
We conclude that for the Higgs portal, the COFI dark

matter scenario is easily viable, consistent with all obser-
vational and theoretical constraints. This scenario contains
a novel DM candidate, a CFT bound state, whose mass is
predicted to be in the experimentally interesting sub-MeV
range. The lower bound on the DM mass is about a keV,
where warm dark matter constraint becomes insurmount-
able. For the quark portal, the situation is more constrained.
A small sliver of parameter space, with d close to 1, is
observationally viable, but inconsistent with the bootstrap
condition in its simplest form. It is interesting that viability
of the DM candidate in this case hinges upon highly
nontrivial intrinsic properties of the CFT.
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APPENDIX A: CRITICAL DIMENSION (d�)

Here, we derive the critical dimension (d�) of the CFT
operator, below which dark-sector energy production is IR

FIG. 2. Dark matter relic density contours (red) and observa-
tional/theoretical constraints in the Higgs portal model. Thick red
line indicates parameters where the observed dark matter abun-
dance is reproduced.

FIG. 3. Dark matter relic density contours (red) and observa-
tional/theoretical constraints in the quark portal model. Thick red
line indicates parameters where the observed dark matter abun-
dance is reproduced.
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dominated and independent of early Universe parameters
such as the reheating temperature.
In the examples considered in this paper, SMþ SM →

CFT and SM → CFT processes are the only relevant modes
of production. Others, such as 3SM → CFT processes, are
disfavored strongly by phase space suppression and can be
ignored. In the case of Standard Model decays, production
is always UV insensitive, as the bulk of it occurs when the
temperature is of the same order as the mass of the SM
particle. On the other hand, production from 2 → CFT
processes may occur primarily either in the UVor in the IR,
depending on the dimension of the CFToperator coupled to
the Standard Model.
Consider the following coupling, as shown in Eq. (1):

Lint ¼
λCFT

ΛðD−4Þ
CFT

OSMOCFT; ðA1Þ

where D ¼ dþ dSM as before.
We will calculate the critical dimension for the case of

2 → CFT processes as follows. From dimensional analysis,
it is easy to relate the collisional term in the Boltzmann
equation for two SM particles to the SM temperature and
the CFT scale, since the cross section under consideration

will have a factor of 1=Λ2ðD−4Þ
CFT . Without any dimensionless

factors, we get

n2SM ∼ T6; hσvEi ∼ T2D−9

Λ2ðD−4Þ
CFT

⇒ ΓEðSM → CFTÞ ∼ T2D−3

Λ2D−8
CFT

: ðA2Þ

The dark-sector energy density can be estimated by
integrating the Boltzmann equation [Eq. (12)] with the
added constraint that there is no dark-sector energy above
the reheating temperature. Thus, for temperatures below
reheating (T < TR),

ρCFT∼T4

�
T−η−T−η

R

η

�
with η¼ 9−2ðdþdSMÞ: ðA3Þ

For η > 0 ⇒ d < d� ¼ 9=2 − dSM, the reheating tem-
perature term will be negligible due to its negative
exponent, and most of the dark sector energy density will
be produced at lower temperatures. Thus, it will be IR
dominated, and relic density will not depend strongly on
UV parameters such as the reheating temperature. On the
other hand, for d > d�, the reheating temperature plays a
relevant role: energy density production peaks at TR and
then dilutes due to the expansion of the Universe.
In the Higgs portal case, we checked that, as long as

d < d�, Higgs decay is the dominant process in production
of CFT energy density. Above the critical dimension,
however, this is not necessarily true, as the scattering

contribution may dominate for a sufficiently high reheating
temperature.

APPENDIX B: DERIVATION OF RELIC
DENSITY IN THE HIGGS PORTAL

In this section, we show a brief derivation of Eq. (13) that
relates observed dark matter relic density to parameters in
the theory. In addition, the computation for Eq. (9) is shown
in more detail.
In the Higgs portal case, as mentioned before, below the

critical dimension d� ¼ 5=2, dark matter production is
dominated by the Higgs decay process. At temperatures
below the electroweak phase transition, the effective
interaction between the dark sector and the SM becomes

Lint ¼
λCFT
ΛD
CFT

vffiffiffi
2

p hOCFT: ðB1Þ

The energy transfer rate through this process is given by
Eq. (9) and can be computed as follows:

nhhΓðh → CFTÞEi

¼
ZZ

dΠhdΠCFTfhð2πÞ4δ4ðph − PÞEhjMj2: ðB2Þ

Here and below, P ¼ pCFT is the momentum carried by the
dark sector. The phase space for the CFT sector is chosen to
be identical to that of unparticles as prescribed by Georgi
in [2]. Using Georgi’s notation, we have

nhhΓðh→CFTÞEi

¼
ZZ

d3p⃗h

ð2πÞ32Eh

d4P
ð2πÞ4 e

−βEhð2πÞ4δ4ðph−PÞ

×AdðP2Þd−2Eh
v2

4

λ2CFT
Λ2d−4
CFT

¼Adv2λ2CFT
4Λ2d−4

CFT

ðm2
hÞd−2

Z
d3p⃗h

2ð2πÞ3 exp
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jp⃗hj2þm2
h

q �
; ðB3Þ

where

Ad ¼
16π5=2

ð2πÞ2d
Γðdþ 1=2Þ

Γðd − 1ÞΓð2dÞ : ðB4Þ

Setting p ¼ jp⃗hj and simplifying gives

nhhΓðh→CFTÞEi

¼Adv2λ2CFTðm2
hÞd−2

4Λ2d−4
CFT

Z
4πp2

dp
2ð2πÞ3exp

�
−β

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2þm2

h

q �

¼Adv2λ2CFTðm2
hÞd−2

32π2Λ2d−4
CFT

Z
p2dpexp

�
−β

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2þm2

h

q �
: ðB5Þ
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The integral represents a Bessel function of the second
kind. Additionally, in our notation, fd ¼ Ad=16π2. Thus,
on simplifying, we get

nhhΓðh→CFTÞEi¼ fdλ2CFTv
2m2ðd−1Þ

h T

Λ2ðd−4Þ
CFT

K2ðmh=TÞ: ðB6Þ

The CFT energy density at any point in time (as a function
of the Standard Model bath temperature) can be obtained
by integrating the Boltzmann equation given in Eq. (12). To
get a simple estimate, it suffices to do this calculation in the
relativistic approximation where the Higgs is assumed to be
massless and is described by a Maxwell-Boltzmann dis-
tribution. The process roughly starts around the electro-
weak scale ∼v and continues till the SM temperature
reaches the Higgs mass.
In the relativistic approximation (i.e., taking the limit

mh → 0 in the thermal average calculation), the energy
transfer rate in this process is given by

nhhΓðh → CFTÞEi ¼ 2fdλ2CFTv
2
m2d−4

h

Λ2d−4
CFT

T3: ðB7Þ

We integrate the Boltzmann equation with this collisional
term, ignoring the temperature dependence of g� for now,
and enforcing the condition that decays are inactive above
the electroweak scale. Thus, we have

ρCFTðTÞ ¼
2M�fdλ2CFT
3

ffiffiffiffiffiffiffiffiffiffiffi
g�ðTÞ

p
v

�
mh

ΛCFT

�
2d−4

T4

�
v3

T3
− 1

�
; ðB8Þ

where M� ¼ 3
ffiffiffi
5

p
=ð2π3=2ÞMpl comes from the definition

of Hubble as H ¼ ffiffiffiffiffi
g�

p
T2=M�.

At T ∼mh, as the Higgs falls out of the thermal bath, this
process becomes exponentially suppressed, and further
production of dark-sector energy can be neglected for this
analysis. The energy density present in the dark sector then
redshifts like radiation (ρ ∝ a−4) until its temperature TD
becomes comparable to the mass of the dark matter
candidate. After this point, it redshifts like matter
(ρ ∝ a−3) as required.
Thus,

ρCFTðmhÞ ¼
2M�fdλ2CFT
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g�ðmhÞ

p
v

m2d
h

Λ2d−4
CFT

�
v3

m3
h

− 1

�
ðB9Þ

and

ρCFTðTmÞ ¼
2M�fdλ2CFTg�ðTmÞ
3ðg�ðmhÞÞ3=2v

�
mh

ΛCFT

�
2d−4

×

�
v3

m3
h

− 1

�
T4
m; ðB10Þ

where Tm is the SM temperature at which the dark-sector
temperature drops to the mass of the dark matter candidate.
From Eq. (6), we know that at this temperature, ρCFT ¼
Am4

DM, and thus, the relic density is given by

ρDMðT0Þ ¼ Am4
DM

g�ðT0ÞT3
0

g�ðTmÞT3
m
; ðB11Þ

where T0 is the current CMB temperature. Additionally,
from Eq. (B10), Tm is given by

T4
m¼Am4

DM

�
2M�fdλ2CFTg�ðTmÞ
3ðg�ðmhÞÞ3=2v

�
mh

ΛCFT

�
2d−4

�
v3

m3
h

−1

��−1
:

ðB12Þ

Using Eq. (B12) in Eq. (B11) gives the relic density of dark
matter from the Higgs portal in terms of other parameters in
the theory. Note that we use g�ðT0Þ ∼ g�ðTmÞ ∼Oð1Þ. This
is a reasonable approximation, as both temperatures are
below the QCD scale. g�ðmhÞ, denoted as just g� below, is
approximately Oð100Þ. We also replace ðv3m3

h
− 1Þ → Oð1Þ

for this order-of-magnitude estimate. Additionally, we
substitute Mgap in the equation instead of λCFT and
ΛCFT, using Eq. (3). Taking the ratio of ρDMðT0Þ and the
present critical energy density gives Eq. (13),

ΩDMh2

0.1
¼
�
mDM

1MeV

��ðAf3dg−9=2� Þ1=4
10−5

�"�Mgap

mh

�ð6−3d
2
Þ

10−12

#
: ðB13Þ

This simple estimate is in good agreement with the results
of numerical integration of Eq. (12).
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