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Nonstandard interactions (NSI) of neutrinos with matter mediated by a scalar field would induce
medium-dependent neutrino masses which can modify oscillation probabilities. Generating observable
effects requires an ultralight scalar mediator. We derive general expressions for the scalar NSI using
techniques of quantum field theory at finite density and temperature, including the long-range force effects,
and discuss various limiting cases applicable to the neutrino propagation in different media, such as the
Earth, Sun, supernovae and early Universe. We also analyze various terrestrial and space-based
experimental constraints, as well as astrophysical and cosmological constraints on these NSI parameters,
applicable to either Dirac or Majorana neutrinos. By combining all these constraints, we show that
observable scalar NSI effects, although precluded in terrestrial experiments, are still possible in future solar
and supernovae neutrino data, and in cosmological observations such as cosmic microwave background
and big bang nucleosynthesis data.
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I. INTRODUCTION

The discovery of neutrino oscillations implies that at
least two of the three neutrinos must have small but nonzero
masses [1]. The global neutrino oscillation program is
now entering a new era, where the known mixing angles
and mass-squared differences are being measured with an
ever-increasing accuracy. Next-generation of long-baseline
oscillation experiments like DUNE are poised to resolve
the subdominant effects in oscillation data sensitive to
the currently unknown oscillation parameters, namely the
Dirac CP phase, sign of the atmospheric mass-squared
difference and the octant of the atmospheric mixing angle.
These analyses are usually performed within the 3 × 3
neutrino mixing scheme under the assumption that neu-
trinos interact with matter only through the weak inter-
actions mediated by Standard Model (SM) W and Z
bosons. On the other hand, the origin of neutrino mass
clearly requires some new physics beyond the SM, which
often comes with additional nonstandard interactions (NSI)

of neutrinos with matter fermions (i.e., electrons and/or
nucleons). Allowing for these NSI in neutrino production,
propagation, and/or detection can in principle change the
whole picture and crucially affect the interpretation of the
experimental data in terms of the relevant 3 × 3 oscillation
parameters. It is, therefore, of paramount importance to
understand all possible kinds of NSI effects, and to see
how large these effects could be, while being consistent
with other theoretical and experimental constraints. The
study of NSI also opens up the possibility of using neutrino
oscillations to probe the origin of neutrino mass.
Following the SM interactions of neutrinos with matter

via either charged current (CC) or neutral current (NC),
which after Fierz transformation can be written in the
form ðν̄αγμPLναÞðf̄γμPfÞ (with f; f0 ∈ fe; u; dg the matter
fermions and P ∈ fPL; PRg the chirality projection oper-
ators), NSI induced by either a vector or charged-scalar
mediator can be parametrized in terms of vector and axial-
vector currents [2]:

LV;NC
eff ¼ −2

ffiffiffi
2

p
GF

X
f;P;α;β

εf;Pαβ ðν̄αγμPLνβÞðf̄γμPfÞ; ð1Þ

LV;CC
eff ¼ −2

ffiffiffi
2

p
GF

X
f;P;α;β

εf;Pαβ ðν̄αγμPLlβÞðf̄γμPf0Þ; ð2Þ

where GF is Fermi’s constant and the ε terms quantify the
size of the new interactions. The vector components of NSI
given by Eqs. (1) and (2) affect neutrino oscillations during
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propagation in matter by providing a new flavor-dependent
matter potential. The size of vector NSI is governed by the
parameter ε ∼ g2Xm

2
W=ðg2m2

XÞ, where gX andmX are respec-
tively the coupling and mass of the mediator X, and g is the
SUð2ÞL gauge coupling. There are two possibilities to
realize experimentally observable vector NSI, which
require εαβ ≳ 10−2 [3,4]: (i) heavy mediator case withmX ∼
Oð100Þ GeV and gX ∼Oð1Þ; and (ii) light mediator case
with mX ≪ mW and gX ≪ 1 such that g2X=m

2
X ∼GF, while

evading the low-energy experimental constraints. For con-
crete ultraviolet (UV)-complete model realizations, see
e.g., Ref. [3] for the heavy mediator case and Refs. [5–7]
for the light mediator case. For a recent review on different
aspects of vector NSI, see Ref. [8]. For the current global
status of the constraints on ε, see Ref. [4].
On the other hand, NSI induced by a neutral scalar

mediator is no longer composed of a vector current as in
Eqs. (1) or (2), but a scalar interaction for Dirac neutrinos
given by [9]

LS
eff ¼

yfyαβ
m2

ϕ

ðν̄ανβÞðf̄fÞ; ð3Þ

where yf and yαβ are respectively the Yukawa couplings
of the matter fermion and neutrinos to the scalar mediator
ϕ. This cannot be converted to vector currents, and hence,
does not contribute to the matter potential.1 Instead, it
appears as a medium-dependent correction to the neutrino
mass term, with the correction factor Δmν;αβ being
inversely proportional to the square of the mediator mass.
As we will explicitly show below, a large enough scalar
NSI effect is possible only for a sufficiently light scalar
mediator,2 since we need Geff ≡ yfyαβ=m2

ϕ ∼ 1010GF to
have any observable effect for neutrino propagating in
Earth with Δmν ∼Oð0.1mνÞ. Nevertheless, this could
potentially lead to significantly different phenomenological
consequences in reactor, solar, atmospheric, and accelerator
neutrino oscillations, as well as for supernovae and early-
universe neutrino interactions.
In this paper, we derive a general formula for evaluating

the scalar NSI of the neutrinos which is applicable to
different environments. We perform a systematic study of
the scalar NSI in presence of a light scalar mediator ϕ. We
consider both Dirac and Majorana neutrino possibilities.
The main objective of our paper is to provide a general
field-theoretic derivation of the scalar NSI effect at finite
temperature and density, which can be applied to different
environments, such as the Earth, Sun, supernovae and early
Universe. Then we go on to derive various constraints on
the couplings in Eq. (3) as a function of the mediator mass

mϕ from fifth force experiments, solar and supernova
neutrino data, stellar cooling constraints from red giants
(RG) and horizontal branch (HB) stars, and big bang
nucleosynthesis (BBN). We have considered scalar inter-
actions with electrons and nucleons separately to show the
differences in the constraints. We find that the fifth force
experiments constrain masses of ϕ below 0.1 eV and
couplings up to 10−24. RG/HB stars constrain couplings
up to 10−12 for nucleons and up to 10−16 for electrons
coupling to ϕ. Bounds from BBN constrain couplings up to
10−9 for the light scalar mediators. After taking into account
all these constraints, we conclude that any prospects of
observing scalar NSI in Earth matter have been ruled out,
while these effects are still measurable with future solar
neutrino data, supernova neutrino bursts or in cosmological
observations of extra relativistic degrees of freedom.
The rest of the paper is organized as follows: In Sec. II,

we present a general field-theoretic derivation of scalar NSI
and discuss various limiting cases that are applicable to the
Earth, Sun, supernovae, and early universe. In Sec. III, we
discuss the long-range force effects of a light scalar. In
Sec. IV, we summarize the current experimental constraints
on the Yukawa couplings relevant for scalar NSI as a
function of the mediator mass. In Sec. V, we discuss the
thermal mass of the mediator. In Sec. VI, we derive a
quantum-mechanical bound on the effective in-medium
mediator mass. In Sec. VII, we present our main results
and discussions. In Sec. VIII, we present a UV-complete
model for scalar NSI. Our conclusions are given in
Sec. IX. In Appendix A, we give the detailed derivation
of various limiting cases for the scalar NSI discussed in
Sec. II. In Appendix B, we provide details of the
calculation of the neutrino self-energy in neutrino back-
ground. In Appendix D, we present the calculation for
thermal mass of the scalar mediator.

II. FIELD THEORETIC ORIGIN
OF SCALAR NSI

In this section, we derive expressions for medium-
dependent neutrino mass and energy when the neutrinos
have scalar NSI with matter fermions in the propagating
medium. The results derived here are equally applicable for
Dirac and Majorana neutrinos. As we will see later, for
observable scalar NSI it will be required that the scalar field
is very light, which we assume here. Consider the inter-
action of fermions f and Dirac neutrinos ν with a light
scalar ϕ, with the relevant interaction terms given by the
Lagrangian:

L ⊃ −yαβν̄αϕνβ − yff̄ϕf −mαβν̄ανβ −
m2

ϕ

2
ϕ2: ð4Þ

In the case of Majorana neutrinos, the relevant Lagrangian
has the form:

1The same is true for tensor NSI of the form ðν̄ασμννβÞðf̄σμνfÞ.
2Equation (3) is equally applicable for both light and heavy

mediator, since we are dealing with coherent forward scattering
of neutrinos with q2 → 0.
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L ⊃ −
yαβ
2

νcαϕνβ − yff̄ϕf −
mαβ

2
νcανβ −

m2
ϕ

2
ϕ2: ð5Þ

We shall focus primarily on the Dirac neutrinos, but
essentially all of our results will apply for Majorana
neutrinos as well, provided that the normalization of
couplings is as in Eq. (5). We shall comment on differences
when they arise between the two cases.
A neutrino with four-momentum pμ propagating through

matter obeys the Dirac equation given by

½=p − ΣðpÞ�ψ ¼ 0: ð6Þ

In a general medium, the self-energy Σ of the neutrino gets
modified. We apply real time formalism of field theory at
finite temperature and density in our derivations, which is
manifestly Lorentz covariant [10]. With pure scalar inter-
actions of the type given in Eqs. (4) and (5), the neutrino
self-energy takes the general form

ΣðpÞ ¼ m − ðâ=pþ b̂=uþ d̂½=p; =u�Þ; ð7Þ

where m is the neutrino mass inside the medium, uμ is the
four-velocity of the medium, and â; b̂; d̂ are functions of
only two Lorentz scalars, viz., p2 and p:u. In a Lorentz
covariant description of field theory at finite temperature
and density, one introduces a medium four-velocity vector
uμ as in Eq. (7) obeying u2 ¼ 1. In real time formalism of
thermal field theory, the finite temperature and density
correction to self-energy of a fermion can be calculated
with the help of finite temperature Green’s function for a
free Dirac field [10] (for applications to neutrino propa-
gation in matter see Refs. [11–13]):

SfðpÞ ¼ ð=pþmfÞ
�

1

p2 −m2
f þ iϵ

þ iΓfðpÞ
�

ð8Þ

where

ΓfðpÞ¼ 2πδðp2−m2
fÞ½nfðpÞΘðp0Þþnf̄ðpÞΘð−p0Þ�: ð9Þ

Here Θ is the Heaviside step function and nf (nf̄) is the
Fermi-Dirac distribution function for the fermion (anti-
fermion) occupation number of the medium given by

nfðpÞ¼
1

eðjp:uj−μÞ=T þ1
; nf̄ðpÞ¼

1

eðjp:ujþμÞ=T þ1
; ð10Þ

where μ is the chemical potential and T is the temperature.
Integrating the occupation number over all possible
momentum states yields the total number density of the
fermions (or antifermions) in the medium:

Nfðf̄Þ ¼ gf

Z
d3p
ð2πÞ3 nfðf̄ÞðpÞ: ð11Þ

Here gf denotes the number of internal degrees of freedom
and is equal to two for electrons, nucleons, and neutrinos
for the two different spin states.

A. Neutrino self-energy from tadpole diagram

The one-loop thermal self-energy corrections for the
neutrinos arising from Eq. (4) or Eq. (5) are shown in
Fig. 1. We first compute the one-loop neutrino thermal mass
correction induced by the tadpole diagram in Fig. 1(a). The
Lorentz-invariant form of Σ as given in Eq. (7) can be
conveniently evaluated by going to the rest frame of the
medium, where the amplitude takes a simple form:

−iΣαβ ¼ iyαβ
i

q2 −m2
ϕ

Z
d4k
ð2πÞ4 Tr½iyf iSfðkÞ�: ð12Þ

In Eq. (12), we can set q2 ¼ 0 for the momentum transfer
because we are only interested in the coherent forward
scattering of neutrinos in matter for the NSI effect. Only
retaining the finite temperature and density part of the self-
energy, we obtain

Σαβ ¼
yαβyfmf

π2m2
ϕ

Z
∞

0

dk0

Z
∞

0

dk2 k δðk2 − k20 þm2
fÞ

× ½nfðk0Þ þ nf̄ð−k0Þ�: ð13Þ

Integrating over k2 using the delta function yields the final
result:

Σαβ ¼
yαβyfmf

π2m2
ϕ

Z
∞

mf

dk0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 −m2

f

q
½nfðk0Þ þ nf̄ðk0Þ�

≡ Δmν;αβ: ð14Þ
While deriving Eq. (14), it has been assumed that the
background medium contains both fermions and antifer-
mions. Thus, Eq. (14) is the complete expression for scalar
NSI of neutrinos at any finite temperature and density in a
background without neutrinos. We have provided details of
evaluating the integral of Eq. (14) in various useful limits in
Appendix A.
Note that the scalar NSI of Eq. (14) appears as a

medium-dependent mass of the neutrino. The relevant

(a) (b)

FIG. 1. Neutrino self-energy diagrams: (a) Tadpole with back-
ground of f and ν, and (b) self-energy in a neutrino background.
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integral can be evaluated analytically in the high temper-
ature as well as low temperature regimes. We find

Δmν;αβ ¼
yfyαβ
m2

ϕ

ðNf þ Nf̄Þ ðμ; T ≪ mfÞ ð15Þ

Δmν;αβ ¼
yfyαβ
m2

ϕ

mf

2

�
3

π

�2
3ðN2=3

f þN2=3
f̄

Þ ðμ>mf ≫TÞ

ð16Þ

Δmν;αβ¼
yfyαβmf

3m2
ϕ

�
π2

12ζð3Þ
�2

3ðN2=3
f þN2=3

f̄
Þ ðμ<mf≪TÞ:

ð17Þ
If the medium does not contain either fermions or anti-
fermions of a certain type, the corresponding number
density should be set to zero in the final result. If the
background has more than one type of fermion, the various
contributions should be added. Equation (15) for μ; T ≪
mf is the nonrelativistic limit for the scalar NSI expression
and matches the result stated in Ref. [9]. It is most useful in
the case of Earth and Sun. The limiting case Eq. (16) is
useful for relativistic medium backgrounds as with elec-
trons in supernovae. For effect of scalar NSI in the early
Universe, Eq. (17) is the most relevant. Detailed application
of these results is carried out in Sec. VII.

B. Neutrino self-energy in a neutrino background

There is another important diagram that might contribute
to the effect of neutrino propagation in a medium, as shown
in Fig. 1(b). This diagram contributes to neutrino self-
energy only in media with a neutrino or an antineutrino
background. This situation is realized in supernovae and
early Universe cosmology. Here we derive the contribution
of Fig. 1(b) in such backgrounds. Again using the real-time
formalism of thermal field theory, we can write this
contribution for a Dirac neutrino as

Σν
αβ ¼ −yβγyγα

Z
d4k
ð2πÞ4

�
=kþ =p

2
þmν

�

×

�
Γϕðk − p

2
Þ

ðkþ p
2
Þ2 −m2

ν
þ Γνðkþ p

2
Þ

ðk − p
2
Þ2 −m2

ϕ

�
; ð18Þ

where Γν is defined in Eq. (9) and for Γϕ, we have used the
finite temperature Green’s function for a free bosonic field
given by

SbðpÞ ¼
�

1

p2 −m2
b þ iϵ

− iΓbðpÞ
�

ð19Þ

where

ΓbðpÞ ¼ 2πδðp2 −m2
bÞnbðpÞΘðp0Þ; ð20Þ

with the Bose-Einstein distribution function given by

nbðpÞ ¼
1

eðjp:ujÞ=T − 1
; ð21Þ

noting that the chemical potential of the real scalar
field ϕ is zero. We have carried out the evaluation of the
self-energy integral of Eq. (18) in Appendix B; here we
summarize our main results. The contribution of Eq. (18)
can be written as

Σν
αβ ¼ −

yβγyγα
8π2jpj J; ð22Þ

with J identified as the integral of Eq. (18), except for an
overall factor, and can be decomposed as

J ¼ a=pþ b=uþ cþ d½=p; =u�: ð23Þ
By taking traces of the integral in Eq. (18) multiplied
by ð1; =p; =u; =p=uÞ, we can solve for the Lorentz scalars
ða; b; c; dÞ. Defining

Jp¼TrðJ=pÞ; Ju ¼TrðJ=uÞ; and Jm¼TrðJÞ; ð24Þ
we find

a ¼ Juðp:uÞ − Jp
4½ðp:uÞ2 − p2� ; b ¼ Jpðp:uÞ − Jup2

4½ðp:uÞ2 − p2� ;

c ¼ Jm
4
; and d ¼ 0: ð25Þ

It is clear that the coefficient c contributes to the neutrino
mass in the medium [cf. Eq. (7)]. But this effect is negligible
in our case, because there is no 1=m2

ϕ enhancement.
There is also a matter potential that is caused by the

neutrino self-interactions. To arrive at it we examine the
pole in the neutrino propagator:

iS−1ν ðpÞ ¼ ið=p − ΣνÞ ¼ i½=pð1 − AÞ − B=u�; ð26Þ

where A and B are matrices in flavor-space, with elements
given by

Aαβ ¼ −
yβγyγα
8π2jpj a; Bαβ ¼ −

yβγyγα
8π2jpj b: ð27Þ

Since A and B commute, Sν can be obtained in terms of A
and B as

iSνðpÞ ¼ i
½ð1 − AÞ=p − B=u�
fð1 − AÞp − Bug2 : ð28Þ

We define energy and momentum of the neutrino (in the
massless limit) in the rest frame of the medium as [12]

E ¼ p:u; P ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − p2

q
: ð29Þ
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The pole in the neutrino propagator of Eq. (28) occurs at
energy values given by

Ei ¼
Bi

1 − Ai
� P: ð30Þ

This leads to the modified dispersion relation E ¼ UEiU†

(where U is the unitary matrix that diagonalizes A and B).
The energy shift for neutrinos is thus B=ð1 − AÞ, while the
shift in antineutrino energy is −B=ð1 − AÞ, which are both
nondiagonal in the flavor basis [cf. Eq. (27)].
For significant regions of the Yukawa couplings yαβ

and yf, the scalar ϕ does not get thermalized. In this case,
there is no ϕ background and the term proportional to
Γϕðk − p=2Þ should be set to zero. We present our results
here in this case first. The contribution from Σν

αβ can then be
written as

Σν
αβ ¼ −yαγyγβ

Z
∞

−p0
2

dk0

Z
d3k
ð2πÞ3

ð=kþ =p
2
þmνÞ

ðk − p
2
Þ2 −m2

ϕ

× δ

��
kþ p

2

�
2

−m2
ν

�
nν

�
k0 þ

p0

2

�
: ð31Þ

Wedefer the details of evaluating this integral toAppendixB.
Here we present the results in the high temperature limit,
assuming that the chemical potential is vanishing. This
condition is generally true in the early Universe when
neutrinos propagate in a background of neutrinos.
Furthermore, we set the neutrino mass to be zero, which
is a consistent approximation as the medium-induced mν is
proportional to the original mν. In the absence of neutrino
mass, we can set p2

0 − jpj2 ¼ 0. Under these conditions, our
results are as follows (see Appendix B for details):

a ¼ −
π2T2

24jpj
�
2 − 12ζ0ð−1Þ − ln

�
16πjpjT

m2
ϕ

��

−
T
4
ln2ln

�
2
ffiffiffi
2

p jpjT
m2

ϕ

�
;

b ¼ π2T2

12
: ð32Þ

Here ζ0ð−1Þ ¼ −0.165421 is the derivative of Riemann zeta
function evaluated at argument equal to −1. Using these
results along with Eq. (30), we arrive at the energy shift
experienced by the neutrino in a background of neutrinos:

ΔEþ;αβ ¼ −
T2

96jpj
�
yy†
�
1 − yy†

T2

192jpj2
�
2 − 12ζ0ð−1Þ

− ln

�
16πjpjT

m2
ϕ

��

−yy†
T

32π2jpj ln2ln
�
2
ffiffiffi
2

p jpjT
m2

ϕ

��
−1
�
αβ

. ð33Þ

Here we have made use of the fact that yy† ¼ UDU†, where
D is a diagonal matrix andU is unitary, obtained the poles in
the neutrino propagators in the diagonal basis, and reinserted
the unitary matrix in writing Eq. (33). While we do not use
these results explicitly in our analyses, these are part of the
neutrino scalar NSI which may find use in early Universe
cosmologywhere there is a thermal background of neutrinos.
If the scalar field ϕ is also in thermal equilibrium, a

similar analysis goes through albeit with some replace-
ments, as can be seen from Eq. (18): Γν → Γϕ, p → −p,
with a change in sign of =p in the numerator and change
of mϕ → mν only in the denominator. These thermal ϕ
contributions will add to the neutrino self-energy contri-
bution to J given in Eq. (23). In particular, the coefficients
Jp; Ju; Jm of Eq. (24) will become JpþJϕp;JuþJϕu ;Jmþ
Jϕm, where the new contributions are given in Appendix B.

III. LONG-RANGE FORCE EFFECTS

A light scalar coupling to fermions can lead to long-
range forces. This applies to charged fermions as well as
neutrinos propagating through a medium. Even when the
neutrino propagates outside of the medium, such long-
range forces can affect its propagation. Thus, calculating
the neutrino energy using point interactions with a very
light mediator does not provide a complete picture. In this
section, we sketch a heuristic derivation to account for these
long-range force effects. Long range effects in nonrelativ-
istic media have been studied in Refs. [14,15]. Here, we
have extended the analysis for all background media, i.e.,
both nonrelativistic and relativistic cases. This will be
especially useful in relativistic media such as in supernovae
and in the early Universe.
We use the Euler-Lagrange equations for the Lagrangian

in Eq. (4) to obtain equations of motion for ν and ϕ:

ði=∂ −mαβ − yαβϕÞνβ ¼ 0; ð34Þ

ð∂2 þm2
ϕÞϕ − yαβν̄ανβ − yff̄f ¼ 0: ð35Þ

As can be seen from Eq. (34), the interaction vertex
yαβν̄αϕνβ leads to an extra contribution to neutrino mass:

Δmν;αβ ¼ yαβhϕimedium: ð36Þ

To calculate the mass correction for a neutrino propagating
in a medium, wewill need to calculate the expectation value
of the operators at finite temperature and density, appearing
in Eqs. (34) and (35).
A medium in thermal equilibrium with fermion number

density Nf and antifermion number density Nf̄ can be
represented as a Fock state jΨi. This state contains
information about particle and antiparticle distribution in
different momentum states. Since the system is assumed to
be in thermal equilibrium, the fermion and antifermion
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density in each momentum state does not change in time.
Thus, we can set t ¼ 0 and the state jΨi is normalized, i.e.,
hΨjΨi ¼ 1. The field operators for the fermion and anti-
fermion fields can be written as [16]

fðxÞ¼
Z

d3p
ð2πÞ3

1ffiffiffiffiffiffiffiffi
2Ep

p X
s

½aspusðpÞe−ip:xþbs†p vsðpÞeip:x�;

ð37Þ

f̄ðxÞ¼
Z

d3p
ð2πÞ3

1ffiffiffiffiffiffiffiffi
2Ep

p X
s

½bsp v̄sðpÞe−ip:xþas†p ūsðpÞeip:x�:

ð38Þ
We need to calculate the expectation value of the
operator f̄f. While trying to interpret these quantities
classically, we first need to normal order the product of
the quantum fields:

h∶f̄f∶i ¼ hΨj∶f̄f∶jΨi ¼
Z

d3p1

ð2πÞ3
Z

d3p2

ð2πÞ3
1ffiffiffiffiffiffiffiffiffiffi
2Ep1

p 1ffiffiffiffiffiffiffiffiffiffi
2Ep2

p
×
X
s;s0

½has†p1
as

0
p2
iūsðp1Þus0 ðp2Þe−iðp1−p2Þ·x þ has†p1

bs
0†
p2
iūsðp1Þvs0 ðp2Þe−iðp1þp2Þ·x

þ hbsp1
as

0
p2
iv̄sðp1Þus0 ðp2Þeiðp1þp2Þ·x þ hbs0†p2

bsp1
iv̄sðp1Þvs0 ðp2Þeiðp1−p2Þ·x�; ð39Þ

where we have used hAi ¼ hΨjAjΨi for brevity and the
symbol : : signifies normal ordering of the product. In
Eq. (39), terms like a†b† and a b vanish, since they cannot
be contracted because they act on different subspaces. It is
well known from quantum field theory at zero temperature
that a†a and b†b are the number density operators for
fermions and antifermions respectively. This can be gen-
eralized to finite temperature and density using the Fermi-
Dirac distribution:

hΨjas†p1
as

0
p2
jΨi ¼ nfðp1Þδðp1 − p2Þδs;s0 ; ð40Þ

hΨjbs†p1
bs

0
p2
jΨi ¼ nf̄ðp1Þδðp1 − p2Þδs;s0 : ð41Þ

Equation (40) can be understood by integrating it over
all momentum states which yields the total number
density Nf:

Z
d3p1

ð2πÞ3
Z

d3p2

ð2πÞ3 hΨja
s†
p1
as

0
p2
jΨi ¼ Nf: ð42Þ

Using the normalization of states ūsðpÞusðpÞ ¼ 2mf, we
obtain

hf̄fi≡ hΨjf̄fjΨi¼ gf

Z
d3p
ð2πÞ3

mf

Ep
½nfðpÞþnf̄ðpÞ�: ð43Þ

Converting Eq. (43) into an energy integral, we have

hf̄fi ¼ gfmf

2π

Z
∞

mf

dk0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 −m2

f

q
½nfðk0Þ þ nf̄ðk0Þ�: ð44Þ

Notice that the integral form of Eq. (44) matches Eq. (14)
except for the prefactors. This implies that generalizing the
limiting cases for Eq. (44) is straightforward.

Now to calculate Δmν;αβ in Eq. (36), we need to solve
Eq. (35) for ϕ. Considering yff̄f as a source term and
neglecting the second term assuming low neutrino number
density, we can write the solution as

hϕiðxÞ ¼ −yf
Z

d3x0 hf̄fiðx0Þ
4πjx − x0j e

−mϕðjx−x0jÞ: ð45Þ

Under assumptions of spherical symmetry of the medium,
integrating over the angular variables yields the solution of
the form:

Δmν;αβðrÞ ¼
yfyαβ
mϕr

�
e−mϕr

Z
r

0

xhf̄fi sinhðmϕxÞdx

þ sinhðmϕrÞ
Z

∞

r
xhf̄fie−mϕxdx

�
: ð46Þ

We have worked out Eq. (46) in the relativistic limit for two
different density profile distributions in Appendix C. While
we do not use these analytic results in our numerical
analysis, these special cases can give insight for general
situations. We use actual density profiles of the Sun and
supernovae in our numerical calculations, integrating the
relevant integrals exactly.

IV. EXPERIMENTAL CONSTRAINTS
ON COUPLINGS

In this section we explore two specific scenarios:
(i) scalar ϕ coupling only to electrons and neutri-

nos, and
(ii) scalar ϕ coupling only to nucleons and neutrinos.

Here neutrinos can be either Dirac or Majorana in nature.
In this section, we discuss experimental constraints on the
couplings and mass of ϕ in the aforementioned scenarios.
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In accordance to Eq. (4), the scalar coupling to electron
is denoted by ye. On the other hand, the scalar coupling
to quark cannot be probed directly but only measurable
through their effect with scalar-nucleon interaction. Thus,
we present the experimental constraints on scalar-nucleon
coupling labeled as yN . The conversion from quark level
couplings yq to yN is discussed later in Sec. IVA 4.

A. Constraints on ye and yN

1. Anomalous electron magnetic moment

A scalar coupling with the electrons will contribute
to the electron anomalous magnetic moment ðg − 2Þe given
by [17]

Δae ¼
1

8π2

Z
1

0

dx
ð1 − xÞ2ð1þ xÞy2e

ð1 − xÞ2 þ xðmϕ=meÞ2
: ð47Þ

There is currently a 2.4σ discrepancy between the exper-
imentally inferred value and SM prediction for Δae ¼
aexpe − aSMe ¼ ð−88� 36Þ × 10−14 [1]. A light scalar can
potentially make this discrepancy worse, as it gives a
positive contribution, and thus provides a useful limit on
scalar NSI parameters. Using the 3σ value for the Δae, the
allowed region in the ye −mϕ plane is obtained. This
constraint is shown in Figs. 3 and 5, labeled as ðg − 2Þe.
This constraint yields an almost constant upper bound of
ye < 3.4 × 10−6 for light scalar mediators.

2. Fifth force experiments

These experiments measure the presence of fifth forces
as deviation from the Newtonian gravitational potential
between a given source mass and a test mass, which is
parametrized as follows:

VðrÞ ¼ −
Gm1m2

r
ð1þ αe−r=λÞ: ð48Þ

Given an interaction vertex of the form yff̄ϕf as in Eqs. (4)
and (5), consider the scattering of two distinguishable
fermions in the nonrelativistic limit. The corresponding
Yukawa potential for the interaction is given by (see
Sec. 4.7 of Ref. [16]):

VðrÞ ¼ −
y2f
4πr

e−mϕr; ð49Þ

where r is the distance between the scattering particles.
For experiments detailed in Refs. [18–23] in the range

λ ¼ 10−6 to 102 m, the constraints provided on α in Eq. (48)
are not directly applicable to yf in Eq. (49). Therefore, we
will translate the constraints on α to those on yf for our case.
Assuming a particle (e.g., lepton, quark) couples to the
scalar mediator with strength q and each interacting body
contains N number of these particles, the potential between
two extended bodies can be written as

VϕðrÞ ¼ −
N1q1N2q2

4πr
e−mϕr: ð50Þ

We identify the inverse of the length scale λ as mass of the
scalar particle ϕ. Thus, we have

α ¼ N1q1N2q2
4πGm1m2

¼ q1q2
4πGA1A2u2

¼ 1

4πGu2
q1
A1

q2
A2

; ð51Þ

where we have used the relation m¼NAu (A ¼ mass
number, u ¼ 1 atomic mass unit) and G is the gravitational
constant. For bounds on ye, the coupling strength will be
proportional to the lepton number (L), which is identical to
atomic number (Z) for a given material, i.e., q ¼ Zye,
leading to

α ¼ y2e
4πGu2

Z1

A1

Z2

A2

: ð52Þ

Values for charge to mass number ratio for test and
source masses can be obtained from the experimental
setups as given in Table I. These are shown in Figs. 3
and 5 by the labels I to VII. Similar results follow for
coupling to the nucleons yN by replacing the atomic
numbers (Z) by mass numbers (A) in Eq. (52). This implies
that constraints on yN will be independent of the material
used in the experiment. These limits are shown in Figs. 4
and 6.
Additional constraints on ye and yN can be directly

obtained from Ref. [24] which used experiments in the
range λ ¼ 10−1 to 1013 m and the corresponding limits on

TABLE I. The compositions of source and test masses used in the experiment listed and the corresponding values of ratio Z1

A1

Z2

A2
.

Label References Source mass composition Test mass composition
Z1

A1

Z2

A2

I Stanford [21] Gold, silicon Gold 0.1804
II Colorado [19] Tungsten Tungsten 0.1621
III Eot-Wash 2007 [20] Molybdenum, tantalum Molybdenum 0.1839
IV HUST 2012 [22] Tungsten Tungsten 0.1621
V HUSTþ 2016 [23] Tungsten Tungsten 0.1621
VI Irvine A [18] Copper Copper 0.2159
VII Irvine B [18] Stainless steel Copper 0.2116
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α̃ ¼
y2eðNÞ
4πGu2

: ð53Þ

This constraint is labeled as ‘torsional balances” in
Fig. 3–6. It can be seen from these figures that fifth-force
experiments constrain both couplings ye and yN with an
upper bound in the range 10−25–10−15 for mϕ < 0.1 eV.

3. Constraints from stellar and supernova cooling

ϕ − e coupling.—The production of the light scalar ϕ in
stellar bodies can lead to a new channel for energy loss
leading to rapid cooling. This can help severely constrain
the interaction of a scalar with electrons. The dominant
production of this scalar is via its resonant mixing with the
longitudinal component of the photon in the plasma [25].
The extra energy loss processes in red giants (RG) can
delay their onset of helium ignition and can change the
helium-burning lifetime of the horizontal branch (HB)
stars, in disagreement with the stellar models that match
observations. For bounds from supernova, the energy
loss from production of a scalar is required to be less than
that of SN1987A neutrino burst. The energy loss rate
from resonant production of a scalar with a plasmon is
given by [25,26]

Qres ≃
ωL

4π

�
ωL

mϕ
ΠϕL

�
1

e
ωL
T − 1

; ð54Þ

where ωL is the resonant frequency and ΠϕL is the mixing
of the scalar with the longitudinal component of the photon
in the medium, given by

ΠϕL ≃
yeemeff

e mϕ

π2k

Z
∞

0

dpv2½neðEpÞ þ nēðEpÞ�

×

�
ωL

vk
log

�
ωL þ vk
ωL − vk

�
−

2m2
ϕ

ω2
L − k2v2

�
; ð55Þ

where v¼p=Ep is the electron velocity,meff
e is the effective

thermal mass of the electron, and k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
L −m2

ϕ

q
is the

three-momentum of the scalar mediator ϕ, where Eϕ ¼ ωL

due to the resonant production of scalar. Reference [26]
considers the resonant production process as dominant over
the Compton scattering or electron-ion interactions.
For large values of the coupling, the scalar can get

trapped inside the star/supernova. This capture would help
alleviate the stringent upper bound on the coupling ye. To
derive the trapping limit, the detailed balance of production
and absorption rates is used, i.e.,

ΓprodðEϕÞ ¼ e−
Eϕ
T ΓabsðEϕÞ: ð56Þ

Since we are only interested in ultralight mediators with
mϕ < 1 MeV, the absorption through the decay channel

ϕ → eþe− is absent for our purposes. Thus, the absorption
rate from the resonant mixing yields a mean free path
length λ given by

λ ¼ 1

ΓabsðEϕÞ
∼

E4
ϕ

Qres
: ð57Þ

By requiring the mean free path to be shorter than
R ¼ 10 km, which is the typical size of a supernova core,
we derive a bound on the coupling ye, as shown in Figs. 3
and 5, labeled “SN1987A.”
In case of SN1987A, constraints on ye range from 10−9

to 10−7 for scalar mediators lighter than the electron. Even
stronger constraints are obtained from HB/RG stars with an
upper bound of ye ∼ 10−15 for light scalar mediators.

ϕ − N coupling.—The constraints are similar to the ϕ − e
coupling case. In HB and RG stars with typical temper-
atures of 10 keV, the main constraints for scalar coupling to
nucleon in the literature are derived using Compton
scattering, γ þ He → Heþ ϕ, as the dominant process. It
is required that the new energy loss per unit mass should be
less than ϵ < 10 erg=g=s [27]. As shown in Ref. [25],
resonant production through ϕ mixing with a photon can
increase the energy loss for low scalar masses and therefore
the ϕ coupling to nucleon is highly constrained.
The constraints from a supernova comes from scalar

production through bremsstrahlung process N þ N → N þ
N þ ϕ [28]. Bounds on a coupling can be obtained by
requiring the energy loss to be less than the energy contained
in the neutrino burst, i.e., ϵ < 1019 erg=g=s [27]. Similarly,
the trapping regime of the scalar being reabsorbed can be
derived using the detailed balance between the absorption
and production rates. Requiring the mean free path λ ∝
ϵρ=T4 to be smaller than 10 km yields the constraint on yN
[26], as shown in Figs. 4 and 6.
In case of SN1987A, constraints on yN range from

10−10 to 10−7 for scalar mediators lighter than electron.
Similar to ye, stronger constraints are obtained from HB/
RG stars with an upper bound of yN ∼ 10−12 for light scalar
mediators.

4. Meson decays

A light scalar coupling to nucleons can be produced in
meson decays. The only process of interest in this case is a
charged kaon decay to a charged pion and the scalar:
Kþ → πþϕ. This production cross section is highly con-
strained from the measurement of branching ratios from
charged kaon decay: BrðKþ → πþν̄νÞ < 1.7 × 10−10 [1].
Using the low-energy effective Lagrangian formalism

presented in Ref. [29], the branching ratio for the process in
consideration is given by
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BRðKþ→ πþϕÞ

¼ ð3yuGFfπfKBÞ2
32πmKþΓKþ

jVudVusj2λ1=2
�
1;

m2
ϕ

m2
Kþ

;
m2

πþ

m2
Kþ

�
; ð58Þ

where B ¼ m2
π

muþmd
and λða; b; cÞ ¼ a2 þ b2 þ c2 − 2ab−

2bc − 2ac. Matching the nucleon level interaction to the
effective Lagrangian:

L ⊃ yNN̄Nϕ; ð59Þ
where N ¼ p; n, the nucleon coupling yN can be written in
terms of fundamental quark -level couplings yuðydÞ as

yN ¼
X
q

yqg
q
S; ð60Þ

where gqS is the nucleon scalar charge. We assume that the
scalar couples equally to the up and down quark i.e.,
yu ¼ yd. The effective nucleon couplings to a scalar is then
given by

yN ¼ yuðguS þ gdSÞ ≃ 9.47yu; ð61Þ
where we have used guS ¼ 5.20 and gdS ¼ 4.27 [30]. This
constraint is labeled as “Kþ → πþϕ” in Figs. 4 and 6. It
yields an almost constant upper bound of yN ∼ 2.3 × 10−5

for light scalar mediators.

5. Big bang nucleosynthesis

ϕ − e coupling.—In the early Universe, the scalar mediator
ϕ can be in thermal equilibrium with the SM particles
through annihilation (eþe− → γϕ) and Compton scattering
(e−γ → e−ϕ). In the limit s ≫ m2

ϕ; m
2
e, the cross sections

for these processes are [26]

σeγ→eϕ ≈
αey2e
s

�
log

�
s

m2
e þm2

ϕ

�
þ 5

2

�
; ð62Þ

σee→γϕ ≈
2αey2e
s

log

�
s

4m2
e

�
; ð63Þ

where αe ≡ e2=4π is the fine-structure constant. The
thermally averaged cross section for these two processes
are given below:

hσeγ→eϕvi¼
1

16m2
eT3K2ðme=TÞ

×
Z

∞

m2
e

dsσðs−m2
eÞ

ffiffiffi
s

p
K1

� ffiffiffi
s

p
T

�
; ð64Þ

hσee→γϕvi ¼
1

8m4
eTðK2ðme=TÞÞ2

×
Z

∞

4m2
e

dsσðs − 4m2
eÞ

ffiffiffi
s

p
K1

� ffiffiffi
s

p
T

�
: ð65Þ

If ϕ enters equilibrium with electrons before T ∼ 1 MeV, it
can decrease the deuterium abundance which is in conflict

with observations [26]. In our case, the mediator thermal-
izes if the thermally averaged cross section exceeds the
Hubble expansion rate HðTÞ ∼ 1.66

ffiffiffiffiffi
g�

p
T2=MPl (where g�

is the number of relativistic degrees of freedom and MPl is
the Planck mass) at T ¼ 1 MeV. This yields an upper
bound of ye ¼ 5 × 10−10 for ultralight scalar mediators,
independent of mϕ.
Note that LEP measurements of the Bhabha scattering

cross section (eþe− → eþe−) can also constrain the cou-
pling ye through s- and t-channel ϕ exchange, but we
estimate it to be only at the Oð0.1Þ level [3,31].

ϕ − N coupling.—In this case, we require that the scalar
ϕ thermalizes around the QCD phase transition temper-
ature. This will help dilute the relativistic degrees of
freedom (Neff ) until the nucleosynthesis phase is reached.
Otherwise, the scalar ϕ will be in equilibrium with SM and
will have a significant contribution to relativistic degrees of
freedom (ΔNeff ¼ 4=7) at the time of BBN, in tension with
the current measurements from Planck [32]. Thus, we
require that the interaction rate should be lower than the
Hubble rate at T ¼ 200 MeV.We can estimate the rate of ϕ
production from the processes like uū → ϕ (and dd̄ → ϕ)
as Γϕ ∼ y2uT. This should be compared with Hubble rate
HðTÞ ∼ 1.66

ffiffiffiffiffi
g�

p
T2=MPl. This condition leads to a strin-

gent constraint on yu < 2.63 × 10−10. Converting the
quark-scalar coupling to nucleon level coupling using
Eq. (61), we get yN < 2.49 × 10−9.

B. Experimental constraints on yν

1. Dirac ν−ϕ coupling

The analysis in this case is similar as for the ϕ − N
coupling. If the scalar ϕ thermalizes (even partially) in the
early Universe, it introduces additional degrees of freedom
that contribute to the total entropy [33]. We require that the
scalar ϕ, as well as the right-handed neutrinos, should
decouple from the thermal plasma at a temperature above
the QCD phase transition temperature which will dilute the
ΔNeff ¼ 3þ 4

7
∼ 3.57 by the time BBN occurs, in agree-

ment with the currently allowed range from Planck [32].
Thus, requiring that the interaction rate of processes like
νν̄ → ϕ should be lower than the Hubble rate at T ¼
200 MeV yields an upper bound of yν ∼ 2.6 × 10−10.

2. Majorana ν−ϕ coupling

Presence of NSI can lead to rethermalization of the
neutrinos, which otherwise decouple at T ∼ 1 MeV in the
standard scenario. This can leave a signature in the cosmo-
logical observables. The analysis in Ref. [34] constrains the
couplings in the secret interaction of neutrinos with a
light mediator. Assuming model independence, we use
the upper bound on coupling yν from Ref. [34], which
yields a stringent limit of yν < 2 × 10−7.
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The next-generation CMB experiments, such as CMB-
S4 [35] which will have better sensitivity to departures
from the ΛCDM paradigm could test such neutrino self-
interactions mediated by light scalars, as discussed here.
Additional constraints on yν exist from neutrino self-

interactions within astrophysical sources like core-collapse
supernovae [36] with high neutrino number densities of
nν ∼Oð1038Þ cm−3, where they can lose energy via higher-
order processes like 2ν → 4ν and may be unable to transfer
enough energy to the stalled supernova shock wave to
revive it, halting the explosion altogether [36,37]. Similarly,
elastic scattering of astrophysical neutrinos off the cosmic
neutrino background as they propagate to Earth would
distort the energy spectrum of the astrophysical neutrinos
by introducing a deficit at high energies and a pileup at
low energies, potentially falling below the energy threshold
for detection, as well as delaying their arrival time on
Earth, compared to their electromagnetic-wave counterpart
[36,38]. However, these astrophysical constraints on yν turn
out to be much weaker than the cosmological constraints
discussed above for light scalars with mϕ ≲ 1 MeV.
It should also be pointed out that there are other weaker

constraints applicable in our scenario but not relevant to the
scalar NSI discussion here. For example, coherent elastic
neutrino-nucleus scattering data by COHERENT experi-
ment constrains yN only at the Oð1Þ level for the values of
the yν used in this work [39].

V. THERMAL MASS OF SCALAR ϕ

If the interactions of the scalar ϕ with the medium are
significant enough, then it might get thermalized with the
medium. Since the scalar field in consideration is ultralight,
medium effects might lead to substantial correction to the
vacuum mass of the ϕ. The medium induced mass at one-
loop is shown in the Feynman diagram in Fig. 2. The
relevant contribution to the mass of ϕ at finite density and
temperature is given by

M ¼ 4y2f

Z
d4k
ð2πÞ4

�
k2 −

p2

4
þm2

f

�

×

�
Γðkþ p=2Þ

ðk − p=2Þ2 −m2
f

þ Γðk − p=2Þ
ðkþ p=2Þ2 −m2

f

�
: ð66Þ

We refer the reader to Appendix D for the evaluation of the
scalar mass integral. In the limit mϕ → 0, the mass
correction for scalar is found to be

Δm2
ϕ ¼ y2f

π2

Z
∞

mf

dk0nfðk0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 −m2

f

q
: ð67Þ

Note that the same integral appears in Eq. (14). Thus, using
the known limiting forms of the integral (cf. Appendix A),
we obtain

Δm2
ϕ ¼ y2f

mf
ðNf þ Nf̄Þ ðμ; T ≪ mfÞ ð68Þ

Δm2
ϕ ¼ y2f

2

�
3

π

�2
3ðN2=3

f þ N2=3
f̄

Þ ðμ > mf ≫ TÞ ð69Þ

Δm2
ϕ ¼

y3f
3

�
π2

12ζð3Þ
�2

3ðN2=3
f þN2=3

f̄
Þ ðμ<mf ≪TÞ: ð70Þ

These expressions are also applicable to Majoron (J)
propagation in a medium with pseudoscalar interactions
of the form ν̄γ5Jν. For example, in the early universe,
Majoron propagating in a neutrino background will have a
mass given by the high-temperature limit, which will be
approximately mJ ≃ yνT [cf. Eqs. (70) and (A14)].
Equation (70) will also be relevant to deriving neutrino

self-interaction limits from early Universe cosmology.
CMB anisotropies strongly depend on the anisotropy of
the neutrino field. Neutrino self-interactions would iso-
tropize the neutrino field, affecting the CMB. It has been
found that CMB anisotropy data constrain such interactions
to be ðy2ν=m2

ϕÞ ≤ ð3 MeVÞ−2 (for mϕ > 1 keV) [40]. If the
scalar field indeed thermalizes with the medium, which
occurs for yν ≥ 10−10 or so, then one should use the thermal
mass of ϕ, Eq. (70) in this constraint, which can weaken
the constraint significantly. In cosmological simulations
involving a light scalar, the thermal mass effects of Eq. (70)
should be included. Such interactions may be testable in
future CMB and large-scale structure observations through
the thermally induced mass in such settings.
In the limit when mϕ → 0 but acquires a thermal mass,

the scalar NSI expression Eq. (14) takes a special form:

Δmν;αβ ¼
yαβ
yf

mf: ð71Þ

Note that Eq. (71) is independent of the scalar mass mϕ in
this limit. This scenario may be realized in supernovae,
provided that ϕ has significant interactions with matter.
From discussions in Sec. IVA 3, it is clear that for high
enough values of ye or yN, the scalar gets trapped and
thermal correction to the mass should be taken into
account. Thus, in case of thermalization of the scalar,
Eq. (71) should be used in lieu of Eqs. (15), (16) and (17).

FIG. 2. Feynman diagram responsible for the thermal mass of
the scalar ϕ.
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VI. QUANTUM-MECHANICAL BOUND ON LIGHT
SCALAR MASS

Here we show that the uncertainty principle of quantum
mechanics sets a lower limit on the minimum q2 that
appears in neutrino forward scattering. This limit applies to
a neutrino propagating through Earth, where it interacts
either with electrons in atoms, or with nucleons inside
the nuclei.
Consider να − e elastic scattering. Working in the rest

frame of the electron, the initial and final four-momenta of
the electron can be written as

pμ ¼ðme;0;0;0Þ; p0μ ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2
eþm2

e

q
;0;0;pe

�
; ð72Þ

where pe is the recoil momentum of the electron. The q2

related to coherent forward scattering is then

q2 ¼ ðp0 − pÞ2 ¼ 2me

�
me −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
e þm2

e

q �
≃ −p2

e; ð73Þ

where in the second step q2 ≪ m2
e is assumed.

Now, the recoil momentum of the electron is subject to
the uncertainty relation. Its position is not precisely known
inside the atom, so we have

ΔpΔx≳ ℏ: ð74Þ

When we set q2 ¼ 0 in the computation of forward
scattering, we only know this up to an uncertainty in q2

given by (setting ℏ ¼ 1)

q2 ≃ p2
e ∼

1

ðΔxÞ2 : ð75Þ

Using Δx ¼ 140 × 10−8 cm, which is the radius of 26Fe—
the most abundant element in Earth’s matter, one obtains
for the uncertainty in q2 to be

q2ye ≈ ð14 eVÞ2: ð76Þ

Thus, when the mediator mass becomes much smaller than
14 eV, one should use this quantum mechanical cutoff in
computing scalar NSI. Similarly for coupling to a nucleon,
the cutoff would be given by the inverse of the nuclear
radius of 26Fe. Using nuclear diameter Δx ¼ 9.6 fm, we
obtain

q2yN ≈ ð21 MeVÞ2: ð77Þ

These rough quantum-mechanical bounds can be better
motivated by using atomic/nuclear form factors for coher-
ent forward scattering. In Earth, the expression for scalar
NSI will get modified with the inclusion of a form factor,

Δmν;αβ ¼
yfyαβNf

m2
ϕ − q2

Fðm2
ϕÞ: ð78Þ

The original result in Eq. (15) was obtained by setting
q2 ¼ 0 and Fðm2

ϕÞ ¼ 1, but if the mass of the scalarmϕ→0

then the denominator is not well defined. This is remedied
by the atomic form factor Fðm2

ϕÞ which is of the form [41]

Fðm2Þ ¼ m2

m2 þ q20
; ð79Þ

where q0 ¼ 1=4πa0 and a0 is the radius of the first orbit for
hydrogenlike atoms. Similar qualitative results should
apply for the outermost-orbit electrons in 26Fe. For high
values of m2

ϕ ≫ q20, Fðm2
ϕÞ ∼ 1 as expected. Thus, the

vanishing q2 limit is well defined and yields the original
result in Eq. (15). The difference appears in the regime
m2

ϕ ≪ q20, where Fðm2
ϕÞ ∼m2

ϕ=q
2
0. The form of Eq. (78) in

the low mϕ limit and with q2 → 0 is thus given by

Δmν;αβ ¼
yfyαβNf

q20
; ð80Þ

which is independent of mϕ. This result agrees with the
quantum-mechanical bound discussed above based on the
uncertainty principle.
When a scalar mediator couples to the electron, from

fifth force constraints either the mass of the mediator
should be larger than a keV, or its coupling to the electron
should be extremely weak, of order 10−24. For such tiny
couplings, to generate scalar NSI in the observable range,
one could naively make the mediator mass of order
10−8 eV. In this case, the quantum-mechanical intrinsic
bound should be applied for computing forward scattering.
The result is that scalar NSI arising from coupling to
electrons cannot be in the observable range for neutrino
propagation in Earth.
These quantum-mechanical limits are not applicable to

Sun or supernovae due to the absence of bound states in
them. The major baryonic component in Sun and super-
novae is ionized hydrogen gas (protons) and neutrons
respectively. Thus, the neutrinos scatter off against either
free electrons or the protons/neutrons inside these stellar
bodies. For the relevant neutrino energies ofOðkeV–MeVÞ,
the protons/neutrons behave as point particles, and there-
fore, the finite-size effect discussed above is not applicable
to them.

VII. NUMERICAL RESULTS

We have discussed the calculation for scalar NSI and the
experimental constraints on them in previous sections. Here
we put these constraints together and explore possible tests
of this scenario in future neutrino experiments. We also
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provide the numerical models for the density profiles of
Earth and supernovae that we adopt to constrain the model
parameters.
The results for different cases with a scalar coupling to

an electron/nucleon and in case of either Dirac or Majorana

neutrinos have been presented in Figs. 3–6. Here we have
fixed the value of yν at its maximum allowed value in each
case, as discussed in Sec. IV B, whereas the other Yukawa
coupling (either ye or yN) is varied, along with the scalar
mass mϕ. These results are also summarized in Table II.

FIG. 4. Same as in Fig. 3, but for scalar coupling to nucleons.

FIG. 3. Different experimental constraints on Yukawa coupling of a scalar to an electron for the case of Dirac neutrinos. The shaded
regions are excluded. Some representative values of scalar NSI in Earth, Sun, and supernova are also shown.
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A. Earth and Sun

In case of Earth and Sun, the background medium of
electrons and nucleons are nonrelativistic. Therefore, the
expression used for scalar NSI in these media is given by
Eq. (15) with Nf̄ ¼ 0:

Δmν;αβ ¼
yfyαβ
m2

ϕ

Nf: ð81Þ

From the discussion in Sec. VI, when the mediator mass
becomes lower than the quantum mechanical cutoff of

FIG. 5. Same as in Fig. 3, but for Majorana neutrinos.

FIG. 6. Same as in Fig. 4, but for Majorana neutrinos.

NEUTRINO NONSTANDARD INTERACTIONS VIA LIGHT … PHYS. REV. D 101, 095029 (2020)

095029-13



m0 ∼ 14 eV, m2
0 should be used in the denominator of

Eq. (81) in lieu of m2
ϕ for Earth. This leads to the turning

of the scalar NSI line in the plots for Earth. We have
used NEarth

e ¼ 5.4NA cm−3 [1] and NEarth
N ¼ 2.9

mN
g cm−3

[42], where the nucleon mass mN ¼ 931.5 MeV and the
Avogadro numberNA ¼ 6.022 × 1023. As can be seen from
the plots, there are no prospects for observable scalar NSI to
be detected on Earth in any of the four cases (Dirac/
Majorana and coupling to electrons/nucleons). It can be
seen from Table. II that the highest allowed value of scalar
NSI in case of Earth is around 10−14 eV for the case of a ϕ
coupling to Majorana neutrinos and electrons.
For the case of Sun, there will also be a correction to the

scalar NSI from finite size of the medium in the case of
light mediator masses mϕ ≃ R−1

Sun as discussed in Sec. III
and Ref. [15]. We calculate the form factor for Sun using
Eq. (46) and the number density of electrons/nucleons,
which is obtained by fitting the known solar density profile
given in Refs. [43–45]. We have used the following best fit
to the number density profile for Sun:

NðrÞe¼ 111.61NAe−ð4.81rþ10.21r2Þ cm−3 ðfor electronÞ;
ð82Þ

NðrÞN ¼ 157.13
mN

e−ð6.1rþ5.2r2Þ g cm−3 ðfor nucleonÞ:

ð83Þ

As can be seen from the plots, the existing laboratory and
astrophysical constraints do allow for a non-negligible
scalar NSI in Sun, especially for mϕ ≲ 1 μeV where the
NSI can be as large as 105 eV for the case of ϕ coupling to

Dirac/Majorana neutrinos and electrons. However, this
will lead to a large correction term to the solar neutrino
mass, which is severely constrained by solar neutrino data.
Using the χ2-analysis of the Borexino data from Ref. [9],
we find a 3σ upper bound on the scalar NSI in Sun:
ΔmSun ≲ 7.4 × 10−3 eV, as shown by the yellow shaded
region in Figs. 3–6. This still leaves some room for
observable scalar NSI effects in future solar neutrino data,
especially for ultralight scalar mediators. Note that very
small coupling values for which y2f ≲ Gm2

ν ¼ ðmν=MPlÞ2 ∼
10−30 are disfavored by the weak gravity conjecture [46]
which suggests gravity as the weakest force in nature.

B. Supernovae

In the case of supernovae with a typical core temperature
T ∼ 30 MeV, the electron background is relativistic while
the nucleon background can be essentially treated to be at
rest. Thus, there are two different expressions to be used
[cf. Eqs. (15) and (16)]:

Δmν;αβ ¼
yfyαβ
m2

ϕ

NSN
N ðfor nucleonÞ ð84Þ

Δmν;αβ ¼
yαβyf
m2

ϕ

me

2

�
3NSN

e

π

�2
3 ðfor electronÞ: ð85Þ

Similar to the case in Sun, there will be correction to the
scalar NSI in the supernova from the finite size of the
medium. Therefore, we numerically integrate Eq. (46) to
obtain the form factor for a realistic supernova density
profile. We use the fiducial model parameters from
Ref. [47] given below:

TABLE II. The maximum allowed value of scalar NSI in different cases and domains with corresponding ranges for the scalar mass ϕ
and the coupling strength yf , for a fixed yν as shown in Figs. 3–6.

Case Max. NSI (eV) Scalar mass range (eV) Range for yf

Dirac ν, ϕ − e
Earth 3.0 × 10−17 0.04–14 ∼7.0 × 10−16

Sun 7.4 × 10−3 < 10−11 3.3 × 10−34–10−26

supernova 5.0 × 106 10−11–10−9 10−26–1.8 × 10−23

Dirac ν, ϕ − N
Earth 10−24 5.3 × 103 − 2.1 × 107 ∼2.4 × 10−10

Sun 7.4 × 10−3 < 3.3 × 10−13 2.4 × 10−34–7.5 × 10−30

supernova 5.0 × 106 3.3 × 10−13 − 1.8 × 10−7 7.5 × 10−30 − 4.9 × 10−22

Majorana ν, ϕ − e
Earth 10−14 0.04–14 ∼6.0 × 10−16

Sun 7.4 × 10−3 < 10−11 4.4 × 10−37–8.7 × 10−30

supernova 5.0 × 106 10−11 − 7 × 10−8 8.7 × 10−30 − 9.3 × 10−23

Majorana ν, ϕ − N
Earth 10−21 5.3 × 103 − 2.1 × 107 ∼2.1 × 10−10

Sun 7.4 × 10−3 < 3.5 × 10−13 3.1 × 10−37 − 8.4 × 10−33

supernova 5.0 × 106 3.5 × 10−13 − 1.3 × 10−5 8.4 × 10−33 − 2.0 × 10−21
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ρðrÞ ¼ ρc ×

�
1þ kρð1 − r=RcÞ

�
ðr < RcÞ ð86Þ

ρðrÞ ¼ ρc × ðr=RcÞ−η ðr ≥ RcÞ ð87Þ

where ρc ¼ 3 × 1014 g cm−3 is the density at core
radius Rc ¼ 10 km, kρ ¼ 0.2, and η ¼ 5. Assuming the
medium to be electrically neutral and using a proton
fraction Yp ¼ 0.3, we can obtain the number density for
electrons from ρðrÞ.
An interesting feature emerges for scalar NSI in a

supernova. Due to the high temperature, a light scalar might
develop a considerable thermal mass if it has strong enough
coupling to the background as discussed in Sec.V. This leads
toEq. (71)which is independent ofmϕ. Trapping leads to the
thermalization of the scalar in the medium. Thus, we have
only plotted the scalar NSI expression for the supernova as
long as it is not trapped inside.
Scalar NSI produced in a supernova cannot be arbitrarily

high. If it becomes too large, then neutrino production
would be affected in direct conflict with observations from
SN1987A. For a typical supernova core temperature around
T ≃ 30 MeV, we constrain the scalar NSI to be less than
5 MeV [15], so that neutrinos around 10 MeV could be
detected on Earth from SN1987A. In the plots, this bound
is shown as a dashed line marked ΔmSN > 5 MeV. In
any case, we find that sizable scalar NSI can still be
observed in supernovae, while being consistent with all
other constraints.

VIII. UV-COMPLETE MODEL
FOR SCALAR NSI

In this section, we sketch possible ultraviolet comple-
tions that would induce interactions of neutrinos with a
light scalar. This discussion is intended only as a proof of
principle. We focus on the case of Dirac neutrinos, with a
light scalar ϕ coupling to the neutrinos and the electron.
First we construct two effective operators that are

invariant under the SM gauge symmetry. One induces
couplings of the scalar ϕ to neutrinos and the other to the
electron. These operators are

ðiÞ ψ̄LH̃νR
ϕ

Λν
; ðiiÞ ψ̄LHeR

ϕ2

Λ2
e
: ð88Þ

Here ϕ is a real scalar field, which is a singlet under
SM symmetry, H ¼ ðHþ

H0 Þ is the SM Higgs doublet, and
ψL ¼ ðνeÞL is the left-handed lepton doublet. These effective
operators exhibit a Z2 symmetry (apart from lepton
number) under which νR and ϕ are odd, with other fields
being even. ϕ develops a vacuum expectation value,
hϕi ¼ vϕ ∼ 10 eV, which breaks the Z2 symmetry. The
neutrino Yukawa coupling yν and the electron Yukawa
coupling ye with the ϕ field are respectively given by

yν ¼
v
Λν

; ye ¼
2vvϕ
Λ2
e

ð89Þ

where v ¼ 174 GeV is the VEVof the SM Higgs doublet.
Once ϕ acquires a VEV, the operator ðiÞ generates a mass
term for the neutrino given by

mν ¼
vϕv

Λν
: ð90Þ

While this may be the leading contribution, it is not
required to be so, as there could be other contributions
as well. In any case, this would imply an upper limit on yν
given by

yν <
mν

vϕ
: ð91Þ

The cutoff scale Λe is expected to be at least a hundred
GeV, while Λν may be lower. Choosing Λe ∼ v, we would
have ye ∼ vϕ=v. For ye ∼ 10−10, as our analysis requires for
observable scalar NSI, vϕ ∼ 10 eV is preferable. This in
turn implies from Eq. (91) that yν < 5 × 10−3, using
mν ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Δm2

atm

p
∼ 0.05 eV. yν of course can be smaller

than this value, which would be in the interesting range for
observable scalar NSI.
The operators in Eq. (88) can be generated by adding

new vectorlike fermions to the SM. For example, operator
ðiÞ can arise by the addition of SM singlet fermions NL;R

with a lepton number preserving Dirac mass. The relevant
Lagrangian is given by

L ⊃ yNψ̄LH̃NR þMNN̄RNL þ yνϕN̄LνRϕþ H:c: ð92Þ

These interactions also preserve the Z2 symmetry withNL;R

being even under it. The diagram generating operator ðiÞ is
shown in Fig. 7, left panel.
Operator (ii) is induced by integrating out a pair of

vectorlike leptons, E;E0, both being singlets of SUð2ÞL and
carrying hypercharge Y ¼ −2. Their interaction Lagrangian
is given by

L ⊃ yEψ̄LHER þ μEĒREL þ yEϕĒLE0
RϕþME0Ē0

REL

þ yeϕĒ
0
LeRϕþ H:c: ð93Þ

Here EL;R are even and E0
L;R are odd under Z2. The effective

operator involving the electron and ϕ is generated by Fig. 7,
right panel.

FIG. 7. Explicit models generating operators of Eq. (88).
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Integrating out the heavy degrees of freedom we obtain
the following effective Lagrangian terms:

ðiÞ yNyνϕ
MN

ψ̄LH̃νRϕ; ðiiÞ yEyEϕy
e
ϕ

MEME0
ψ̄LHeRϕ2: ð94Þ

These expressions can be mapped to Eq. (88) to identify the
cutoff scales Λν and Λe, and the constraints discussed in
terms of the cutoff scales will apply to them. We thus see
broad consistency of the model. In particular, the induced
neutrino mass from these interactions is not excessive and
the vectorlike leptons having mass of order few hundred
GeV is consistent with collider data. Note that breaking the
Z2 at a scale of order 10 eV does not cause a cosmological
domain wall problem, since the energy density carried by
the walls is quite small. We have ignored here possible
mixing between the ϕ and H fields since such mixing is
small, of order vϕ=v, and is controlled by a new quartic
coupling which may also be small.

IX. CONCLUSION

We have performed a systematic study of scalar NSI of
neutrinos with matter due to a light scalar mediator. First, a
general field-theoretic derivation of the scalar NSI formula
is given, which is valid at arbitrary temperature and density,
and hence, applicable in widely different environments,
such as the Earth, Sun, supernovae and early Universe. We
have also extended the analysis of long-range force effects
for all background media, including both relativistic and
nonrelativistic limits. Using these results and applying
various experimental and astrophysical constraints, we find
that observable scalar NSI has been precluded in terrestrial
experiments, primarily due to atomic form factor effects,
which can also be understood from a simple quantum-
mechanical uncertainty principle. Nevertheless, sizable
scalar NSI effects are still possible in the Sun, supernovae,

and early Universe environments, which could be detected
in future solar and supernova neutrino data, as well as in the
form of extra relativistic species (ΔNeff ) and neutrino self-
interactions in cosmological observations. We have also
presented examples of UV-complete models that could give
rise to such scalar NSI effects.
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APPENDIX A: LIMITING CASES FOR SCALAR
NSI EXPRESSION

In this Appendix we evaluate the self-energy given in
Eq. (14) corresponding to the tadpole diagram of Fig. 1. We
shall evaluate only the fermionic contribution to Eq. (14),
from which it is easy to read of the antifermionic back-
ground contribution as well. We also provide an exact
expression for the medium-dependent neutrino mass,
which can be evaluated numerically.

1. Case 1: μ > mf ≫ T

Breaking the integration limits and expanding the
occupation number as an infinite series, we can write
Eq. (14) as follows:

Δmν;αβ ¼
mfyαβyf
2π2m2

ϕ

 "
μ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 −m2

f

q
þm2

f ln

 
mf

μþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 −m2

f

q
!#

þ
X∞
n¼1

ð−1Þn
�Z

μ

mf

dE enðE−μÞ=T
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −m2

f

q
þ
Z

∞

μ
dE e−nðE−μÞ=T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −m2

f

q �!
: ðA1Þ

As T → 0, the first term in the series dominates the result.
We know that the sum over all momentum states weighted
by occupation number yields the number density. Inverting
the relation to obtain μ, we get

μ2 ¼ ð3π2NfÞ23 þm2
f ≃ ð3π2NfÞ23; ðA2Þ

where in the second relation we assumed μ2 ≫ m2
f. Thus,

for μ ≫ mf we have

Δmν;αβ ≃
yαβyf
m2

ϕ

mf

2

�
3Nf

π

�2
3

; ðA3Þ

as given in Eq. (16).

2. Case 2: T ≪ μ < mf

When μ < mf, the expression for Σ of Eq. (14) can be
written as a weighted series of modified Bessel function of
the second kind:
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Δmν;αβ¼
mfyαβyf
π2m2

ϕ

X∞
n¼1

ð−1Þnþ1
mfT

n
enμ=TK1

�
nmf

T

�
: ðA4Þ

For z → ∞, we can use the asymptotic form for KνðzÞ:

KνðzÞ ≃ e−z
ffiffiffiffiffi
π

2z

r �
1þ 4ν2 − 1

8z
þ � � �

�
: ðA5Þ

Due to the exponential suppression, the n ¼ 1 term in the
sum will be dominant in Eq. (A4). This yields

Δmν;αβ ≃
2yfyαβ
m2

ϕ

�
mfT

2π

�3
2

e−ðmf−μÞ=T: ðA6Þ

To relate the above function to the number density Nf,
we use

Nf ¼ 2

Z
d3k
ð2πÞ3

1

eðE−μÞ=T þ 1

¼ 1

π2

Z
∞

mf

dE
E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −m2

f

q
eðE−μÞ=T þ 1

¼ 1

π2
X∞
n¼1

Z
∞

mf

dEE
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −m2

f

q
e−nðE−μÞ=Tð−1Þnþ1

¼ 1

π2
X∞
n¼1

ð−1Þnþ1
m2

fT

n
enμ=TK2

�
nmf

T

�
: ðA7Þ

Using Eq. (A5) in the expression above and retaining only
the dominant n ¼ 1 term, we have

Nf ≃ 2

�
mfT

2π

�3
2

e−ðmf−μÞ=T: ðA8Þ

Thus, the medium-induced neutrino mass in the limit
T ≪ μ < mf evaluates to

Δmν;αβ ≃
yfyαβ
m2

ϕ

Nf; ðA9Þ

as given in Eq. (15).

3. Case 3: μ < mf ≪ T

For z → 0, the asymptotic form for KνðzÞ is

KνðzÞ ≃
ΓðνÞ
2

�
z
2

�
−ν
: ðA10Þ

Using the above in Eq. (A4), we can write the mass
correction as

Δmν;αβ ≃
mfyαβyf
π2m2

ϕ

X∞
n¼1

ð−1Þnþ1
T2

n2
enμ=T ðA11Þ

¼ −
mfyαβyfT2

π2m2
ϕ

Li2ð−eμ=TÞ; ðA12Þ

where LiνðzÞ is the polylogarithm. In the case jzj → 0,
Linð−ezÞ ≃ −ð1 − 21−nÞζðnÞ. Using this one obtains

Δmν;αβ ≃
yfyαβmfT2

12m2
ϕ

: ðA13Þ

Again using Eq. (A10) in Eq. (A7) and retaining only the
n ¼ 1 term we get

Nf ≃ −
2T3

π2
Li3ð−eμ=TÞ ¼

3T3

2π2
ζð3Þ: ðA14Þ

Thus, the scalar NSI expression for μ<mf≪T evaluates to

Δmν;αβ ≃
yαβyfmf

3m2
ϕ

�
π2Nf

12ζð3Þ
�2

3

; ðA15Þ

as given in Eq. (17).

APPENDIX B: CALCULATION OF NEUTRINO
SELF-ENERGY IN NEUTRINO BACKGROUND

Here we evaluate the neutrino self-energy arising from a
neutrino background as given in Eq. (31). We can rewrite
the delta function in Eq. (31) as follows:

δ

��
kþ p

2

�
2

−m2
ϕ

�
¼ 1

jkkpj δðcos θ − cos θ0Þ; ðB1Þ

where

cos θ0 ¼
k20 − jkj2 þ p2

4
−m2

ϕ þ k0p0

jkjjpj : ðB2Þ

Using kinematical arguments and j cos θ0j ≤ 1, we find the
range for k0 and jkj2:

k0∶
�
−p0

2
þmν;∞

�
; jkj2∶ fjkj2−; jkj2þg ðB3Þ

where

jkj2� ¼ 1

4

�
jðpj �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðpjÞ2 þ 4k0p0 − 4m2

ν þ 4k20 þ p2

q �
2

:

ðB4Þ

Changing the integration variables to spherical coordinates
and integrating over cos θ we obtain
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Σν
αβ ¼ −

yαγyγβ
16π2jpj

Z
kmax
0

kmin
0

dk0

Z jkj2þ

jkj2−
djkj2 ð=kþ =p

2
þmνÞ

k20 − jkj2 þ p2

4
−

m2
ϕþm2

ν

2

nν

�
k0 þ

p0

2

�
: ðB5Þ

This contribution can be decomposed as given in Eq. (22). By defining

I ¼
Z

∞

mν

dk0 nνðk0Þ ln
"
k0p0 − p2 þ m2

ϕ−m
2
ν

2
þ jpj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 −m2

ν

p
k0p0 − p2 þ m2

ϕ−m
2
ν

2
− jpj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 −m2

ν

p
#
; ðB6Þ

the quantities Ju; Jm; Jp in Eq. (24) can be written succinctly as

Jm ¼ −2mνI ; ðB7Þ

Jp ¼ −ðp2 þm2
ν −m2

ϕÞI − 2jpj
Z

∞

mν

dk0nνðk0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 −m2

ν

q
; ðB8Þ

Ju ¼ −2
Z

∞

mν

dk0 k0 nνðk0Þ ln
"
k0p0 − p2 þ m2

ϕ−m
2
ν

2
þ jpj ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k20 −m2
ν

p
k0p0 − p2 þ m2

ϕ−m
2
ν

2
− jpj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 −m2

ν

p
#
: ðB9Þ

These integrals ðJm; Jp; JuÞ cannot be evaluated analyti-
cally in general. However, they may be evaluated in the
high temperature limit. For this purpose we set mν to
zero and assume the chemical potential μ is small. This
condition should be realized when the results are applied to
the early Universe. The integrals in this limit are evaluated
to be

Jm≃ − 2mνTln2ln

�
2
ffiffiffi
2

p jpjT
m2

ϕ

�
; ðB10Þ

Jp ≃
π2T2jpj

3
þ jpj2Tln2ln

�
2
ffiffiffi
2

p jpjT
m2

ϕ

�
; ðB11Þ

Ju ≃
π2T2

6

�
12ζ0ð−1Þ þ ln

�
16πjpjT

m2
ϕ

��
: ðB12Þ

These results have been applied to derive the energy
shift for neutrinos and antineutrinos in Sec. II B, see
Eq. (33).
A similar calculation can be performed for the case of

thermalized scalar field ϕ. By defining

Iϕ ¼
Z

∞

mϕ

dk0 nϕðk0Þ ln

2
64k0p0 þ p2 þ jpj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 −m2

ϕ

q
k0p0 þ p2 − jpj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 −m2

ϕ

q
3
75;
ðB13Þ

the contribution from thermal ϕ to Eq. (24) can be labeled
as Jϕm; J

ϕ
p; J

ϕ
u and given by

Jϕm ¼ −2mνIϕ; ðB14Þ

Jϕp ¼ −p2Iϕ þ 2jpj
Z

∞

mϕ

dk0 nϕðk0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 −m2

ϕ

q
; ðB15Þ

Jϕu ¼ −2
Z

∞

mϕ

dk0 ðk0 þ p0Þnϕðk0Þ

× ln

2
64k0p0 þ p2 þ jpj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 −m2

ϕ

q
k0p0 þ p2 − jpj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 −m2

ϕ

q
3
75: ðB16Þ

These terms should be added to the terms Jp; Ju; Jm of

Eq. (24) so that they become Jp þ Jϕp; Ju þ Jϕu ; Jm þ Jϕm.
The results of the matter-dependent neutrino mass will go
through with these replacements.

APPENDIX C: EXAMPLES FOR FINITE MEDIUM
EFFECTS IN RELATIVISTIC CASES

Here we work out Eq. (46) in the relativistic limit for two
different density profile distributions.

1. Constant density distribution

For a relativistic medium like electron background in
supernovae, the quantity hf̄fi in Eq. (46) takes the form

hf̄fiSN ¼ mf

2

�
3Nf

π

�2
3

: ðC1Þ

Consider a constant density distribution such that
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NfðrÞ ¼ Nfð0ÞΘðR − rÞ; ðC2Þ

where R is the radius of the constant-density spherical
body. Plugging the hf̄fi in Eq. (46) yields a general form
for scalar NSI in relativistic media with μ > mf ≫ T:

Δmν;αβðrÞ¼
yαβyf
mϕr

mf

2

�
3

π

�2
3

�
e−mϕr

Z
r

0

xN2=3
f sinhðmϕxÞdx

þ sinhðmϕrÞ
Z

∞

r
xN2=3

f e−mϕxdx

�
: ðC3Þ

For the number density profile in consideration, the above
equation yields

Δmν;αβðrÞ ¼
yαβyfmf

2mϕr

�
3Nfð0Þ

π

�2
3

× F< ðr ≤ RÞ; ðC4Þ

Δmν;αβðrÞ ¼
yαβyfmf

2mϕr

�
3Nfð0Þ

π

�2
3

× F> ðr > RÞ; ðC5Þ

where

F< ¼ 1 −
mϕRþ 1

mϕr
e−mϕR sinh ðmϕrÞ; ðC6Þ

F> ¼ e−mϕr

mϕr
½mϕ R coshðmϕ RÞ − sinhðmϕ RÞ�: ðC7Þ

Note that the prefactor in Eq. (C3) matches the scalar NSI
contribution calculated in Eq. (16) assuming point contact
interaction.
For the nonrelativistic case our formalism gives the same

result derived in Ref. [15] and given below:

Δmν;αβðrÞ ¼
yαβyfNfð0Þ

m2
ϕ

× F< ðr ≤ RÞ ðC8Þ

Δmν;αβðrÞ ¼
yαβyfNfð0Þ

m2
ϕ

× F> ðr > RÞ ðC9Þ

where the functions (F<; F>) are identical to the ones in
Eqs. (C6) and (C7).

2. Exponential density distribution

Given a relativistic medium (μ > mf ≫ T) with the
following number density profile:

NfðrÞ ¼ Nfð0Þe−λrΘðR − rÞ ðC10Þ

where R is the radius of the spherical body in consideration,
Eq. (C3) yields

Δmν;αβðrÞ ¼
yαβyf
2mϕr

�
3Nfð0Þ

π

�2
3

× G< ðr ≤ RÞ; ðC11Þ

Δmν;αβðrÞ ¼
yαβyf
2mϕr

�
3Nfð0Þ

π

�2
3

× G> ðr > RÞ; ðC12Þ

where

G< ¼ 2λmϕ

3

�
emϕrð3m

2
ϕr

2λ − 2λr
3
− 2Þ þ 2e

2λr
3

ðm2
ϕ −

4λ2

9
Þ2

�
e−rð2λ3þmϕÞ

−
�
sinhðmϕrÞðmϕRþ 2λR

3
þ 1Þ

ðmϕ þ 2λ
3
Þ2

�
e−Rð2λ3þmϕÞ; ðC13Þ

G> ¼ sinhðmϕRÞ
�
m2

ϕð2λR3 − 1Þ − 4λ2

9
ð2λR

3
þ 1Þ

ðm2
ϕ −

4λ2

9
Þ2

�
e−ðmϕrþ2λR

3
Þ

þ 4λmϕ

3ðm2
ϕ −

4λ2

9
Þ2 e

−mϕr þ coshðmϕRÞ

×

�
m3

ϕR − 4λ2Rmϕ

9
− 4λmϕ

3

ðm2
ϕ −

4λ2

9
Þ2

�
e−ðmϕrþ2λR

3
Þ: ðC14Þ

Similar analyses can be done for other relativistic cases
such as for early Universe cosmology (μ < mf < T) albeit
with a different prefactor.
For an exponential density distribution with a cutoff in

the nonrelativistic case we obtain

Δmν;αβðrÞ ¼
yαβyfNfð0Þ

mϕr
× K< ðr ≤ RÞ; ðC15Þ

Δmν;αβðrÞ ¼
yαβyfNfð0Þ

mϕr
× K> ðr > RÞ; ðC16Þ

where we can obtain the functions K< and K> by replac-
ing λ → 3λ

2
in G< and G> respectively, i.e., KðλÞ>ð<Þ ¼

Gð3λ=2Þ>ð<Þ. This expression is in full agreement with the
result of Ref. [15].

APPENDIX D: CALCULATION OF THERMAL
MASS FOR THE SCALAR FIELD

Here we carry out the evaluation of the self-energy
diagram of ϕ to calculate its thermal mass. As shown in
Sec. V, ϕ can develop a medium-dependent mass, which is
given by Eq. (66). This contribution can be written as

M ¼ M1 þM2; ðD1Þ

where
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M1 ¼ 4y2f

Z
d4p
ð2πÞ4

�
k2 −

p2

4
þm2

f

�
Γfðkþ p=2Þ

ðk − p=2Þ2 −m2
f

;

ðD2Þ

M2 ¼ 4y2f

Z
d4p
ð2πÞ4

�
k2 −

p2

4
þm2

f

�
Γfðk − p=2Þ

ðkþ p=2Þ2 −m2
f

:

ðD3Þ

Since M1 → M2 with the replacement p → −p, we will
focus only on simplifying the expression for M1,

M1 ¼ 4y2f

Z
∞

−p0
2

dk0

Z
d3p
ð2πÞ3

�
k2 −

p2

4
þm2

f

�

×
δððkþ p=2Þ2 −m2

fÞ
ðk − p=2Þ2 −m2

f

nf

�
k0 þ

p0

2

�
: ðD4Þ

The delta function can be written as

δ

��
kþ p

2

�
2

−m2
f

�
¼ 1

jkjjpj δðcos θ − cos θ0Þ; ðD5Þ

where

cos θ0 ¼
k20 − jkj2 þ p2

4
−m2

f þ k0p0

jkjjpj : ðD6Þ

Using kinematical arguments and j cos θ0j ≤ 1, we find the
range for k0 and jkj2:

k0∶
�
−p0

2
þmf;∞

�
; jkj2∶ fjkj2−; jkj2þg; ðD7Þ

where

jkj2� ¼ 1

4
ðjðpj �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðpjÞ2 þ 4k0p0 − 4m2

f þ 4k20 þ p2
q

Þ2:
ðD8Þ

Thus, changing the integration variables to spherical
coordinates and integrating over cos θ we get:

M1 ¼ −
y2f

4π2jpj
Z

kmax
0

kmin
0

dk0

Z jkj2þ

jkj2−
djkj2 k

2
0 − jkj2 − p2

4
þm2

f

k20 − jkj2 þ p2

4
þm2

f

nf

�
k0 þ

p0

2

�
: ðD9Þ

Integrating the above integral with respect to jkj2 and adding the contribution from both M1 and M2 yields:

M ¼ y2f
π2

Z
∞

mf

dk0 nfðk0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 −m2

f

q
−

y2f
2π2jpj

�
m2

f −
m2

ϕ

4

�Z
∞

mf

dk0 nfðk0Þ ln

0
B@ðjpj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 −m2

f

q
−

m2
ϕ

2
Þ2 − k20p

2
0

ðjpj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 −m2

f

q
þ m2

ϕ

2
Þ2 − k20p

2
0

1
CA: ðD10Þ

In the limit mϕ → 0, the mass correction for scalar reduces to Eq. (67).
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