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The requirement of electroweak naturalness in simple supersymmetric models implies the existence
of a cluster of four light Higgsinos with a mass ∼100–300 GeV, the lighter the better. While such light
compressed spectra may be challenging to observe at the LHC, the International Linear eþe− Collider
(ILC) with

ffiffiffi
s

p
> 2mHiggsino would serve as both a SUSY discovery machine and a precision microscope.

We study Higgsino pair production signatures at the ILC based on a full, GEANT4-based simulation of the
ILD detector concept. We examine several benchmark scenarios that may be challenging for discovery at
the HL-LHC due to mass differences between the Higgsino states between 20 and 4 GeV. Assumingffiffiffi
s

p ¼ 500 GeV and 1000 fb−1 of integrated luminosity, the individual Higgsino masses can be measured
to 1%–2% precision in the case of the larger mass differences, and at the level of 5% for the smallest mass
difference case. The Higgsino mass splittings are sensitive to the electroweak gaugino masses and allow
extraction of gaugino masses to ∼3%–20% (depending on the model). Extrapolation of gaugino masses via
renormalization group running can test the hypothesis of gaugino mass unification. We also examine a case
with natural generalized mirage mediation, where the unification of gaugino masses at an intermediate
scale apparently gives rise to a natural SUSY spectrum somewhat beyond the reach of HL-LHC.

DOI: 10.1103/PhysRevD.101.095026

I. INTRODUCTION

The Standard Model (SM) of particle physics has been
spectacularly confirmed across a broad array of measure-
ments and often to a very high precision at the LHC.
The crowning achievement was to establish the existence
of a physical scalar (Higgs) boson with a mass mh ¼
125.09� 0.24 GeV [1]. In spite of this impressive success,
the narrative brings with it a cause for concern: quantum
mechanical contributions to the Higgs mass rapidly exceed
mh for energy fluctuations of an order Λ ∼ 1 TeV [2].
These quadratic divergences necessitate ever more
incredulous fine-tunings to maintain mh ≃ 125 GeV as
the excluded energy scale of new physics increases. In
addition, the SM is lacking the necessary ingredients
to explain, e.g., cosmic inflation, the existence of dark

matter and dark energy in the Universe, the origin of the
matter-antimatter asymmetry, and a suppression of CP
violation in the strong interactions.
A rather minimal extension of the SM—moving from the

Poincaré group to the more general super-Poincaré group
(supersymmetry or SUSY) of space-time symmetries—
allows for solutions or improvements of all these problems.
The added spacetime supersymmetry guarantees the can-
cellation of the offending quadratic divergences to all
orders in perturbation theory, thus, rendering the Higgs
field natural. The allowance for a vast assortment of scalar
fields in SUSY, as expected from string theory, allows for
many possible inflaton candidate fields and for a nonzero
minimum of the scalar potential, yielding a cosmological
constant. The lightest SUSY particle and/or the inclusion of
an axion (necessary for solving the strong CP problem)
yields dark matter, while scalar field flat direction (Affleck-
Dine) baryogenesis and various other thermal and non-
thermal leptogenesis mechanisms seem automatic in SUSY.
In addition, SUSY receives indirect support from (1) the
measured values of gauge couplings, which unify under
minimal supersymmetric standard model (MSSM) renorm-
alization group evolution, (2) the measured value of the top
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mass, which is just right to produce a radiative breakdown
of electroweak gauge symmetry, and (3) the measured
value of mh ≃ 125 GeV, which lies squarely within the
prediction of mh ≲ 135 GeV required by the MSSM.1

In spite of these theoretical successes, many physicists
have developed a large degree of skepticism regarding the
eventual emergence of SUSY at experimental facilities.
This arises due to (1) the lack of evidence for superpartners
at LHC and (2) the rather large value of mh that has been
found. The first of these is exemplified by the latest gluino
mass limits: that mg̃ ≳ 2 TeV in many simplified models,
which may be compared against early projections by
Barbieri-Giudice (BG) [7,8], where electroweak natural-
ness requires mg̃ ≲ 400 GeV for fine-tuning parameter
ΔBG ≲ 30. Secondly, a value of mh ≃ 125 GeV requires
[3] within the MSSM the existence of highly mixed (large
trilinear soft parameters At) TeV-scale top squarks t̃1;2.

2

This may be contrasted with Dimopoulos-Giudice natural-
ness [9] thatmt̃1 ≲ 350 GeV for ΔBG < 30 or thatmt̃1;2;b̃1

≲
500 GeV from requiring δm2

Hu
≲m2

h [10,11]. Thus, in the
LHC era, the question of electroweak naturalness has been
elevated to one of prime importance, which can serve as a
guide for construction of future experimental facilities.3

The most direct connection between the weak scale, as
exemplified by the weak gauge and Higgs boson masses
mW;Z;h and the SUSY Lagrangian parameters, arises from
the scalar potential minimization condition, [13]

1

2
m2

Z ¼ ðm2
Hd

þ Σd
dÞ − ðm2

Hu
þ Σu

uÞtan2β
ðtan2β − 1Þ − μ2

≃ −m2
Hu

− Σu
u − μ2; ð1Þ

where the latter partial equality arises for moderate to large
values of the ratio of Higgs vacuum expectation values
tan β≡ vu=vd. The μ term arises as a mass term in the
MSSM superpotential; thus, it is supersymmetry conserv-
ing and feeds mass both to the SM particlesW;Z, and h and
also the SUSY Higgsinos. The weak scale soft SUSY

breaking term m2
Hu

feeds mass just to W, Z, and h (and
other SUSY Higgs via suppressed mixing). The Σu

u are
radiative corrections (for a full listing, see Ref. [6]); the
largest of which typically arise from the top-squark con-
tributions. The MSSMmay be considered as natural if there
are no large, unnatural cancellations (fine-tunings) on the
right-hand side of Eq. (1). A naturalness measure ΔEW has
been proposed which considers the ratio of the largest
element on the right-hand side (rhs) of Eq. (1) tom2

Z=2. The
fine-tuning of mZ sets in for values of ΔEW ≳ 20–30 and is
visually displayed in Fig. 1 of Ref. [14].
The validity of the early naturalness estimates using the

BG measure has been challenged in that these calculations
are performed using multiple-soft-parameter effective the-
ories instead of more fundamental theories in which the
soft parameters are all related [15].4 Using correlated soft
parameters, the BG measure reduces to the EW measure
[17]. The validity of naturalness estimates using δm2

Hu
=m2

h
has been challenged in that, in an effort to simplify, several
contributions to m2

h and δm2
Hu

have been set to zero. By
including these pieces, then one allows for radiatively
driven naturalness (RNS) [18] wherein large, seemingly
unnatural high scale values of m2

Hu
are driven to natural

values at the weak scale. The revised measure is thus
brought into accord with ΔEW [15,17].
From Eq. (1), the requirements for electroweak natural-

ness are then
(i) The superpotential μ parameter, bounded from

below by μ≳ 100 GeV due to chargino searches
at LEP2, is not too far from mZ: μ ∼ 100–300 GeV,
the lower the better. This immediately implies the
existence of several Higgsino-like electroweakinos
in SUSY with mχ̃�

1
∼mχ̃0

1;2
∼ jμj.5

(ii) The soft termm2
Hu
, which must be driven to negative

values to initiate a breakdown of electroweak sym-
metry, is driven to small and not large negative
values.

1We quote the bound mh ≲ 135 GeV given in Ref. [3], which
applies for an assumed soft breaking scale msoft ≲ 2 TeV. The
light Higgs mass bound increases logarithmically with increasing
msoft and can reach as high as mh ≲ 140–155 GeV for models of
split SUSY [4,5]. Such models with very high values of msoft
are highly fine-tuned under ΔEW. For our case of natural SUSY
with ΔEW < 30, then the top squark mass mt̃1 is bounded from
above by ∼3 TeV [due to the Σu

uðt̃1;2Þ terms in Eq. (1)] leading to
mh ≲ 127 GeV [6].

2A value of mh ∼ 125 GeV can also be obtained with small At
but with huge (unnatural) top-squark soft terms. For our case of
natural SUSYwithΔEW < 30 andmh ≃ 125 GeV, then a large At
at the weak scale is required [6].

3In Ref. [12], it is declared that “settling the ultimate fate of
naturalness is perhaps the most profound theoretical question of
our time … and will largely dictate the future of fundamental
physics in this century.”

4For example, in the string motivated SUSY model with
dominant soft breaking from the dilaton, then one expects
m0 ¼ m3=2, m1=2 ¼ −A0 ¼

ffiffiffi
3

p
m3=2, where m3=2 is the gravitino

mass. In such a top-down case, it does not make sense to use m0,
m1=2, and A0 as independent parameters, and one obtains a very
different value of ΔBG. Alternatively, in the string landscape
picture, then there is a statistical pull to large soft terms balanced
by the anthropic requirement of a not-to-large value of the weak
scale in pocket universes within the multiverse. In such a case, the
multiverse selects soft terms consistent with radiatively driven
naturalness, where mh is pulled to 125 GeV whilst sparticle
masses are pulled beyond LHC bounds [16].

5It is possible that nonholomorphic soft terms may arise
allowing for higher mass Higgsinos without compromising
naturalness [19]. Such “semisoft” mass terms are expected to
be of order m2

weak=mP [20] but in the case where the mediation
scale is arranged to be far lower than the usual Planck scale (as
expected for gravity mediation), then these terms can become
much larger.
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(iii) The radiative corrections Σu
uðt̃1;2Þ are actually mini-

mized for TeV-scale highly mixed top squarks.
These same conditions lift the Higgs mass to
mh ≃ 125 GeV. Detailed evaluations require mt̃1 ≲
3 TeV for ΔEW < 30 [6].

(iv) The gluino mass contributes at a two-loop level to
Eq. (1) via the Σu

uðt̃1;2Þ. Detailed evaluations require
mg̃ ≲ 6 TeV for ΔEW < 30.6 This may be compared
to the ultimate reach of theHL-LHC,which extends to
about mg̃ ∼ 2.8 TeV (at the 5σ discovery level [22]).

Thus, the HL-LHC will probe only a portion of natural
SUSY parameter space via gluino and top squark pair
production searches.
The naturalness-required light Higgsinos may be pro-

duced at decent rates at LHC, but their relatively compressed
spectra imply low visible energy release from their decays.
Thus, light Higgsinos are very challenging to see at LHC
[22,23]. In contrast, the International Linear eþe− Collider
(ILC) with

ffiffiffi
s

p
> 2mðHiggsinoÞ would be a Higgsino

factory in addition to being a Higgs factory. The reactions
eþe− → χ̃þ1 χ̃

−
1 and χ̃02χ̃

0
1 should occur at rates comparable to

muon pair production and at rates exceeding Zh production
[24]. The expected mass gaps mχ̃1 −mχ̃0

1
∼mχ̃0

2
−mχ̃0

1
∼

3–20 GeV lead to events, which are easily identified at ILC:
see Fig. 1 for a simulated eþe− → χ̃01χ̃

0
2 with χ̃02 → μþμ−χ̃01

event display with light Higgsinos in the ILD detector.
The cleanliness of ILC Higgsino pair production events

along with tunable beam energy and beam polarization
should allow for a rich program of Higgsino measurements.
While the Higgsino masses should be comparable to the

superpotential μ parameter, thus allowing for a determi-
nation of μ, the Higgsino mass splittings depend sensitively
on the weak scale gaugino masses M1 (bino) and M2

(wino). Thus, precision measurements of mχ̃�
1
and mχ̃0

1;2

should allow for an extraction of M1 and M2 to good
precision. Once the soft breaking gaugino masses are
known, then the physical masses of the heavier neutralinos
and charginos can also be found. The fitted values of M1

and M2 can be extrapolated to high energies to test the
hypothesis of gaugino mass unification. If gluinos are
discovered at LHC, thenM3 (gluino) may be extracted [25]
and unification of all three gaugino masses may be tested.
In this paper, we first present in Sec. II two natural SUSY

benchmark models labeled ILC1 and ILC2 that arise from
the nonuniversal Higgs model (NUHM2)[26]. These mod-
els allow for μ as an input parameter so that SUSY spectra
with a low value of ΔEW can easily be generated. The
NUHM2 model incorporates gaugino mass unification so
that under the renormalization group (RG) evolution, M1

and M2 should unify at the scale mGUT ≃ 2 × 1016 GeV.
We also propose a natural generalized mirage mediation
(nGMM) benchmark model, which instead has gaugino
mass unification at the mirage scale μmir ¼ mGUTe−8π

2=α ∼
5 × 107 GeV, where α ¼ 4 parametrizes the relative
amounts of modulus mediation versus anomaly mediation
in SUSY breaking. In this case, by determining the mirage
unification scale μmir, ILC can measure the strength α of
moduli vs anomaly mediation. If the gaugino masses are
extrapolated beyond the mirage scale to the GUT scale,
then ILC can also indirectly measure the underlying
gravitino mass m3=2 [27]. Thus, in such cases, ILC would
allow for a window into the nature of the laws of physics at
energy scales far beyond

ffiffiffi
s

p
∼ 0.5–1 TeV.

All three benchmarks have been studied in a detailed,
GEANT4-based simulation of the ILD detector concept [28],
which we introduce in Sec. III. In Sec. IV, we present
a detailed portrait of various Higgsino pair production
measurements at ILC with

ffiffiffi
s

p ¼ 500 GeV. Continuum
measurements of energy and invariant mass distributions
of Higgsino decay products should allow for extraction of
Higgsino masses to percent level or better precision.
In Sec. V, we present results from our calculations using

the FITTINO [29] program to extract fits of fundamental
weak scale MSSM Lagrangian parameters, especially the
gaugino masses M1 and M2. We also obtain predictions
for the masses of many of the kinematically inaccessible
superparticles. We then can extract the underlying GUT
scale parameters if we assume a particular high scale SUSY
model such as NUHM2, NUHM3, or nGMM. If the gluino
is discovered at LHC, the extracted gaugino masses may
be augmented with the SUð3Þ gaugino mass M3. We also
show that the thermally produced relic density of Weakly
Interacting Massive Particles (WIMPs) may be extracted,
thus testing the WIMP only versus mixed axion-WIMP
dark matter hypotheses. In Sec. VI, we show results from

FIG. 1. ILD event display of a simulated eþe− → χ̃01χ̃
0
2 event

with χ̃02 → μþμ−χ̃01.

6In the case of natural anomaly mediated SUSY breaking [21],
the gluino mass bound increases to mg̃ ≲ 9 TeV.
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running the gaugino masses to high energy scales, thus
offering a test of the unification hypothesis and the
underlying SUSY breaking mechanism. A summary and
conclusions are presented in Sec. VII.

II. BENCHMARK MODELS

In this section, we present three natural SUSY bench-
mark points, which have been used for the detailed ILD
studies described in Secs. III and IV.

A. ILC1 benchmark model

The ILC1 benchmark point, whose parameters are listed
in Table I, has been presented previously [18] and has been
used for some detailed ILC studies using a toy detector

simulation [24]. The ILC1 benchmark point was generated
within the NUHM2 model with input parameters and output
masses as listed. While the various matter scalars are
essentially decoupled for LHC and ILC physics, the spectrum
does contain light Higgsinos with mass mχ̃�

1
¼ 117.3 GeV

and mχ̃0
1;2

¼ 102.7 and 124 GeV, respectively, so that

Higgsino pair production should already turn on for ILC
with

ffiffiffi
s

p
> 227 GeV.The associatedmass gaps,which play a

central role in these analyses, are mχ̃�
1
−mχ̃0

1
¼ 14.6 GeV

and mχ̃0
2
−mχ̃0

1
¼ 21.3 GeV. The model contains a light

Higgs scalar with mh ¼ 125.3 GeV due to highly mixed
TeV-scale top squarks withmt̃1 ¼ 1893.3 GeV (well beyond
the reach of HL-LHC [30], where the 95% C.L. exclusion
reach extends tomt̃1 ∼ 1400 GeV [31]). The model is highly

TABLE I. Input parameters and mass spectrum and rates for benchmark points ILC1, ILC2, and nGMM1. All masses and
dimensionful parameters are in GeV units. All values have been obtained with ISASUGRA.

Units ILC1 ILC2 nGMM1

M0 [GeV] 7025.0 5000 � � �
M1=2 [GeV] 568.3 1200 � � �
A0 [GeV] −10427 −8000 � � �
m3=2 [GeV] � � � � � � 75000
M1;M2;M3 [GeV] � � � � � � 3382.5, 2124.4, 1225.8
tan β � � � 10 15 10
a3 � � � � � � � � � 3
cm � � � � � � � � � 6.9
α � � � � � � � � � 4

mh [GeV] 125.3 125.4 124.9
mA [GeV] 1000.0 1000 2000
mH [GeV] 1006.8 1006.7 2013.3
mH� [GeV] 1003.2 1003.2 2001.6
μ [GeV] 115.0 150 150

mg̃ [GeV] 1563.5 2832.6 2856.5
mχ̃�

1
, mχ̃�

2
[GeV] 117.3, 513.0 158.3, 1017.5 158.7, 1791.6

mχ̃0
1
, mχ̃0

2
[GeV] 102.7, 124.0 148.1, 157.8 151.4, 155.8

mχ̃0
3
, mχ̃0

4
[GeV] 267.0, 524.2 538.7, 1031.1 1526.9, 1799.4

mũL , mũR [GeV] 7021, 7254 5440, 5566 5267, 5399
mt̃1 , mt̃2 [GeV] 1893, 4919 1774, 3878 1433, 3732

md̃L
, md̃R

[GeV] 7022, 6999 5441, 5384 5267, 5229
mb̃1

, mb̃2
[GeV] 4959, 6893 3903, 5204 3770, 5124

mẽL , mẽR [GeV] 7152, 6759 5149, 4817 5128, 4825
mτ̃1 , mτ̃2 [GeV] 6657, 7103 4652, 5072 4749, 5094

ΩTP
χ̃0
h2 � � � 0.009 0.007 0.005

hσviðv → 0Þ [cm3 s−1] 2.2 × 10−25 2.9 × 10−25 3.1 × 10−25

σSIðχ̃0pÞ × 109 [pb] 6.8 1.5 0.3

aSUSYμ × 1010 � � � 0.03 0.13 0.06
BFðb → sγÞ × 104 � � � 3.3 3.3 3.1
BFðBS → μþμ−Þ × 109 � � � 3.8 3.8 3.8
BFðBu → τντÞ × 104 � � � 1.3 1.3 1.3

ΔEW � � � 14 28 15
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electroweak natural withΔEW ¼ 14 corresponding to just 7%
fine-tuning. This benchmark is now likely excluded by LHC:
The gluino mass mg̃ ¼ 1563.5 GeV is excluded by LHC13
searches with ∼36 fb−1. The searches for Higgsinos with
small mass-splittings performed by CMS [32] and ATLAS
[33] are done for a spectrum different from our benchmark—
in particular, the mass of χ̃�1 is assumed to be exactly halfway
between those of χ̃01 and χ̃02—but are nevertheless likely to
exclude it. However, we retain the point for comparison
with previous work. If one adopts modest gaugino mass
nonuniversality, then a small increase in M3ðweakÞ>2TeV
would bring the point in accord with LHC searches. The
relic density of thermally produced Higgsino-like lightest
supersymmetric particles (LSPs) is a factor 13 below the
measured value. Requiring also naturalness in the QCD
sector, then one must bring the axion into the model, and
axionic dark matter may constitute the bulk of the dark
matter [34]. The location of the ILC1 benchmark point is
denoted by one of the green stars in the μ vsM1=2 parameter
space plane of the NUHM2 model shown in Fig. 2.

B. ILC2 benchmark

The ILC2 benchmark point is also generated within the
NUHM2 SUSY model with parameter values as listed in

Table I. The location of ILC2 is indicated by the other green
star in Fig. 2 and is found to lie just beyond the HL-LHC
reach for the same-sign diboson signature arising from the
wino pair production [36]. The Higgsino pair signature
from pp → χ̃01χ̃

0
2j production followed by χ̃02 → χ̃01lþl−

decay should be viable since the cluster of Higgsinos
lies in the vicinity of μ ¼ 150 GeV [23]. The value ofmg̃ ¼
2832 GeV appears just beyond the HL-LHC reach for
gluino pair production (where the 5σ reach extends to
mg̃ ∼ 2800 GeV [25]). The higher value of gaugino
masses in ILC2—as compared to benchmark point
ILC1—is reflected in the reduced inter-Higgsino mass
gaps where we findmχ̃�

1
−mχ̃0

1
¼10.2GeV andmχ̃0

2
−mχ̃0

1
¼

9.7 GeV. The naturalness measureΔEW ¼ 28 leads to∼3%
electroweak fine-tuning. The thermally produced abun-
dance of dark matter ΩTP

χ̃0
1

h2 ∼ 0.007, well below the

measured value of 0.12. So, as for ILC1, the axions needed
to solve the strong CP problem can be expected to make up
the remainder.

C. Natural mirage mediation (NMM) benchmark

Mirage mediated (MM) SUSY breaking models are moti-
vated by stringmodel compactificationswith themoduli fields
stabilized by fluxes and where an uplifted scalar potential
leads to a de Sitter vacuum (as required by cosmology) with
a small breaking of supersymmetry [37–39]. In such cases,
it is expected that the SUSY breaking soft terms arise with
comparable moduli-mediated and anomaly mediated contri-
butions. In the gaugino sector (and in the scalar sector for
particularmodularweight choices), theGUTscale softmasses
are offset from each other by contributions containing their
gauge group beta functions. As a consequence, the running of
the gaugino masses exactly compensates the high scale mass
splitting leading to an apparent unification at the intermediate
(mirage) scale μmir ¼ mGUTe−8π

2=α, where the parameter α is
introduced to parametrize the relative amounts of anomaly
versus moduli mediation. A value α ¼ 0 corresponds to pure
anomaly mediation (with tachyonic sleptons) while, as α gets
large, the soft terms become increasingly universal.
Initially, simple MM models predicted scalar masses

involving discrete values of scalar field modular weights,
which depend on the compactification geometry and upon
which branes harbored the various visible sector fields.
This class of models, over a wide range of choices for
modular weights, was found to be unnatural when mh ≃
125 GeV was required [17]. However, in more general
compactification and stabilization schemes, then the pre-
viously discrete parameter choices cm, cHu

, cHd
, and a3

become continuous, allowing for the construction of
models with low values of ΔEW [27].
In Table I, we show one such example point from natural

generalized mirage mediation or nGMM in column 4.
The gaugino masses unify at the mirage scale μmir ∼
5 × 107 GeV. The rather large value of mg̃ ¼ 2856.5 GeV

FIG. 2. The M1=2 vs μ plane in the NUHM2 model for
tan β ¼ 15, M0 ¼ 5 TeV, A0 ¼ −8 TeV, and MA ¼ 1 TeV.
We show contours of ΔEW along with some limits from
LHC13 and the future reach of ILC with

ffiffiffi
s

p ¼ 500 and
1000 GeV and HL-LHC [via same-sign diboson production
labeled SSdB (3000) and via neutralino associated production
labeled Z̃1Z̃2j (3000) in the nomenclature of Ref. [35] where Z̃i
denotes neutralino eigenstate i]. Location of benchmark points is
indicated in green. To aid the reader, we note that mg̃ ∼ 2.5M1=2.
The figure is adapted from Ref. [35].
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means thewinos and bino are also rathermassive so that both
gluino pair production and wino pair production appear out
of reach of HL-LHC. The Higgsinos are clustered with
masses around μ ∼ 150 GeV but with even smaller mass
splittings than ILC2:mχ̃�

1
−mχ̃0

1
¼7.3GeV andmχ̃0

2
−mχ̃0

1
¼

4.4 GeV. Such small neutralino mass splittings may also
push the soft dilepton plus jet signature from χ̃01χ̃

0
2j produc-

tionout of reachof theHL-LHC[22].Nonetheless, themodel
is highly natural with ΔEW ¼ 15 or 6.7% fine-tuning. As
shown in Table II, the LSP is more purely Higgsino-like than
in the ILC1 or ILC2 benchmarks leading to a reduced
thermally produced dark matter relic density and reduced
direct dark matter detection rates. Thus, the direct detection
of WIMP dark matter from the nGMM1 benchmark may
require multiton noble liquid detectors for discovery.

III. SOFTWARE TOOLS AND OBSERVABLES

In this section, we describe the main features of the ILD
detector as used for the simulation study and introduce the
characteristics of the Higgsino signal on which the strat-
egies for event selection and reconstruction will be based.

A. Event generation

The physical masses for the three benchmark points have
been calculated by ISASUGRA. The SUSY and SM events
have been generated using WHIZARD1.95 [40], which con-
siders both resonant and nonresonant production, as well as
their interference. WHIZARD also generates the amount and
spectrum of ISR appropriate for each considered channel
and takes the beam polarization fully into account. The
dedicated setup of the generator provided by the ILC
Generator Group was used, and all types SM eþe−
interactions yielding up to six fermions in the final state
were considered. In addition, all eγ interactions yielding
three or five fermions and all γγ interactions yielding up
to four fermions were also included. The initial photons
in the latter cases might be virtual (in which case, the
beam remnants come in addition to the final fermions) or
real from the photon component of the beams (in which
case, there are no beam remnants). The electron and
positron beams have an initial energy spread, which is
further smeared by the effects of beamstrahlung. The
resulting spectra as well as the flux and energy spectra
of the beam photons are simulated according to the

parameters in the ILC Technical Design Report (TDR)
[41], using GUINEAPIG [42].
Pure left-handed or right-handed beam polarizations

are used for the event generation. These samples are
then weighted according to the nominal ILC beam
polarizations for our simulation study. We introduce the
following notation for beam polarizations: P ≡ ðPe− ;PeþÞ
and define the pure beam polarizations as PLR ≡ ð−1;þ1Þ
and PRL ≡ ðþ1;−1Þ. The nominal beam polarizations
for the ILC are defined as P−þ ≡ ð−0.8;þ0.3Þ and
Pþ− ≡ ðþ0.8;−0.3Þ.
Table III shows the production cross sections for

chargino and neutralino pairs for the three benchmark
models introduced in Sec. II A–II C for 100% polarized
beams at several center-of-mass energies. Table IV shows
the decay branching ratios in the same three benchmarks.
The results of the simulation study assume a center-of-

mass energy of
ffiffiffi
s

p ¼ 500 GeV and an integrated lumi-
nosity of L ¼ 500 fb−1 for each beam polarization; these
results are then scaled according to the operation scenarios

TABLE III. Chargino and neutralino production cross sections
for the three benchmark points calculated using WHIZARD at
various center-of-mass energies. The ILC beam energy spectrum
and ISR effects are included. Pure beam polarizations are
assumed.

Cross section [fb]ffiffiffi
s

p
Process P ILC1 ILC2 nGMM1

250 GeV e−eþ → χ̃þ1 χ̃
−
1

PLR 2618 � � � � � �
PRL 397.1 � � � � � �

e−eþ → χ̃01χ̃
0
2

PLR 1044 � � � � � �
PRL 804.8 � � � � � �

350 GeV e−eþ → χ̃þ1 χ̃
−
1

PLR 3094 1602 1571
PRL 538.8 302.8 301.4

e−eþ → χ̃01χ̃
0
2

PLR 897.0 578.5 576.0
PRL 691.5 446.0 444.1

500 GeV e−eþ → χ̃þ1 χ̃
−
1

PLR 1801 1531 1520
PRL 334.8 307.2 309.2

e−eþ → χ̃01χ̃
0
2

PLR 491.4 458.9 463.3
PRL 379.8 353.8 357.1

TABLE IV. Chargino and neutralino decay branching ratios for
the three benchmark points calculated using ISASUGRA. For the
final-state leptons, only the electrons and muons are included
(l ¼ e; μ).

ILC1 ILC2 nGMM1

BRðχ̃þ1 → χ̃01qq
0Þ 67% 67% 66%

BRðχ̃þ1 → χ̃01lþνlÞ 22% 22% 22%

BRðχ̃02 → χ̃01qq
0Þ 58% 63% 51%

BRðχ̃02 → χ̃01lþl−Þ 7.4% 8.0% 7.5%

TABLE II. Higgsino and gaugino fractions of the lightest
neutralino χ̃01. The fractions are expressed so that they satisfy
the relation R2

H̃
þ R2

W̃
þ R2

B̃
¼ 1.

ILC1 ILC2 nGMM1

RH̃ 0.97 0.99 0.999
RW̃ −0.14 0.07 0.04
RB̃ 0.19 0.08 0.02
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listed in Table V for the parameter fit. In the case of ILC1,
where all three Higgsinos would already be kinematically
accessible at

ffiffiffi
s

p ¼ 250 GeV, the assumed integrated
luminosities correspond to the H20 operating scenario,
while for the other two benchmarks, the I20 scenario was
assumed, since in these cases, the Higgsinos are only
accessible at

ffiffiffi
s

p ¼ 350 GeV.

B. The ILD detector model

The ILD concept is one of the two detectors being
designed for the ILC. ILD employs a hybrid tracking
system comprised of a time projection chamber and silicon
strip sensors for tracking, and silicon pixel sensors as vertex
detectors. Outside of the tracking system sits a highly
granular calorimeter system optimized for particle flow
reconstruction. A superconducting solenoid with a mag-
netic field of 3.5 T encases the calorimeters. An iron yoke
outside the solenoid coil returns the magnetic flux and is
instrumented with scintillator-based muon detectors. In the
low angle region, charged particles will be efficiently
tracked down to 7°. Dedicated calorimeters are placed in
the forward region for detecting particles at even lower
angles to the beam [44]. The most forward component of
this system—the BeamCal—has holes for the beam pipe,
which constitutes the only region outside detector accep-
tance, and corresponds to 5.6 mrad.
The simulation and reconstruction tools used in this

study are part of the ILCSOFT framework (v01-16-02) [45].
The beam crossing angle of 14 mrad and the response of
the ILD detector in its version ILD_o1_v05 as used for the
ILC TDR [28] are simulated using MOKKA [46] based on
GEANT4. The event reconstruction is performed using the
MARLIN [47] framework, including the particle flow algo-
rithm PANDORAPFA [48] for calorimeter clustering and the
analysis of track and calorimeter information.

C. Signal processes and key observables

We study the pair production of the two light charginos
(χ̃þ1 , χ̃

−
1 ) and two light neutralinos (χ̃01, χ̃

0
2). In our bench-

mark models, the Higgsino component is strongly domi-
nant for these four light states. Their masses are shown in
Table I. The charginos and neutralinos are both produced
dominantly via the s-channel exchange since the sleptons
are assumed to be heavy. The chargino pair production
proceeds as eþe− → χ̃þ1 χ̃

−
1 through the γ=Z exchange,

while the neutralino associated production eþe− → χ̃01χ̃
0
2

undergoes via the Z boson exchange. While in a real
analysis at ILC, more decay modes of the χ̃02 and the χ̃

�
1 can

be utilized, we focus here on the semileptonic channel for
the charginos, i.e., χ̃þ1 χ̃

−
1 → qq̄0χ̃01lνχ̃

0
1, and on the leptonic

channel for the neutralinos, i.e., χ̃02χ̃
0
1 → lþl−χ̃01. We

restrict l ¼ e; μ in this study.
The key target observables are the three masses

(Mχ̃0
1
, Mχ̃0

2
, and Mχ̃�

1
) and, in this study, four polarized

cross sections: chargino and neutralino production for the
two opposite-sign beam polarization configurations. In a
real ILC analysis, the like-sign combinations would be
included as well, at least to serve as background-enriched
control samples.
The three masses can be extracted from the maximum end

points of the kinematic distributions shown at the generator
level in Figs. 3(a), 3(b), 3(d), and 3(e). Specifically, we will
rely on the maximum invariant mass and energy of the
visible decay products of the χ̃02 → lþl−χ̃01 and
χ̃�1 → qq̄0χ̃01. We find that the minimum end points, typically
used in other SUSY studies, are too small to be useful in this
study, since the resulting detector response is challenging to
model in the soft spectrum, and in the case of the neutralino
channel, it has large overlap with irreducible backgrounds.
The maximum energy Emax of the dijet (or dilepton)

system seen in the laboratory frame is given by7

Emax ¼
γð1þ βÞ

2

�
1þ M

M0

�
ΔM; ð2Þ

whereM is the LSP (χ̃01) mass andM0 is the mass of χ̃�1 (χ̃02)
for the chargino (neutralino) channel. The mass difference
is given by ΔM ¼ M0 −M. As the decays studied are three
body decays, it follows that the Lorentz-invariant mass of
any pair of final-state particles has a maximum equal to the
mass difference between the decaying particle and the mass
of the third decay product; see, e.g., Sec. 47.4.4.1 of [49].
In other words, the maximum of the dijet (or dilepton) mass

TABLE V. Total integrated luminosities for various operation
scenarios for the ILC [43]. H20 is assumed for ILC1, while I20 is
assumed for ILC2 and nGMM1. See Ref. [43] for the assumed
timelines and machine upgrades.

Scenario
ffiffiffi
s

p
[GeV] P L [fb−1]

H20 250 P−þ 900
Pþ− 900

350 P−þ 90
Pþ− 90

500 P−þ 1600
Pþ− 1600

I20 250 P−þ 225
Pþ− 225

350 P−þ 765
Pþ− 765

500 P−þ 1600
Pþ− 1600

7The value for Emax given in formula Eq. (2) is attained when
the dilepton or dijet invariant mass is zero. The complete formulas
relating the maximum and minimum energy to the invariant mass
may be found on p. 439 of Ref. [13]. The sensitivity of the
analysis could even be improved by evaluating the maximum
energy on an event-by-event basis, taking into account the dijet /
dilepton invariant mass measured in each event individually.
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is a direct measure of ΔM. The boost factors β and γ are
given according to γ ¼ ð1 − β2Þ−1

2 and β ¼ pffiffiffiffiffiffiffiffiffiffiffiffi
M02þp2

p , where

the maximum momentum p in the laboratory frame is
given by

p¼
ffiffiffi
s

p
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−2

��
Mffiffiffi
s

p
�

2

þ
�
M0ffiffiffi
s

p
�

2
�
þ
��

M0ffiffiffi
s

p
�

2

−
�
Mffiffiffi
s

p
�

2
�
2

s
:

ð3Þ

For any given channel, the measurements of ΔM and E
yield the masses M and M0 by numerically solving the
relations above. In our study, we obtain several measure-
ments ofΔM andE, specifically for the two different lepton
final states, (l ¼ e and μ), and for the two different beam
polarizations, P−þ and Pþ−. These measurements can be
readily combined individually for the chargino and neu-
tralino channels. Because the chargino and neutralino
measurements both include the LSP mass Mχ̃0

1
in the

observables, a final combination is performed using a fit
to extract the uncertainty of the three masses.
Figure 3 shows the generator-level distributions of the

mass and energy distributions for the dijet (dilepton)
system for the chargino (neutralino) channel. The three
benchmark points, ILC1, ILC2, and nGMM1, give pro-
gressively softer distributions due to the smaller mass gaps.
The visible part of the chargino/neutralino decay will be
very soft; for example, most of the jets and leptons have
energies less than 20 GeV in the case of the ILC2

benchmark, and less than 10–15 GeV in the case of the
nGMM1 benchmark.

D. Parameter fitting

In the final step of the study, we investigate the possibility
to extract SUSY parameters from the projected measure-
ment precisions obtained from the detector simulation.
This will be addressed using a Markov chain technique
as implemented in the program FITTINO. Unless stated
otherwise, the length of the Markov chains is 106 for each
fitted configuration. While the MC samples used in the full
detector simulation were based on ISAJET [50], FITTINO

employs SPHENO[51] as a spectrum calculator during the fit.
More details about the fitting procedure can be found in [52].
In addition to the mass and cross section projections

from this study, which will be described in detail in Sec. IV,
a standard set of projected Higgs precision observables
from the ILC was used to constrain the fit: These
projections assume the H20 running scenario for the ILC
[43] and include the Higgs mass (with a precision of
15 MeV as obtained in a ILD full simulation study [53]),
and a set of Higgs branching ratio precisions obtained from
the model-independent coupling fit results in [54], based on
the so-called κ framework.8 The resulting precisions are
shown in Fig. 4 in comparison to the expected deviations

FIG. 3. Generator-level distributions, given for the beam polarization with PLR. The distributions for the other beam polarization PRL
are similar, up to the normalization due to the cross section.

8Note that this includes the cross section measurements, which
in effect dominate the coupling precisions for the weak gauge
bosons. For technical reasons, the coupling precisions could not
be used directly in the fit.
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from the SM branching ratios in our three benchmarks.
The Higgs mass and branching-ratio values are taken from
FEYNHIGGS2.10.4 [55] for each of the SUSY models in
question. For the NUHM2-based benchmarks, the most
significant deviations would be observed in the Higgs
couplings to the W and Z bosons, although they would be
hardly convincing as a discovery on their own. In the case
of nGMM1, all Higgs precision measurements agree
perfectly with the SM.

IV. FULL DETECTOR SIMULATION STUDY

For each benchmark point, we select separately the
chargino and neutralino channels. These are considered
as background to each other, including all decay modes.
A common event selection is performed and provides
sufficient sensitivity in all three benchmark cases. In a
real experiment, once a signal has been discovered, the
selection could be optimized based on initial mass esti-
mates; see, e.g., [57] for a discussion of how to boot strap a
selection of an a priori unknown signal. In the following
sections, we describe the event selection for the chargino
and neutralino channels.

A. Chargino channel

For the chargino pair production, we study the semi-
leptonic final state e−eþ → χ̃þ1 χ̃

−
1 → χ̃01χ̃

0
1qq

0lνl, where
l ¼ e or μ. The strategy here is to look for a single isolated
lepton accompanied by two jets and large missing energy.
We reconstruct the invariant mass and energy distributions
of the dijet system and extract their end points.
First, an isolated lepton candidate is identified according

to the following criteria. Electron identification requires
that the total energy measured in the calorimetric system
Etot is consistent with the momentum measured in the
tracker ptrk, such that they satisfy 0.5 < Etot=ptrk < 1.3. In
addition, the energy deposit in the electromagnetic calo-
rimeter EECAL must be dominant over the energy deposit
in the hadronic calorimeter EHCAL, so that we have

EECAL=ðEECAL þ EHCALÞ > 0.9. For muon identification,
we require that a charged track is associated with signals in
the muon detector. In addition, lepton candidates with a
large impact parameter significance (>5σ) are rejected in
order to suppress backgrounds due to τ or heavy quark
decays. For the isolation requirement, we define an iso-
lation cone around the lepton candidate with a half-angle α
such that cos α ¼ 0.95. We require that the total energy
of charged particles within the cone (not including the
candidate itself) is less than 0.2 GeV. The isolated lepton
candidate with the highest transverse momentum is selected
as the isolated lepton in the event.
Next, we deal with high cross section γγ processes

that produce soft hadrons that overlap with our signal. Jet
finders are used in two steps, following the procedures
in [28]. We apply the kt jet finder algorithm with the jet
radius parameter R ¼ 1.4, forcing all reconstructed par-
ticles of the event apart from the isolated lepton into two
jets, plus two additional beam jets; particles that are
clustered into the beam jets are removed in the remainder
of the event reconstruction [58,59]. The value R ¼ 1.4 was
chosen to yield dijet mass distributions, which are optimal
for the extraction of the kinematic end point. The remaining
particles are used to reconstruct the chargino that decayed
hadronically. They are forced into two jets using the
Durham jet finding algorithm [60].
The event selection proceeds as follows. We select events

with exactly one isolated lepton candidate, and its lepton type
is identified. We reject events containing particles that are
reconstructed in the BeamCal [44]. The transverse momen-
tum of the lepton is required to be 5 GeV or greater. The
number of reconstructed charged particles in each jet must be
2 or greater. It was tested whether a tighter cut on the track
multiplicity would help to reject background from, e.g.,
three-prong τ decays, but due to low jet energies, especially
in the ILC2 and nGMM1 benchmarks, cf. Fig. 3(c), the
resulting loss in signal was too severe. Both of the recon-
structed jets should not be very forward, so that the polar
angle of each jet θj is such that j cos θjj < 0.98. We require
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FIG. 4. Deviations of the branching fractions of the SUSY light Higgs from the Standard Model expectations, as obtained with
FEYNHIGGS2.10.4. For ILC1 and ILC2, the total width is about 2%–3% larger than its SM predicted value, which can enhance or
suppress the effect of the Higgs-fermion coupling deviations on the branching fractions, depending on the sign of the coupling
deviations. The uncertainty bands illustrate the expected measurement precisions after the full 250 and 500 GeV ILC program, assuming
the H20 scenario [54]. Note that these are somewhat more conservative than the most recent estimates from [56].
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the coplanarity of the two jets as defined by the difference of
the azimuthal angle to be Δϕ ¼ jϕ2 − ϕ1j < 1.0. The angle
between the two jets θjj is required to satisfy j cos θjjj < 0.2.
The visible energy in the event is required to be less than
80 GeV. The missing energy in the event is required to be
greater than 400 GeV. The polar angle of the missing
momentum θmiss is required to satisfy j cos θmissj < 0.99.
The expected number of signal and background events
after the event selection is shown in Table VI. Very few

background events survive after the event selection. An
example of the resulting distributions is shown for the qqμν
channel with the beam polarization P−þ in Fig. 5. The
number of events at various steps of the event selection
and the distributions for all studied channels can be found in
the Appendix.
The maximum end points of the dijet energy (Ejj)

and mass (Mjj) distributions are extracted using a fit.
Figures 6–7 show some examples of such a fit. Although

FIG. 5. Example of reconstructed distributions in the chargino channel eþe− → χ̃þ1 χ̃
−
1 → χ̃01χ̃

0
1qq̄

0μνμ with a beam polarization P−þ.
The contributions from SUSY and SM backgrounds are very small. The signal histograms are stackeed on top of the backgrounds.

TABLE VI. Expected number of events after the event selection for the chargino signal and major backgrounds, normalized to an
integrated luminosity of 500 fb−1. For each benchmark model, the SUSY background is given in the column “Bkg.”.

eþe− → χ̃þ1 χ̃
−
1

ILC1 ILC2 nGMM1 SM backgrounds

Process P Signal Bkg. Signal Bkg. Signal Bkg. eþe− → 2f eþe− → 4f γγ → 2f eγ → 3f γγ → 4f

qqeν P−þ 1463 85 392 23 283 15 5.9 64 0.0 22 2.0
Pþ− 404 23 96 4.6 73 5.1 7.4 16 0.0 8.0 2.0

qqμν P−þ 1862 108 509 28 389 29 33 37 0.0 0.0 7.0
Pþ− 524 34 127 8.5 101 8.2 8.2 7.2 0.0 0.0 7.0

FIG. 6. Example of the end point extraction of the dijet invariant mass system in the chargino channel e−eþ → χ̃þ1 χ̃
−
1 → χ̃01χ̃

0
1qq̄

0μνμ
with a beam polarization P−þ for the three benchmarks.
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the samples are almost free of backgrounds, the signal
distribution has a tail which is caused by the failure to
properly reconstruct the energy of soft neutral particles. We
use an exponential curve to model such an effect, combined
with a linear function to model the steep drop leading to the
kinematic end point. The point where the two functions
meet after the fit was used to estimate the kinematic end
point. The statistical uncertainty of this value is estimated
by performing toy Monte Carlo experiments that repeatedly
fit statistically fluctuated versions of these parent distribu-
tions. The extracted maximum end point of the dijet mass
distributions is seen to have a systematic shift from the
actual mass difference, which requires a correction at the
level of 10%–20% before they are used input to the final fit
for the masses. It is assumed here that such a calibration
procedure does not add any significant systematic uncer-
tainties to our results, as described in [61]. The end points
from the dijet energy distributions are used without
corrections in the mass fit.

B. Neutralino channel

For the neutralino mixed production, we choose the
clean leptonic decay of χ̃02 as the final state: e−eþ →
χ̃01χ̃

0
2 → χ̃01χ̃

0
1l

þl−, where l ¼ e or μ. The strategy is to
look for a pair of isolated leptons with a large missing
energy. The invariant mass and the energy of the dilepton
system provides information about the neutralino masses.

The isolated leptons are selected in the same way as in the
chargino channel. This time, we require two oppositely
charged leptons of the same flavor, instead of one.
The expected number of signal and major background

events are summarized in Table VII; the full tables of event
selection can be found in the Appendix. At the preselection
stage, we require that two oppositely charged leptons are
found, each having a transverse momentum of at least
2 GeV. Then, the lepton flavor is required to be either
an electron or a muon pair, and the total number of
reconstructed charged particles (including the leptons) in
the event is required to be exactly two. We reject events
containing particles that are reconstructed in the BeamCal.
The requirement on the transverse momentum of both
leptons are further tightened to 2.3 GeV or greater. The
polar angle of each lepton’s momentum θl is required to
satisfy j cos θlj < 0.95. The coplanarity of the two leptons
Δϕ ¼ jϕ1 − ϕ2j is required to satisfyΔϕ < 0.8. The visible
energy of the event is required to be less than 25 GeV. The
missing energy in the event must be greater than 300 GeV.
The polar angle of the missing momentum angle θmiss must
satisfy j cos θmissj < 0.98.
An example of the Mll and Ell distributions after this

selection is shown in Fig. 8; the full distributions can be
found in the Appendix. In contrast to the chargino channel,
the neutralino channel has sizable SM backgrounds after
the event selection, since due to the much smaller number

TABLE VII. Expected number of events after the event selection for the neutralino signal and major backgrounds, normalized to an
integrated luminosity of 500 fb−1. For each benchmark model, the SUSY background is given in the column “Bkg.”.

eþe− → χ̃01χ̃
0
2

ILC1 ILC2 nGMM1 SM bkg.

Process P Sig. Bkg. Sig. Bkg. Sig. Bkg. eþe− → 2f eþe− → 4f γγ → 2f eγ → 3f γγ → 4f

ee P−þ 1621 185 1250 226 490 207 14 3875 14 371 19
Pþ− 1284 69 1017 111 409 119 13 508 14 83 19

μμ P−þ 1939 176 1496 197 640 91 0.0 5506 77 100 9.6
Pþ− 1521 49 1222 67 516 40 0.0 672 77 100 9.6

FIG. 7. Example of the end point extraction of the dijet energy system in the chargino channel e−eþ → χ̃þ1 χ̃
−
1 → χ̃01χ̃

0
1qq̄

0μνμ with a
beam polarization P−þ for the three benchmarks.
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of signal events the cuts cannot be as tight as in the
chargino case. The dominant backgrounds are the eþe− →
lþl−νl0 ν̄l0 processes, where l is the same lepton flavor as
the final state leptons of the signal. The SUSY backgrounds
remain negligible.
The maximum end points of the energy (Ell) and mass

(Mll) distributions of the dilepton system are extracted
using a fit. We show some examples of the fit in Figs. 9–10.
We use an exponential curve to model the background near
the end point. A linear function is used to model the signal
part. The intersection of the two functions is used to extract
the kinematic end point. Again, the uncertainty of this value
is estimated using toy Monte Carlo experiments. Fitting the
invariant mass distribution in the nGMM1 benchmark point
requires special care due to the J=ψ resonance from the
neutralino decay, which sits on the falling end of the
distribution. The fit is done in two steps. First, a Gaussian
distribution with a narrow width is used to fit the narrow
peak in the small window of the J=ψ resonance. The fitted
yield and width of the resonance are fixed in the second,
overall fit, which extracts the maximum end point. As was

the case for the chargino channel, the extracted maximum
end point of the dilepton mass distributions requires a
correction at the level of 10%–20% before they are used
input to the final fit for the masses, while the end points
from the dilepton energy distributions are used without
corrections.

C. Results from the full detector simulation study

We present the combined result of the mass measure-
ments in Table VIII. Assuming an integrated luminosity
of 500 fb−1 at each of the two beam polarizations
Pðeþ; e−Þ ¼ ð�30%;∓80%Þ, it is shown that the chargino
and neutralino masses can be measured to about 0.5%–
0.7% for benchmarks with mass gaps of 10 GeVor larger,
and better than 1% for benchmarks with mass gaps of a
few GeV.
In the last column, the relative precisions on the masses

have been scaled to the full luminosity foreseen to be
collected at

ffiffiffi
s

p ¼ 500 GeV according to the H20 and I20
running scenarios of the ILC [43]. These values are
considered to be conservative as they neglect further

FIG. 8. Example of reconstructed distributions in the neutralino channel e−eþ → χ̃01χ̃
0
2 → χ̃01χ̃

0
1e

þe− with a beam polarization Pþ−.
The signal histograms are stacked on top of the backgrounds. The remaining background is fully dominated by the SM contribution.

FIG. 9. Example of the end point extraction of the dilepton invariant mass system in the neutralino channel e−eþ → χ̃01χ̃
0
2 → χ̃01χ̃

0
1e

þe−
with a beam polarization Pþ− for the three benchmarks. For the nGMM1 benchmark, the J=ψ peak is included in the fit.
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improvements from data sets at lower center-of-mass
energies or from dedicated threshold scans. The relative
precisions on the masses range from 0.3% in the case of
ILC1 with the largest mass differences to about 0.6% for
nGMM1 as in the case with the smallest mass differences.
The precision expected for the cross section times

branching ratio measurements at
ffiffiffi
s

p ¼ 500 GeV is esti-
mated from the statistical significance computed from the
number of signal and background events using the dilepton
and dijet energy distributions. In the case of the neutralino
channel, an additional cut on the dilepton mass distribution
is applied in order to remove the SM backgrounds in the
high mass region; namely, events with MMll

less than 25,
15, and 5 GeV are selected for the ILC1, ILC2, and
nGMM1 benchmarks, respectively. The accepted region

of the energy distribution is optimized to yield the best
statistical significance for each channel. These were
extrapolated to lower center-of-mass energies based on
cross section and luminosity scaling. In most cases, the
cross sections can be measured with a precision of a few%,
as summarized in Table IX. Notable exceptions include
the chargino cross sections for the Pþ− case, which are
typically a factor of 2 worse than the other precisions.

V. FITTING FUNDAMENTAL PARAMETERS

In this section, we will pursue the question of whether
the projected precisions on the physics observables will be
sufficient to discriminate between different SUSY models
and to determine the parameters of the correct model. To
this purpose, assumed measurements of Higgsino masses
and polarized cross sections are presented to FITTINO along
with their projected uncertainties. It should be noted that
the assumed measurements have not been varied randomly
around their true values. Thus, in all cases where the correct
underlying model is fitted, the expected χ2 is zero, apart
from the effects of finite numerical precision and the finite
length of the Markov chains. As discussed in Sec. III D,
SPHENO had to be used instead of ISAJET as a spectrum
calculator in the fitting step.9

The fits include the following inputs based on ILC
simulation studies:

(i) The Higgsino masses obtained with SPHENO3.3.9-

BETA as listed in Table X, together with their
estimated precisions based on a preliminary version
of the full simulation study at

ffiffiffi
s

p ¼ 500 GeV, listed
in Table 7.11 of Ref. [52]. Note that these are
between 30% and 100% more conservative than

FIG. 10. Example of the end point extraction of the dilepton energy system in the neutralino channel e−eþ → χ̃01χ̃
0
2 → χ̃01χ̃

0
1e

þe− with a
beam polarization Pþ− for the three benchmarks.

TABLE VIII. ILC1, ILC2, and nGMM1 MSSM model masses
from ISAJET (see also Table I). Experimental mass precision fromffiffiffi
s

p ¼ 500 GeV and L ¼ 500 fb−1 combining both beam polar-
izations. It is assumed that the same precision is valid for these
masses as the simulation shows for the ISAJET masses. The scaled
precision for 1600 fb−1 for each of the two opposite-sign
polarization configurations at

ffiffiffi
s

p ¼ 500 GeV, ignoring the data
sets with other center-of-mass energies in the H20 and I20
operating scenarios.ffiffiffi
s

p ¼ 500 GeV only ILC1 ILC2 nGMM1

Model mass [GeV] mχ̃0
1

102.7 148.1 151.4
mχ̃0

2
124.0 157.8 155.8

mχ̃�
1

117.3 158.3 158.7

Precision δmχ̃0
1
=mχ̃0

1
0.5% 0.7% 1.0%

(P−þ, L ¼ 500 fb−1) δmχ̃0
2
=mχ̃0

2
0.5% 0.7% 1.0%

⊕ (Pþ−, L ¼ 500 fb−1) δmχ̃�
1
=mχ̃�

1
0.5% 0.7% 1.0%

Scaled precision δmχ̃0
1
=mχ̃0

1
0.3% 0.4% 0.5%

(P−þ, L ¼ 1600 fb−1) δmχ̃0
2
=mχ̃0

2
0.3% 0.4% 0.5%

⊕ (Pþ−, L ¼ 1600 fb−1) δmχ̃�
1
=mχ̃�

1
0.3% 0.4% 0.5%

9Here, we switch to the spectrum generator SPHENO since there
exists a direct interface between SPHENO and FITTINO, while no
such interface exists for FITTINO and ISAJET. The mass spectra
generated from ISAJET and SPHENO are slightly different due to
different algorithms used by the code authors.
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the results given in Table VIII of this paper. We will
study and discuss the relevance of these differences in
Sec. VI D. At tree level, the Higgsino masses depend
on μ, M1, M2, and tan β, and thus, precision mea-
surementswill directly constrain these parameters.At
the one-loop level, also the various sfermion masses
enter the calculation, e.g., via fermion-sfermion
loops, which occur via the gauge couplings and
are included in both SPHENO and ISAJET.10

(ii) The polarized total cross sections for chargino and
neutralino production at all relevant center-of-mass
energies with precisions as given in Tables 7.12–
7.14 of Ref. [52]. As for the masses, these are
between 20% and 100% more conservative than the
full simulation results listed in Table IX, and we will
study and discuss the relevance of these differences
in Sec. VI D. Note that in ILC1, Higgsino produc-
tion is kinematically accessible at center-of-mass
energies as low as 250 GeV, while for ILC2 and
nGMM1

ffiffiffi
s

p ¼ 350 GeV is the lowest ILC energy
stage which allows Higgsino production. Therefore,
we consider the alternative running scenario I20 [43]
for these benchmarks. Since the cross sections
depend mainly on the Higgsino masses and on their
mixing nature, i.e., their mass differences, they will
be sensitive to the same parameters as the Higgsino
masses.

(iii) The mass of the lightest CP-even Higgs boson, with
the ILC precision according to [53], as discussed in
Sec. III D. The Higgs boson mass will be instru-
mental in order to constrain the combination of the
trilinear coupling A0 and the sfermion mass param-
eter M0 (or At and the stop mass parameter MU3

in
case of the weak scale fits). Also, in models with RG
running, large A terms affect the running of gaugino
masses and gaugino mass unification.11

TABLE IX. Estimated experimental precisions for the three benchmark points, for the four different final states, and the two beam
polarizations. The full simulation results, performed for

ffiffiffi
s

p ¼ 500 GeV, are given for L ¼ 500 fb−1. The scaled precisions for the
various center-of-mass energies are shown assuming the H20 scenario for ILC1 and the I20 scenario for ILC2 and nGMM1.ffiffiffi

s
p ¼ 500 GeV

ffiffiffi
s

p ¼ 500 GeV
ffiffiffi
s

p ¼ 250 GeV
ffiffiffi
s

p ¼ 350 GeV

Δðσ × BRÞ [%] P−þ Pþ− P−þ Pþ− P−þ Pþ− P−þ Pþ−

ILC1 L ¼ 500 fb−1 Scaled (H20)
χ̃01χ̃

0
2 → χ̃01χ̃

0
1ee 3.98 3.13 2.22 1.75 2.04 1.60 6.94 5.47

χ̃01χ̃
0
2 → χ̃01χ̃

0
1μμ 3.81 2.97 2.13 1.66 1.95 1.52 6.66 5.18

χ̃þ1 χ̃
−
1 → χ̃01χ̃

0
1qqeνe 2.59 4.94 1.45 2.76 1.61 3.22 4.66 9.04

χ̃þ1 χ̃
−
1 → χ̃01χ̃

0
1qqμνμ 2.27 4.30 1.27 2.40 1.41 2.80 4.09 7.87

ILC2 L ¼ 500 fb−1 Scaled (I20)
χ̃01χ̃

0
2 → χ̃01χ̃

0
1ee 3.92 3.50 2.19 1.96 � � � � � � 2.82 2.52

χ̃01χ̃
0
2 → χ̃01χ̃

0
1μμ 3.90 3.33 2.18 1.86 � � � � � � 2.81 2.40

χ̃þ1 χ̃
−
1 → χ̃01χ̃

0
1qqeνe 5.17 10.30 2.89 5.76 � � � � � � 4.09 8.28

χ̃þ1 χ̃
−
1 → χ̃01χ̃

0
1qqμνμ 4.39 8.84 2.45 4.94 � � � � � � 3.47 7.10

nGMM1 L ¼ 500 fb−1 Scaled (I20)
χ̃01χ̃

0
2 → χ̃01χ̃

0
1ee 5.30 4.98 2.96 2.78 � � � � � � 3.84 3.61

χ̃01χ̃
0
2 → χ̃01χ̃

0
1μμ 5.05 4.64 2.82 2.59 � � � � � � 3.66 3.36

χ̃þ1 χ̃
−
1 → χ̃01χ̃

0
1qqeνe 6.20 11.73 3.47 6.56 � � � � � � 4.94 9.48

χ̃þ1 χ̃
−
1 → χ̃01χ̃

0
1qqμνμ 4.99 9.90 2.79 5.53 � � � � � � 3.98 8.00

TABLE X. ILC1, ILC2, and nGMM1 MSSM model masses
from SPHENO3.3.9BETA together with the input precisions as-
sumed in the fit. The assumed input precisions are given for

ffiffiffi
s

p ¼
500 GeV and L ¼ 1600 fb−1. Data sets with other center-of-
mass energies in the H20 and I20 operating scenarios are
neglected.ffiffiffi
s

p ¼ 500 GeV only ILC1 ILC2 nGMM1

Model mass [GeV] mχ̃0
1

104.8 151.3 154.9
mχ̃0

2
127.5 162.4 160.2

mχ̃�
1

116.0 157.0 157.4

Assumed precision δmχ̃0
1
=mχ̃0

1
0.5% 0.7% 1.0%

(P−þ, L ¼ 1600 fb−1) δmχ̃0
2
=mχ̃0

2
0.4% 0.7% 1.0%

⊕ (Pþ−, L ¼ 1600 fb−1) δmχ̃�
1
=mχ̃�

1
0.5% 0.7% 1.0%

10The full one-loop calculations can be found in Appendix D.3
of Ref. [62]. Therefore, some limited sensitivity to the sfermion
mass parameters can be expected if the Higgsino masses are
measured to sufficient precision [63].

11In Ref. [64], it is advocated that the extraction of running
gaugino masses to high precision at the ILC may allow a window
into large trilinear soft terms.
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(iv) The branching ratios BRðh → bb̄Þ, BRðh → cc̄Þ,
BRðh → τþτ−Þ, BRðh → ggÞ, BRðh → WþW−Þ,
BRðh → ZZÞ, and BRðh → γγÞ, with the ILC pre-
cisions according to [43], as discussed in Sec. III D.
Since the Higgs branching ratios in our benchmarks
exhibit only small deviations from the SM case, they
are expected to constrain the sfermion masses as
well an mA from below.

In total, the input comprises 25 observables.
In the following, we will start by discussing fits of

different GUT-scale models in Sec. VA and before pro-
ceeding to the determination of weak-scale parameters in
Sec. V B. Finally, we will address the predictions of the
LSP’s relic density in Sec. V C.

A. Fitting GUT-scale parameters

The fitting of GUT-scale parameters requires strong
assumptions on the underlying SUSY breaking scheme.
Since our benchmarks cover two very different approaches
to unification, it is interesting to study whether these can be
distinguished by directly fitting differentGUT-scalemodels.

1. Results of fitting NUHM2

In the case of NUHM2, we fit the parameters M1=2, μ,
tan β, M0, A0, and mA to the observables described in
Sec. IV C.
Table XI shows the best fit point and its 1 and 2σ

confidence intervals obtained in the case of the ILC1
benchmark, in comparison to the input model parameters.
Tables XII and XIII give the analogous information for the
ILC2 and nGMM1 benchmarks, respectively. In case of the
ILC1 and ILC2 benchmarks, where NUHM2 is the correct
underlying model, the χ2 of the best fit point is very small,
and all fitted parameters agree well with their true input
values. The 1σ uncertainties for M1=2, μ, tan β are typically
10% or better, while M0, A0, and mA, which enter only at
loop level into the considered observables, are still deter-
mined within about 20%.

In the case of the nGMM1 benchmark, the χ2 of the best
fit point is somewhat larger than for the other two bench-
marks, but still so small that an NUHM2 interpretation of
this benchmark cannot be rejected. This is not surprising as
it has been constructed to have the physical observables
very similar to ILC2. However, the best fit point is found
for M1=2 about a factor of 2 bigger, and MA about 60%
larger, than in ILC2. This implies that a direct observation
of the heavy Higgs bosons and the electroweakinos could
distinguish the two models. However, this also raises the
question of whether the weak-scale fits based on input from
the Higgsino properties alone will be able to identify the
nGMM1 benchmark unambiguously as a non-NUHM2
model, with a completely different underlying SUSY
breaking mechanism. We will investigate this in the next
section.
Based on the fitted NUHM2 parameters and their

uncertainties, the mass spectrum of the unobserved spar-
ticles can be predicted for all three benchmark cases. This is
illustrated in Fig. 11. In the cases of ILC1 and ILC2, clear
predictions for the masses of the electroweakinos and the
heavy Higgs bosons are obtained in excellent agreement
with the true model masses, providing motivation and an
energy scale for further upgrades of the ILC. Due to the

TABLE XI. Fitted parameters in the fit of NUHM2 parameters
to ILC1 observables in the H20 scenario. All values in GeVapart
from tan β. Note that the χ2 value of the model point is increased
from 0 by the rounding errors of the observables in the inputs.

Parameter ILC1 NUHM2 true Best fit point 1σ CL 2σ CL

M1=2 568.3 556.7 þ24.3
−20.3

þ37.7
−43.1

μ 115.0 105.3 þ12.8
−8.2

þ14.0
−14.5

tan β 10.0 11.4 þ5.6
−1.6

þ11.4
−1.6

mA 1000 968 þ167
−65

þ288
−130

M0 7025 7685 þ1243
−1917

þ2311
−2095

A0 −10427 −11064 þ2695
−1422

þ2927
−2698

χ2 0.0013 0.0011

TABLE XII. Best fit point and confidence intervals of the
NUHM2 parameters fitted to ILC2 SUSY and Higgs measure-
ments in the I20 operating scenario. Note that the χ2 value of the
model point is increased from 0 by the rounding errors of the
observables in the inputs.

Parameter ILC2 NUHM2 true Best fit point 1σ CL 2σ CL

M1=2 1200 1194 þ107
−68

þ164
−129

μ 150.0 150.7 þ4.3
−4.5

þ7.2
−5.2

tan β 15.0 16.0 þ26.2
−6.6

þ28.8
−6.6

mA 1000 1008 þ141
−118

þ256
−196

M0 5000 4788 þ2546
−3137

þ3566
−3283

A0 −8000 −7663 þ3817
−3926

þ3817
−5342

χ2 0.0007 0.02848

TABLE XIII. Best fit point and confidence intervals of the
NUHM2 parameters fitted to nGMM1 SUSY and Higgs mea-
surements in the I20 operating scenario.

Parameter Best fit point 1σ CL 2σ CL

M1=2 2407 þ150
−135

þ356
−215

μ 155.6 þ1.5
−1.9

þ4.0
−2.9

tan β 10.0 þ2.1
−0.5

þ2.4
−0.7

mA 1603 þ528
−279

þ1026
−469

M0 3422 þ3309
−820

þ4435
−1196

A0 −7409 þ666
−3756

þ887
−5304

χ2 0.233
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modeling of all gauginos by a single M1=2 parameter, the
gluino mass can also be firmly predicted, which can give
important inputs to LHC analyses. If the predicted gluino
were not observed, or observed at a very different mass,
this would give strong support to the idea that nature does
not describe all gauginos by one mass parameter at the
GUT scale. The other sfermions are less well constrained
than the Higgs bosons and gauginos, but upper limits on
their masses can still be obtained. Such information would
provide important motivation—and a target energy scale—
for a future hadron collider.
Even in case of the nGMM1 benchmark, the NUHM2 fit

predicts the general pattern of the mass spectrum correctly,
albeit with less precision and significantly worse agreement
between true model masses and the best fit point. The
worse agreement is not surprising as we are fitting a wrong
model hypothesis in this case. Nonetheless, upper limits on
all sparticle masses are obtained, which shows that even in
the case that the wrong model is assumed, such important
information for the planning of future colliders or upgrades
can be obtained.

2. Results of fitting NUHM1 and CMSSM

Before turning to the weak-scale fits, we investigate
whether the three benchmarks could also be described by
other widely used constrained models, in particular
NUHM1 [65] and the CMSSM, which have one or even
two fewer parameters to model the Higgs and Higgsino
sectors: in NUHM1, instead of MA and μ (or M0

Hu
and

M0
Hd
), only one parameter, M0

H, is used to describe the
Higgs and Higgsino sectors, while in the CMSSM this
reduces further to only the sign of μ being a free choice,
while its absolute value is derived from the other model
parameters. Table XIV gives the best fit point obtained
when fitting NUHM1 and CMSSM to the ILC1 and
ILC2 benchmarks, which give very large values of
χ2=d:o:f. These interpretations could be ruled out at the
95% C.L. already with about 0.1% the total integrated
luminosity.

B. Weak scale fit results

In the following, the results of various weak scale fits to
the ILC1, ILC2, and nGMM1 observables are discussed.
The most general model considered is pMSSM-10, the
MSSM with ten weak scale input parameters:M1,M2,M3,
μ, tan β, mA, At ¼ Ab ¼ Aτ, and MQ3

, MU3
¼ MD3

,
ML ¼ ML1;2;3

¼ ME1;2;3
¼ MQ1;2

¼ MU1;2
¼ MD1;2

. We use
this model to test whether it is possible to constrain a
comprehensive set of parameters from the observables of
the Higgsino sector alone and to study the influence of the
parameters in which the Higgsino sector enters only at loop
level. If the pMSSM-10 fit is successful and reproduces the
input parameters at a satisfactory level, we proceed to
investigate the precision achievable when fitting only tree-
level Higgsino parameters. For this, we use the phenom-
enological MSSM with a reduced number of four free
parameters, the pMSSM-4, which fixes the squark, slepton,
heavy Higgs boson, and gluino parameters to their true
values and so only depends on the four weak scale
parameters M1;2, μ, and tan β. In a real analysis, the “true”
values are of course unknown, but instead, the best fit point
of pMSSM-10 fit could be used, which agrees with the
model point to usually much better than 1σ. The possible

FIG. 11. Predicted mass ranges for all the unobserved sparticles from the NUHM2 fit the observables of the three benchmark models.
The green star indicates the true model mass, while the black dot shows the best fit point.

TABLE XIV. Best fit points inCMSSMandNUHM1 fits of ILC1
and ILC2 observables, including SUSY and Higgs measurements
in the H20 operation for ILC1 and I20 operation for ILC2.

Best fit points
parameter

ILC1
CMSSM

ILC2
CMSSM

ILC1
NUHM1

ILC2
NUHM1

M1=2½GeV� 128.8 155.9 136.9 159.9
M0½GeV� 3585 5631 1796 4264
A0½GeV� −6873 −10873 −4396 −10086
tan β 13.7 16.2 16.2 14.8
M0

H0
½GeV� � � � � � � 47659 56553

χ2min 238046 93155 235014 85174

χ2=dof 11336 4436 11751 4259
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bias from fixing the six non-Higgsino parameters was
tested explicitly in case of ILC1 by fixing them to some
point in the 2σ region. The best fit gaugino masses are
nearly the same in the two pMSSM-4 fits irrespective of the
fixed parameters. Their difference is only 2.5 GeV for χ̃03
and 0.8 GeV for χ̃04 and χ̃�2 . The two sets of best fit masses
agree within the 1σ uncertainties [52]. In the following, the
results for the individual benchmarks will be presented.

1. ILC1 benchmark

Figure 12 shows the minimum χ2 as a function of M1,
M2, and μ and tan β in the pMSSM-10 and pMSSM-4 fits.
Due to the much smaller parameter space to be sampled
in the case of the four-dimensional fit, the resulting
curve is much smoother than in the ten-dimensional case.
The precision onM1 is nearly identical in both cases.M2 is
somewhat better constrained in the pMSSM-4 fit, while the
determination of μ and tan β improves drastically.
The resulting best fit values for the pMSSM parameters

and their 1 and 2σ intervals are compared to the input
values in Table XV, quantifying the effect which could

already be seen qualitatively in Fig. 12. In the case of
the pMSSM-10 fit, it should be noted that also for the
parameters of the colored sector some constraints, and
especially upper bounds, can be obtained. This even applies
for the squark mass parameters, which might seem surpris-
ing at the first glance, but is due to the two-loop RGEs
included in SPHENO. If a hypothetical gluino mass meas-
urement with 11% uncertainty from the LHC [25] is
included in the fit, the constraint on M3 improves accord-
ingly to about 10%. All other parameters, including the
squark mass parameters, show only minor improvements.
Figures 13(a) and 13(b) illustrate the precisions obtained

on the pMSSM-10 parameters, without and with assuming
a gluino mass measurement from the LHC, respectively.
Thereby, tan β is displayed as if it were in GeV. It can
clearly be seen that the precision on M3 is improved
considerably by the gluino mass measurement, while the
precision on all the other parameters do not change
significantly.
The determined parameters can be used to predict the

masses of the yet unobserved sparticles, as shown for the
pMSSM-10 fit in Table XVI and Fig. 14, again without and
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FIG. 12. ILC1: Minimum χ2 as a function of M1, M2, and μ and tan β in pMSSM-4 fit (dashed black line) and pMSSM-10 fit (solid
grey line). For each bin, the minimum χ2 of all Markov chain points, which have the x axis quantity in that bin is plotted.
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with assuming a gluino mass measurement from the LHC.
As expected from Fig. 13, the effect of the gluino
measurement on the other predicted masses is small.
Figure 15 illustrates the result of the corresponding

pMSSM-4 fit with M1, M2, μ, and tan β only. All four
parameters can be determined accurately as also shown in
Table XV. This results in predictions for the masses of the
heavier electroweakinos with precisions between 1.6%
and 3%.

2. ILC2 benchmark

In the case of the ILC2 benchmark, the overall situation
is similar to the case of ILC1. The minimum χ2 as a
function of M1, M2 and μ and tan β is displayed in Fig. 16

for the pMSSM-10 and pMSSM-4. However, this time the
I20 running scenario was assumed, cf. Sec. IV C. Also here,
the resulting curve for the four-parameter fit is much
smoother than for the ten-parameter version due to the
much smaller parameter space to be sampled. Like for
ILC1, the precision on M2 improves somewhat in the
pMSSM-4 fit, while μ and tan β are significantly better
constrained.
The resulting best fit values for the pMSSM parameters

and their 1 and 2σ intervals are compared to the input
values in Table XVII, quantifying the effect which could
already be seen qualitatively in Fig. 16. Again constraints
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FIG. 13. Predicted SUSY parameter ranges from the pMSSM-10 fit to ILC1. The magenta star indicates the true model values, while
the black dot shows the best fit point.

TABLE XV. Fitted parameters in ILC1 pMSSM-4, and
pMSSM-10. All units in GeV except for tan β and χ2.

ILC1
pMSSM
true

pMSSM-4 pMSSM-10

Parameter
best fit
point 1σ CL 2σ CL

best fit
point 1σ CL 2σ CL

M1 250 250.2 þ8.2
−7.7

þ17.1
−15.1 251.3 þ8.6

−15.7
þ17.2
−23.7

M2 463 463.3 þ8.0
−8.1

þ16.2
−14.9 465.8 þ24.2

−23.0
þ31.4
−49.8

μ 115.0 115.0 þ0.2
−0.2

þ0.3
−0.3 115.7 þ10.9

−4.7
þ20.3
−6.1

tan β 10.0 10.0 þ0.1
−0.1

þ0.2
−0.2 9.7 þ8.8

−3.0
þ45.3
−3.5

mA 1000 1050 þ310
−180

þ607
−296

M3 1270 1412 þ1791
−1104

þ1411
−2843

ML 7150 7063 þ2029
−4311

þ2645
−5632

MUð3Þ 1670 1751 þ2414
−628

þ4498
−740

MQð3Þ 4820 4951 þ2324
−3226

þ3858
−3226

At¼b¼τ −4400 −4591 þ1371
−973

þ1647
−2949

χ2 0.0011 0.1360

TABLE XVI. True and fitted masses as well as their uncer-
tainties from a pMSSM-10 fit to ILC1 observables. All values
in GeV.

ILC1

Prediction Model value best fit 1σ CL 2σ CL

mχ̃0
3

265.4 267 þ8
−16

þ16
−26

mχ̃0
4

521.4 524 þ20
−26

þ26
−55

mχ̃�
2

521.2 524 þ19
−26

þ25
−55

mH0
1001 1050 þ310

−190
þ610
−290

mA0
1000 1050 þ310

−190
þ610
−290

mH� 1008 1056 þ304
−176

þ604
−276

mũL 7229 7143 þ2037
−4343

þ2657
−5603

mũR 7203 7117 þ2023
−4337

þ2643
−5577

mt̃1 1906 2003 þ1857
−763

þ3957
−803

mt̃2 4903 5033 þ2347
−1993

þ3947
−2653

mb̃1
4899 5028 þ2352

−3188
þ3912
−3488

mb̃2
7216 7130 þ2030

−4310
þ2650
−4470

mg̃ 1539 1693 þ1807
−1273

þ2827
−1693
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on the sfermion sector can be derived due to their loop
contributions. In contrast to the perfect agreement of the
best fit point with the input parameter values in ILC1, the
best fit point for ILC2 visibly overestimates the sfermion
mass parameters. However, the true values still remain
within the 1σ interval. Figure 17(b) displays the precisions
obtained on the pMSSM-10 parameters. In the case of
ILC2, the gluino is most likely outside the reach of LHC;
therefore, M3 is only constrained via its loop effects on the
Higgsino sector.
As in the ILC1 case, the determined parameters can be

used to predict the masses of the as-yet unobserved
sparticles, as shown for the pMSSM-10 fit in Table XVIII

and Fig. 17(a). Finally, Fig. 18(a) shows the result of the four
parameter fit of M1, M2, μ, tan β. Again, the remaining
parameters fixed to model values, based on the assumption
that the best fit point of the ten-parameter fit is sufficiently
close to the true point that the effect of fixing to the true
values is negligible.

3. nGMM1 benchmark

Finally, Fig. 19 shows the minimum χ2 as a function of
M1, M2 and μ and tan β in the pMSSM-10 and pMSSM-4
fits to the nGMM1 observables. Also here, the much
smaller parameter space to be sampled in case of the

FIG. 14. Predicted mass ranges from the pMSSM-10 fit to ILC1. The green star indicates the true model values, while the black dot
shows the best fit point.

FIG. 15. Predicted mass and SUSY parameter ranges from the pMSSM-4 fit to ILC1. The green/magenta star indicates the true model
values, while the black dot shows the best fit point.
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four-dimensional fit leads to much smoother curves than in
the ten-dimensional case. Again, the determinations of μ
and tan β improve significantly. However, M1 and M2

exchange their roles compared to the other benchmarks,
so that now M1 is somewhat better constrained in the
pMSSM-4 fit, while the precision onM2 is nearly identical
in the two fits. However, it should be noted thatM1 andM2

are less well constrained than in the cases of the ILC1 and
ILC2 benchmarks. This results from a combination of the
worse experimental resolutions and the larger absolute
values of M1 and M2 in case of nGMM1. In this most
challenging case, the mass splitting between χ̃�1 and χ̃01 is
only 2.5 GeV, which corresponds to less than 2σ of the
experimental resolution. As discussed in Sec. III C, the
mass differences mχ̃0

2
−mχ̃0

1
and mχ̃�

1
−mχ̃0

1
are directly

accessible experimentally as the end point of the dilepton
or dijet invariant mass spectrum. Therefore, we consider
in this case as alternative input, these mass differences in
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FIG. 16. ILC2: Minimum χ2 as a function of M1, M2 and μ and tan β in pMSSM-4 fit (dashed black line) and pMSSM-10
fit (solid grey line). For each bin, the minimum χ2 of all Markov chain points which have the x axis quantity in that bin is
plotted.

TABLE XVII. Fitted parameters in ILC2 pMSSM-4 and
pMSSM-10. All units in GeV except for tan β and χ2.

ILC2
pMSSM
true

pMSSM-4 pMSSM-10

Parameter
best fit
point

1σ
CL

2σ
CL

best fit
point

1σ
CL

2σ
CL

M1 520.3 520.7 þ38.6
−37.6

þ79.1
−71.0 502.1 þ91.3

−32.9
þ130.1
−71.7

M2 957.2 959.42 þ55.4
−53.1

þ124.1
−100.1 941.0 þ145.4

−71.7
þ229.2
−130.9

μ 150.0 150.0 þ0.4
−0.4

þ0.7
−0.8 154.4 þ24.7

−7.3
þ36.6
−8.2

tan β 15.0 15.0 þ0.7
−0.6

þ1.7
−1.2 14.8 þ38.4

−7.8
þ48.2
−9.0

mA 1000 1043 þ135
−203

þ240
−325

M3 2607 2684 þ4990
−2585

þ5670
−2682

ML 5146 5797 þ2402
−5359

þ3511
−5544

MUð3Þ 1395 2073 þ3518
−1805

þ4716
−1805

MQð3Þ 3757 4871 þ3680
−3933

þ5030
−4608

At −4714 −5948 þ2734
−3387

þ3250
−4050

χ2 0.0026 0.1627
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addition to the χ̃01 mass, which also presents a set of
observables with minimal correlations.12 The correspond-
ing precisions are summarized in Table XIX.
As can be seen in Fig. 20, the determination ofM2 in the

ten-parameter fit improves significantly when instead of
the absolute masses the mass differences are used as fit
input, especially the upper bound. There is no significant
effect on M1, μ, or tan β.
The resulting best fit values for the pMSSM parameters

and their 1 and 2σ intervals are compared to the input
values in Table XX, quantifying the effect which could
already be seen qualitatively in Figs. 19 and 20. As before,
constraints on the sfermion sector can be derived due to
their loop contributions. In contrast to the perfect agree-
ment of the best fit point with the input parameter values in
ILC1, the best fit point for nGMM1 visibly overestimates
the sfermion mass parameters. However, the true values
still remain within the 1σ interval. Using the mass
differences as input, instead of the absolute Higgsino
masses, notably improves the precision onM2, as expected
from the χ2 distribution, but it also significantly improves
the agreement of the best fit point with the true model
parameters. These improvements can also be seen in
Figs. 21(b) and 21(d), in particular, the better agreement
in mA and At.
Again, the determined parameters can be used to predict

the masses of the yet unobserved sparticles, as shown for
the pMSSM-10 fit in Table XXI and in Figs. 21(a) and
21(c) with standard input and when using the mass
differences instead. As expected, the improved precision
on M2 when using the mass differences as input

leads to improved predictions of the χ̃03 and χ̃�2
masses. In addition, the agreement between the best fit
predictions for the heavy Higgs boson masses as well
as for all the sfermion masses with their true value
improves significantly due to the better agreement in
mA and At.
Finally, Fig. 22(a) shows the result of the four parameter

fit ofM1,M2, μ, tan β. Again, the remaining parameters are
fixed to their model values, based on the assumption that
the best fit point of the ten-parameter fit is sufficiently close
to the true point that the effect of fixing to the true values is
negligible. The masses of the heavier electroweakinos are

FIG. 17. Predicted mass and SUSY parameter ranges from the pMSSM-10 fit to ILC2. The green/magenta star indicates the true model
values, while the black dot shows the best fit point.

TABLE XVIII. True and fitted masses as well as their un-
certainties from a pMSSM-10 fit to ILC2 observables. All values
in GeV.

ILC2

Prediction Model masses best fit 1σ 2σ

mχ̃0
3

534.6 518 þ72
−34

þ110
−74

mχ̃0
4

1026 1018 þ82
−76

þ190
−134

mχ̃�
2

1026 1018 þ82
−76

þ190
−134

mH0
1000 1043 þ137

−223
þ257
−323

mA0
1000 1043 þ137

−223
þ257
−323

mH� 1003 1045 þ135
−205

þ255
−325

mũL 5158 5814 þ2286
−5474

þ3406
−5534

mũR 5143 5795 þ2285
−5495

þ3385
−5495

mt̃1 1535 2322 þ2318
−1902

þ3378
−2062

mt̃2 3782 4917 þ3663
−3277

þ4983
−3317

mb̃1
3774 4911 þ3189

−4471
þ3869
−4631

mb̃2
5154 5814 þ2766

−4734
þ4086
−5254

mg̃ 2846 2955 þ3925
−2735

þ4445
−2935

12Note that FITTINO does not offer the option to input a
covariance matrix of all input quantities and assumes all inputs
as uncorrelated.
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FIG. 18. Predicted mass and SUSY parameter ranges from the pMSSM-4 fit to ILC2. The green/magenta star indicates the true model
values, while the black dot shows the best fit point.
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FIG. 19. nGMM1: Minimum χ2 as a function ofM1,M2 and μ and tan β in pMSSM-4 fit (dashed black line) and pMSSM-10 fit (solid
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predicted within an 1σ uncertainty of about 150 GeV.
This fit has only been run with the standard input; further
improvements could be expected when using the mass
differences as input also in this fit.

C. Dark matter in Higgsino fits

An additional benefit from our fits to MSSM parameters
is that it is possible to extract various WIMP dark matter
related observables [66]. These include 1. the thermally
produced WIMP relic density ΩTP

χ̃ h2, 2. the spin-dependent
(SD) and spin-independent (SI) WIMP-nucleon scattering
cross section [e.g., σSIðχpÞ] which is constrained by WIMP
direct detection search experiments, and 3. the thermally
averaged WIMP-WIMP annihilation cross section times
relative velocity (evaluated as v → 0) hσvi which is con-
strained by indirect WIMP search results, which look for
cosmic WIMP-WIMP annihilation to high energy photons
and antimatter. The theory predictions for these observables
from ISARED [67] and ISARES [68] are listed in Table I. The
Higgsino-like WIMPs are thermally underproduced as dark
matter and if their abundance is augmented via nonthermal
WIMP production, then the Higgsino-like WIMPs are
excluded by direct and indirect WIMP search experiments
[69]. However, by requiring naturalness in the QCD sector
(i.e., the axionic solution to the strong CP problem) as well
as in the electroweak sector, then we are led to require
the presence of axionic dark matter as well. Thus, from
naturalness, we expect two dark matter particles: axions as
well as Higgsino-like WIMPs. In fact, detailed calculations
using eight coupled Boltzmann equations (which track
axion, WIMP, axino, saxion, gravitino, and radiation
abundances) suggest that the axions usually dominate
the dark matter abundance [70]. Then the diminished
presence of Higgsinos in the relic DM density leads to
consistency with WIMP search results since there are
fewer Higgsinos present in the relic abundance (typically
10%–20%) than is usually assumed (100%).
To obtain these fitted values, we use FITTINO [29]

together with MICROMEGAS [71] and ASTROFIT [72]. The
fitted and scaled relic density is plotted, and the 2σ
confidence interval has been extracted. The center of
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FIG. 20. nGMM1 χ2 parabola for M2 in the ten-parameter fit
with mass differences (black, dashed) and the same fit with
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TABLE XIX. Experimental precision on the Higgsino mass
differences in nGMM1 combined from 500 GeV 500−1 fb for both
Pð�0.8;∓0.3Þ, as well as scaled to 1600 fb−1 for both polar-
izations at

ffiffiffi
s

p ¼ 500 GeV, ignoring the data sets with other center-
of-mass energies in the I20 operating scenario. Again, it is assumed
that theprecisions obtained from the simulationsbasedon the ISAJET
spectrum can be transferred to the SPHENO3.3.9BETA spectrum.

Observable
nGMM1 model
value [GeV] Precision I20 precision

mχ̃0
1

154.9 1.7% 1.0%
mχ̃0

2
−mχ̃0

1
5.3 2.1% 1.4%

mχ̃�
1
−mχ̃0

1
2.4 2.5% 1.2%

TABLE XX. Fitted parameters in nGMM1: pMSSM-4, pMSSM-10, and pMSSM-10 with mass differences as input. All units in GeV
except for tan β and χ2.

pMSSM-4 pMSSM-10 pMSSM-10 with mass differences

Parameter True Best fit point 1σ CL 2σ CL Best fit point 1σ CL 2σ CL Best fit point 1σ CL 2σ CL

M1 1493 1501 þ173
−149

þ411
−280 1386 þ2386

−145
þ2830
−282 1573 þ2091

−282
þ5650
−344

M2 1720 1711 þ220
−158

þ530
−279 1768 þ254

−451
þ717
−549 1710 þ137

−313
þ277
−394

μ 150.0 150.0 þ0.4
−0.4

þ0.9
−0.9 154.2 þ7.4

−8.7
þ12.9
−8.3 149.9 þ11.5

−3.4
þ15.3
−4.2

tan β 10.0 10.0 þ0.5
−0.3

þ1.2
−0.6 8.3 þ41.9

−1.3
þ44.6
−1.9 11.2 þ32.5

−3.4
þ63.9
−4.2

mA 2000 2655 þ6493
−1449

þ11492
−1596 1868 þ4018

−567
þ6423
−867

M3 2646 3173 þ4229
−3168

þ5347
−3168 2677 þ3892

−2541
þ4550
−2614

ML 5115 4781 þ3589
−4077

þ4630
−4456 5412 þ1629

−4581
þ2319
−5118

MUð3Þ 1381 1774 þ2384
−1086

þ4826
−1214 996 þ3540

−500
þ4686
−741

MQð3Þ 3701 4011 þ3254
−3535

þ3982
−3697 3874 þ1983

−3245
þ2356
−3370

At −4857 −6766 þ3698
−509

þ4012
−1702 −4582 þ1558

−4006
þ1750
−4390

χ2 0.0138 0.0927 0.0668
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the 2σ confidence level is calculated and used as the
mean. The width of the 2σ range is divided by two to
obtain the 1σ width assuming the Δχ2 distribution is
parabolic. The distributions are more flat than parabolic so
this procedure gives a conservative estimate of the 1σ
width. The relic density distribution from each fit is
plotted, assuming a Gaussian distribution, in Fig. 23. In
the case of the pMSSM-10 fit without any further inputs,
the relic density is not sufficiently constrained. However,
this has been traced to be due to fit solutions with
extremely low gluino masses of less than 200 GeV.
Excluding these points, the blue dashed curves are
obtained, which show a very good determination of the
relic density agreeing quite well with the theoretical value.

The precision improves even further when the pMSSM4
fit is run after the pMSSM10 fit. Such a measurement of
the relic density would clearly confirm a possible under-
abundance of Higgsino-like WIMPs.
We also fit the expected values of σSIðχpÞ and hσviwhich

are listed in Table XXII (these theory values are somewhat
higher than those obtained in Table I using ISARES [68] due
to ISAJET/SPHENO spectrum differences and different coding
algorithms for direct/indirect detection rates). The σSI values
can be fit to an accuracy typically better than 1% while
the hσvi values are typically fit to ∼10% or worse. By
comparing the direct detection rates from WIMP detection
experiments to the ILC fitted values for a measured Higgsino
massmχ , a direct measurement ofWIMP relic density can be

FIG. 21. Predicted mass and SUSY parameter ranges from the pMSSM-10 fit to nGMM1 observables—including either χ̃02 and χ̃�1
masses or their mass differences with the LSP. The green/magenta star indicates the true model values, while the black dot shows the best
fit point.
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made since the WIMP direct detection rates are actually
sensitive to ξσSI, where ξ is the ratio of actual WIMP
abundance divided by the total measured abundance
Ωaþχh2. Such interplay between ILC results and direct
detection results offer direct confirmation that WIMPs would
comprise only a portion of dark matter. In addition, indirect
WIMP detection rates are proportional to ξ2 since they
search for WIMP-WIMP annihilation. The interplay of ILC
results with indirectWIMP detection rates could offer further
confirmation for multicomponent dark matter.

VI. TESTING GAUGINO MASS UNIFICATION

The pMSSM parameters which were extracted in
Sec. V B were fitted at the energy scale Q ¼ 1 TeV.
The scale dependence of the parameters is governed by
their renormalization group equations or RGEs. Using the
MSSM RGEs, the fitted parameters can be evolved to
higher energy scales in order to check hypotheses regarding
unification. Specifically, we will test the unification of the
various gaugino masses which are assumed to unify at
Q ¼ mGUT ≃ 2 × 1016 GeV (the scale at which gauge
couplings unify) in models like NUHM2 and NUHM3
but which would unify at a lower scale in models such as
nGMM1. Since in this work we do not subscribe to any
particular GUT or string theory, GUT scale threshold
corrections to gauge and Yukawa couplings and soft
SUSY breaking terms are not imposed.
This section continues the program initiated by Blair

et al. of extracting tests of high scale unification from weak
scale measurements of SUSY particle properties at ILCv
[74,75]. Since the estimates of the achievable precision
for the experimental observables used in Sec. V are
somewhat more pessimistic than the results obtained in
Sec. IV, we also discuss the expected impact of the
experimental improvements taking the nGMM1 benchmark
as an example.

A. Method

The running pMSSM-10 weak scale parameters and
error bars are extracted using FITTINO and SPHENO3.3.9BETA

at Q ¼ 1 TeV. Then a random scan of 104 samples of the
ten parameters is performed, approximating the parameter
PDFs as either Gaussian or flat within �1σ, depending on
the shape of their χ2 distribution; see, e.g., Fig. 19. For each
of the sampled points, SPHENO was used to calculate the

TABLE XXI. nGMM1: True and fitted masses and their un-
certainties from pMSSM-10 fits with the standard set of observ-
ables aswell as with theHiggsinomass differences replacing the χ̃02
and χ̃�1 masses as observables. All values in GeV.

nGMM1M nGMM1ΔM

Prediction
Model mass

best fit 1σ 2σ Best fit 1σ 2σ

mχ̃0
3

1522 1412 þ454
−134

þ640
−260 1603 þ149

−283
þ347
−349

mχ̃0
4

1809 1854 þ1920
−264

þ2364
−336 1802 þ1834

−146
þ2710
−218

mχ̃�
2

1808 1853 þ229
−443

þ601
−557 1801 þ137

−349
þ275
−433

mH0
2000 2655 þ6365

−1355
þ7125
−1555 1868 þ3992

−528
þ6372
−828

mA0
2000 2655 þ6365

−1355
þ7125
−1555 1868 þ3992

−528
þ6372
−828

mH� 2002 2656 þ6364
−1336

þ7124
−1556 1863 þ3997

−523
þ6377
−823

mũL 5121 4762 þ3698
−4282

þ4718
−4582 5421 þ1619

−4721
þ2239
−5221

mũR 5110 4754 þ3666
−4294

þ4706
−4594 5408 þ1612

−4708
þ2232
−5108

mt̃1 1519 1951 þ1549
−1411

þ3889
−1471 1168 þ3332

−548
þ3332
−868

mt̃2 3782 4029 þ3120
−2160

þ3900
−2520 3894 þ2026

−2014
þ2326
−2394

mb̃1
3774 4008 þ2852

−3448
þ3712
−3748 3888 þ2032

−3168
þ2232
−3528

mb̃2
5154 4763 þ3697

−3703
þ4717
−4263 5419 þ1621

−4599
þ2241
−4739

mg̃ 2846 3361 þ3259
−3261

þ4559
−3361 2924 þ2976

−2684
þ3556
−2804

FIG. 22. Predicted mass and SUSY parameter ranges from the pMSSM-4 fit to nGMM1. The green/magenta star indicates the true
model values, while the black dot shows the best fit point.
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running parameters at each of 21 energy scales between 91
and 1019 GeV. The mean and standard distribution of these
parameters’ distributions at each energy scale were used
to define confidence bands, as shown in, e.g., Fig. 22(b).
The unification scale Qunif is determined by fitting linear
functions the running parameters in a range close to the
visible intersection and extracting the intersection point.
With each value forQunif, a corresponding estimate ofM1=2

is determined. Gaussian functions can be fitted to the
distributions of the resulting values for Qunif and M1=2 in
order to obtain central values and uncertainties.
For the gluino mass, several scenarios are considered:

the determination from loop contributions to the Higgsino
observables only, a direct observation at the LHC resulting
in a precision of 10% on the physical gluino mass, or
simply by assuming gaugino mass unification. In the latter
case, the extracted mean M1=2 and Qunif values can be
used to determine the value of M3ðQ ¼ 1 TeVÞ and con-
sequently, the physical gluino mass. In this case, predictions
for the expected value ofmg̃may bemadewhich can serve as
a target for future hadron collider searches or compared to
the mass of an already-discovered gluino.

B. Running gaugino masses for ILC1

The weak scale ILC1 parameters are sampled according
to Gaussian distributions for M1 and M2 and uniformly

within the 1σ range forM3, motivated by the shape of the χ2

distributions obtained in the pMSSM-10 fits discussed in
Sec. V B 1. The resulting running of the gaugino mass
parameters in the ILC1 pMSSM-10 fit is plotted in
Fig. 24(a). From the plot, it can be seen that M1 and
M2 cross near 1016 GeV, which would verify the prediction
of a SUSY GUT model. The uncertainty band for M3 is
quite wide but is consistent with the hypothesis of uni-
fication of all three gaugino masses at the same energy
scale. The extracted unification scale Qunif for M1 and M2

is plotted in Fig. 25(a) from which it can be seen that the
distribution follows a Gaussian. The gaugino mass uni-
fication scale is found to be Qunif ¼ 3.8 × 1016 GeV with a
68% confidence range of ½3.0 × 1015; 4.9 × 1017� GeV.
From Fig. 25(b), the unified gaugino mass parameter is
found to be M1=2 ¼ 583� 40 GeV in agreement with the
GUT scale model fit.
If it is then assumed that the unification is due to an

NUHM2 model, and true model parameter values are
assumed for parameters other than M1=2, then instead
M3 can be extracted by running down in energy to find
the running value ofM3ðQ ¼ 1 TeVÞ. From Fig. 24(b), we
obtain M3ðQ ¼ 1 TeVÞ ¼ 1216� 76 GeV (which agrees
with the weak scale fitted value). Consequently, a pre-
diction for the physical gluino mass can be obtained:
mg̃¼1467�80GeV, which could then be checked against
results from hadron collider searches.

C. Running gaugino masses for ILC2

The uncertainties of the weak scale gaugino mass fit
parameters are larger in the case of ILC2 as compared to
ILC1. Still, the weak scale ILC2 parameters are sampled
according to Gaussian distributions for M1 and M2 and
uniformly within the 1σ range for M3, motivated by the
shape of the χ2 distributions obtained in the pMSSM-10 fits
discussed in Sec. V B 2. The larger uncertainties are
reflected in the running gaugino mass plots in Figs. 26(a)
and 26(b). Nevertheless, it is still possible to verify thatM1

andM2 unify near the GUT scale. For ILC2, the fitted weak
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FIG. 23. Fitted relic densities in ILC1, ILC2, and nGMM1 fits.

TABLE XXII. Relic density from MICROMEGAS and ASTROFIT,
and direct and indirect detection cross sections from ASTROFIT in
the pMSSM-10 fits to ILC1, ILC2, and nGMM1 observables
(without the gluino mass measurement). ΩPlanck is taken to be
0.1199 [73].

Observable ILC1 ILC2 nGMM1

σSI model [10−9 pb] 259.3 316.9 328.5
σSI best fit [10−9 pb] 260.7þ4.1

−6.9 317.0þ2.1
−2.1 328.5þ1.5

−0.9
hσvi model [10−27 cm3 s−1] 15.36 3.439 0.597
hσvi best fit [10−27 cm3 s−1] 15.01þ1.52

−0.88 3.501þ5.741
0.523 0.621þ0.994

−0.165
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scale error band for M3 is so wide that it is consistent with
unification with M1 or M2 at almost any scale.
Using the same methodology as for ILC1, the unification

scale for ILC2whereM1 ¼ M2 is found to beGaussianwith
a mean of Qunif¼1.5×1016GeV with a 68% confidence
interval of ½5.4 × 1013; 4.4 × 1018� GeV, as shown in
Fig. 27(a). The unified value of M1=2 is found in
Fig. 27(b) to be Gaussian with M1=2 ¼ 1220� 170 GeV,
which corresponds to theGUT scale fit model value. IfM3 is
instead assumed to unify with M1 and M2 at Qunif and the
NUHM2 model is adopted, then the extrapolated value of
M3 at 1 TeV is found to be M3ðQ ¼ 1 TeVÞ ¼ 2616�
582 GeV while the physical gluino mass is found to be

mg̃ ¼ 2872� 605 GeV. Such a large value may serve as a
target for gluino pair searches at upgraded hadron colliders.

D. Running gaugino masses for nGMM1

The running of the gaugino mass parameters in the
nGMM1 benchmark model differs from the running in
the ILC1 and ILC2 models. There are two reasons: 1. the
underlying model is now a mirage unification model where
the gaugino mass parameters unify at an intermediate
energy scale, and 2. the determination of M1 and M2 from
the weak scale fits is much less accurate in nGMM1 as
compared to the ILC1 and ILC2 benchmark models.
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run to the weak scale to gain a prediction for M3ðQ ¼ 1 TeVÞ.
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Figure 28(a) shows the running gaugino masses resultant
from the pMSSM-10 fit with absolute masses as input as
described in Sec. V B 3. Even in this most conservative
case, the plot is certainly inconsistent with any sort of GUT
scale unification of gaugino masses. From a closer look, we
notice that the hierarchy between M1 and M2 at Q ¼
1 TeV is not well defined, and that actually the M1 band
seems to start above the lower rim of the M2 band. This
effect occurs since, motivated by the shape of the χ2

landscape of the pMSSM-10 fit (cf. Fig. 19), M1 and
M3 are sampled from a uniform distribution and onlyM2 is
treated with a Gaussian. In addition, the 1σ interval for M1

is very asymmetric around the best fit point (cf. Table XX).
In combination with the flat sampling, the 1σ band for M1

seems to start much higher than the best fit value for M1

would indicate.
A substantial improvement of the precision can be seen

in Fig. 28(b), which shows the analogous result obtained
when using the improved experimental precisions pre-
sented in Sec. IV C plus a 10% measurement of the gluino
mass from the HL-LHC (or other future hadron collider). In
addition to the improved inputs, the parameter extraction
has also been refined: the estimates of M1, M2, and M3 at
the weak scale are obtained from a fit of only the pMSSM-4
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deviation. (a) UsingM3 at the weak scale as constrained from ILC measurements (b)M3 is assumed to unify withM1 andM2 and then
run to the weak scale to gain a prediction for M3ðQ ¼ 1 TeVÞ.
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parameters and M3, which could be run subsequently
to an initial pMSSM-10 fit as outlined at the beginning
of Sec. V B. In this case, all parameters can be sampled
from Gaussian distributions, as can be seen from Fig. 19.
The weak scale hierarchy between M1 and M2 is now
well determined, and a clear crossing of all three bands is
found at a scale much lower than the GUT scale: around
107–108 GeV, consistent with the theory mass unification
scale for the model point which occurs at 107 GeV.
This is not even the most optimistic case, since further

improvements can be expected from using the Higgsino

mass differences instead as input [cf. Fig. 21(d)] and from
more precise χ̃�1 and χ̃02 masses extracted from scanning the
thresholds of χ̃þ1 χ̃−1 and χ̃02 χ̃0i production, respectively.
In addition, the consideration of further constraints from
improved EWPOs, flavor physics, direct search limits etc.,
is expected to further improve the weak scale parameter
determination.
For the conservative version of the running masses in

Fig. 28(a), we quantify the constraints on the unification
scale in Fig. 29(a). While the distribution of obtained Qunif
values has no clear peak, it increases towards lower
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unification scales, away from the GUT scale. A unification
at ∼1016 GeV is excluded with 99.9% probability. The
most probable unified value of M1=2 was found to be
1600� 450 GeV in Fig. 29(b). The drastic improvement in
Fig. 28(b) compared to Fig. 28, illustrates the substantial
impact which can be expected from further refinements of
the underlying analysis.
Due to the extracted gaugino mass unification scale

not matching with the GUT scale, there would be
important implications for SUSY model building. It is
noteworthy that the pMSSM fit and the fit parameter
evolution indicate that the underlying model does not
have gaugino mass unification, even though the fit of
NUHM2 parameters to the nGMM1 observables pre-
sented in Sec. VA does not entirely rule NUHM2 out as
a possible model.

VII. SUMMARY AND CONCLUSIONS

Supersymmetry with radiatively driven naturalness is
especially compelling in that it reconciles electroweak
naturalness with (multi-TeV) LHC sparticle mass limits
and Higgs boson mass measurements. The most funda-
mental consequence of radiatively driven natural SUSY is
the prediction of four light Higgsinos χ�1 , χ01;2 with a
mass ∼100–300 GeV (the lower the better). Such light
Higgsinos are difficult (but perhaps not impossible) to see
at LHC, but would be easily visible at ILC operating withffiffiffi
s

p
> 2mðHiggsinoÞ. In this case, the ILC, initially con-

structed as a Higgs factory, would turn out to be a Higgsino
factory. Thus, for this highly motivated scenario, ILC could
serve as both a SUSY discovery (or confirmation) machine,
and a precision microscope.
In this paper, we have examined the capability of

experiments at the ILC to both discover (or confirm)
supersymmetry and to make precision measurements
of superparticle properties that would probe the super-
potential Higgsino mass parameter μ via direct sparticle
mass measurements and, in addition, provide a measure-
ment of SUSY-breaking gaugino mass parameters via the
Higgsino mass splittings.
When these measurements are combined with precision

Higgs boson measurements, precision fits to both weak
scale SUSY and high scale SUSY model parameters can
be made. We have investigated the capability of ILC to
discover light Higgsinos in three natural SUSY benchmark
models: two with unified gaugino masses and one with
mirage unification of gaugino masses at an intermediate
mass scale between mGUT and mweak. Our calculations
implement a detailed ILD detector simulation along with an
event generation from WHIZARD.
By measuring eþe− → χ̃þ1 χ̃

−
1 → ðlνlχ̃01Þ þ ðqq̄0χ̃01Þ, we

are able to extract mχ̃�
1
and mχ̃0

1
via the mðjjÞ and EðjjÞ

distributions, typically to a percent level accuracy. By
measuring the dilepton mass and energy distributions from
eþe− → χ̃02χ̃

0
1 followed by χ̃02 → lþl−χ̃01, we are able to

measure mχ̃0
1
and mχ̃0

2
to typically a percent level accuracy.

We combine the Higgsino mass measurements with pre-
cision Higgsino pair production cross section measure-
ments using different beam polarizations.
When these precision Higgsino measurements are com-

bined with precision Higgs boson measurements, precision
fits to both weak scale SUSY and high scale SUSY model
parameters can be made. In particular, an indirect meas-
urement of wino and bino SUSY breaking masses can be
extracted from the Higgsino mass splittings. When extrapo-
lated to high energies, the hypothesis of gaugino mass
unification can be tested. If combined with LHC gluino
mass measurements, the unification of all three gaugino
masses may be explored. Such measurements will shed
light on different possibilities for SUSY breaking as may be
expected in SUSY GUT models or in models with mixed
moduli and anomaly (mirage) mediation. In addition, fits of
SUSY dark matter observables may shed light on the nature
of dark matter, such as confirming or ruling out multi-
component dark matter as expected from natural SUSY
where both Higgsino-like WIMPs and axions are expected
to be produced in the early Universe.
Thus, in assessing the ILC capabilities in this compel-

ling SUSY extension of the SM, we conclude that ILC
can indeed serve as a SUSY discovery machine and
precision microscope, offering a window into the intri-
cacies of SUSY breaking and fundamental particle
physics and providing insights into the nature of dark
matter and cosmology.
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APPENDIX: ADDITIONAL FIGURES AND TABLES

TABLE XXIII. Expected number of events for chargino signal and major backgrounds for the electron final state and beam polarization
P−þ. The integrated luminosity is assumed to be500 fb−1. For eachbenchmarkmodel, thebackground refers to theother SUSYbackgrounds.

χ̃þ1 χ̃
−
1 → χ̃01χ̃

0
1qq̄

0eνe ILC1 ILC2 nGMM1 SM bkg.

500 GeV, 500 fb−1, P−þ Signal Bkg. Signal Bkg. Signal Bkg. eþe− → 2f eþe− → 4f γγ → 2f eγ → 3f γγ → 4f

Preselection 53963 423992 41962 322011 66118 476646 11906936 14941264 307189572 65344394 61765
Lepton selection 4926 11922 2733 7676 4453 12325 543911 914027 93465142 21607557 1905
BeamCal veto 4869 11752 2707 7602 4414 12188 495890 748137 1284355 3964924 1772
pT > 5 GeV 3146 2323 1242 1110 1337 1109 226624 506571 967020 3804929 1328
Ntrk;jet ≥ 2 2285 324 667 108 515 98 42892 220378 65284 1745715 627
j cos θjj < 0.98 2225 314 652 106 504 97 15612 168407 50786 1323463 513
Δϕ < 1.0 1544 122 411 30 296 19 1507 34570 11157 533787 51
j cos θjjj < 0.2 1535 90 405 24 293 17 1360 32195 9471 483002 40
Evis < 80 1496 87 402 24 291 17 59 403 1810 7835 2.9
Emiss > 400 1485 87 402 24 291 17 12 69 7.1 48 2.0
j cos θmissj < 0.99 1463 85 392 23 283 15 5.9 64 0.0 22 2.0

TABLE XXIV. Expected number of events for chargino signal andmajor backgrounds for themuon final state and beampolarizationP−þ.
The integrated luminosity is assumed to be 500 fb−1. For each benchmark model, the background refers to the other SUSY backgrounds.

χ̃þ1 χ̃
−
1 → χ̃01χ̃

0
1qq̄

0μνμ ILC1 ILC2 nGMM1 SM bkg.

500 GeV, 500 fb−1, P−þ Signal Bkg. Signal Bkg. Signal Bkg. eþe− → 2f eþe− → 4f γγ → 2f eγ → 3f γγ → 4f

Preselection 53459 424497 41714 322259 65104 477660 11906936 14941264 307189572 65344394 61765
Lepton selection 5748 32945 3497 21394 6194 34867 1125893 1297965 42676970 2497567 2716
BeamCal veto 5683 32500 3462 21165 6134 34476 1025945 1049378 420779 325406 2475
pT > 5 GeV 3677 3141 1566 1720 1832 1794 99197 345356 101920 146861 1430
Ntrk;jet ≥ 2 2612 710 805 225 690 228 19319 183151 197 10945 509
j cos θjj < 0.98 2544 688 784 221 672 223 11089 150507 28 7906 331
Δϕ < 1.0 1972 259 532 53 412 40 755 37957 28 874 55
j cos θjjj < 0.2 1954 118 526 29 406 32 471 37320 0.0 174 51
Evis < 80 1905 110 523 28 404 31 59 379 0.0 0.0 22
Emiss > 400 1889 110 523 28 404 31 33 39 0.0 0.0 8.0
j cos θmissj < 0.99 1862 108 509 28 389 29 33 37 0.0 0.0 7.0

TABLE XXV. Expected number of events for chargino signal and major backgrounds for the electron final state and beam polarization
Pþ−. The integrated luminosity is assumed to be500 fb−1. For eachbenchmarkmodel, thebackground refers to theother SUSYbackgrounds.

χ̃þ1 χ̃
−
1 → χ̃01χ̃

0
1qq̄

0eνe ILC1 ILC2 nGMM1 SM bkg.

500 GeV, 500 fb−1, Pþ− Signal Bkg. Signal Bkg. Signal Bkg. eþe− → 2f eþe− → 4f γγ → 2f eγ → 3f γγ → 4f

Preselection 13276 163541 10382 97217 17159 180558 7839612 4800015 307189572 64002532 61765
Lepton selection 1251 5394 660 2546 1153 5528 434539 449786 93465142 20689292 1905
BeamCal veto 1238 5320 653 2518 1143 5467 395552 293541 1284355 3493039 1772
pT > 5 GeV 834 787 298 310 350 323 210050 199506 967020 3341264 1328
Ntrk;jet ≥ 2 615 116 161 30 140 27 39447 50256 65284 1297669 627
j cos θjj < 0.98 600 113 157 29 137 26 13665 24867 50786 900538 513
Δϕ < 1.0 423 47 100 6.9 77 6.1 1376 4950 11157 386411 51
j cos θjjj < 0.2 421 25 99 5.1 76 5.2 1275 4411 9471 358781 40
Evis < 80 409 24 98 5.1 76 5.2 29 59 1810 7315 2.9
Emiss > 400 408 24 98 5.1 76 5.2 7.8 19 7.1 22 2.0
j cos θmissj < 0.99 404 23 96 4.6 73 5.1 7.4 16 0.0 8.0 2.0
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TABLE XXVI. Expected number of events for chargino signal and major backgrounds for the muon final state and beam polarization
Pþ−. The integrated luminosity is assumed to be 500 fb−1. For each benchmark model, the background refers to the other SUSY
backgrounds.

χ̃þ1 χ̃
−
1 → χ̃01χ̃

0
1qq̄

0μνμ ILC1 ILC2 nGMM1 SM bkg.

500 GeV, 500 fb−1, Pþ− Signal Bkg. Signal Bkg. Signal Bkg. eþe−→2f eþe−→4f γγ→ 2f eγ→3f γγ→4f

Preselection 13222 163594 10352 97248 16876 180842 7839612 4800015 307189572 64002532 61765
Lepton selection 1502 16551 869 7667 1619 18398 783612 536319 42676970 2358203 2716
BeamCal veto 1487 16318 860 7574 1604 18183 710583 302815 420779 307086 2475
pT > 5 GeV 993 1108 388 521 480 613 76202 72875 101920 140719 1430
Ntrk;jet ≥ 2 733 276 199 69 182 65 14401 18374 197 6910 509
j cos θjj < 0.98 712 270 194 67 175 64 8258 11680 28 4533 331
Δϕ < 1.0 555 134 134 20 107 10 622 3238 28 343 55
j cos θjjj < 0.2 550 37 132 9.1 106 8.6 373 3093 0.0 66 51
Evis < 80 536 34 131 8.7 105 8.3 29 38 0.0 0.0 22
Emiss > 400 532 34 131 8.7 105 8.3 8.2 9.5 0.0 0.0 8.0
j cos θmissj < 0.99 524 34 127 8.5 101 8.2 8.2 7.2 0.0 0.0 7.0

FIG. 30. Reconstructed dijet mass in the chargino channel eþe− → χ̃þ1 χ̃
−
1 → χ̃01χ̃

0
1qq̄

0lνl for 500 fb−1 at
ffiffiffi
s

p ¼ 500 GeV. In all cases,
the background contributions are very small. The signal histograms are stacked on top of the backgrounds.

FIG. 31. Reconstructed dijet energy in the chargino channel eþe− → χ̃þ1 χ̃
−
1 → χ̃01χ̃

0
1qq̄

0lνl for 500 fb−1 at
ffiffiffi
s

p ¼ 500 GeV. In all
cases, the background contributions are very small. The signal histograms are stacked on top of the backgrounds.
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FIG. 32. Reconstructed dilepton mass in the neutralino channel eþe− → χ̃02χ̃
0
1 → χ̃01χ̃

0
1 lþl− for 500 fb−1 at

ffiffiffi
s

p ¼ 500 GeV. In all
cases, the SUSY background contributions are very small. The signal histograms are stacked on top of the backgrounds.

FIG. 33. Reconstructed dilepton energy in the neutralino channel eþe− → χ̃02χ̃
0
1 → χ̃01χ̃

0
1 lþl− for 500 fb−1 at

ffiffiffi
s

p ¼ 500 GeV. In all
cases, the SUSY background contributions are very small. The signal histograms are stacked on top of the backgrounds.

TABLE XXVII. Expected number of events for neutralino signal and major backgrounds for the electron final state and beam
polarizations Pðe−; eþÞ ¼ ð−0.8;þ0.3Þ. The integrated luminosity is assumed to be 500 fb−1. For each benchmark model, the
background refers to the other SUSY backgrounds.

χ̃01χ̃
0
2ðe−eþÞ ILC1 ILC2 nGMM1 SM bkg.

Pðe−; eþÞ ¼ ð−0.8;þ0.3Þ Sig. Bkg. Sig. Bkg. Sig. Bkg. eþe− → 2f eþe− → 4f γγ → 2f eγ → 3f γγ → 4f

Preselection 4370 15977 3098 12393 1076 8301 261999 1115296 87581 313496 14260
Lepton selection, Ntrk ¼ 2 4028 4039 2866 3576 994 2837 23958 365653 22592 41791 192
BeamCal veto 3965 3977 2831 3531 986 2808 18100 152375 22592 40935 176
pT > 2.3 GeV 3822 3638 2504 3106 728 2329 16543 141410 21961 38709 103
j cos θlj < 0.95 3601 3443 2455 2997 727 2257 9108 75460 21885 37151 82
Δϕ < 0.8 2384 327 1696 371 653 365 3809 32251 14662 28218 34
Evis < 25 GeV 1621 189 1253 235 492 239 14 4768 15 669 25
Emiss > 300 GeV 1621 189 1253 235 492 239 14 4034 15 489 25
j cos θmissj < 0.98 1621 189 1251 232 491 238 14 4021 14 488 25
Mll selection 1621 185 1250 226 490 207 14 3875 14 371 19
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TABLE XXVIII. Expected number of events for neutralino signal and major backgrounds for the muon final state and beam
polarizations Pðe−; eþÞ ¼ ð−0.8;þ0.3Þ. The integrated luminosity is assumed to be 500 fb−1. For each benchmark model, the
background refers to the other SUSY backgrounds.

χ̃01χ̃
0
2ðμ−μþÞ ILC1 ILC2 nGMM1 SM bkg.

Pðe−; eþÞ ¼ ð−0.8;þ0.3Þ Sig. Bkg. Sig. Bkg. Sig. Bkg. 2f 4f aa_2f ae_3f aa_4f

Preselection 4895 15452 3705 11786 1427 7950 261999 1115296 87581 313496 14260
Lepton selection, Ntrk ¼ 2 4532 3887 3436 3731 1325 3013 21615 294934 64989 112098 251
BeamCal veto 4461 3814 3395 3681 1312 2978 20370 121784 64989 111493 233
pT > 2.3 GeV 4348 3556 3060 3283 977 2508 19939 115883 62899 106535 133
j cos θlj < 0.95 4067 3373 2997 3185 977 2477 13041 69986 62893 106527 102
Δϕ < 0.8 2676 271 2024 292 868 193 11796 26636 42316 80441 11
Evis < 25 GeV 1939 180 1498 210 645 136 0.0 6569 84 105 11
Emiss > 300 GeV 1939 180 1498 210 645 136 0.0 5595 84 105 11
j cos θmissj < 0.98 1939 180 1496 208 640 135 0.0 5574 77 105 11
Mll selection 1939 176 1496 197 640 91 0.0 5506 77 100 9.6

TABLE XXIX. Expected number of events for neutralino signal and major backgrounds for the electron final state and beam
polarizations Pðe−; eþÞ ¼ ðþ0.8;−0.3Þ. The integrated luminosity is assumed to be 500 fb−1. For each benchmark model, the
background refers to the other SUSY backgrounds.

χ̃01χ̃
0
2ðe−eþÞ ILC1 ILC2 nGMM1 SM bkg.

Pðe−; eþÞ ¼ ðþ0.8;−0.3Þ Sig. Bkg. Sig. Bkg. Sig. Bkg. 2f 4f aa_2f ae_3f aa_4f

Preselection 3486 6769 2495 5364 865 3144 166524 879484 87581 300006 14260
Lepton selection, Ntrk ¼ 2 3214 1042 2308 1024 800 892 23031 348421 22592 38695 192
BeamCal veto 3160 1024 2275 1014 794 880 17315 136363 22592 38347 176
pT > 2.3 GeV 3047 938 2021 889 602 727 15819 126608 21961 36737 103
j cos θlj < 0.95 2872 882 1985 852 602 694 8867 65285 21885 36359 82
Δϕ < 0.8 1904 121 1382 169 541 184 3743 25036 14662 27658 34
Evis < 25 GeV 1284 69 1020 113 412 128 13 858 15 117 25
Emiss > 300 GeV 1284 69 1020 113 412 128 13 530 15 97 25
j cos θmissj < 0.98 1284 69 1017 113 409 126 13 529 14 96 25
Mll selection 1284 69 1017 111 409 119 13 508 14 83 19

TABLE XXX. Expected number of events for neutralino signal and major backgrounds for the muon final state and beam
polarizations Pðe−; eþÞ ¼ ðþ0.8;−0.3Þ. The integrated luminosity is assumed to be 500 fb−1. For each benchmark model, the
background refers to the other SUSY backgrounds.

χ̃01χ̃
0
2ðμ−μþÞ ILC1 ILC2 nGMM1 SM bkg.

Pðe−; eþÞ ¼ ðþ0.8;−0.3Þ Sig. Bkg. Sig. Bkg. Sig. Bkg. 2f 4f aa_2f ae_3f aa_4f

Preselection 3856 6399 2972 4887 1122 2887 166524 879484 87581 300006 14260
Lepton selection, Ntrk ¼ 2 3573 950 2762 973 1039 844 20711 281254 64989 112161 251
BeamCal veto 3513 932 2727 960 1028 835 19521 108836 64989 111489 233
pT > 2.3 GeV 3421 869 2451 862 777 691 19069 103802 62899 106529 133
j cos θlj < 0.95 3209 824 2402 836 777 681 11940 60407 62893 106521 102
Δϕ < 0.8 2099 73 1633 93 692 72 10844 19083 42316 80441 11
Evis < 25 GeV 1522 50 1223 70 518 51 0.0 1213 84 105 11
Emiss > 300 GeV 1522 50 1223 70 518 51 0.0 686 84 105 11
j cos θmissj < 0.98 1521 50 1222 69 516 51 0.0 678 77 105 11
Mll selection 1521 49 1222 67 516 40 0.0 672 77 100 9.6
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