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Neutrinos in curved spacetime: Particle mixing and flavor oscillations
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We present a quantum field theoretical approach to the vacuum neutrino oscillations in curved space, we
analyze the nontrivial interplay between quantum field mixing and field quantization in curved space and
derive new oscillation formulas. We compute the formulas explicitly in the spatially flat Friedmann—
Lemaitre—Robertson—Walker metrics for universes dominated by a cosmological constant and by radiation.
We evaluate the transition probabilities in the Schwarzschild black hole metric, and we show that the
Hawking radiation affects the oscillations of neutrinos. We show that our results are consistent with those of
previous analyses when the quantum mechanical limit is considered.
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I. INTRODUCTION

Since they were theoretically proposed by Pauli [1],
neutrinos have proven to be among the most enigmatic
particles in the universe. Until the discovery of flavor
oscillations [2,3], whose theory was pioneered by Pon-
tecorvo [4,5], neutrinos were believed to be massless.
Today it is accepted that neutrinos are massive particles,
and that they oscillate among three flavors v,, v,, v,
corresponding to the companion charged leptons e, u, 7.
This peculiarity renders neutrinos unique among the known
elementary particles and puts them beyond the scope of
the standard model of particles [6]. In many respects,
neutrinos are forerunners of a new physics, as several
issues, including the origin of their mass [7] and their
fundamental nature [8], are still open to the present day.

On the other hand, the relevance of neutrinos in
astrophyisical and cosmological contexts has grown dra-
matically during the last years. They figure as a valuable
source of information, along with gravitational waves and
electromagnetic radiation, in the ever—growing field of
multimessenger astronomy [9]. The study of neutrinos of
astrophysical origin can indeed provide fundamental
insights on the source that produced them. In addition,
neutrinos are expected to play an important role in the first
phases of the universe [10,11], and the detection of the
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cosmic neutrino background, pursued in experiments as
PTOLEMY [12], could represent an essential test for the
standard cosmological model [11]. Mass varying neutrinos
have also been proposed as a possible explanation for dark
energy [13].

This state of affairs requires a careful investigation of
neutrino oscillations on a curved spacetime. The topic has
been discussed in several works, where it was found that
gravitational fields may alter both the oscillations in
vacuum and in matter [14—16].

Here we wish to go beyond the heuristic treatment
of Ref. [16], and present a quantum field theoretical
approach, based on the field quantization in curved
space-time, to evaluate the effects of gravitational fields
on neutrino oscillations. We derive general oscillation
formulas for flavor fields in curved space-time, which
represent our main result. We discuss the particle inter-
pretation of the fields in presence of gravity and study how
the mixing changes when moving from a mass field
representation to another. We demonstrate the invariance
of local observables, which are represented by expectation
values on flavor states of local operators constructed from
the flavor fields. We show that the oscillation probabilities,
on the other hand, do in general depend on the representa-
tion of the mass fields, since they are not a local observable
and involve the comparison between particles in different
spacetime regions. We establish the conditions which
have to be satisfied in order that the resulting transition
probabilities are invariant under changes of mass field
representation.

We also compute explicitly the oscillation formulas for
two examples of spatially flat Friedmann—Lemaitre—
Robertson—Walker (FLRW) spacetimes, corresponding
to a cosmological constant-dominated and a radiation—
dominated universe respectively. In these cases, exact
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analytical solutions to the Dirac equation are available, and
the formalism here introduced can be applied directly.
Moreover, we give an estimation of the oscillation formulas
for neutrinos propagating from the past infinity to the future
infinity in a stationary Schwarzschild spacetime. We
introduce a method to extract the oscillation formulas on
spacetimes with asymptotically flat regions without resort-
ing to the exact solutions of the Dirac equation. We then
employ this strategy to compute the formulas on the
Schwarzschild black hole spacetime, for neutrinos propa-
gating from the past infinity to the future infinity. We show
how the Hawking radiation is naturally embedded in the
resulting transition probabilities.

Our results generalize those of the previous treatments
[16], and are consistent with the latter when the suitable
limits are considered. In our computation, for simplicity, we
limit our analysis to the vacuum oscillations, therefore
considering the sole effect of gravity.

The paper is organized as follows: in Sec. II we provide
the setting for the description of the mass fields in curved
space; in Sec. III we develop field mixing and find the
oscillation probabilities in curved spacetime, with a
thorough analysis of their features; in Sec. IV we apply
the formalism to some spacetimes of interest, including the
spatially flat FLRW metric for a radiation-dominated
universe and for a cosmological constant-dominated uni-
verse, and the Schwarzschild black hole metric, where we
show the impact of the Hawking effect on neutrino
oscillations; finally in Sec. V we draw our conclusions.

II. MASS NEUTRINO FIELDS IN CURVED SPACE

To evaluate the oscillation formulas for neutrinos on a
curved spacetime, it is necessary to consider both the
effects of curvature and mixing on the (free) mass fields.
Let M be a globally hyperbolic spacetime, and let 7 € R
label a foliation of M by Cauchy surfaces. Consider the
tetrad fields ¢4 (x) satisfying n??ef(x)eY (x) = ¢(x). Here
n“t = diag(1,—1,—1,—1) is the Minkowski metric tensor,
while ¢*(x) is the contravariant metric ¢**(x)g,,(x) = &
on M in a given coordinate system. The massive neutrino
fields satisfy the Dirac equations:

(iy*(x)D, —m;)y; = 0 (1)

where y#(x) = eh(x)y?, v being the usual flat space Dirac
matrices, and D, = 8, — {w4’6,,. The spin connection is
defined as wi” = €T, e’” + €20, e*?, whereas o, are the
commutators of flat Dirac matrices o,, =£[y* 7"]. In
equation (1), the index i =1,2,...,N ranges over the
number of neutrino species N. For the sake of simplicity
we focus on the case N = 2, though the generalization to
N = 3 is straightforward. In general equation (1) cannot be
solved exactly. Even if one is able to find exact solutions,
these do not play the same prominent role as their flat

spacetime counterpart. It is well-known, indeed, that the
positive frequency solutions of equation cannot be defined
univocally, and that, consequently, there is no natural (nor
unique) particle interpretation for the corresponding quan-
tum field theory [17,18]. Nevertheless, the canonical
quantization of the Dirac field proceeds along the same
lines as in Minkowski spacetime.

To perform a field expansion, one must find a set of
positive {; ; and negative &, ; frequency solutions for each
of the equations (1). In general the bipartition of the
solutions to Eq. (1) makes sense only locally, while there
is no natural global definition of positive and negative
frequency modes. Anyway, one is free to choose a set of
modes [19] {{;;. &}, deemed to be positive/negative
frequency modes according to some specified observer,
and expand the field with respect to them, provided that
they form a complete (and orthonormal) set of solutions
under the inner product

(a:.b;) = / V@)

with a;, b; any solution to Eq. (1) with mass m; and
b; = bly°(x). Here d¥*(z) = n*(7)dV, denotes the volume
element on the surface 7 with unit timelike normal n* (7).
This has to hold separately for each i = 1, 2. As itis easy to
prove, for a;, b; solutions of the (same) Dirac equation, the
inner product (2) does not depend on the hypersurface
chosen for the integration. In particular, it is independent on
the foliation by Cauchy hypersurfaces employed. The fields
can then be expanded as

wi(x) = Z(Vk,s;iCk,s;i<x) + G}Z,S;iﬁfk.s;i(x)) 3)

k.s

with the operator coefficients y, ; ;, € ;; satisfying the usual
canonical anticommutation relations, kX momentum index
and s helicity index. The annihilators are also required to
anticommute for i # j, and, in particular {yk.s,i’yz,&j} =

51‘," {€k,s.i’€}<,s,j} =
space-time dependence within the modes, for ease of
treatment with a general metric. The expansions (3) define
the mass Hilbert space H,, = H; @ H,, which is con-
structed out of the vacuum |0,,) = |0;) ® |0,). Here |0;)
is defined, as usual, by y;,;|0;) =0 =¢;,;0;) for
each k, s, i.

As hinted above, the field expansions (3) are somewhat
arbitrary, as opposed to the flat spacetime case, where there
is no ambiguity in the definition of positive and negative
frequency modes. Any other basis {C;;, &} can be
used to expand the fields w; = Zk’s(f/k’s’izk,s‘,-(x) +
é;s.ifk,s,,-(x)). Since both the sets {{;,; &} and

{&is.iErs} form a basis for the space of solutions of
Eq. (1), one can write the modes of a set in terms of the
other, for each i:

o;j- In Eq. (3) we prefer to keep any
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gk’,s’.i = Z(FZ’,s’;k,s;iCk,S,i + thgs';kws;,‘é:k,s,i)
k.s

gk’,s’.i = Z(Fk’.s’;k.s;igk,s.i - Zk’.s’;k,s;iCk,s.i) (4)

k.s

where Fk’,x’;ks;i = (z.:k/,s',i’ é’k,.\'.i) = (gk,x,i’ fk’.s/,i) and

o siksi = (Cw s iv€hsi) = —(Crsisuyi)-  This  is  a

fermionic  Bogoliubov  transformation, for which
23 * J—

Zq,r (Fk,s;q.r;irk’,s’;q,r;i + 2’k,.s';q,r;iZk’A,S’;q.r;i) - 5k,k’5s,s’ for

each i. The corresponding relation between the two sets

of annihilators is given by

= _ E il
Visi = (Fk,s;k’s’;iyk’,s’.i + Zk,s;k’.s’;iek’,s’,i)
ks’

= _ E i
€ksi — (Fk,s;k’,s’;iek’.s’,i - Zk,s;k’,s’;i}/k/,s/,i)' (5)
ks’

It is often the case that the Bogoliubov coefficients
Disw sis Dk can be  written as  Igp vy =
O w5 Uiis T s = OkwOs9Zpir With Ty and
depending on k alone. In this occurrence, they admit the
parametrization T'y; = e cos(0y;), Zi,; = e sin(0y;),
with ;. ;, ¢y.;, 0); real functions of k. We remark that the
Bogoliubov transformations (5) can be recast in terms of

* il oo X
the generators Jl — ezkﬁ/,.us/ K/}'k‘k’,x_s/_;yk;,[ek/xlj j’kﬁ/..&x/.iel\'-&lyk/,.x/j)],

. S
with 4y sgi = Arctan(—rk'f'k/"“")

kusik! s"si

, as

Visi =7 Vesidis Ersi = J7 € gidie (6)

The maps J;: H; — H,; interpolate between the Fock spaces
‘H; built from the y; ,;, €, and the Fock space H; built
from the 7, ;, € ,;. In particular, one has for the vacuum
states |0;) = J7'|0;). As for the untilded representation,
the mass Hilbert space in the tilded representation is the
tensor product 7,, = H; ® H,. It is convenient to define a
unique generator of Bogoliubov transformations J: 7, —
H,, on H,, as the tensor product J = J, ® J,. Then

Vi = Vil Crsi = ep i (7)
for i =1, 2. The expansions of the two fields y; and v,
must be compatible with each other, i.e., each of the modes
Crs2sErs, must be obtainable from the corresponding
modes {;,1,&¢ 1 by the substitution m; < m,, and
vice-versa. In the context of mixing, this ensures that the
same kind of particle, described by the same set of quantum
numbers, is being mixed. This, of course, does not under-
mine the arbitrariness in the choice of the modes; these can
be any complete set of solutions to the Dirac equation,
provided that the same choice is made for the two fields.

III. NEUTRINO MIXING AND OSCILLATION
FORMULAS IN CURVED SPACE-TIME

In this section, we show new oscillation formulas for
flavor fields in curved space-time and we present general
considerations on the infinitely many unitarily inequivalent
representations of the canonical anticommutation relations
which characterize the quantization of mixed fields and of
fields in curved space.

A. Oscillation formulas

As discussed above, the QFT of free Dirac fields in
curved space is characterized by infinitely many unitarily
inequivalent representations of the canonical anticommu-
tation relations. The phenomenon of mixing, even in
Minkowski space, suffers from an analogous ambiguity,
in that the flavor and the mass representations are unitarily
inequivalent [20]. The effects of such inequivalence have
been analyzed in flat space time [21] and the possibility to
reveal them in experimental setup has been recently
proposed [22]. Let us start by fixing the mass field
expansions (3) and describe the mixing in a given repre-
sentation of the mass fields. The flavor fields are defined as
we = cos(Q)y, + sin(@)y, and y, = cos()y, — sin(O)y,
with @ the (2-flavor) mixing angle. Just like the Bogoliubov
transformations (7), the rotation to flavor fields can be cast
in terms of a generator Zy(z). This is given by

I(J(T) — Ol wa)—(wai).] (8)

where the scalar products (y;,;) do depend on the
hypersurface chosen for the integration, since they are
solutions to different Dirac equations. Then, by definition,
the flavor fields are expressed as

we =I5 (O Zo(z),  w, =TI, (D)wrZy(r). (9)

If we let the generator (8) act on the mass annihilators, we
obtain the flavor annihilators for curved space

yk.‘v,e(r) = IEI(T)yk,s,IIH(T) = Cos(e)yk.s,l
+ Sin(g)Z[Az,r;k,s (T)yq,r,Z + Eq,r;k,s(T)ez,rl]'
q.r

(10)

And similar for y; ; (7). € 5 (7). € 5 ,(7). The Bogoliubov
coefficients are provided by the inner products of the solu-
tions to the curved space Dirac equation with mass m; and
nmy, that iS, Aq,r;k.s (T) = (Cq,r.Z’ é,k,s,l )1 = (gk.s,l s 5q,r,2>1 and
E‘q.r;k,s (T) = (é’k,s,h éq.rﬂ)f = _(Cq,rl’ 5k.s,l>r' The miXing
coefficients always satisfy

Z (Alt,s;q,r(T)Ak’,S’;q,r(T> + Elt.s;q,r(T)Ek’,S’;q.r (7))
q.,r

= 5k,k’5s,s" (1 1)
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Since the mass expansions are compatible, the mixing
coefficients are often diagonal, namely of the form

Aq,r;k,s (T) = 5q,k5r,sAk,s (T)
E‘q,r;k,s (T) = 5q,k5r,sE‘k,s (T) (12)

with Ay (7), B s(7) depending on k and s alone [23].
Exceptions to this arise when we consider expansions of the
mass fields in terms of modes labelled by the energy. In such
a case, the mixing coefficients are nondiagonal and different
from zero A, #0, 2, # 0, once w is fixed, only for a
specific value of @'. In these occurences, Eq. (11) becomes

Aps (D) + s (D) = 1 (13)

for each k, s, 7, and
|Aw;m’ (T>|2 + |Ea);a)’ (T)|2 =1 (14)
respectively. The mass and the flavor representations are
unitarily inequivalent. For each 7 one has a distinct flavor

Fock space H/(z) defined by v, ,(7).€,,(7). The flavor
|

P F (1) = 2c0s%(0)sin*(0) x [1 - Z%(A

vacuum |0,(z)) = Z,'(7)|0,,) is a condensate of 1, y,
particle-antiparticle pairs.

In order to define the transition probabilities, we
observe that the total Lagrangian is invariant under U(1)
gauge transformations. Therefore the total charge Q =

01+0,=0,+0, is conserved [24], where Q, =

i i - i
Zk,s (yk,s,iyk,s.i - ek.s,iek.s,i) for i=1,2, e, l. It is then
meaningful to define the transition probabilities as

Pi.?a(f) = Z(<Up.k,s (TO)ngyr(T)lyp,k,s(TO»

= (0(70)1Q5" (7)[04(z0)))- (15)

Here p, o = e, u, the state |v, (7)) = }’Z,s‘p(fo)|0f(fo)> is
the state with a single neutrino of flavor p, momentum k and
helicity s on the reference hypersurface ¢ = 7. The second
term on the rhs of (15) is just the implementation of the
normal ordering with respect to [0/(z)). By construction
Pe(t) + P (t) =1 and Pi°(7) + PiM(z) = 1 for
each 7. A straightforward calculation yields, in the general
case (accounting for both diagonal and nondiagonal mixing
coefficients) the result

k,s;q,r(TO)Ak,s;q,r(T) + Ez,s;q,r(TO)E‘k,S;l],r(T)) . (16)

Equation (16) is the central result of the paper. When equations (12) hold, this reduces to

Py (r) = 2cos?(0)sin?(0) x [1 = M(AL (70) Ars(7) + B (70)Z(7))]- (17)

In both cases one has

Pi3e(r) = 1= P (v). (18)

B. Mixing on a curved background and gravity-induced
ambiguity in the particle interpretation

Up to now, we have worked within a fixed, but arbitrary,
representation of the mass fields. The question arises about
the other possible representations, and how the mixing
changes when moving from a representation to another. For
the definition (15) to make sense, we must determine if and
how the probabilities vary when the mass representation is
changed. We take as a guideline the principle of covariance,
|

|
so that the local physical observables should be indepen-
dent of the underlying representation. In moving from a
given representation {y, €}, {y,, €,} to another {7,,€,},
{72, €}, we know how to connect the mass Fock spaces,
namely via the generator (7) J~':H,, — H,,. For each
mass representation, we can proceed as we did above and
build the corresponding flavor annihilators and flavor
spaces H ((7), 'Flf(r), together with the mixing generators
Zo(7): Hp(2) = Hyo Zo(z): Hp(z) — H,,. Tt is useful, at
this point, to determine the relations among the mixing
coefficients A(z),E(z) and A(z),E(7) that appear in the
explicit form of the two generators Zy(z) and Zy(z). By
definition we have

Aq,r;k,s (T) = (Zq.r;Z’ Zk,S;l)T = z ([Fz,r;quﬂ;zé‘q’,r’g + Z;r;q"ﬂ;zéq’,r’;ﬂv [F;S;k/,s/;lélk’,s’;l + Zz‘s;k/vs/;lék’.s’;l])r (19)

q K s

Here the first equality is just the definition of A(z), the second follows from the Bogoliubov transformations (5). By using
the properties of the inner product (2), in the general case (again, accounting for both the diagonal and nondiagonal mixing

coefficients), we obtain
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Aq,r;k,s(r) = Z [Fq,r;q’r’;Zrz,s;k”s’;l (gq’,r’;Z’ gk’,s’;l )T + Ft],r;q’,r’;ZZz‘S;kQS’;l (éq’,r’;% gk’,s’;l )1

q.K.rs

+ Zq,r;q’r/;ZF]):,s;k’s’;] (éq/,r’;Z’ Ck’.s’;l)r + Zq,r;q’,r’;zz“}t,s;kqsql (fq’,r’;% gk/.s/;l)‘[]’ (20)

and, finally, from the definition of A(z) and E(z), we have

Aq,r;k,s(r) = Z [Fq,r.q’r’;2(FZ,S;k’.S’;lAq’,r’;k’.s’(T) - Zz,s;k’,s’;lEq’,r’;k’,s’ (T)>
q K .rs
+ ZQ.rQKI'J‘/;z (Fz,s;k’,s’;lE;’,r’;k’s’(r) + Zi,s;k’,s’;lAZ’,r’;k’,s’ (T))] (21)

Similarly we have

Eq,r;k,s (T) = Z [Fq.r;q’,r’;Z(Fk.s;k’.s’;lEq’,r’;k’,.\" (T) + Zk,s;k/.s’;lAq’,r/;k/.s/(T))

q K s

*
/

- Zq,r;q’,f;Z (Fk,x;k’,x’;lAZ’,r’;k’.s’ (T) - 2k,s;k’.s’;lE:‘q ks (T))} (22)

When equations (12) hold for both the representations {g, r}, {¢’, '}, the equations reduce to

Agr@) =D Cyrara(Th s i N (1) = Zi 1 B (7))

q/,r/

+ Xy g2 (Fz,r;q',r/gg;,/(f) + Z;r;qgﬂgAZ/,r/(T))]' (23)

and

[1]:

’od
q.r

q,r(T) = Z[Fq,r;q’,r’;Z(Fq,r;q’,r’;lEq’,r’ (T) + z“q,r;q’,r’;lAq’,ﬂ(f"-))

= Zgrqr2Congraly o (0) = g g raBy (7). (24)

Equations (21), (22), (23), (24) provide an explicit rela-
tion between Z,(z) and Zy(z), and show how the mixing
coefficients change, in moving from a mass representation
to another, in order to ensure covariance. In particular,
the tilded coefficients turn out to be a linear combination of
the untilded coefficients weighted by the coefficients of the
Bogoliubov transformations between the two mass repre-
sentations. A slightly modified version of the Egs. (21) and
(22) will be expedient in the calculation of the transition
probabilities in a number of interesting cases.

It remains to establish how the flavor operators y,(7),
€,(7) and the flavor vacuum [0/(z)) transform under a
change of mass representation. We focus on the vacuum
state |0(7)) € Hy(z). First we employ the generator
Ty(r): Hs(zr) = H,, to get the mass vacuum |0,,). Then
we apply the generator of Bogoliubov transformations (7)
J~':H,, — H,, to obtain |0,,). Finally, the generator of
mixing in the tilde representation 7' (z): H,, - H r(7) is
employed to get |0;(7)). We conclude that the two flavor
vacua are related by the transformation

104(2)) = J7' (2)[0f(2)) =I5 (1)J ' Zy(x)[0s(2))  (25)

where we have defined the inverse J ]71 (7) for convenience.
The flavor operators must then transform as

[
Vk,s,p (7) - J.;l (T)yk,s,p (T)Jf (T)
€r5p(7) = I3 (D)ers (1) () (26)

and similarly for the creation operators. Equations (25) and
(26) ensure the invariance of local observables in the form
of expectation values (y/(7)|F(w.(7).w,(7))|w /(7)) with
ly /(7)) € Hy(r) and F(w.(7).w,(r)) any operator con-
structed from the fields v, (7)., (7).

C. Transition probabilities and the mass representation

The oscillation probabilities are not a local observable,
since they involve the comparison between particles at
different values of 7, as it is evident from the definition (15).
In general these quantities do depend on the representation
of the mass fields, and this is because distinct representa-
tions might assign a different meaning to the quantum
numbers k, s. For example, one might consider two
expansions of the mass fields, one in terms of plane waves,
labeled by the three-momenta {k}, and one in terms of
localized wave packets, labeled by a suitable set of
quantum numbers {g}. It is clear that the two expansions
describe particles with different physical properties; the
first describes particles with definite momentum, the
second describes particles for which momentum and
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position are definite to some extent. Therefore the prob-
abilities P} [” and P{ " refer to the oscillations of different
particles, and have a different interpretation. It would make
no sense, in such a case, to require the equivalence of the

two. This, of course, would be true even in flat space.
What is meaningful to require, is that the transition
probabilities P;° be the same for each compatible
representation, i.e., for each representation that refers to
the same kind of particle, and therefore agrees on the
meaning of the quantum numbers k, s. In mathematical
|

terms, any two such representations shall be connected by
diagonal Bogoliubov transformations

Z.:k.s,i = F]t,s;[z:k,s,i + Zz,s;igk,s,i
ék,s.i = Fk,x;i&k.s,i - zk,.v;igk,.v.i (27)

where it is understood that ' ., .; = 6; 46k and
Zisiqrsi = OkgOs.r 2k s:i» In this case the transition probabil-
ities Pj;:” are indeed the same, and this can be proven
explicitly, by writing out Eq. (17) for the two representations

Pi:ﬂ (T) = 2COSZ(€)Sin2(6) |:1 - Zm (Ai,s;q,r(T())Ak,S;q,r(T) + Ez,s;q,r(TO)Ek,S;q.r(T)):| (28)
q.r
and
PZ,_SW (T) = ZCOSZ (Q)Sin2 (9> X |:1 - ZSR([\Z,S;q,r(TO)[\k,s;q,r(T) + éz,s;q.r(TO)ék,s;q,r<T)):| (29)
q.r

With the aid of Eqgs. (21), (22), and (27) we find

[\lt,s;q,r (TO>/~\k,s;q,r (T) + élt,s;q.r (TO)ék,s;q,r (T)

= +(Az,s;q,r(TO)Ak,s;q,r(T) + Ez..y;q,r(TO)Ek,s;q,r(T))[lrk,s,2|2|rq,r,l |2

+ |Fk,s.2|2|2q.r,l |2] + (Ak,x;q,r(TO)Az,s;q,r(T)
+ Ek.s;q,r(TO)EIt,s;q.r(T))[|Zk,s.2|2|rq,r,l |2 + |Zk,s,2|2|2q,r.l |2] (30)

Each of the terms in the square brackets is real. Considering that

Ak.s;q,r(TO)Alt,s;q,r<T) = (Alt,s;q,r(TO)Ak,S;q,r(T))* )

Ek,s;q,r<TO)E‘z,s;q,r (T) = (Ez,s;q,r (TO)Ek,s;q,r<T))* s (3 1)

and that the Bogoliubov coefficients satisfy | ,|* + |Z¢.i> = 1 for each k, s, i, we finally get

[1]:

N [Az,s;q,r(TO)Ak.S;q,r (T) + Ez,s;q,r(TO)

which proves the invariance of (28).

In the most general case, as the quantum numbers k, s
and k', s’ have a different physical meaning, the proba-
bilities P} ° and 132,_: 7 have different interpretations.
Different representations of the mass fields do indeed
assign a different meaning to such indices, so that the
probabilities (15) have no invariant meaning. In order to
make sense of the probabilities in Eqs. (15) in the most
general case, a representation of the mass fields must be
fixed on the grounds of physical relevance. When the
underlying spacetime M possesses nontrivial symmetries,
as time translational invariance or spherical symmetry,
there is no doubt that the representation should be fixed
so to take them into account. In these cases “good quantum
numbers” are suggested by the symmetries themselves (for
instance, the energy w for stationary metrics, the angular
momentum [, m for spherically symmetric spacetimes). In
any case, the probabilities in a given mass representation
can always be related to the probabilities in any other mass

k,S;q.r(TH =N [A]t,s;q,r(TO)AI(.S;(],F(T) + E;,s;q,r(TO)Ek“\';q,r(T)]’ (32)

I
representation with the aid of Egs. (23) and (24). As a final
remark, we stress that the issue discussed here has nothing
to do with the diffeomorphism covariance of the theory. All
the probabilities (17) are (generally covariant) scalars, as it
is evident from the definitions.

IV. NEUTRINO OSCILLATION FORMULAS IN
FLRW METRICS AND IN PRESENCE OF A
SCHWARZSCHILD BLACK HOLE

In this section we apply the formalism developed
above to some cases of interest. After an analysis of
the flat space limit, we consider two cosmologically
relevant FLRW metrics, corresponding to a cosmological
constant-dominated and a radiation-dominated universe
respectively. In these cases, exact analytical solutions to
the Dirac equation are available, and it is possible to
employ equation (16) directly. We then introduce a
method to extract the oscillation formulas on spacetimes
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with asymptotically flat regions without resorting to the
exact solutions of the Dirac equation. We employ this
strategy to compute the formulas on the Schwarzschild
black hole spacetime, for neutrinos propagating from the
past infinity to the future infinity. We show how the
Hawking radiation is naturally embedded in the resulting

Indeed, in this case, we can choose the cauchy hypersurfaces
to be the t = constant surfaces in a given Minkowskian
coordinate system, while the modes {y ,;(x), &.;.(x)} are
just the plane wave solutions to the flat Dirac equation with
definite momentum, so that A, (1) = Uy . ,(¢) and
E‘q,r;k,s(t) - Vq,r;k,s(t)’ where Uq,r;k,s and Vq,r,k,A are the

transition probabilities. usual mixing coefficients in flat space [20]. Assuming,

without loss of generality, k along the z direction, the
helicity indices decouple U, . ;=5 (k—q)5, Ug, V4 riss =
5 (k—q)5,.,(—1)*Vy. Since Uy(t) = Uy (0)e! @2t and
Vi(t) = Vi(0)el@raten)t we get

A. Flat spacetime limit

As a first, trivial, application of the formulas (17), let us
check the flat spacetime limit. We can see at once that the
equations (17) reduce to the ordinary oscillation formulas.

|

ZSR ksk"

rqr

U rsqr(t) + Vi o 0 OV g (0] = R Ug (0)Pel@2m0) 4 [V (0) Pellnateon )]
= |Uk(0)[ cos[(y2 = wy.1)1] + [Vie(0) | cos[(@p + @y1)1].
(33)

Substituting this result in Eqs. (17) yields the flat space oscillation formulas, which further reduce to the Pontecorvo
oscillation formulas in the quantum mechanical limit (V; = 0). Flat space also offers the possibility to illustrate some points
discussed above in the simplest possible context. One might well expand the mass fields in terms of modes with definite
energy and angular momentum é'w,,(j,mj; i 5w.,<j,mj,s; ; instead of considering modes with definite cartesian three-momentum k.
The former shall be suitable combinations of spherical spinors [25]. An interesting aspect, is that in such a representation,
the mixing coefficients are no longer diagonal. Indeed one has

Aw’x&m};wk,-m_,-(t) = 5w/,\/m5k;,/<j5m;,mj|[]w,w’ ‘ei((u’—w ! (34)
with Am? = m3 — m? and
+m2 ® +m; (@ —my)(w —m,)
U o | = \/ \/ - , (35)
(CU + ml)(a) + In2)
and similar for Z, where the exponential is ¢/ *+*)* and |U,, | is replaced by
a)+m2 w+m1 @' —my ® —
Vsl = /2 (,/ - ) (36)
o+ my W+ my

Here the quantum number «; refers to a relativistic generalization of the spin-orbit operator, which enters the Dirac equation
in spherical coordinates [25,26], and takes into account both the orbital and spin angular momentum. The index m; refers to
one component of the total angular momentum J, and has not to be confused with the masses m;. Without delving into the
details of the calculation, the result of Eq. (34) can be understood as follows. The modes, apart from a normalization
constant, are given by

e Py (0.0
Cm,xj.mj;i =e ' ) zl o—m (37)
wr Py, (4ir)Q_.m, (0, ¢)
. w + m; Z,):,?P ( ) Km(9¢)
fa),Kj,mj;i = elwt W " (38)

Ki (—/11-1') —Kj,mm; (6’ ¢)
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where Q ,, (0, ¢) are spherical spinors, and P, (4;r) are
radial functions of the product 4,7, with the radial momen-

tum 4; = \/@* — m?. These are solutions to the radial part
of the Dirac equation, which turns out to be a Riccati—
Bessel equation [27]. The functions P, (ﬂ r) are combina-

tions of spherical bessel funct10ns jn, of the form
P (4;r) = rje(4ir). In computing the inner products,
the radial integration [ drPy ,
a factor 9, ., , because of the closure relation satisfied by

\V@? —m3 and
/11 — 2 2

o~ —mj, this will give rise to the delta factor
appearing in (34). Notice that |U,, /|, |V,..| are numeri-
cally the same as the usual flat space coefficients |Uy|, |Vy/,
when k? = @? —m? = a)’z m3. This shows why the
mixing coefficients A, Z are not generally diagonal, and
the flexibility of the formahsm we have employed. Indeed,
the nondiagonal coefficients automatically ensure that the
flavor operators v, ,, €,, take into account the mass
difference, involving operators with distinct energies
w, ' for the fields y, and y, [28]. In flat space, the shift
|

(’12”)ij;1(/117’) will produce

the spherical Bessel functions. Since 4, =

between the two representations is actually of no use.
However, in a nontrivial framework, the versatility of the
formalism is essential, as there are instances in which the
cartesian components of the momentum k,, k,, k, are
useless, while the “spherical” quantum numbers , [, m are
well defined.

B. Expanding universe with exponential growth
of the scale factor

The simplest nontrivial application is to spatially flat
FLRW spacetimes. Consider the metric ds*> = dt* —
a*(t)(dx* + dy* + dz*) with an exponential expansion
a(t) = ef', H = constant. This is well-suited to describe
a homogeneous, spatially flat and isotropic universe domi-
nated by a cosmological constant. The normalized solu-
tions to the Dirac equation for this metric were derived in
[29]. Assuming, without loss of generality, the momentum
k to be along the z direction, the helicities decouple as in
flat space. Choosing the Cauchy surfaces as the surfaces
with ¢t = constant, or equivalently with a(¢) = constant, the
mixing coefficients read

ke k k k k
Aks' r(t) = 5& r53(k_q) e J* et Jv —e +J* - —e J'l/ -1 —e
e ' ~ ~ HC '\H "\H T\H
2H  fcos(222) cos(’”l';")
(39)
ke H! k k k k
E’k,s;q.r(t) = 5s,r(_1)“‘53 (k + q) e |:J771 ( _Ht> J—vz ( e > le—l ( e_Ht> Jl—vz < e_Ht>:|
2H cos(’”gz) cos('”l’;") H H H H
(40)

. 2
where J,, denotes the a Bessel function and v; =

obtain

1+

ZI;"/ ) for j = 1, 2. Plugging these expressions in equations (17), we

2k2e—H(t+1)

PE7 (1) = 2co8? (e)sinz(e){l _

k
XS%HJU2<—
H
(ko k
X [Jv2 <ﬁe H’)Jvl (ﬁe >+
k o—Hi ﬁe—mo
11 H —112 H

: [f%(" i) -

The qualitative behavior of Eq. (41) for sample values of
masses and momenta is shown in the left panel of (Fig. 1).
We notice that for small times the oscillations display an
interference pattern similar to that of coupled harmonic

4H? cos(“>

izm,

_H10>J* <§ —Ht0> +J7/‘z—1 <§e—Hto

) cos(5)

J*

v—1

i)

k _ k _
i (e e ()
)
U= H 1-v, H
L[k ko
i) e ) )]} @

|
oscillators. As time is increased, the transition probabilities
gradually converge to a flat space like oscillation and the
interference pattern eventually disappears. In the right
panel of (Fig. 1) a qualitative comparison with the
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t (1/H)
FIG. 1.

Plots of the oscillation formulas from Eq. (41) for different sample values of masses and momenta, chosen in order to highlight
the qualitative behavior of Eq. (41). Masses and momenta are expressed in units of H, time is expressed in units of H~!. (Left panel) Plot

t (1/H)

of the v, — v, transition probability Eq. (41) as a function of time. Here we have used the sample values sin?(0)=0.3,k=30,m, =

1,m,=80 and 7, = 0. (Right panel) Plot of the oscillation formulas from Eq. (41) (blue solid line) and from the Pontecorvo formulas
(orange dashed line) for sample values of masses and momenta. Here we have used sin?(0)=0.3,k=20,m,=1,m,=15 and #,=0.

Pontecorvo formulas, for different sample values of masses
and momenta is shown.

C. Expanding universe dominated by radiation

Here we consider the FLRW metric for a radiation domi-
. 1 . .
nated universe a(f) = ayr2. Notice that since a(t) has to be

1

Ak $3q r(t) = 5s r53<k - q) DYl
o ’ V/dmim,®

e

4k 1
— { W (=2imyt) — <
mymyagt |4 *2q
1 . 1
X {4 W 1(=2imyt) — 3 (1
_ztk2 (my +VI£2)
B gar(1) =08, (=1)8(k+q
k.s,q,r() s,r( ) ( ) 4 2m1(2m2>3a3t2
k? 1 1 ik?
— |-W* (2imt)—=| 1 w*
- [4 Kl,%( im1) 8< +m1a(2)> My

where W, ,(z) are the Whittaker functions [27] and k; = § (1 +

probabilities (7o, f > 0) ¢
1
PSH(1) = 2cos2(0)sinZ(0){ 1 = N | ———
k,s () COs ( )Sln ( ){ [W
4k 1 1
— " (Sw i (=2imaty) —= (1 -
mymyagt (4 KZ’%< imfo) 8 (

ik?

<1
X
4

1
W [(=2imty) — < (1 +
K13 8

095022-9

_n'kz(ml +my)

— ,,nla(2)> WKl_l’%(—Ziml t):| }

. . 2
~ Z(—21m12‘)} {W_,Q%@zmzt) +

k2 (my+my)

adimensional, a, has dimension [f]z = [m]z. As before,
without loss of generality, we assume the neutrino momen-
tum k along the z direction to decouple the helicities, and
consider a foliation by the ¢ = constant hypersurfaces. The
solutions to the Dirac equation for this metric are again
found in [29], and yield the mixing coefficients

4mymy ag

{W* 1 (—Zim2t>WKl l(—2im1 t)
K.g 3

L(y L ik*
8 mya}

ik?

W*

Kz—l,%

(—2im2t)}

(42)

{W* 1 (_Zimlt) W/_K2 1(2im2t)
K13 1

imyaj
k2

W_K2+1.%(2im2t):| }

(43)
2ik>
2m
0

) for j = 1, 2. Insertion in Eqgs. (17) gives the transition
J

2mymy u%

{sz,l(—Zl.mzt())W*l 1 (—Zim1t0>
1 K1y

ik?

m) WKZ—I,%(_Zim2t0)>

W) WKI_L%(—zlmll‘())) }
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X« W ((=2imyt)W . 1(=2imt) + 4
(=2imyt)W o 1(=2im —
e R e a2

ik?

- sz.i(_21m2t) ~3 (1 + mza%) sz—l,;(_Zlmﬂ))

1 , 1 ik? .
X ZWKI-%(_Zlmlt) - g 1- m WKI_L%(—Zlmlt)

k2 _n‘kz (my4my)

y 2m1 (2m2)3aét0t

8 mdg

K? 1
X {W* (=2im )W _ 1(2imyt) + ——5 (
K1y 4 mymyagyt

2m1mza6 {WKI%(_ZimI tO)WiKZ%(ZImZtO) +

4

K 1W (=2imty)
—— | = —zlm
mlmzd%to 4 Kl’% 1o

1 ik? _ . , 2imyal .
- <1 - 2) WK]_I,%(—21m1t0)> (W_Kz,%@lmzfo) - 0 W_K2+1,%(21m2t0)> }

W;l’%(—2im1t)

| e . ) 2im,a} .
K (1 " m—g) Wi (2im, ’)> (W-Kz-:i@’mzf) " %W-w%@lmm) H } “

The qualitative behavior of Eq. (44) is shown in (Fig. 2)
for sample values of masses and momenta.

D. Spacetimes with asymptotically flat regions

The FLRW spacetimes considered above are among the
few nontrivial metrics for which the Dirac equation (1) can
be solved analytically. More often one does not have an
exact solution at his disposal, and the implementation of
Egs. (17) is a complicated task. In many cases of interest,
however, the spacetime M admits asymptotically flat
regions Q,,Qp C M, usually in the far past and in the
far future. Q, and Qp are separated by a region with
nontrivial curvature, where the Dirac equation is usually
unsolvable analytically. In Q, and Qj the solutions to the
Dirac equation are the flat space modes {uj ;(x). v}
with I = A, B, and one has a natural choice for the positive

o
-
)
wh
IS
3}

t (1/a%)

FIG. 2. Plots of the v, — v, transition probability as a function
of time as from Eq. (44) (blue solid line) and from the Pontecorvo
formulas (orange dashed line) for sample values of massed and
momenta, chosen in order to highlight the qualitative behavior of
Eq. (44). Masses and momenta are expressed in units of a%, time
is expressed in units of ag 2. We have used the sample values
sin?(0) = 0.3,k =5,m; = 1,m, =20 and t, = 0.1.

I

frequency modes. Because of the nontrivial curvature, the
two sets of solutions A, B are distinct. When limited to one
of the two regions, Eqgs. (17) reduce to the ordinary flat
space formulas. When the intermediate curvature region is
involved, a direct application of Eqs. (17) is prohibitive.
Nevertheless, if one is able to provide the relation between
the two sets A, B, in the form of a Bogoliubov trans-
formation, it is possible to derive oscillation formulas for
the propagation from Q4 to Qp. Assume that Q, =
U.<, Zc and Qg = J,5, 2. for some values 753 > 174,
and consider 7y < 74, 7 > 75. Suppose also that the B
modes are given in terms of the A modes as

B _ * A * A
uk’,s’,i - 2 :(Fk’s’;k,s;iuk,S.i +X ’,s’;k,s;ivk,s.,i> (45)
k,s

B _ A A
Vps i = E :(Fk’,S’;k,S;iUk,s,i - Zk’,S’;k,S;i”k,s.i)- (46)
k,s

Here the Bogoliubov coefficients I'y g.p c.io Zpr g Are
again provided by the inner products (u?,u?), (u?, v?),
yet their significance is slightly different from those in (4).
While Eq. (4) describes a general and arbitrary change of
basis, the transformation of Eq. (45) is dictated by the
circumstance of having a natural choice for the modes in
Q, and Qp, with a well-defined physical meaning. Indeed,
the Bogoliubov coefficients take into account the effect of
the curvature in the intermediate region. Then we can
specialize equations (21), (22) to get

AB . (1) =

q.rk.s Z [Fq,r;q’,r’;Z<Fz,s;k’,s’;1A?’,rﬁk’,s’(ﬂ

q/,k’,r/,s’
* =A
- Zk.s;k/.s';l':‘q’,r’;k’,s’ (T))
k =A%
+ Zq,r;q’./;Z (Fk,s;k’.s’;l‘Zq’,r’;k’,s’ (T)

+ Z;;S;k,,s,;lA;‘if,,;k,J, ()] (47)
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5rks( ):
qk///

_Zq,r;q P2 X (stk’s’ 1A’ Pk s ’( )

For 7 < 74, A*(z),EA(7) are trivial, and vice-versa, for

7 > 15, AB(7), 28(7) are trivial. Choosing, for instance, the
B representation, one would have a trivial expression for
AB(7),EB(r) and one can make use of Egs. (47), (48) to
obtain A®(zy),Z58(7) in terms of A%(z,),Z(z,), which
are also trivial. Then one can plug A%(z, 7)) and Z8(z, 7))
in Eq. (17) to obtain P *, | () forz > 7 and the reference
hypersurface 7, < 74.

1. Scwharzschild black hole

As a realization of this scheme, consider the (static)
Schwarzschild metric

ds2—<1—2G—M>d2 <1—2G—M> dr? = r2dQ,
r r

(49)

and two sequences of spacelike hypersurfaces [30] { ;] },,ens
{Z; },,en approaching, respectively, the future Z* and the
past nullinfinity Z~ as n — oco. We require that £;7 and X, be
Cauchy surfaces respectively for the causal past J~(Z ) of
7 and the causal future J* (Z~) of Z~ for each n. For n large
enough, these surfaces span an approximately flat portion of
the Schwarzschild spacetime. On the surfaces X, as n
approaches infinity, we expand the massive fields in terms of
the incoming solutions, with frequency defined with respect
to the Schwarzschild time ¢ and with definite angular
momentum,

{UNK m l(t r 6 ¢) x e_lan7 i)NK m l

(t,7,0,¢) x e
(50)

These modes reduce to the flat space solutions (37) and
(38) as Z~ is approached. Omitting the irrelevant angular
and spin quantum numbers, as n — co, we get

A (ZD) =6 \/m|Uw,w'|ei(”_(w’") (51)
—~IN ( —

Bt (En) = \/mw(u e @n (52)

AN (Z) = {1 = Fy(o)][1 - Fy(o)]ASUT(Z) —
= Fa (@)l (E250)" (25 +

+VFy(o

(Uil

Considering that A°VT(L) — 8 xlUnw e
obtain " an

and 2 (Z+) -0 mﬂ/ww |€

Z [rq,r;q’,r’Z(stk’s’lh" ik s ’( )+stk’s’ 1A' ik s ’( ))

stk’s’lh"/k’ ’( ))] (48)

|

with |U,, /| and |V, | flat space spherical mixing coef-

ficients as defined in (35) and (36), and ¢~ (w, n), p~(w, n)

phase factors depending on @ and n. A similar reasoning

can be carried on for the outgoing modes emerging at Z,
s (1 7, 0.8), EQ, (1.7, 0. @), s0 toyieldas n — oo

Aoy E0) =8, e ilUnale™ Tlom - (53)

Bt (Z0) = 8y Jorrami|Vourle” om(54)
Because of the black hole, the IN and OUT modes do not
coincide. Fermion creation by the Schwarzschild black hole
has been studied, via the tunneling method, in [31]. There it
has been shown that the Hawking temperature Ty = ﬁ
is recovered for the emission of spin— | particles. We then
infer that the IN and OUT modes are related by a thermal
Bogoliubov transformation at the Hawking temperature
Ty, corrected for fermions:

OUT ek“r”
éunc W N ekBTH +1 ij m/l ekB’;H +1 W.Kj,m; H]

ekB’H

OUT —
WK mizi

’
(Uijjl a)ijjt

e + et 41 eI+ 5T + 1

(56)

It is understood that these equations hold as long as the
spacetime is stationary (eternal black hole). For a body that
collapses to a Schwarzschild black hole, as considered in
the original paper by Hawking [32], we expect a slightly
modified version of the Bogoliubov transformations, com-
prising nondiagonal thermal coefficients I',, ,;.; and X, .;
with @ # @'. We pick the ingoing representation to calcu-
late the probabilities (of course, the outgoing representation
yields the same result, as the Bogoliubov transformations
are diagonal), and employ Egs. (47), (48) to obtain,

kBTHH

V(o)1 = Fy(a)JE00] (2)
Fry(o)Fy(a)(AD)) (1)} (57)

(@.n) ag n — 0o, we
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AL (Z5) = V[T = Fu(@)][1 = Fy(@)]| Uy e @) -

+VFy(w

and

HIN (2+ 7{\/1_FH

NG

(@)][1 = Fu(@)]|Vurle? " + /Fp(w)

1= Fy(@)]|Usyurle™" " + /Fiy(@)F (0 )|V

VFy(o

1 - FH( )]|Vw;w’|eip+<w'n)

N = Falw >]|vw;w/|e-fﬂ*<w’">+¢Fﬂ<w>FH<w'>|Uw,w/|e-f<”*<“"">}5{,,/,r——’(,,zﬂmz (58)

1 - FH((U )”Uw,w’ |ei(p+(w.n)

—ipT(w,n)
|€ ! }5(1)’,\/a)2+Am2. (59)

Choosing as reference hypersurface X, for large m, we can now compute the probabilities (17) for a neutrino propagating
from X, to X, i.e. from Z~ to Z in the limit m,n — co. We find, for m,n — oo

Pg  (m,n)

~ 2c0s*@sin’ 9(1 - \/[1 - FH(w)Hl - FH( /)]Hwa |2 COS(A(Z m n) + |wa |2 COS((I)wm n)]
+ \/FH(w)[l - FH(a)/)]|Uw;w’||Vw;w’|{cos(®(;'m n)

— Ccos (T(;J;m.n)]

+ \/FH (6()’) [1 - FH (a))] | Um;m' | |Vm;m’ | [COS(LP{J;m n) - COS(®I;m,n)]
FH (w)FH (a)/) H Uw;w’ |2 COS(A$;n1,n) + |Vw;m' |2 Cos(q)zr_;m,n)b- (60)

with A, = ¢ (0.n) Lo~ (0,m), @, =p(0,n) £p~ (w0, m), ‘Pimnzp*(w,n)ifﬂ‘(w,m) and

®$;m,n =@ (a)’ l’l) ip—(a)’

m). In particular, for large energies of the mass fields w, @',

/| = 0and |U,,|— I, thus

S ()

where it is understood that @ = @? + Am?. If the limit
Ty — Oistakenin Eq. (61), one obtains, apart from a phase
factor, the usual Pontecorvo oscillation formulas. The
qualitative behavior of Eq. (60) is displayed in (Fig. 3).
To compute the oscillation formulas on a Schwarzschild
background for an arbitrary propagation, since exact
analytical solutions are unavailable, one has to resort to
approximate solutions to the Dirac equation. In all the
applications considered, the oscillation formulas do not
depend on the helicity s of neutrinos. However, when
additional complications due to frame-dragging and non-
conservation of angular momentum arise (see e.g. [33,34]),
the formulas for left-handed and right-handed neutrinos can
differ.

E. Quantum mechanical limit

It is a general feature of Eqs. (17) that when all the
quantum field theoretical effects are negligible, the oscil-
lation formulas are modified only for a phase factor. Indeed,
when one can neglect Z,; ( in Eq. (17), one immediately has
|AL(7)] = 1, (A, 4 ()| = 1 respectively, in the nondiag-
onal case) for each 7z from Eq. (12). Then the product
A (70) A s(7), (Mg oy (T0)*Ay.or () Tespectively) is just a
phase ¢/?(%7) and the net effect is a phase shift with respect
to the Pontecorvo oscillation formulas, consistently with
previous results obtained in a heuristic treatment[16]. Of
course, the explicit value of the phase ¢(z(, ) depends on
the metric and the surfaces 7 considered, as well as on the

~ 2c0s20sin?0(1 — \/[1 — Fy(0)][1 = Fy()] cos(Ag i) =

Fp(@)Fp(@') cos(Agma)),  (61)

[

mode expansion chosen for the mass fields. When the
gravitational fields are weak enough, the phase can be
computed by means of geometrical optics considerations
[16,33,35].

0.8
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o
0.2
1o1i‘+1 1o1i’+5 101;’+9
t(ev™)
FIG. 3. Plot of the v, — v, transition probability from Eq. (60)

(blue solid line) and from the Pontecorvo oscillation formulas
(red dashed line) for late times and sample values of masses,
momenta and Hawking Temperature. The phases in (60) have
been chosen so as to match the flat space phases for simplicity,
Aai);m,n - a)z—ml ([ =+ IO) q)ﬁ;m.n - w (t + IO) ‘pai);m.n -
% (1% 1) 5 (1 F o), Oy — (1 10) =% (1 F o), where ¢
and ¢, denote respectively the future and past hypersurfaces.
We have used the sample values sinz(ﬁ) =03, k=30¢eV,
my=1eV, my=20eV, ty=0, kgTy =10"'%¢eV and ¢ in
the range [10'0 +1,10'° +9.5] eV~1.
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V. CONCLUSIONS

We have developed a quantum field theoretical approach
to the vacuum neutrino oscillations in curved space,
discussing the transition probabilities, and their behavior
under changes of mass representation. We have analyzed
the nontrivial interplay between quantum field mixing and
field quantization in curved space, and have found that the
former has a remarkably richer structure when compared to
its flat space counterpart. In particular, the formalism has to
be versatile enough to deal with the existence of infinite
unitarily inequivalent representations of the mass fields,
which is to say that no preferred notion of particle does
generally exist. In the spirit of general covariance, we have
determined the effect on flavor fields of a shift in the
expansion of the mass fields, and established under which
conditions the resulting transition probabilities are the
same. We have then computed the oscillation formulas
in three example metrics, including two FRLW spacetimes
and the static Schwarzschild black hole. In the latter we
have found that the Hawking radiation affects, although
very slightly, the oscillations for neutrinos propagating
from the asymptotic past infinity to the asymptotic future
infinity. As a general result, it is found that when all the

quantum field theoretical effects on neutrino mixing can be
neglected, the gravitational background only affects the
phase of the oscillations, consistently with previous analy-
ses. While our work is aimed at a consistent theoretical
treatment of neutrino oscillations in curved space, its main
result [namely Eq. (16)] and its applications [Egs. (41),
(44), (60)] might not be directly testable within present—day
experimental accuracy. Nevertheless, future experiments
could reach the sensitivity required to detect the (expect-
edly) tiny corrections to the neutrino oscillation formulas
predicted by our theory. Furthermore, we provide a
formalism that is well suited to investigate aspects of the
interplay between particle mixing and gravitation other
than the oscillation formulas, which could be relevant when
cosmological scenarios are considered, and particularly
during the first phases of the universe.
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