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We build a minimal neutral naturalness model in which the top partners are not charged under QCD, with
a pseudo Nambu-Goldstone Higgs arising from SOð5Þ=SOð4Þ breaking. The color-neutral top partners
generate the Higgs potential radiatively without quadratic divergence. The misalignment between the
electroweak scale and global symmetry breaking scale is naturally obtained from suppression of the Higgs
quadratic term, due to cancellation between singlet and doublet top partner contributions. This model can
be embedded into ultraviolet holographic setup in composite Higgs framework, which even realizes finite
Higgs potential.
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I. INTRODUCTION

The hierarchy problem remains as one of the unsolved
puzzles in the Standard Model (SM), i.e., the Higgs mass is
sensitive to the Planck scale through quantum effects.
Symmetry for the Higgs boson, such as supersymmetry
and shift symmetry, is typically introduced to relate the top
quark with top partner, which lowers sensitivity of the
ultraviolet (UV) scale in the Higgs mass down to the top
partner scale. However, current experimental searches of
the colored top partners have already set the lower bound of
their masses around 1 TeV [1–4], which leads to the little
hierarchy problem [5].
One novel solution to the little hierarchy problem is a

neutral naturalness scenario [6–19], in which top partners
are not charged under the SM color group. The current
search limit on masses of the colorless top partners is still
below TeV [20,21], which softens the little hierarchy
problem. Twin Higgs is the first example of neutral
naturalness, in which the Higgs boson is identified as a

pseudo Nambu-Goldstone boson (PNGB) due to an acci-
dental Z2 between the SM and its twin copy. Although this
idea is conceptually simple, it introduces many particles in
the hidden sector, i.e., mirror W0, Z0, γ0, and a whole
generation of chiral fermions for anomaly cancellation. As
a result, this setup for the hidden sector suffers from
cosmological constraints due to the presence of hidden
neutrinos and hidden photons [22–25]. It is well motivated
to find alternative constructions for more minimal hidden
sectors: mirror copies of the SM gauge bosons are not
necessary, vectorlike fermions instead of chiral ones
are introduced, i.e., no need for the whole generation of
fermions.
In this paper, we present concrete neutral naturalness

models with the minimal hidden sector. We only introduce
the dark SUð3Þ0c gauge symmetry in the hidden sector and
adopt the minimal SOð5Þ=SOð4Þ coset [26] for the PNGB
Higgs. We also introduce minimal numbers of elementary
vectorlike fermions: one singlet and one doublet of
SUð2ÞL, for canceling quadratic divergence from the top
quark contribution, and realizing vacuum misalignment
[27] between the electroweak scale v and the global
symmetry breaking scale f, i.e., v ≪ f. We denote our
model as the minimal neutral naturalness model (MNNM).
As we will see, by our assignment of embeddings of top
partners into representation of the SOð5Þ symmetry, vac-
uum misalignment is naturally realized by cancellation
between the contributions from different top partners. The
potential of the PNGB Higgs can generally be parametrized
[28,29] as
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VðhÞ ≃ −γsin2
�
h
f

�
þ βsin4

�
h
f

�
; ð1Þ

where γ and β denote radiative corrections from gauge
boson and fermion contributions, and the electroweak
scale is obtained by ξ≡ v2

f2 ¼ γ
2β. Radiative Higgs potential

typically gives γ ≃ β and thus v ≃ f. To realize vacuum
misalignment v ≪ f, one needs to either suppress the value
of γ or increase β. In conventional models, vacuum
misalignment is usually realized between tuning of two
independent sectors, e.g., γ can be suppressed by cancel-
lation between fermion and gauge boson contributions in
twin Higgs [30,31]. In contrast, we show in this work for
the first time this suppression of γ can happen within one
sector, i.e., the top quark sector, due to cancellation
between the SM top quark and the color-neutral top
partners, as fermions with different quantum numbers have
different Higgs dependence.
In traditional neutral naturalness models, including the

twin Higgs setup based on coset SUð4Þ=SUð3Þ [8] (or
SOð8Þ=SOð7Þ [12–14] if custodial symmetry is incorpo-
rated) and the model with SOð6Þ=SOð5Þ [15,16], the Higgs
potential generated by the top sector respects the parity
sh ↔ ch, and thus ξ ¼ 1=2. Typically additional parity-
breaking terms are responsible for adjusting the value of ξ
from ξ ¼ 1=2 to phenomenologically viable ones, such as
ξ ¼ 0.1. As we will show, it turns out fermion embedding
in the SOð5Þ=SOð4Þ model is different from all the above
cosets. As a result, the small misalignment angle ξ comes
from exactly the same Lagrangian of top partners that is
responsible for cutting off the quadratic divergence in the
top sector. This motivates us to construct a neutral
naturalness model with the SOð5Þ=SOð4Þ coset, which
can accommodate small ξ without additional unknown
sources that break the sh ↔ ch parity.
To have our setup valid at UV scale, we extend MNNM

by including composite states in the holographic frame-
work [32]. Following spirit of composite Higgs models
[12–17,26,33–35], we present a holographic MNNM and
its deconstructed version. This brings finiteness of the
Higgs potential, i.e., not sensitive, to the UV cutoff. After
integrating out composite states, we recover the MNNM
spectrum.

II. THE MODEL

Let us first introduce the field content of the hidden
sector. The SM gauge symmetry is extended to SUð3Þ0c ×
SUð3Þc × SUð2ÞL ×Uð1ÞY where SUð3Þ0c is an unbroken
dark color gauge group. We introduce two vectorlike
fermions q̃≡ ðt̃; b̃ÞT and T̃, which are QCD neutral but
carry the dark QCD charge,

q̃ ∼ ð3; 1; 2ÞY; T̃ ∼ ð3; 1; 1ÞY; ð2Þ

under SUð3Þ0c × SUð3Þc × SUð2ÞL × Uð1ÞY, with Y arbi-
trarily chosen. Introducing only the singlet T̃ can cancel the
quadratic divergence as the top partner. However, to obtain
the realistic Higgs potential with vacuum misalignment,
here the additional doublet q̃ is introduced.
All the fermion contents are embedded into representa-

tions of global symmetry, in which the Higgs is a PNGB
from global symmetry breaking. We adopt the minimal
coset SOð5Þ=SOð4Þ [26] incorporating the custodial sym-
metry in the Higgs sector, but do not include any com-
positeness from strong dynamics. The Higgs boson is
represented by the nonlinear sigma field in unitary gauge
as Σ ¼ fð0; 0; 0; sh; chÞT , where sh ≡ sinðh=fÞ, ch ≡
cosðh=fÞ. The SM SUð2ÞL×Uð1ÞY symmetry is embedded
in SOð4Þ × Uð1ÞX ≅ SUð2ÞL × SUð2ÞR ×Uð1ÞX with the
hypercharge Y ¼ X þ T3

R. The additional Uð1ÞX is needed
to obtain the correct hypercharge for the SM quarks. The
SM doublet qL ¼ ðtL; bLÞT and singlet tR are embedded
into 5-plet and singlet of the SOð5Þ, respectively,

QL ¼ 1ffiffiffi
2

p

0
BBBBB@

bL
−ibL
tL
itL
0

1
CCCCCA

⊂ 5; tR ⊂ 1; ð3Þ

with quantum number X ¼ 2=3. In the hidden sector, the
vectorlike fermions q̃L;R and T̃L;R are embedded as follows:

Q̃L ¼ 1ffiffiffi
2

p

0
BBBBBB@

b̃L
−ib̃L
t̃L
it̃Lffiffiffi
2

p
T̃L

1
CCCCCCA

⊂ 5; Q̃R ¼ 1ffiffiffi
2

p

0
BBBBBB@

b̃R
−ib̃R
t̃R
it̃R
0

1
CCCCCCA

⊂ 5;

T̃R ⊂ 1; ð4Þ

with the same Uð1ÞX charge. Once a mirror parity
exchanging the SM top and color-neutral top partners is
imposed, theUð1ÞX charge of the top partners should be the
same as the SM top quark. As we will see later, this point is
crucial to guarantee the cutoff scale is the same in the
SM top sector and color-neutral top-partner sector, as the
cutoff scale is interpreted as the scale of composite states in
these two sectors, respectively. With the same Uð1ÞX
charge, one can define the same composite scale in these
two sectors.
After embedding all the above elementary fermions in

SOð5Þ representations, we write down the following
Lagrangian for the top Yukawa sector:

Ltop ¼ −yQ̄LΣtR − ỹ ¯̃QLΣT̃R −mq̃
¯̃QLQ̃R þ H:c: ð5Þ
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The last term is the mass term for the vectorlike doublet,
which is allowed by the SOð5Þ global symmetry. There is
no mixing between the SM top quark and the top partners
as they carry different SUð3Þ0c × SUð3Þc charges. The

ỹ ¯̃QLΣT̃R term causes mixing between the hidden singlet
and doublet top partners, with the mixing angle approx-
imately ỹfsh=mq̃. The doublet fermion decouples when
mq̃ → ∞.
In order to cancel quadratic divergence from the top

quark loop, symmetries need to be imposed in the top
Yukawa terms in Eq. (5). Here we adopt the global SUð6Þc
symmetry in the Yukawa sector with SUð3Þc and SUð3Þ0c
gauged: SUð3Þc × SUð3Þ0c ⊂ SUð6Þc. Under the global
symmetry SOð5Þ × SUð6Þc, we define the bifundamental
fermions based on Eqs. (3) and (4):

QL ¼ ðQL; Q̃LÞ; T R ¼ ðtR; T̃RÞ: ð6Þ

The Yukawa terms in Eq. (5) are rewritten as

Ltop ⊃ yQ̄LΣT R þ H:c:; with y ¼ ỹ: ð7Þ

Alternatively, introducing a Z2 symmetry, which is external
to SOð5Þ, in Eq. (5) between two SOð5Þ multiplets

Z2∶ QL ↔ Q̃L; tR ↔ T̃R; ð8Þ

which indicates yQ̄LΣtR ↔ ỹ ¯̃QLΣT̃R, and leads to quad-
ratic divergence cancellation with y ¼ ỹ. In order to have a
neutral-naturalness cancellation, we also introduce an
internal-SOð5Þ rotational symmetry, which leads to the
embeddings of singlet and doublet top partners in the Q̃L
with appropriate coefficients, as shown in Eq. (4). This
SOð5Þ symmetry is fully elaborated in the Appendix.
In brief, Q̃L is completed into a full SOð5Þ 5-plet by
introducing additional spurious fermions, and its different
components are related by SOð5Þ rotations. The parity
defined as in Eq. (8) is uplifted to relate the full SOð5Þ
5-plets. Different from the Z2 parity [8] or the internal
trigonometric parity [16] from outer automorphism, in
which tL ↔ t̃L; tR ↔ t̃R; ch ↔ sh at the particle level,
the Z2 symmetry introduced here is only respected between
two SOð5Þ fundamental representations. The advantage of
imposing such symmetry at the Lagrangian level is that
there is no need to introduce additional softly breaking
terms to realize the correct vacuum misalignment, because
we do not implement the Z2 symmetry at the particle level.
In contrast, additional Z2 breaking sources are necessary in
conventional twin Higgs setups with trigonometric parity;
otherwise the Higgs potential would be sh ↔ ch symmet-
ric. In the Appendix, we further illustrate the fermion
embeddings in this work.
After identifying the symmetries of canceling the leading

quadratic divergence in the Higgs potential, we estimate

how much the symmetries are expected to be explicitly
broken at the relevant cutoff scale Λ. The leading breaking
arises from the differential running, due to different top
partners having different gauge charges, and there are more
states in Q̃L than those in QL. Starting from the scale Λ=Z2

,

which is the order of mX̃ as defined in the Appendix, at
which the differential running of different top partners and
the top quark initially arise, the breaking at the scale Λ
could be estimated. Following the estimation in Ref. [15],
we obtain

Δy2 ¼ y2 − ỹ2

≃ y2
�
A1g21 þ 3A2g22

16π2
−
Ã1g21 þ 3Ã2g22 þ Ã3g21

16π2

�
log

Λ=Z2

Λ

þ y2
�
A3g23
16π2

−
ðÃ4 þ Ã5Þg̃23

16π2

�
log

Λ=Z2

Λ
; ð9Þ

where A1;2;3 and Ã1;2;3;4;5 are Oð1Þ unknown coefficients
denoting the corrections of the gauge loops to the SM top
quark and top partners; g1;2 and g3; g̃3 denote the gauge
couplings of the electroweak (EW) Uð1ÞY , the EW SUð2ÞL
group, the QCD SUð3Þc color group, and its neutral-
naturalness counterpart SUð3Þ0c, respectively. Note that this
feature of explicitly breaking is universal in various twin
Higgs and neutral-naturalness models; in the following we
assume the breaking is small enough and can be neglected,
i.e., the various coefficients satisfy A1 ¼ Ã1 þ Ã3, A2 ¼ Ã2,
and A3 ¼ Ã4 þ Ã5 with g3ðΛÞ ¼ g̃3ðΛÞ. Similar corrections

from the Yukawa couplings exist as Δy2 ∼ y4

16π2
log

ΛZ2
Λ . In

order to precisely determine the Higgs potential, the cor-
rections of the renormalization group running from the
cutoff scale Λ down to the EW scale, at which the Higgs
mass is measured, are needed. We refer to Ref. [15] for
detailed discussion.

III. FULLY RADIATIVE HIGGS POTENTIAL

Following Coleman-Weinberg [36], one obtains the one-
loop Higgs potential. Instead of presenting lengthy expres-
sions, we demonstrate the vacuum misalignment is
obtained naturally with mass insertion method.
First, let us address quadratic divergence cancellation

when additional symmetries, i.e., SUð6Þ or Z2 [defined as
external to SOð5Þ rotation] plus SOð5Þ rotation, impose
y ¼ ỹ. According to Fig. 1, the Higgs quadratic term from
each diagram reads

VðhÞ ∼ y2f2NcΛ2

16π2

�
1

2
s2h þ

1

2
s2h þ c2h

�
; ð10Þ

where Nc ¼ 3 and Λ denotes the UV cutoff. The mass
parameter mq̃ is irrelevant to Λ2. Even if the doublet
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fermion is decoupled (mq̃ → ∞), the quadratic divergence
can be canceled by only the singlet fermion.
Then we investigate the logarithmic divergence of the

Higgs potential. We temporally neglect the contribution
from the mass term in Eq. (5). According to Fig. 2, the
logarithmic divergent part from diagrams (a)–(e) reads

VðhÞ∼ y4f4Nc logΛ2

16π2

�
1

4
s4h þ

1

4
s4h þ c4h þ

1

2
s2hc

2
h þ

1

2
s2hc

2
h

�

∼
y4f4Nc logΛ2

16π2

�
−s2h þ

1

2
s4h

�
: ð11Þ

The electroweak symmetry breaking is triggered by the c4h
term from the singlet fermion T̃ loop. Without contribution
from the mass term, the electroweak scale is obtained to be
v ¼ f, which is too large to be compatible with data.
Finally, we include the log-dependent Higgs potential

from the mass term mq̃
¯̃QLQ̃R. According to Fig. 2(f), it

provides a positive s2h contribution

VðhÞ ∼ y2f2Nc logΛ2

16π2
m2

q̃s
2
h: ð12Þ

Combined with the negative s2h contribution in Eq. (11), we
obtain the complete log-dependent Higgs potential

VðhÞ ∼ y2f2Nc logΛ2

16π2

�
ðm2

q̃ − y2f2Þs2h þ
y2f2

2
s4h

�
: ð13Þ

The coefficient of the s2h term can be much smaller than that
of the s4h term, due to the cancellation between the Yukawa
terms, which mainly originates from the singlet contribu-
tion c4h (and hence it leads to a negative s2h term), and the
doublet fermion mass term, which generates the positive s2h
term. As mentioned in the Introduction, unlike cancellation
between two independent sectors, such as fermions and
gauge bosons in twin Higgs models [30,31], we provide a
novel way to suppress the s2h relative to the s4h term with
only the top sector. In other models, usually additional
shift-symmetry breaking sources are needed for realizing
the suppression of the s2h term, or the enhancement of the
s4h term.
As a result, we are able to obtain the vacuum misalign-

ment without including a contribution from the bosonic
sector. The vacuum misalignment is parametrized by

ξ≡ v2

f2
≃ 1 −

m2
q̃

y2f2
: ð14Þ

Since the top partner mass is naturally at the order of
mq̃ ∼ yf, ξ ∼ 0.1 can be realized. In our numerical study,
we further include the finite part of the Higgs potential,
which does not change the general result depicted above.
The key ingredients in our setup are the doublet and

singlet top partners, charged only under the electroweak
gauge symmetry, but not the QCD gauge symmetry. The
mixings between the SM top quark and the top partners are
forbidden. These mixings are dangerous for the cancella-
tion in the radiative Higgs potential shown in Figs. 1 and 2,
because they could introduce extra terms (and thus more
diagrams) with nontrivial Higgs dependence. Therefore, it
is worthwhile pointing out that the cancellation in our
model does not apply to minimal composite Higgs models
with doublet and singlet top partners charged under the SM
QCD, in which general mixing terms between all the
fermions are allowed.

IV. ULTRAVIOLET REALIZATION

Typically the PNGBHiggs can originate from new strong
dynamics above the TeV scale, which introduces compos-
iteness. The strong dynamics can effectively be described
with the holographic framework [32]. Introducing
composite fermions further gets rid of the logΛ2 depend-
ence in theHiggs potential of Eq. (13),with the scaleΛ being
interpreted as composite state masses. InMNNM, the gauge
boson loops still encounter Λ2 dependence. Introducing
composite gauge bosons cancels both the Λ2 and logΛ2

dependence. These render the full Higgs potential finite.
In the extra dimensional setup, the Higgs boson is

identified as the zero mode of the fifth dimensional gauge

(a) (b) (c)

FIG. 1. Quadratic divergence cancellation between the top
quark and the top partners using mass insertion. Each cross (×)
denotes a Higgs insertion.

(a) (b) (c)

(d) (e) (f)

FIG. 2. The logarithmic divergent Higgs potential. Diagrams
(a)–(e) denote the contribution induced by only the Yukawa terms
in Eq. (5), and diagram (f) denotes the contribution from the
doublet fermion mass term mq̃

¯̃QLQ̃R.
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field A5ðxμ; zÞ [37,38]. The five-dimensional (5D) metric
of AdS5 is ds2 ¼ ðLzÞ2ðημνdxμdxν − dz2Þ, where the UVand
IR branes are localized at zUV ¼ L0 and zIR ¼ L1, respec-
tively. The bulk gauge symmetry SOð5Þ ×Uð1ÞX ×
SUð3Þc × SUð3Þ0c is broken to SOð4Þ ×Uð1ÞX × SUð3Þc ×
SUð3Þ0c on the IR brane, while is further reduced to
SUð2ÞL ×Uð1ÞY × SUð3Þc × SUð3Þ0c on the UV brane,
with the hypercharge Y ¼ X þ T3

R.
For the fermions in the SM sector, qL and tR are,

respectively, identified as the zero modes of the bulk fields
ξq and ξt with corresponding boundary conditions

ξq ¼

2
64 ð2;2ÞqL ¼

�
q0Lð−þÞ
qLðþþÞ

�
ð2;2ÞqR ¼

�
q0Rðþ−Þ
qRð−−Þ

�

ð1;1ÞqLð−þÞ ð1;1ÞqRðþ−Þ

3
75;

ξt ¼ ½ð1;1ÞtLð−−Þ ð1;1ÞtRðþþÞ�; ð15Þ

where ð�;�Þ denote the Neumann (þ) and Dirichlet (−)
boundary conditions (B.C.) on the UVand IR branes. Note
that ξq and ξt are charged under the SUð3Þc but neutral
under the SUð3Þ0c. The above fermion assignment respects
the SOð5Þ symmetry on the IR brane, which renders
the Higgs as the exact Goldstone. We add the IR-brane
localized term

L ⊃
m
g25

ð1; 1ÞqLð1; 1ÞtRðzIR ¼ L1Þ þ H:c:; ð16Þ

where m is a dimensionless mass parameter and g5 is a 5D
gauge parameter with Dim½1=g25� ¼ 1. This term explicitly
breaks the SOð5Þ symmetry on the IR brane and thus
generates the top quark mass and the finite Higgs potential.
For the fermions in the hidden sector, the elementary

fermion doublet q̃R is only localized on the UV brane,
while the elementary fermion doublet q̃L and singlet T̃L;R

are embedded in the bulk fermions ξq̃ and ξT̃ , respectively,
as follows:

ξq̃ ¼

2
64 ð2;2Þq̃L ¼

�
q̃0Lð−þÞ
q̃LðþþÞ

�
ð2;2Þq̃R ¼

�
q̃0Rðþ−Þ
q̃Rð−−Þ

�

ð1;1Þq̃LðþþÞ ð1;1Þq̃Rð−−Þ

3
75;

ξT̃ ¼ ½ð1;1ÞT̃Lð−−Þ ð1;1ÞT̃RðþþÞ�: ð17Þ

The bulk fermions ξq̃ and ξT̃ are charged under the SUð3Þ0c
while neutral under the SUð3Þc. Similarly, the IR-brane
term, which breaks the fermionic SOð5Þ symmetry on the
IR brane, is

L ⊃
m̃
g25

ð1; 1Þq̃Lð1; 1ÞT̃RðzIR ¼ L1Þ þ H:c: ð18Þ

The dimensionless mass parameter m̃ induces an additional
contribution to the finite Higgs potential and the hidden

fermion masses. According to our UV brane assignment,
we introduce the UV-brane localized mass term for the
doublet fermion

L ⊃ −
m̃q

g25
¯̃qRq̃LðþþÞðzUV ¼ L0Þ þ H:c:; ð19Þ

which respects the gauge symmetry on the UV brane.
Following dimensional deconstruction [39], the above

extra dimensional setup can effectively be described by
multisitemoosemodels [40,41]. Theminimalmoose setup is
the two-site model based on the SOð5Þ1 × SOð5Þ2=SOð5ÞV
coset [42,43] with SOð4Þ2 gauged on the 2-site. The Λ2

dependence from the SM gauge bosons is canceled by the
compositeρmesons introduced bygaugingSOð4Þ2. This can
be viewed as the extension of the SOð5Þ=SOð4Þ coset in
Sec. II with composite states. Under the paradigm of partial
compositeness [44], composite partners ΨL;R and their
counterparts Ψ̃L;R in the color-neutral sector are introduced
to mimic the Kaluza-Klein states in the holographic setup.
The fermion assignment is shown as the moose diagram in
Fig. 3. The link fieldU corresponds to theWilson line along
the fifth dimension in the 5D model.
With the SOð4Þ2 gauge symmetry on the 2-site, we can

decompose the composite Ψ (Ψ̃) to Ψð4Þ (Ψ̃ð4Þ) and Ψð1Þ

(Ψ̃ð1Þ). The fermionic Lagrangian reads

L ¼ yfQ̄LUΨR −MΨ̄LΨR −mΨ̄ð1Þ
L tR

þ ỹf ¯̃QLUΨ̃R − M̃ ¯̃ΨLΨ̃R − m̃ ¯̃Ψð1Þ
L T̃R

− m̃q
¯̃QLQ̃R þ H:c:; ð20Þ

where mass splittings of Ψ4;1 (Ψ̃4;1) are assumed to be zero.
Since QL and Q̃L;R form incomplete SOð5Þ multiplets,
SOð5Þ1 is explicitly broken. Without introducing mass

terms mΨ̄ð1Þ
L tR and m̃ ¯̃Ψð1Þ

L T̃R, the SOð5Þ2 remains unbro-
ken, then the Higgs is an exact Goldstone. The non-
vanishing Higgs potential can only exist when both
SOð5Þ1 and SOð5Þ2 are explicitly broken, which is referred
to as collective symmetry breaking [42,45].

FIG. 3. The two-site moose diagram and fermion assignment
for composite neutral naturalness. Each circle denotes a site and
the link in between denotes the Goldstone matrix.
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In both frameworks, one can integrate out the bulk
dynamics or the composite fermions Ψ and Ψ̃ in Eq. (21)
and match to the holographic effective Lagrangian
[26,38,46,47]. Then the finite Higgs potential is obtained

VðhÞ ≃ −
3ðay2f2m2 − ãỹ2f2m̃2Þ

16π2
s2h

þ 3ðby4f4 þ b̃ỹ4f4Þ
16π2

s4h; ð21Þ

where parameters a; ã; b; b̃ depend on the bulk masses and
mixings in the holographic model, or the parameters in
Eq. (21) for the composite model. The details of tedious
calculation will be presented in a forthcoming publication
(see also Supplemental Materials [48]). The s2h term
contains two opposite contributions from the SM and
the hidden sector, which suppress its relative magnitude
compared to the s4h term and realize vacuum misalignment.
The corresponding fine-tuning level of our model is similar
to the one of other composite Higgs models [29,49].

V. MODEL IMPLICATION AND CONCLUSION

This MNNM setup solves the little hierarchy problem
with the minimal hidden sector. The hidden sector contains
dark SUð3Þ0c color, under which new electroweak singlet
and doublet fermions are charged. These fermions are
responsible for generating the radiative Higgs potential
with their masses around scale f. Since the dark color
group is confined at around GeV scale and no new fermions
are lighter than that, the heavy fermions exhibit quirk
behavior [11,50] and form macroscopic bound states [51].
Depending on the electroweak charges of these fermions,
the top partners can be neutral or charged particles, i.e.,
Q ¼ 0; 2=3; 1, etc. Discovering these exotic bound states
forming from quirks is one of the smoking-gun signatures
at colliders. For charged top partners, they can be produced
through the Drell-Yan process and then form bound states
[21,52–54]. For neutral top partners, it is more promising to
detect them at the Large Hadron Collider (LHC) with the
possible displaced vertex signature [6,55,56] from Higgs
exotic decay. Specifically in MNNM, there is at least one
charged component in the doublet top partner, thus this
charged component could yield a benchmark quirky
signature. In order to fully verify the doublet-singlet
spectrum of the top partners at colliders, one expects
additional correlated quirky signatures or displaced verti-
ces, yielded by the other component of the doublet and the
singlet. The correlation between the signals of the doublet
and the singlet is a natural consequence of our fermion
embedding, as all the masses and couplings of the top
partners are constrained if they are required to give rise to
the small vacuum misalignment angle. On top of the
minimal setup, there exist colored Kaluza-Klein states
(or, equivalently, composite fermions) in the holographic

(composite Higgs) UV completion. Similar to the holo-
graphic/composite completion to the twin Higgs setup
[12–14], these UV heavy states are typically at the order
of 3–10 TeV and thus not too far beyond the reach of the
LHC. It would be fascinating if any of the above signals are
actually discovered.
Current searches at the LHC put constraints on the model

parameters f and mq̃, which determine the low energy
spectrum and couplings in MNNM. Since the Higgs boson
is a PNGB connecting the SM and the hidden sector, the
tightest constraint is from Higgs coupling measurements
[57–59]. We perform a global analysis on the Higgs
nonlinearity parameter ξ ¼ v2=f2 and new fermion mass
parameter mq̃ using the latest Higgs data encoded in the
program Lilith [60]. Figure 4 reads ξ < 0.1ð0.2Þ at 1σð2σÞ
confidence level. We also consider constraints on vectorlike
top partners from electroweak precision tests, using the
oblique parameters S, T [61,62]. The gray shaded region in
Fig. 4 shows the dominated constraint from the T parameter
on singlet and doublet fermion masses and mixing [63,64].
To obtain the correct vacuum misalignment and the
125 GeV Higgs mass, model parameters need to be within
the colored region in Fig. 4, with Λ ⊂ ½3 TeV; 10 TeV� and
y ⊂ ½0.86; 0.98� corresponding to the running top quark
mass at TeV scale. The strong correlation between ξ andmq̃

shows the cancellation of singlet and doublet top partner
contributions on the Higgs quadratic term, and thus
determines the fine-tuning level of the model. According
to Eq. (1), we define the fine-tuning level [29] as

Δ≡ γjmq̃¼0

γ0
·
βjmq̃¼0

β0
∼Oð10Þ; ð22Þ

where γ0 and β0 are the correct values for obtaining vacuum
misalignment and the Higgs mass. As shown in Fig. 4, the

FIG. 4. The colored region denotes the viable parameter space
on (ξ, mq̃), in which vacuum misalignment and the 125 GeV
Higgs mass are obtained, with electric charge of the top partners
unspecified. The color bar on the right shows the fine-tuning
level. The blue dashed lines denote the 1σ, 2σ contours allowed
by Higgs data, assuming electric charge Q ¼ 1 for the hidden
tops. The gray shaded region denotes the T parameter constraints
to the top partners.
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smaller ξ, the larger mq̃, and severer fine-tuning. The SM is
recovered as mq̃ → ∞ and ξ → 0.
The hidden sector can naturally accommodate dark

matter candidates. If the top partners are charge neutral,
they form the lightest dark baryon which serves as dark
matter in the asymmetric dark matter scenario [65–69]. In
this minimal setup, it is not easy to identify the dark baryon
or meson as WIMP dark matter because of strong inter-
actions in the dark color sector. One needs to introduce
either light dark-colored fermions to have strongly interact-
ingmassive particle darkmatter [70] or leptons in the hidden
sector to have singlet-doublet fermion dark matter [71,72].
Overall, we lay out the basic setup of a minimal neutral

naturalness model and its UV extension with emphasis on
generating the realistic Higgs potential. The mechanism for
obtaining vacuum misalignment through fermion-fermion
cancellation is novel, and it can possibly be generalized to
other neutral naturalness and composite Higgs models. This
setup contains very rich phenomenology which cannot be
expanded in this paper, such as dark hadron spectra, collider
signatures, cosmological implications, heavy composite par-
ticles, etc. We leave these directions for future explorations.
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APPENDIX: MORE COMMENTS
ON FERMION EMBEDDINGS

In this appendix, we would like to point out the novelty
of the fermion embeddings proposed in this work, by
comparing our model to the models with trigonometric
parity, e.g., the model with the coset SOð6Þ=SOð5Þ [or
equivalently SUð3Þ=SUð2Þ without custodial symmetry]
[15,16]. The main differences are as follows.

(i) To cancel the quadratic divergence in the Higgs mass
term, the fermion embedding in the SOð5Þ=SOð4Þ
coset is quite different from the one in the
SOð6Þ=SOð5Þ [and SUð3Þ=SUð2Þ] coset. To be
concrete, the fermion embedding in the SOð6Þ=
SOð5Þ setup is

ΨQL
¼ 1ffiffiffi

2
p

0
BBBBBBBB@

bL
−ibL
tL
itL
0

0

1
CCCCCCCCA
; Ψt̃L ¼

1ffiffiffi
2

p

0
BBBBBBBB@

0

0

0

0

t̃L
it̃L

1
CCCCCCCCA
: ðA1Þ

The Yukawa Lagrangian is

ytΨ̄QL
ΣtR þ ỹtΨ̄t̃LΣt̃R þ H:c: ðA2Þ

We see that only the fourth component of the ΨQL
,

and the sixth component of the Ψt̃L have the sh and
ch dependence in the Yukawa term, respectively.
Furthermore, an internal Z2 trigonometric parity is
obtained by the combination of the SO(2) rotation
by angle π=2 with the Higgs parity transformation
(outer automorphism), which exchanges the 4th and
6th rows inside one fermion multiplet. However, as
stated in Ref. [16], to extend the Z2 trigonometric
parity to the Yukawa couplings, an additional ex-
ternal Z2 parity needs to be introduced to relate two
different fermion multiplets. Taken yt ¼ ỹt, the
Yukawa term satisfies the trigonometric parity with
an external Z2 parity

tL ↔ t̃L; tR ↔ t̃R; sin
h
f
↔ cos

h
f
; ðA3Þ

and quadratic divergence cancellation is realized as

VðhÞ ⊃ 1

2
y2tΛ2

�
sin2

h
f
þ cos2

h
f

�
: ðA4Þ

On the other hand, in the SOð5Þ=SOð4Þ setup, if
we take the similar fermion embedding

ΨQL
¼ 1ffiffiffi

2
p

0
BBBBBB@

bL
−ibL
tL
itL
0

1
CCCCCCA
; Ψt̃L ¼

0
BBBBBB@

0

0

0

0

t̃L

1
CCCCCCA
: ðA5Þ

The same Yukawa term cannot ensure the quadratic
divergence cancellation when yt ¼ ỹt. Even the
same outer automorphism exists in SOð5Þ, it cannot
be used to related the top quark and the top partner.
The fourth component of the ΨQL

(sh dependence),
and the fifth component of the Ψt̃L (ch dependence)
would induce

VðhÞ ⊃ 1

2
y2tΛ2

�
sin2

h
f
þ 2 cos2

h
f

�

∼
1

2
y2tΛ2 cos2

h
f
; ðA6Þ

due to the extra factor of
ffiffiffi
2

p
.

(ii) Therefore, additional degree of freedom with the sh
dependence (which is the fermion with SUð2ÞL
doublet quantum number) should be introduced
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and be implemented in the fermion embedding as in
Eq. (4). There is a symmetry argument which
determines the above embeddings. First of all, let
us embed all the elementary fields into the funda-
mental representation of SOð5Þ as

QL ¼ 1ffiffiffi
2

p

0
BBBBBB@

bL
−ibL
tL
itL
0

1
CCCCCCA
; ðA7Þ

Q̃L1 ¼
1ffiffiffi
2

p

0
BBBBBB@

b̃L
−ib̃L
t̃L
it̃L
0

1
CCCCCCA
; Q̃L2 ¼

0
BBBBBB@

0

0

0

0

T̃L

1
CCCCCCA
; ðA8Þ

while Q̃L is defined as

Q̃L ¼ αQ̃L1 þ βQ̃L2: ðA9Þ

Note that, up to now, the coefficients α and β are in
general arbitrary. Lack of a SOð5Þ-internal sym-
metry would leave us the arbitrariness the ratio of
α and β in the Yukawa coupling. We argue α=β ¼ 1,
as needed for neutral naturalness cancellation, is due
to an internal SOð5Þ rotation, if Q̃L is completed into
a full SOð5Þ 5-plet. This could be realized by
introducing another SUð2ÞL doublet spurion field
X̃L;R with hypercharge X þ 1=2, but only charged
under the hidden color group (neutral under the SM
QCD color). One can embed X̃L into fundamental
representation of SOð5Þ global symmetry in a
similar way as q̃L,

Q̃L3 ¼
1ffiffiffi
2

p

0
BBBBBB@

−X̃uL

−iX̃uL

X̃dL

−iX̃dL

0

1
CCCCCCA
; ðA10Þ

where X̃u and X̃d are the upper and lower compo-
nents of the doublet X̃, respectively. The full SOð5Þ-
symmetric fundamental is defined as

Q̃0
L ¼ αQ̃L1 þ βQ̃L2 þ γQ̃L3; ðA11Þ

with the coefficients α ¼ β ¼ γ. With the full
SOð5Þ-symmetric fundamental Q̃0

L we rewrite the
Yukawa sector as

Ltop ¼ −yQ̄LΣtR − ỹ ¯̃Q0
LΣT̃R

−mq̃
¯̃qLq̃R −mX̃

¯̃XLX̃R þ H:c: ðA12Þ

Here the soft mass terms for the q̃ and X̃ fields are
introduced, which softly break the internal global
SOð5Þ symmetry, but do not affect the quadratic
divergence cancellation. The soft term of mq̃ is
utilized to realize vacuum misalignment as shown
in the manuscript, while the term of mX̃ is used to
decouple the doublet state X̃ [and thus softly breaks
the SOð5Þ rotation symmetry]. In other words, one
can think mX̃ as a SOð5Þ-breaking spurion, and in
the limit mX̃ → ∞ we have the original theory.

Let us elaborate the symmetry in the above
Lagrangian. First, we have the internal SO(5)
rotation relating Q̃L1;2;3 inside the full SOð5Þ fun-
damental Q̃0, which determine the coefficients to be
α ¼ β ¼ γ ¼ 1; second, we have the Z2 parity
[SOð5Þ-external] defined as QL ↔ Q̃0

L; tR ↔ T̃R,
which determines y ¼ ỹ. Likewise one can also
think QL in the SM sector as a full SOð5Þ funda-
mental, in which the unphysical components are
decoupled by soft mass terms, such that the Z2 parity
can be realized at the level of full SOð5Þ multiplets.
The Yukawa terms respect these symmetries, such
that the one-loop Higgs potential is insensitive to
quadratic divergence, as shown in Fig. 1.

The quadratic divergence cancellation does not
rely on the soft mass terms with the masses beingmq̃

andmX̃, respectively. We note that this softly-broken
SOð5Þ rotation could lead to quadratic divergence
beyond one-loop level (in twin Higgs models, since
the Z2 twin parity is not exact, the same problem
arises), whose magnitude however is small enough
so that we can neglect it. Beyond the 10 TeV, once
the low-energy effective model is UV completed,
e.g., in the holographic approach, the Higgs poten-
tial becomes fully calculable and the problem could
be resolved.

In the holographic setup, apart from the Z2 parity
between two SO(5) multiplets, we similarly require
the brane-localized kinetic terms respect the
internal SOð5Þ rotation, so that the corresponding
low-energy neutral-naturalness cancellation is not
spoiled.
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