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We study baryon-number-violating processes, including proton and bound neutron decays and n − n̄
oscillations, in a left-right-symmetric (LRS) model in which quarks and leptons have localized wave
functions in extra dimensions. In this model we show that, while one can easily suppress baryon-number-
violating nucleon decays well below experimental bounds, this does not suppress n − n̄ transitions, which
may occur at levels comparable to current limits. This is qualitatively similar to what was found in an extra-
dimensional model with a Standard-Model low-energy effective field theory (SMEFT). We show that
experimental data imply a lower limit on the mass scale Mnn̄ characterizing the physics responsible for
n − n̄ oscillations in the LRS model that is significantly higher than in the extra-dimensional model using a
SMEFT and explain the reason for this. Our results provide further motivation for new experiments to
search for n − n̄ oscillations.
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I. INTRODUCTION

The Standard Model (SM) conserves baryon number,
B [1,2], but baryon-number violation (BNV) is expected to
occur in nature, since this is one of the requisite conditions
for producing the observed baryon-number asymmetry in
the universe [3]. Indeed, many ultraviolet extensions of the
Standard Model, such as grand unified theories (GUTs), do
feature baryon-number violation (as well as the violation of
total lepton number, L). In addition to the ΔB ¼ −1 decays
of protons and bound neutrons, another type of baryon-
number violation is neutron-antineutron oscillations, with
jΔBj ¼ 2. These n − n̄ oscillations could explain baryo-
genesis [4]. Some early studies of n − n̄ oscillations include
[5–11]. The same physics beyond the Standard Model that
gives rise to n − n̄ oscillations also leads to matter
instability via ΔB ¼ −2 decays of nn and np dinucleon
states in nuclei. Several generations of experiments have
searched for baryon-number-violating decays of protons
and bound neutrons (henceforth denoted simply as nucleon
decays) and have set limits on such decays [12]. There have
also been searches for n − n̄ oscillations using neutron
beams from reactors [13] and for matter instability and
various dinucleon decay modes using large underground

detectors [12]. The best current limit on matter instability is
from the Super-Kamiokande (SK) experiment [14].
The operators in the low-energy effective Hamiltonian

(in four spacetime dimensions) for proton decay are four-
fermion operators with Maxwellian (i.e., free-field) mass
dimension 6 and hence coefficients of mass dimension −2,
whereas the operators inHðnn̄Þ

eff are six-quark operators, with
coefficients of dimension −5. Hence, if there were only a
single mass scale characterizing BNV physics, then
nucleon decays would generically be much more important
as a manifestation of baryon-number violation than n − n̄
oscillations and the corresponding dinucleon decays.
However, the opposite order of importance of BNV
processes may actually describe nature. In Ref. [6],
Mohapatra and Marshak presented a model using a left-
right symmetric gauge group (in four spacetime dimen-
sions) in which n − n̄ oscillations occur, while proton
decay does not. In Ref. [15], Nussinov and Shrock
presented an extra-dimensional model in which proton
decay is suppressed well beyond observable levels while
n − n̄ oscillations occur at levels comparable to experi-
mental limits. In the model used in [15], quarks and leptons
have strongly localized wave function profiles in the extra
dimensions [16,17]. In the models of both Refs. [6,15], it is
the n − n̄ oscillations and the corresponding nn and np
dinucleon decays to multimeson final states that are the
main manifestations of baryon-number violation, rather
than individual BNV nucleon decays. Further examples of
models in four spacetime dimensions with baryon-number
violation but no proton decay were later given in [18].
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Recently, in [19] we studied a number of related BNV
nucleon and dinucleon decays to various final states in the
extra-dimensional model used in [15].
In this paper we investigate nucleon decays and n − n̄

oscillations in an extra-dimensional model with the left-
right symmetric (LRS) gauge group

GLRS ¼ SUð3Þc ⊗ SUð2ÞL ⊗ SUð2ÞR ⊗ Uð1ÞB−L: ð1:1Þ

Our present work complements the study in Ref. [6], which
was set in four spacetime dimensions, and also the previous
studies [15] and [19], which used a low-energy effective
field theory with the SM gauge group, GSM ¼ SUð3Þc ⊗
SUð2ÞL ⊗ Uð1ÞY rather thanGLRS. Anticipating our results
in advance, we show that in the extra-dimensional LRS
model, it is easy to suppress nucleon decays well below
observable levels, but this does not suppress n − n̄ oscil-
lations, which can occur at levels comparable with current
experimental limits. This is qualitatively similar to the
conclusions reached in [15]. Here we find an interesting
feature of the extra-dimensional LRS model that makes
n − n̄ oscillations even less suppressed than in the model of
[15] with its Standard-Model low-energy effective field
theory (SMEFT). The reason for this is that the integration
of six-quark operators over the extra dimensions always led
to exponential suppression factors in the model of [15],
whereas, in contrast, we find that in the LRS model, there
are some operators for which this integration does not lead
to exponential suppression factors.
Our work here also complements our recent studies in

[20], where we derived improved upper bounds on the rates
for several nucleon-to-trilepton decay modes and in [21],
where we presented improved upper bounds on the rates for
several dinucleon-to-dilepton decay channels (see also
[22]). References [20,21] were model-independent phe-
nomenological analyses, whereas our present paper is a
study within the context of a specific type of extra-
dimensional model. Recent reviews of n − n̄ oscillations
include [23,24].
This paper is organized as follows. In Sec. II we briefly

review the properties of the left-right symmetric model that
will be needed for our analysis. In Sec. III we discuss the
extra-dimensional model and low-energy effective field
theory approach that serve as the theoretical framework for
our calculations. In Sec. IV we extract constraints on the
fermion wave functions in the model from limits on BNV
nucleon decay modes. Section V contains our analysis of
n − n̄ oscillations. Our conclusions are presented in
Section VI.

II. LEFT-RIGHT SYMMETRIC MODEL

In this section we recall some basic properties of the left-
right symmetric model [6,25–27] that will be relevant here,
and define our notation for the fermion and Higgs fields in
the theory. The Lagrangian is invariant under the gauge

group GLRS in Eq. (1.1), with corresponding SUð2ÞL,
SUð2ÞR, and Uð1ÞB−L gauge fields A⃗L;μ, A⃗R;μ and Uμ,
and respective gauge couplings gL, gR, and gU. The quarks
and leptons of each generation transform as

QL∶ ð3; 2; 1Þ1=3;L; QR∶ ð3; 1; 2Þ1=3;R ð2:1Þ

and

Ll;L∶ ð1; 2; 1Þ−1;L; Ll;R∶ ð1; 1; 2Þ−1;R; ð2:2Þ

where the numbers in the parentheses are the dimension-
alities of the representations under the three non-Abelian
factor groups in GLRS and the numbers in the subscripts are
the values of B − L. (No confusion should result from the
use of the symbol L for both “lepton” and “left”; the
context will make clear which meaning is intended.) For
our purposes, we shall only need the first-generation quark
fields, which are, explicitly,

Qα
L ¼

�
uα

dα

�
L

; Qα
R ¼

�
uα

dα

�
R

; ð2:3Þ

where Greek indices α, β, etc. are SUð3Þc color indices. The
explicit lepton fields are

Ll;L ¼
�
νl

l

�
L

; Ll;R ¼
�
νl

l

�
R

; ð2:4Þ

where l ¼ e, μ, τ. We denote SUð2ÞL and SUð2ÞR gauge
indices as Roman indices i; j… and primed Roman indices
i0; j0…, respectively, so, e.g., Qiα

L ¼ uαL for i ¼ 1 and
Qi0α

R ¼ dαR for i0 ¼ 2. The electric charge is given by the
elegant expression Qem ¼ T3L þ T3R þ ðB − LÞ=2, where
T⃗L and T⃗R denote the SUð2ÞL and SUð2ÞR weak isospin
generators.
The Higgs sector contains a Higgs field Φ transforming

as ð1; 2; 2Þ0, which can be written asΦij0 , or equivalently, in
matrix form, as

Φ ¼
�
ϕ0
1 ϕþ

1

ϕ−
2 ϕ0

2

�
: ð2:5Þ

The Higgs sector also contains two Higgs fields, commonly
denoted ΔL and ΔR, which transform as ð1; 3; 1Þ2 and
ð1; 1; 3Þ2, respectively. Since the adjoint representation of
SU(2) is equivalent to the symmetric rank-2 tensor repre-
sentation, these may be written as ðΔLÞij ¼ ðΔLÞji and
ðΔRÞi0j0 ¼ ðΔRÞj0i0 or, alternatively, as (traceless) matrices:

Δχ ¼
�Δþ

χ =
ffiffiffi
2

p
Δþþ

χ

Δ0
χ −Δþ

χ =
ffiffiffi
2

p
�
; χ ¼ L; R: ð2:6Þ
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The minimization of the Higgs potential to produce vacuum
expectation values (VEVs) has been analyzed in a number
of studies [27–32]. With appropriate choices of parameters
in the Higgs potential, this minimization yields the follow-
ing vacuum expectation values of the Higgs fields:

hΦi0 ¼
1ffiffiffi
2

p
�
κ1 0

0 κ2eiθΦ

�
; ð2:7Þ

hΔLi0 ¼
1ffiffiffi
2

p
�

0 0

vLeiθΔ 0

�
ð2:8Þ

and

hΔRi0 ¼
1ffiffiffi
2

p
�

0 0

vR 0

�
: ð2:9Þ

(Here, the choices of which VEVs are real are made with
the requisite rephasings.) The spontaneous symmetry
breaking of the GLRS gauge symmetry occurs in several
stages. At the highest-mass stage, ΔR picks up a VEV,
thereby breaking the SUð2ÞR ⊗ Uð1ÞB−L subgroup ofGLRS
to Uð1ÞY , where Y denotes the weak hypercharge, i.e.,

SUð2ÞR ⊗ Uð1ÞB−L → Uð1ÞY: ð2:10Þ

This gives the WR a large mass, which, to leading order, is
mWR

¼ gRvR=
ffiffiffi
2

p
. The second stage of symmetry breaking,

SUð2ÞL ⊗ Uð1ÞY → Uð1Þem; ð2:11Þ

occurs at a lower scale and results from the VEVs of the Φ
field. This gives a mass mWL

¼ gLvEW=2, where vEW ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ21 þ κ22

p
¼ 246 GeV is the electroweak symmetry break-

ing (EWSB) scale. The neutral gauge fields A3L, A3R, and
U mix to form the photon, the Z, and a much more massive
Z0. Since the VEV vLof the SUð2ÞL Higgs tripletΔL would
modify the successful tree-level relation ρ ¼ 1, where
ρ ¼ m2

W=ðm2
Z cos

2 θWÞ ¼ 1, one takes vL ≪ κ1;2. It is also
possible to consider dynamical breaking of the LRS gauge
symmetry (e.g., [33,34]), but the conventional scenario
with Higgs fields will be assumed here.
This LRS model has several interesting features as a UV

extension of the Standard Model. The relation for Qem
entails charge quantization. Furthermore, one may impose
left-right symmetry at some high ultraviolet (UV) scale, so
the running gauge couplings for SUð2ÞL and SUð2ÞR are
equal, i.e., gL ¼ gR at this scale, thereby reducing the
number of parameters in the model. The left-right sym-
metry in the Lagrangian is of conceptual interest since it
means that parity violation is due to spontaneous symmetry
breaking, rather than being intrinsic, as in the Standard
Model. The nonobservation of any right-handed charged
currents in weak decays and the lower limits (of order

several TeV) from the Large Hadron Collider on a W�
R and

Z0 can be accommodated by making vR sufficiently large.
Since the ΔR has B − L charge of 2, its VEV, vR,
breaks B − L by two units. The gauge group GLRS has a
natural UV extension to a theory with gauge group
G422 ¼ SUð4ÞPS ⊗ SUð2ÞL ⊗ SUð2ÞR, where the Pati-
Salam (PS) gauge group SUð4ÞPS [35] contains SUð3Þc ⊗
Uð1ÞB−L as a maximal subgroup. In turn,G422 is a maximal
subgroup of the SO(10) GUT group, since SOð10Þ ⊇
SOð6Þ ⊗ SOð4Þ ≈ SUð4Þ ⊗ SUð2Þ ⊗ SUð2Þ. There are
also supersymmetric extensions of the LRS model
(e.g., [36]). However, since the LHC has not yet observed
evidence of supersymmetric partners, and since we use a
low-energy effective field theory framework for our analy-
sis, the nonsupersymmetric version of the LRS model will
be sufficient for our study.

III. EXTRA-DIMENSIONAL FRAMEWORK

In this section we describe the extra-dimensional model
that we use. Some aspects of this discussion are similar to
those of Refs. [15,19], but to make our presentation self-
contained, we reiterate these here. The particular type of
extra-dimensional model that was used for the study of
n − n̄ oscillations in [15,19] has the appeal that it can
naturally explain the large hierarchy in quark and lepton
masses by requisite properties of fermion wave functions in
the extra dimensions, without the need for a large range of
dimensionless Yukawa couplings in the fundamental
theory [16,17].
A remark is in order concerning a difference in our use of

the extra-dimensional model here and the use in Refs. [15]
and [19]. Because the scale of baryon-number violation
responsible for n − n̄ oscillations is larger than the electro-
weak scale, Refs. [15] and [19] used a low-energy effective
field theory analysis with six-quark operators that are
invariant under the Standard-Model gauge group, GSM,
i.e., an extra-dimension SMEFT. As noted above, in the
Standard Model, B is a global symmetry, and the baryon-
number-violating physics that gives rise to n − n̄ oscilla-
tions is encoded in the six-quark operators and their
coefficients. In contrast, in the LRS model, B and L are
both gauged, as the combination B − L in the Uð1ÞB−L
factor group of GLRS. This gauge symmetry is sponta-
neously broken by the VEVof the ΔR field at the high scale
vR. As mentioned above, since ΔR has charge 2 under
Uð1ÞB−L, this VEV vR breaks Uð1ÞB−L by two units. For a
process that has ΔL ¼ 0, this means that it breaks B as
jΔBj ¼ 2. It follows that the mass scale, Mnn̄, character-
izing the physics responsible for n − n̄ oscillations is vR:

Mnn̄ ¼ vR: ð3:1Þ

We shall analyze n − n̄ oscillations in this theory by writing
down the relevant GLRS-invariant operators, which are six-
quark operators multiplied by ðΔRÞ†, and then focusing on
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the resultant six-quark operators resulting from the VEV
of ðΔRÞ†.
Proceeding with the description of the extra-dimensional

model, the usual spacetime coordinates are denoted as xν,
with ν ¼ 0, 1, 2, 3, and the n extra coordinates as yλ with
1 ≤ λ ≤ n; for definiteness, the latter are assumed to be
compact. The fermion and boson fields are taken to have a
factorized form. For fermions, this form is

Ψðx; yÞ ¼ ψðxÞχðyÞ; ð3:2Þ

where here Ψðx; yÞ is a generic symbol standing for
QLðx; yÞ, QRðx; yÞ, Ll;Lðx; yÞ or Ll;Rðx; yÞ. In the extra
dimensions these fields are restricted to the interval 0 ≤
yλ ≤ L for all λ. We define an energy corresponding to the
inverse of the compactification scale as ΛL ≡ 1=L.
Starting from an effective Lagrangian in the

d ¼ ð4þ nÞ-dimensional spacetime, one obtains the result-
ant low-energy effective Lagrangian in four dimensions by
integrating over the extra n dimensions. We use a low-
energy effective field theory (EFT) approach that entails an
ultraviolet cutoff, which we denote as M�. In accordance
with this low-energy EFT approach, as in Ref. [17], we
focus on the lowest Kaluza-Klein modes of the boson
(gauge and Higgs) fields and take these to have flat profiles
in the extra dimensions. Recall that the Maxwellian mass
dimension of a boson field in a d ¼ 4þ n dimensional
spacetime is db ¼ ðd − 2Þ=2 ¼ 1þ ðn=2Þ. Therefore, in
order to maintain canonical normalization of boson fields in
four spacetime dimensions, a Higgs field in 4þ n dimen-
sions with a flat profile in the extra dimensions, generically
denoted ϕ4þn, has the form

ϕ4þnðx; yÞ ¼ ðΛLÞn=2ϕðxÞ ¼ L−n=2ϕðxÞ: ð3:3Þ

It is readily seen that the integration of the quadratic terms
in the Higgs field over the n extra dimensions yields the
correct normalization for the resultant quadratic terms in
the Lagrangian in four spacetime dimensions:

Z
L

0

dnyTr½ϕ†
4þnϕ4þn� ¼ Ln½L−nTrðϕ†ϕÞ� ¼ Trðϕ†ϕÞ:

ð3:4Þ

The coefficients of higher-power products of Higgs fields
can be expressed using similar methods. For example, the
coefficient λ1;4þn of the quartic term ½TrðΦðx; yÞ†Φðx; yÞÞ�2
has dimensions dλ1;4þn

¼ 4 − d ¼ −n, and hence we set
λ1;4þn ¼ Λ−n

L λ1 ¼ Lnλ1 so that the integration over the
extra dimensions yields the standard quartic term in the
Lagrangian:

λ1;4þn

Z
L

0

dny½TrðΦðx; yÞ†Φðx; yÞÞ�2

¼ ðLnλ1ÞðLnÞðL−n=2Þ4TrðΦðxÞ†ΦðxÞÞ�
¼ λ1½TrðΦðxÞ†ΦðxÞÞ�; ð3:5Þ

and similarly with other terms in the Higgs potential.
Corresponding statements apply for the covariant derivative
terms. The VEV of the higher-dimensional Higgs field
ðΔRÞ4þn is thus

hðΔRÞ4þni0 ¼ ðΛLÞn=2vR ¼ L−n=2vR: ð3:6Þ

Since the Higgs fields are taken to have flat profiles in the
extra dimensions as in [17] and since we will only need to
make use of their VEVs for our purposes, we may simply
replace the various Higgs fields by these VEVs in the four-
spacetime-dimensional Lagrangian and deal only with the
dependence of the fermion fields on the y coordinates. This
simplified procedure will be followed henceforth.
The localization of the wave function of a fermion f in

the extra dimensions has the form [16,17]

χfðyÞ ¼ Ae−μ
2ky−yfk2 ; ð3:7Þ

where A is a normalization factor and yf ∈ Rn denotes the
position vector of this fermion in the extra dimensions, with
components yf ¼ ðyf;1;…; yf;nÞ and with the standard
Euclidean norm of a vector in Rn, namely kyfk≡
ðPn

λ¼1 y
2
f;λÞ1=2. For n ¼ 1 or n ¼ 2, this fermion localiza-

tion can result from appropriate coupling to a scalar
localizer field with a kink or vortex solution, respectively
[37–43]. Corrections due to Coulombic gauge interactions
between fermions have been studied in [44]. The normali-
zation factor A is determined by the condition that,
after integration over the n higher dimensions, the four-
dimensional fermion kinetic term has its canonical nor-
malization. This yields the result

A ¼
�
2

π

�
n=4

μn=2: ð3:8Þ

We define a distance inverse to the localization measure μ
as Lμ ≡ 1=μ. The fermion wave functions are assumed to
be strongly localized, with half-width Lμ ≪ L at various
points in the higher-dimensional space. We define
ξ≡ L=Lμ ¼ μ=ΛL. As in the earlier works [15,19], the
choice ξ ∼ 30 is made for sufficient separation of the
various fermion wave functions while still fitting well
within the size L of the compactified extra dimensions. The
UV cutoff M� is taken to be much larger than any mass
scale in the model, to ensure the self-consistency of the
low-energy effective field theory analysis. The choice
ΛL ≳ 100 TeV is consistent with bounds on extra dimen-
sions from precision electroweak constraints and collider

SUDHAKANTHA GIRMOHANTA and ROBERT SHROCK PHYS. REV. D 101, 095012 (2020)

095012-4



searches [12] and produces adequate suppression of flavor-
changing neutral-current processes [45] (see also [46,47]).
With ξ ¼ 30, this yields μ ∼ 3 × 103 TeV. (The models
considered here with SM fields propagating in the large
extra dimensions are to be contrasted with models in
which only the gravitons propagate in these dimensions
(e.g., [48–51]) and models with noncompact extra dimen-
sions and a warped metric [52,53].)
For integrals of products of fermion fields, although the

range of integration over each of the n coordinates of a
vector y is from 0 to L, the strong localization of each
fermion field in the Gaussian form (3.7) means that, to a
very good approximation, the restriction of the fermion
wave functions to the form (3.7), the range of integration
can be extended to the interval ð−∞;∞Þ: R

L
0 dny →R∞

−∞ dny. We define the (dimensionless) vector

η ¼ μy: ð3:9Þ

We next discuss the Yukawa terms and resultant mass
terms for quarks in this extra-dimensional LRS model.
These are

LYuk ¼
X3
a;b¼1

½Q̄a;LðyðqÞabΦþ hðqÞab Φ̃ÞQb;R� þ H:c:; ð3:10Þ

where a, b are generation indices and Φ̃ ¼ τ2Φ�τ2, and
here yðqÞab and hðqÞab are Yukawa couplings. Inserting the VEV
ofΦ from Eq. (2.7) and performing the integration, over the
extra dimensions, of the quark bilinears gives the mass
terms

1ffiffiffi
2

p
X3
a;b¼1

½ūa;LðyðqÞab κ1þhðqÞab κ2e
iθΦÞub;R�e−SyQ;ab

þ 1ffiffiffi
2

p
X3
a;b¼1

½d̄a;LðyðqÞab κ2e
−iθΦ þhðqÞab κ1Þdb;R�e−SyQ;ab þH:c:;

ð3:11Þ
where

SyQ;ab ¼
1

2
kηQa;L

− ηQb;R
k2: ð3:12Þ

For our study of n − n̄ oscillations in this model, we will
only need to deal with the first-generation quark fields,
Q1;L and Q1;R. Consequently, we will omit the generation
indices on these fields, with the understanding that they
are first-generation quarks: QL ¼ ðudÞL and QR ¼ ðudÞR.
Neglecting small Cabibbo-Kobayashi-Maskawa mixings,
the relevant quark mass terms are then

1ffiffiffi
2

p
�
½ūLðyðqÞ11 κ1 þ hðqÞ11 κ2e

iθΦÞuR� þ ½d̄LðyðqÞ11 κ2e
−iθΦ þ hðqÞ11 κ1ÞdR�

�
e−ð1=2ÞkηQL

−ηQR
k2 þ H:c: ð3:13Þ

Note that although one may impose left-right symmetry in
the deep UV, this symmetry is broken at the scale vR, so at
this EWSB scale, ηQL

is expected to be different from ηQR
.

In accordance with the original motivation for this type of
extra-dimensional model, namely that the generational
hierarchy in the quark and charged lepton masses is not
due primarily to a hierarchy in the dimensionless Yukawa
couplings, but instead to the different positions of the wave
function centers in the extra dimensions, one may take

yðqÞ11 ∼Oð1Þ and hðqÞ11 ∼Oð1Þ. Then

kηQL
− ηQR

k ¼
�
2 ln

�jyðqÞ11 κ1 þ hðqÞ11 κ2e
iθΦ jffiffiffi

2
p

mu

��
1=2

ð3:14Þ

and

kηQL
− ηQR

k ¼
�
2 ln

�jyðqÞ11 κ2e
−iθΦ þ hðqÞ11 κ1jffiffiffi
2

p
md

��
1=2

: ð3:15Þ

For given κ1 and κ2, the two Yukawa couplings yðqÞ11 and

hðqÞ11 , and the phase factor e
iθΦ can be chosen to satisfy these

relations. Taking yðqÞ11 ∼Oð1Þ and hðqÞ11 ∼Oð1Þ as above, and
using the values of the running quark masses mu and md at
the EWSB scale from Ref. [54], one can then compute a
value of kηQL

− ηQR
k that satisfies Eqs. (3.14) and (3.15).

For our purposes, we will take the value

kηQL
− ηQR

k ≃ 4.7: ð3:16Þ

For our analysis of baryon-number-violating processes,
let us consider a generic operator product of fermion fields
in the four-dimensional Lagrangian consisting of k fermion
fields multiplied by a coefficient cr;k, which we denote as
Or;k. We denote the corresponding operator in the
d ¼ ð4þ nÞ-dimensional space as Or;kðx; yÞ. The coeffi-
cient of this operator, κr;k, can be written in a form that
exhibits its mass dimension explicitly, namely

κr;k ¼
κ̄r;k

ðMBNVÞkð3þnÞ=2−4−n ; ð3:17Þ

where κ̄r;k is dimensionless and MBNV is a relevant mass
scale for the BNV process (nucleon decay or n − n̄
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oscillations). We denote the integral over the extra dimen-
sions of this fermion operator product as Ir;k. Using
Eq. (A2) of Ref. [19], we have Ir;k ¼ bke−Sr;k , where

bk ¼ Akμ−n
�
π

k

�
n=2

¼ ½2k=4π−ðk−2Þ=4k−1=2μðk−2Þ=2�n: ð3:18Þ
Then, as in [19],

cr;k ¼ κr;kIr;k ¼
κ̄r;k

ðMBNVÞð3k−8Þ=2
�

μ

MBNV

�ðk−2Þn=2

×

�
2k=4

πðk−2Þ=4k1=2

�
n
e−Sr;k : ð3:19Þ

For cases where the number k is obvious, we will some-
times suppress this subscript in the notation.

IV. CONSTRAINTS FROM LIMITS ON BARYON-
NUMBER-VIOLATING NUCLEON DECAYS

In this section we analyze the constraints on fermion
wave functions that can be derived from the experimental
upper limits on the rates for baryon-number-violating
nucleon decays. We denote the relevant BNV mass scale
MBNV as MNd, where Nd stands for “nucleon decay.” We
assume thatMNd is large compared with the highest gauge-
symmetry breaking scale in the LRS model, namely vR, so
that the effective Lagrangian is invariant under the LRS
gauge group, GLRS.
For the effective Lagrangian that is relevant for nucleon

decays, we write

LðNdÞ
eff ðxÞ ¼

X
r

cðNdÞ
r OðNdÞ

r ðxÞ þ H:c:; ð4:1Þ

where cðNdÞ
r are coefficients, and OðNdÞ

r ðxÞ are the various
four-fermion operators. Correspondingly, in the d ¼
ð4þ nÞ-dimensional space, the effective Lagrangian is

LðNdÞ
eff;4þnðx; yÞ ¼

X
r

κðNdÞ
r OðNdÞ

r ðx; yÞ þ H:c: ð4:2Þ

Four-fermion operators OðNdÞ
r in LðNdÞ

eff that contribute to
nucleon decays in this LRS model and are invariant under
GLRS are listed below [where the unprimed and primed
Roman indices are SUð2ÞL and SUð2ÞR gauge indices, as
defined above]:

OðNdÞ
LL ¼ ϵαβγϵijϵkm½QiαT

L CQjβ
L �½QkγT

L CLm
l;L�

¼ 2ϵαβγ½uαTL CdβL�ð½uγTL ClL� − ½dγTL Cνl;L�Þ; ð4:3Þ

OðNdÞ
RR ¼ ϵαβγϵi0j0ϵk0m0 ½Qi0αT

R CQj0β
R �½Qk0γT

R CLm0
l;R�

¼ 2ϵαβγ½uαTR CdβR�ð½uγTR ClR� − ½dγTR Cνl;R�Þ; ð4:4Þ

OðNdÞ
LR ¼ ϵαβγϵijϵi0j0 ½QiαT

L CQjβ
L �½Qi0γT

R CLj0
l;R�

¼ 2ϵαβγ½uαTL CdβL�ð½uγTR ClR� − ½dγTR Cνl;R�Þ ð4:5Þ

and

OðNdÞ
RL ¼ ϵαβγϵi0j0ϵij½Qi0αT

R CQj0β
R �½QiγT

L CLj
l;L�

¼ 2ϵαβγ½uαTR CdβR�ð½uγTL ClL� − ½dγTL Cνl;L�Þ; ð4:6Þ

where C is the Dirac charge conjugation matrix satisfying
CγμC−1 ¼ −ðγμÞT , C ¼ −CT ; and ϵαβγ , ϵij, and ϵi0j0 are
totally antisymmetric SUð3Þc, SUð2ÞL, and SUð2ÞR tensors,
respectively.
To each of these operators OðNdÞ

r there corresponds an

operator OðNdÞ
r in LðNdÞ

eff;4þn. These are four-fermion oper-
ators, and, as the k ¼ 4 special case of Eq. (3.17), we have

κðNdÞ
r ¼ κ̄ðNdÞ

r

ðMNdÞ2þn : ð4:7Þ

The dependence of κðNdÞ
r on the generational index of the

lepton field that occurs in OðNdÞ
r is left implicit. From the

factorized form of fermion fields in Eq. (3.2), it follows that

OðNdÞ
r ðx; yÞ ¼ UðNdÞ

r ðxÞVðNdÞ
r ðyÞ; ð4:8Þ

where r ¼ LL;RR; LR;RL. To perform the integrals over
y, we use the general integration formula given as Eq. (A2)
in Ref. [19]. Carrying out the integration over the y
components and using Eq. (3.8) for the relevant case
k ¼ 4, we obtain the following results for the nonvanishing
operators:

IðNdÞ
LL ¼ b4 exp

�
−
3

4
kηQL

− ηLl;L
k2
�
; ð4:9Þ

IðNdÞ
RR ¼ b4 exp

�
−
3

4
kηQR

− ηLl;R
k2
�
; ð4:10Þ

IðNdÞ
LR ¼ b4 exp

�
−
1

4
f2kηQL

− ηQR
k2 þ 2kηQL

− ηLlR
k2

þ kηQR
− ηLlR

k2g
�

ð4:11Þ

and

IðNdÞ
RL ¼ b4 exp

�
−
1

4
f2kηQR

− ηQL
k2 þ 2kηQR

− ηLlL
k2

þ kηQL
− ηLlL

k2g
�

ð4:12Þ

where b4 ¼ ðπ−1=2μÞn, from the k ¼ 4 special case of

Eq. (3.18). It is convenient to write the integral IðNdÞ
r in

the form
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IðNdÞ
r ≡ b4e−S

ðNdÞ
r ; ð4:13Þ

where SðNdÞ
r denotes the sum of squares of fermion wave

function separation distances (rescaled via multiplication
by μ to be dimensionless) in the argument of the exponent

in IðNdÞ
r . Thus, for example, in the case of OðNdÞ

LL , the sum in

the exponent is SðNdÞ
LL ¼ ð3=4ÞkηQL

− ηLl;L
k2, and similarly

for the other SðNdÞ
r . Then, as the special case of (3.19) with

k ¼ 4,

cðNdÞ
r ¼ κ̄ðNdÞ

r

ðMNdÞ2
�

μ

π1=2MNd

�
n
e−S

ðNdÞ
r : ð4:14Þ

We use the experimental lower bound [12] on the partial
lifetime ðτ=BÞN→f:s: ¼ Γ−1

N→f:s: for a given nucleon decay
modeN → f:s:with branching ratioB to a final state denoted

f.s. to infer upper bounds on the magnitudes of the cðNdÞ
r

coefficients. The strongest lower bounds on these partial
lifetimes that are relevant here include ðτ=BÞp→eþπ0 > 1.6 ×
1034 yr and ðτ=BÞp→μþπ0 > 0.77 × 1034 yr [55]. The limits
for the analogous decays of neutrons are ðτ=BÞn→eþπ− >
0.53 × 1034 yr and ðτ=BÞn→μþπ− > 0.35 × 1034 yr [56].
(These and other experimental limits quoted in this paper
are at the 90% confidence level.) Sincewe do not not assume

any cancellation between different terms cðNdÞ
r OðNdÞ

r occur-

ring in LðNdÞ
eff , we impose the bounds from a given decay

individually on each term that contributes to it. For given

values of μ, MNd, and the dimensionless coefficients κ̄ðNdÞ
r ,

these constraints are upper bounds on the integrals IðNdÞ
r and

hence lower bounds on the sums of squares of distances in

SðNdÞ
r for each operator OðNdÞ

r . Our analysis of these lower
bounds on fermion separation distances in Ref. [19] can be
taken over, with appropriate changes, for our present study;
we refer the reader to [19] for the details.We find, for each r,

SðNdÞ
r > ðSðNdÞ

r Þmin, where

ðSðNdÞ
r Þmin ¼ 39 −

n
2
ln π − 2 ln

�
MNd

104 TeV

�

− n ln

�
MNd

μ

�
: ð4:15Þ

The most direct bounds on fermion separation distances

arises from the contribution of the operators OðNdÞ
LL and

OðNdÞ
RR , since, for a given l (¼ e or μ), the integrals IðNdÞ

LL and

IðNdÞ
RR each involve only one fermion separation distance,
namely kηQL

− ηLl;L
k and kηQR

− ηLl;R
k, respectively, for a

given lepton generation l ¼ e or l ¼ μ. In this case, for the
illustrative case of n ¼ 2 extra dimensions, we obtain the
lower bound

kηQχ
− ηLl;χ

k2 > 50 −
8

3
ln

�
MNd

104 TeV

�
−
8

3
ln

�
MNd

μ

�

for χ ¼ L;R and for l ¼ e; μ: ð4:16Þ

With the illustrative valueMNd ¼ 104 TeV, these are the
inequalities kηQχ

− ηLl;χ
k > 6.8 for each of the four pos-

sibilities χ ¼ L, R and l ¼ e, μ. A conservative solution to
the coupled quadratic inequalities would require that each
of the relevant distances kηfi − ηfjk in Eq. (4.16) for both
l ¼ e and l ¼ μwould be larger than the square root of the
right-hand side of Eq. (4.15):

fkηQL
− ηLlL

k; kηQR
− ηLlR

k; kηQL
− ηLlR

k;
kηQR

− ηLlL
kg > ½ðSðNdÞ

r Þmin�1=2: ð4:17Þ

That is, this set of inequalities is sufficient, but not
necessary, to satisfy experimental constraints on the model
from lower limits on partial lifetimes for nucleon decays.

V. n− n̄ OSCILLATIONS AND DINUCLEON
DECAYS

In this section we analyze n − n̄ oscillations and the
resultant ΔB ¼ −2 dinucleon decays in this extra-dimen-
sional LRS model. We refer the reader to Refs. [15] and
[19] for relevant background; here we will review this
background briefly. We consider a general theory in which
baryon-number-violating physics can produce n − n̄ tran-
sitions. We denote the relevant low-energy effective

Lagrangian in 4D as Lðnn̄Þ
eff , and the transition matrix

element as jδmj ¼ jhn̄jLðnn̄Þ
eff jnij. In (field-free) vacuum,

an initial state which is jni at time t ¼ 0 has a nonzero
probability to be an jn̄i state at a later time t > 0. This
probability is given by PðnðtÞ ¼ n̄Þ ¼ jhn̄jnðtÞij2 ¼
½sin2ðt=τnn̄Þ�e−t=τn , where τnn̄ ¼ 1=jδmj and τn is the mean
life of the neutron. The current direct limit on τnn̄, from a
reactor experiment at the Institut Laue-Langevin (ILL) in
Grenoble is τnn̄ ≥ 0.86 × 108 sec, i.e., jδmj < 0.77 ×
10−29 MeV [13]. Because of the nonvanishing n − n̄
transition amplitude, the physical eigenstate for the
neutron state in matter has a small component of n̄, i.e.,
jniphys: ¼ cos θnn̄jni þ sin θnn̄jn̄i, with jθnn̄j ≪ 1. In turn,
this leads to annihilation with an adjacent neutron or
proton, and hence to ΔB ¼ −2 decays to nonbaryonic
final states, predominantly involving pions. Experiments
have searched for the resultant matter instability due to
these dinucleon decays and have set lower limits on the
matter instability (m.i.) lifetime, τm:i:. This lifetime
is related to τnn̄ by the formula τm:i: ¼ Rτ2nn̄, where
R ∼Oð102Þ MeV, or equivalently, R ≃ 1023 sec−1,
depending on the nucleus. The best current limit on matter
instability is from the Super-Kamiokande water Cherenkov
experiment [14], namely τm:i: > 1.9 × 1032 yr. Using the
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value R ≃ 0.52 × 1023 sec−1 for the 16O nuclei in the water,
Ref. [14] obtained the lower bound τnn̄ > 2.7 × 108 sec, or
equivalently,

jδmj < 2.4 × 10−30 MeV: ð5:1Þ

As mentioned above, we shall analyze n − n̄ oscillations
in this theory by writing down the relevant GLRS-invariant
operators, which are six-quark operators multiplied by
ðΔRÞ†, and then focusing on the resultant jΔBj ¼ 2

six-quark operators resulting from the VEV of ðΔRÞ†.
The effective Lagrangian (in four-dimensional spacetime)

that mediates n − n̄ oscillations is a sum of six-quark
operators,

Lðnn̄Þ
eff ðxÞ ¼

X
r

cðnn̄Þr Oðnn̄Þ
r ðxÞ þ H:c: ð5:2Þ

The corresponding Lagrangian in the (4þ n)-dimensional
space is

Lðnn̄Þ
eff;4þnðx; yÞ ¼

X
r

κðnn̄Þr Oðnn̄Þ
r ðx; yÞ þ H:c: ð5:3Þ

We find, for the set Oðnn̄Þ
r , the operators

Oðnn̄Þ
1 ¼ ðTsÞαβγδρσðϵi0k0ϵj0m0 þ ϵj0k0ϵi0m0 Þðϵp0r0ϵq0s0 þ ϵq0r0ϵp0s0 Þ½Qi0αT

R CQj0β
R �½Qk0γT

R CQm0δ
R �½Qp0ρT

R CQq0σ
R �ðΔ†

RÞr0s0 ; ð5:4Þ

Oðnn̄Þ
2 ¼ ðTaÞαβγδρσϵi0j0ϵk0m0 ðϵp0r0ϵq0s0 þ ϵq0r0ϵp0s0 Þ½Qi0αT

R CQj0β
R �½Qk0γT

R CQm0δ
R �½Qp0ρT

R CQq0σ
R �ðΔ†

RÞr0s0 ; ð5:5Þ

Oðnn̄Þ
3 ¼ ðTaÞαβγδρσϵijϵk0m0 ðϵp0r0ϵq0s0 þ ϵq0r0ϵp0s0 Þ½QiαT

L CQjβ
L �½Qk0γT

R CQm0δ
R �½Qp0ρT

R CQq0σ
R �ðΔ†

RÞr0s0 ; ð5:6Þ

Oðnn̄Þ
4 ¼ ðTaÞαβγδρσϵijϵkmðϵp0r0ϵq0s0 þ ϵq0r0ϵp0s0 Þ½QiαT

L CQjβ
L �½QkγT

L CQmδ
L �½Qp0ρT

R CQq0σ
R �ðΔ†

RÞr0s0 ; ð5:7Þ

Oðnn̄Þ
5 ¼ ðTsÞαβγδρσðϵikϵjm þ ϵjkϵimÞðϵp0r0ϵq0s0 þ ϵq0r0ϵp0s0 Þ½QiαT

L CQjβ
L �½QkγT

L CQmδ
L �½Qp0ρT

R CQq0σ
R �ðΔ†

RÞr0s0 ð5:8Þ

where the SUð3Þc color tensors are

ðTsÞαβγδρσ ¼ ϵραγϵσβδ þ ϵσαγϵρβδ

þ ϵρβγϵσαδ þ ϵσβγϵραδ ð5:9Þ

and

ðTaÞαβγδρσ ¼ ϵραβϵσγδ þ ϵσαβϵργδ: ð5:10Þ

To obtain the six-quark operators that mediate n − n̄
transitions, we replace the ΔR field by its VEV, vR. To each

of these n − n̄ transition operators Oðnn̄Þ
r there corresponds

an operator Oðnn̄Þ
r in LðNdÞ

eff;4þn. We have

κðnn̄Þr ¼ κ̄ðnn̄Þr

ðMnn̄Þ6þ2n : ð5:11Þ

To each of these operators there is a corresponding Vðnn̄Þ
r

function; for example,

Vðnn̄Þ
1 ¼ Vðnn̄Þ

2 ¼ A6 exp½−6kη − ηQR
k2�; ð5:12Þ

and so forth for the others. The integrals of these functions
over the extra n dimensions comprise two classes. The

integration of the Vðnn̄Þ
r functions for the operators Oðnn̄Þ

r

with r ¼ 1, 2 are the same, defining class Cðnn̄Þ
1s , where the

subscript s is appended to distinguish this and the other
classes from the classes calculated in terms of the GSM-
based low-energy effective field theory in [15,19]:

Iðnn̄ÞC1s
¼ b6 ð5:13Þ

where b6 ¼ ð2 · 3−1=2π−1μ2Þn from the k ¼ 6 special case

of Eq. (3.18) and Iðnn̄ÞCk
≡ I

Cðnn̄Þ
k

. The integrals of the

operators Oðnn̄Þ
r with r ¼ 3, 4, 5 are equal and yield a

second class,

Iðnn̄ÞC2s
¼ b6 exp

�
−
4

3
kηQL

− ηQR
k2
�
: ð5:14Þ

From the special case of Eq. (3.19) with k ¼ 6, together
with Eq. (3.1), it follows that

cðnn̄Þr ¼ κ̄ðnn̄Þr

v5R

�
2μ2

31=2πv2R

�
n
e−S

ðnn̄Þ
r ; ð5:15Þ

where

Sðnn̄Þr ¼ 0 for r ¼ 1; 2 ð5:16Þ

and
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Sðnn̄Þr ¼ 4

3
kηQL

− ηQR
k2 for r ¼ 3; 4; 5: ð5:17Þ

An important result from this calculation is that because

Sðnn̄Þr ¼ 0 for r ¼ 1, 2, there is no exponential wave
function suppression from the integration over the n extra

dimensions for Oðnn̄Þ
r with r ¼ 1, 2.

Then

jδmj ¼ 1

v5R

�
μ

vR

�
2n
�

2

31=2π

�
n

×

����
X
r

κ̄ðnn̄Þr e−S
ðnn̄Þ
r hn̄jOðnn̄Þ

r jni
����: ð5:18Þ

The dominant contribution to jδmj comes from the oper-

ators Oðnn̄Þ
r with r ¼ 1, 2 (provided that the coefficients

κ̄ðnn̄Þr with r ¼ 1, 2 are not negligibly small), since Sðnn̄Þr ¼ 0
for r ¼ 1, 2, so these operators do not incur any exponential
suppression factors from the integration over the extra

dimensions. The matrix elements hn̄jOðnn̄Þ
r jni have dimen-

sions of ðmassÞ6, and since they are determined by hadronic
physics, one expects on general grounds that they are
∼Λ6

QCD, where, as above, ΛQCD ≃ 0.25 GeV. This expect-
ation is confirmed by quantitative calculations [10,11,57].

Taking κ̄ðnn̄Þr ∼Oð1Þ for r ¼ 1, 2 and the illustrative value
n ¼ 2 extra dimensions, and requiring that jδmj must be
less than the experimental upper bound (5.1), we then
derive the following lower bound on Mnn̄ ¼ vR:

vR > ð1 × 103 TeVÞ
�

τnn̄
2.7 × 108 sec

�
1=9

×

�
μ

3 × 103 TeV

�
4=9

�jhn̄jOðnn̄Þ
1;2 jnij

Λ6
QCD

�
1=9

: ð5:19Þ

Thus, our analysis shows that, while it is easy to suppress
ΔB ¼ −1 nucleon decay far below observable levels in this
model by making the fermion wave function separation
distances in Eq. (4.17) sufficiently large, this does not
suppress the jΔBj ¼ 2 n − n̄ oscillations, which can occur
at a level comparable with current experimental limits. We
have used this fact to deduce the lower bound (5.19) on vR
and hence the scale of jΔBj ¼ 2 baryon-number violation
in this model. A similar comment applies to ΔB ¼ −2
dinucleon decays (occurring primarily to multipion final
states), since these are induced by the fundamental n − n̄
oscillations.
It is of interest to compare our new results for the extra-

dimensional LRS model with the results that were pre-
viously obtained in Ref. [15] and studied further in [19] for
an extra-dimensional model that used a Standard-Model
low-energy field theory. A striking feature that is common
to both of these types of models is that although one can
easily arrange the fermion wave function separation dis-
tances to suppress nucleon decays, this does not suppress

n − n̄ oscillations. A basic difference between the model
used in Refs. [15,19] and the present LRS model is that in
the SM effective field theory framework of [15,19], baryon
number is a global symmetry, while in the LRS model, B
and L are gauged via the Uð1ÞB−L symmetry, and the VEV
of the ΔR field spontaneously breaks B by 2 units in
processes for which ΔL ¼ 0. Hence, while the SM Higgs
VEV preserves B (and L), here the scale of baryon-number
violation is set by vR, as given in Eq. (3.1). We recall the
corresponding limit from Ref. [15] (updated in [19] with
the newer limit on τm:i: from the Super-Kamiokande
experiment [14]), namely

Mnn̄ > ð44 TeVÞ
�

τnn̄
2.7 × 108 sec

�
1=9

×

�
μ

3 × 103 TeV

�
4=9

�jhn̄jOðnn̄Þ
4 jnij

Λ6
QCD

�
1=9

for SMEFT: ð5:20Þ

The main reason why the lower bound on Mnn̄ ¼ vR in
Eq. (5.19) is substantially higher than the lower bound on
Mnn̄ in Eq. (5.20) is that all of the integrals of six-quark
operators in the extra dimensions in the model of
Refs. [15,19] involved exponential suppression factors,

whereas, in contrast, here, Sðnn̄Þr ¼ 0 for r ¼ 1, 2, so the

integrals of these operators Oðnn̄Þ
r over the extra dimensions

do not produce any exponential suppression factors.

VI. CONCLUSIONS

In this paper we have studied n − n̄ oscillations in a left-
right-symmetric model in which Standard-Model fermions
have localized wave functions in extra dimensions. We
have shown that in this extra-dimensional LRS model, even
with fermion wave function positions chosen so as to
render the rates for baryon-violating nucleon decays much
smaller than experimental limits, n − n̄ oscillations can
occur at rates comparable to current bounds. Thus, this
feature is common to both the present LRS model and the
model with a SM low-energy effective field theory studied
in [15,19]. An interesting difference between these models
that we find is that certain six-quark operators in the LRS
model are not suppressed by exponential factors resulting
from the integration over the extra dimensions, in contrast
to the SMEFT model of Refs. [15,19], where this integra-
tion yields exponential suppression factors for all six-quark
operators. These findings provide further motivation for
new experimental searches for n − n̄ oscillations. In the
future, one may look forward to such experiments using a
neutron beam at the European Spallation Source [24] and
searching for resultant matter instability in the water
Cherenkov detector in Hyper-Kamiokande [58] and the
liquid argon detector in the Deep Underground Neutrino
Experiment, DUNE [59,60].
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