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We study the Casimir effect in the classical geometry of two parallel conductive plates, separated by a
distance L, for a Lorentz-breaking extension of the scalar field theory. The Lorentz-violating part of the
theory is characterized by the term λðu · ∂ϕÞ2, where the parameter λ and the background four-vector uμ

codify Lorentz symmetry violation. We use Green’s function techniques to study the local behavior of the
vacuum stress-energy tensor in the region between the plates. Closed analytical expressions are obtained
for the Casimir energy and pressure. We show that the energy density EC (and hence the pressure) can be

expressed in terms of the Lorentz-invariant energy density E0 as follows ECðLÞ ¼
ffiffiffiffiffiffiffiffiffiffi
1−λu2n
1þλu2

q
E0ðL̃Þ; where

L̃ ¼ L=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − λu2n

p
is a rescaled plate-to-plate separation and un is the component of u⃗ along the normal to

the plates. As usual, divergences of the local Casimir energy do not contribute to the pressure.

DOI: 10.1103/PhysRevD.101.095011

I. INTRODUCTION

Lorentz symmetry breaking has attracted great attention
in the last decades both from the theoretical and exper-
imental sides. This interest is justified from the fact that
diverse quantum gravity candidates, such as loop quantum
gravity and string theory, predict the breakdown of such
fundamental symmetry at very short distances, presumably
at the Planck scale. If Lorentz symmetry is really broken
at very high energies, the effects of this violation should
manifest at lower energies; however no violation has been
detected so far. This is why the most important direction in
the study of Lorentz symmetry breaking has been through
low-energy effective field theories. Some well-known
Lorentz-breaking field theories are, for example, noncom-
mutative field theories [1–4], brane world scenarios [5–7]
and the Standard-Model Extension (SME) [8,9]. Indeed,
the latter has grabbed the most attention in the context of
Lorentz violation. The SME allows a spontaneous violation
of Lorentz symmetry, implemented through the emergence
of nonzero vacuum expectation values of some vector
and tensor fields, generating thus preferential directions

in spacetime. Of course, this anisotropy in the spacetime
should manifest as small deviations in any physically
measurable quantity predicted by the Lorentz-symmetric
theory.
The Casimir effect, predicted by H. B. Casimir in 1948

[10] and experimentally confirmed by M. J. Sparnnaay in
1958 [11], is one of the most remarkable consequences
of the nonzero vacuum energy predicted by quantum field
theory. In general, it refers to the stress on bounding
surfaces when a quantum field (whether fermionic or
bosonic) is confined to a finite volume of space. This
force is due entirely to the change, brought about the
presence of boundaries, in the energy of the vacuum. The
relevance of the Casimir effect is apparent in many
branches of physics, ranging from quantum field theory
and theories with compactified extra dimensions [12–14],
to gravitation [15–17] and condensed matter [18–20].
It is worth mentioning that any effective field theory has

an analogue of the Casimir effect, since it supports field
oscillations as well. For example, the electromagnetic
response of the topological phases of matter is described
by effective electromagnetic field theories (which are
obtained by integrating-out fermions in the microscopic
Hamiltonian). So when we put two of these materials close
each other, the zero-point energy of the field will be
modified (as compared with the trivial electromagnetic
vacuum), and hence a Casimir effect takes place. Regarding
Lorentz-violating effective field theories, the Casimir effect
has also been extensively studied, since the broken sym-
metry (which manifests through background vector and
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tensor fields) affects the Casimir force on bounding
surfaces. For example, in the context of the Standard-
Model Extension, the CE has been discussed within the
electromagnetic [21–23], fermionic [24–26] and gravita-
tional [27,28] sectors.
In this paper we study the Casimir effect between two

parallel conductive plates for a Lorentz-violating massive
scalar field. The theory is defined by the Klein-Gordon
Lagrangian plus the Lorentz-violating term λðu · ∂ϕÞ2,
where the parameter λ and the background four-vector uμ ¼
ðu0; u⃗Þ control Lorentz symmetry breaking [29]. Here, we
employ a field theoretical approach to evaluate the vacuum
expectation value of the stress-energy tensor (by means of
the usual point-splitting technique and expressing it in
terms of the corresponding Green’s function), from which
we calculate the Casimir energy (and pressure) in an
analytical fashion. We find that the energy and pressure
in the presence of Lorentz violation can be expressed in
simple forms in terms of the Lorentz symmetric results.
Remarkably, the results reported in Ref. [30], where the CE
was studied by summing over the zero-point modes, are
just particular cases of the results we present here.
Furthermore, we also provide additional information about
the divergence of the local energy density near the plates
and provide a full expression for the vacuum stress.
The outline of this work is the following. In Sec. II we

present the theoretical model we deal with: a Lorentz-
violating massive real scalar field. Section III is devoted
to the derivation of the different Green’s functions to be
used within the local approach to the CE. Using the
standard point-splitting technique of quantum field theory,
in Sec. IV we introduce the vacuum stress-energy tensor.
The Casimir effect is fully analyzed in Sec. V. In Sec. VI
we summarize our results and give further concluding
remarks. Throughout the paper, natural units are assumed
(ℏ ¼ c ¼ 1) and the metric signature will be taken
as ðþ;−;−;−Þ.

II. LORENTZ-VIOLATING SCALAR
FIELD THEORY

Our starting point is the Lorentz-violating (LV)
Lagrangian for a massive scalar field theory given by [29]

L ¼ 1

2
½ð∂ϕÞ2 þ λðu · ∂ϕÞ2 −m2ϕ2�; ð1Þ

where the second term encodes the breakdown of Lorentz
symmetry. The constant vector uμ ¼ ðu0; u⃗Þ, which acts as
a background field, does not transform under active Lorentz
transformations. This vector, together with the dimension-
less parameter λ, characterize the Lorentz symmetry vio-
lation. An important note, Lorentz-violating coefficients
are usually assumed to be small and then a perturbative
treatment is appropriate to see the effects of Lorentz
violation in a given physical phenomena. In this paper

we relax this assumption by considering that kμν ≡ λuμuν
has a finite value, not necessarily much smaller than 1.
However, formal restrictions on jkμνj can be derived
from the positive-energy condition [29]. Indeed, from
the Lagrangian (1), one can see that the regime jkμνj > 1

produces instabilities in the field theory, since the kinetic
term for motion flips its sign. This means that excitations
with large momenta have lower energies and hence there is
no vacuum state. In this paper we deal with the Casimir
effect, which is a manifestation of the quantum vacuum. As
such, we restrict ourselves to the field theory defined by the
Lagrangian density (1) in the regime jkμνj < 1.
It is worth mentioning that, in the limit jkμνj ≪ 1 and

working to first order in kμν, the Lorentz-violating scalar
field theory can be actually transformed into the Lorentz-
invariant theory by performing a suitable change of
spacetime coordinates, i.e., x0μ ¼ xμ − 1

2
kμνxν [31,32].

In this scenario, the Lorentz-breaking term in the
Lagrangian (1) can be eliminated, i.e.,

R
d4xLðϕ; ∂ϕÞ ¼R

d4x0L0ðϕ0; ∂ 0ϕ0Þ, where L0 ¼ 1
2
½ð∂ 0ϕ0Þ2 −m2ϕ02� and

ϕ0 ¼ J1=4ϕ, being J ¼ j detð∂xμ∂x0νÞj the Jacobian of the trans-
formation. The coordinate redefinition method has proven
to be useful in many Lorentz-violating field theories. It can
be used to move Lorentz violation from one sector to
another in interacting field theories, for example, from
the fermion to the photon sector of the Standard-Model
Extension. However, when the LV coefficient kμν is not
much smaller than one, the coordinate redefinition method
does not provide a good approximation and hence we have
to work directly with the full Lagrangian (1). This is
precisely the case we consider in this paper.
The equation of motion arising from the Lagrangian (1)

reads

½□þ λðu · ∂Þ2 þm2�ϕðxÞ ¼ 0; ð2Þ

and the stress-energy tensor for this theory is given by

Tμν ¼ ð∂μϕÞð∂νϕÞ þ λuμð∂νϕÞðu · ∂ϕÞ − ημνL: ð3Þ

Here ημν ¼ diagð1;−1;−1;−1Þ is the usual Minkowski flat
spacetime metric. Note that, unlike most of the standard
cases where Lorentz symmetry is preserved, this tensor
cannot be symmetrized because its antisymmetric part

TðμνÞ ¼ λ

2
½uμð∂νϕÞ − uνð∂μϕÞ�ðu · ∂ϕÞ ð4Þ

is no longer a total derivative. We can directly verify that
the stress-energy tensor (3) is conserved, i.e., ∂μTμν ¼ 0;
however, is not traceless Tμ

μ ≠ 0.
In this paper we are concerned with the Casimir effect

associated with a Lorentz-violating scalar field theory
confined between two parallel plates. To this end, we
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employ a local approach consisting in the evaluation of the
vacuum expectation value of the stress-energy tensor (3),
which can be expressed in terms of the appropriate Green’s
function for the modified field equation (2).

III. GREEN’S FUNCTION

Let us consider a Lorentz-violating massive scalar field
confined between two large parallel plates separated by a
distance L. In the following we derive the Green’s function
(GF) for the confined LV scalar field by imposing Dirichlet
conditions on the plates. We will also derive another
Green’s functions relevant for the calculation of the
renormalized Casimir energy and stress. The GFs for the
case of Neumann or Robin boundary conditions can be
derived in the same way.
For simplicity, we orient the coordinate frame so that one

plate is at z ¼ 0 while the other is at z ¼ L. So the unit
normal to the former plate is nμ ¼ ð0; 0; 0; 1Þ. Also, we
conveniently decompose the spatial part of the background
LV 4-vector uμ, u⃗, into the transverse u⃗⊥ (along the x and y
directions) and longitudinal uz (along the z direction)
components. In this way uμ ¼ ðu0; u⃗⊥; uzÞ. From the
equation of motion (2) we find that the Green’s function
satisfies

½∂2
t − ∂2

z − ∇⃗2
⊥ þ λðu0∂t − u⃗⊥ · ∇⃗⊥ − uz∂zÞ2 þm2�Gðx; x0Þ

¼ δðx − x0Þ; ð5Þ

where ∇⃗2
⊥ ¼ e⃗x∂2

x þ e⃗y∂2
y is the transverse Laplacian.

The symmetry of the system suggests that the GF must
possess translational invariance in the transverse x and y
directions. Exploiting this symmetry we further introduce
the reduced Green’s function gðz; z0Þ according to the
Fourier transform [33]

Gðx; x0Þ ¼
Z

d2k⃗⊥
ð2πÞ2 e

ik⃗⊥·ðr⃗−r⃗0Þ⊥
Z

dω
2π

e−iωðt−t0Þgðz; z0Þ; ð6Þ

where we have suppressed the dependence of g on the
frequency ω and the transverse momentum k⃗⊥ for the sake
of brevity. The notation is f⃗⊥ ¼ fxe⃗x þ fye⃗y for any vector

f⃗ (i.e., f⃗⊥ is the transverse part of f⃗). Now we have to
determine the reduced GF gðz; z0Þ. The substitution of
Eq. (6) into Eq. (5) yields the reduced GF equation:

½γ2 þ ð1 − λu2zÞ∂2
z − 2iλuzðωu0 þ k⃗⊥ · u⃗⊥Þ∂z�gðz; z0Þ

¼ −δðz − z0Þ; ð7Þ

where γ2¼ω2−k2⊥−m2þλðωu0þ k⃗⊥ · u⃗⊥Þ2. This equation
is to be solved subject to the appropriate boundary
conditions (e.g., on the plates, at infinity, etc.). To this
end, we follow the usual discontinuity method, which

consists in solving the differential equation (7) on the line
without the singular point z ¼ z0, and then matching the
solutions with the appropriate boundary conditions there.
Indeed, if one accepts that g is bounded when z is in the
infinitesimal neighborhood of z0, integration of (7) over the
interval z0 − 0þ and z0 þ 0þ yields

−
∂gðz; z0Þ

∂z
����z¼z0þ0þ

z¼z0−0þ
¼ 1

1 − λu2z
: ð8Þ

Then the continuity of g at z ¼ z0 follows. The two
independent solutions of the differential equation (7) in
the region z ≠ z0 are given by eiξ0ze�iξ1z, where

ξ0 ¼
λuzðωu0 þ k⃗⊥ · u⃗⊥Þ

1 − λu2z
; ξ1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2 þ ð1 − λu2zÞξ20

1 − λu2z

s
:

ð9Þ

Therefore, the solution to (7) can be expressed in terms of
the solutions, eiðξ0þξ1Þz and eiðξ0−ξ1Þz. With the above results,
we are ready to compute the needed different Green’s
functions.
First, we consider the case of the reduced GF between

two parallel conductive plates. So, we have to solve Eq. (7)
subject to the Dirichlet boundary conditions on the plates,
i.e., gkð0; z0Þ ¼ gkðL; z0Þ ¼ 0, where the subscript k indi-
cates that this corresponds to the GF for the parallel plates
configuration. In this way, the reduced GF between the
plates can be written as

gkðz; z0Þ ¼ eiξ0z
�
Aeiξ1z þ Be−iξ1z 0 < z < z0

Ceiξ1z þDe−iξ1z z0 < z < L
: ð10Þ

where the coefficients A, B, C and D, are to be determined
by imposing the four boundary conditions. After some
algebra we obtain

gkðz; z0Þ ¼ −eiξ0ðz−z0Þ
sinðξ1z<Þ sin½ξ1ðz> − LÞ�
ð1 − λu2zÞξ1 sinðξ1LÞ

; ð11Þ

where z> (z<) is the greater (lesser) between z and z0. The
result for Neumann boundary conditions on the plates is
obtained by exchanging the functions sin x for cos x in the
numerator of Eq. (11). One can further verify that, in
the limit λ → 0, the reduced GF (11) correctly reduces to
the Lorentz invariant case

g0ðz; z0Þ ¼ −
sinðβz<Þ sin½βðz> − LÞ�

β sinðβLÞ ; ð12Þ

where β2 ¼ ω2 − k2⊥ −m2 [33]. As we can see, the reduced
GF gkðz; z0Þ cannot be expressed in terms of g0ðz; z0Þ due to
the intricate dependence of the former on λ and uμ.
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However, as we will see later, Gkðx; x0Þ can be expressed in
terms of G0ðx; x0Þ in the limit x0 → x after an appropriate
change of variables in the frequency and transverse
momentum. Here, Gk and G0 are the GFs in coordinate
representation, as defined in Eq. (6).
In order to evaluate renormalized physical quantities,

such as the Casimir energy and the Casimir stress, we will
also need the Green’s functions in free space (i.e., in the
absence of the plates) and that in the presence of one plate,
respectively. A calculation just like that which led to
Eq. (11) yields, in vacuum, to

gvðz; z0Þ ¼
i

2ξ1

eiξ0ðz−z0Þ

ð1 − λu2zÞ
eiξ1ðz>−z<Þ; ð13Þ

which has the correct outgoing boundary conditions as
z → �∞, i.e., eiðξ0�ξ1Þz. Similarly, we can compute the
Green’s function which vanishes at z ¼ L, and has out-
going boundary condition as z → ∞, i.e., gj ∼ eiðξ0þξ1Þz.
The result for z; z0 > L is

gjðz; z0Þ ¼
1

ξ1

eiξ0ðz−z0Þ

ð1 − λu2zÞ
sin½ξ1ðz< − LÞ�eiξ1ðz>−LÞ: ð14Þ

As before, z> (z<) is the greater (lesser) between z and z0.

IV. VACUUM STRESS-ENERGY TENSOR

In Sec. II we presented the stress-energy tensor for this
theory. Nowwe address its vacuum expectation value (vev),
which from now on we will refer as the vacuum stress (VS).
The local approach to compute the VS was initiated in

Ref. [34], where the authors calculated the renormalized
stress-energy tensor by means of GF techniques. They used
the fact that the Green’s function is related to the vacuum
expectation value of the time-ordered product of fields
according to

Gðx; x0Þ ¼ −ih0jT̂ ϕðxÞϕðx0Þj0i: ð15Þ

Therefore the VS can be obtained from appropriate
derivatives of the GF. Using the standard point splitting
technique and taking the vacuum expectation value of the
stress-energy tensor (3) we find

hTμνi ¼ −i lim
x0→x

½∂μ∂ 0ν þ λuμ∂νðu · ∂ 0Þ�Gðx; x0Þ − ημνhLi;
ð16Þ

where

hLi ¼ −i lim
x0→x

1

2
½∂ · ∂ 0 þ λðu · ∂Þðu · ∂ 0Þ −m2�Gðx; x0Þ:

ð17Þ

In this context, the energy density (energy per unit volume)
is defined as the time-time component of the VS, i.e., hT00i.
From the above expressions, together with the 3þ 1
representation of the Green’s function (6), we obtain the
following general expression for the energy density

hT00i ¼ −ilim
z0→z

Z
dω
2π

Z
d2k⃗⊥
ð2πÞ2 ½ω

2 þ λu0ωðu0ωþ u⃗⊥ · k⃗⊥Þ

− iλu0ωuz∂z�gðz; z0Þ − hLi; ð18Þ
where the vev of the Lagrangian is

hLi ¼ −
i
2
lim
z0→z

Z
dω
2π

Z
d2k⃗⊥
ð2πÞ2 ½γ

2 − ð1 − λu2zÞ∂z∂z0

þ iλuzðu0ωþ u⃗⊥ · k⃗⊥Þð∂z0 − ∂zÞ�gðz; z0Þ: ð19Þ
Also, by virtue of the boundary conditions on bounding
surfaces, the pressure (force per unit area) on the boundary
can be obtained from the normal-normal component of the
VS, i.e., hnμnνTμνi being nμ the unit normal to the surface.
Taking nμ ¼ ð0; 0; 0; 1Þ, an explicit expression for the
pressure is

hTzzi ¼ −ilim
z0→z

Z
dω
2π

Z
d2k⃗⊥
ð2πÞ2 ½ð1 − λu2zÞ∂z∂z0

þ iλuzðu0ωþ u⃗⊥ · k⃗⊥Þ∂z�gðz; z0Þ þ hLi; ð20Þ
where hLi is given in Eq. (19). These results will be
extensively used in the next section to evaluate the Casimir
stress upon the plates by (i) variation of the energy density
(18) and (ii) direct evaluation of the normal-normal
component of the VS (20). We will also analyze the local
effects in the energy density. Interestingly, as we will see,
the vacuum expectation value of the Lagrangian (19) is the
responsible of divergences of the energy density near the
boundaries, which of course are not physical.

V. CASIMIR EFFECT

In its most basic form, the Casimir effect is the attraction
between two neutral perfectly conductive parallel plates
placed in vacuum [10]. The attractive force can be
considered as arising due to the change in the zero-point
energy of the electromagnetic field when the plates are
brought into position.
There are different ways in which the Casimir energy

may be computed. The most commonly used is perhaps
the mode-summation method, which consist in the direct
evaluation of infinite sums over eigenvalues of zero-point
field modes. The local approach, which is based upon the
use of Green’s functions, represents a formally elegant
manner to derive the Casimir energy and Casimir stress
[35]. Both treatments can be shown to be formally
equivalent; however, local methods are richer than global
ones since they provide much more information about the
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system. Using the results derived above, in this section we
compute the Casimir stress upon the plates when a Lorentz-
violating scalar field is confined between them.

A. Global Casimir energy

Following Weiskopf, Schwinger and others [36–39], the
physical vacuum energy is defined as the difference
between the zero-point energy in the presence of bounda-
ries and that of the free vacuum. In the language of quantum
field theory, the Casimir energy stored in the field between
the plates is expressed as

ECðLÞ ¼
Z

L

0

hT00irendz; ð21Þ

where

hT00iren ¼ hT00ik − hT00iv ð22Þ

is the renormalized time-time component of the VS, which
is just the difference between the energy density in the
presence of the plates hT00ik and that of the free vacuum
hT00iv [35]. This means that the former must be computed
by using the Green’s function for the parallel plates
configuration, given by Eq. (11), while the latter must
be computed with the vacuum GF (13). Let us start with
hT00ik. Substituting the reduced Green’s function in the
presence of the plates gkðz; z0Þ into Eq. (18) we obtain

hT00ik ¼ −i
Z

dω
2π

Z
d2k⃗⊥
ð2πÞ2

�
ω2 þ λu0

1 − λu2z
ωðu0ωþ u⃗⊥ · k⃗⊥Þ

�
gkðz; zÞ

þ λu0uz
1 − λu2z

Z
dω
2π

Z
d2k⃗⊥
ð2πÞ2 ω

sinðξ1zÞ cos½ξ1ðz − LÞ�
sinðξ1LÞ

− hLik: ð23Þ

and from Eq. (19) we find the vev of the Lagrangian

hLik ¼ −i
Z

dω
2π

Z
d2k⃗⊥
ð2πÞ2

ξ1
2

cos½ξ1ð2z − LÞ�
sinðξ1LÞ

: ð24Þ

Two of the three terms appearing in Eq. (23) will not
contribute to the Casimir stress upon the plates, as we shall
discuss just now. On the one hand, one can easily check that
the integral of Eq. (24) in the interval ½0; L�, as required by

Eq. (21), produces
R
L
0 hLikdz ¼ ð1=2iÞ R dω

2π

R d2k⃗⊥
ð2πÞ2, which is

a formally divergent term which nevertheless does not
depend on L, and as such it will not contribute to the
Casimir pressure. On the other hand, the second integral
(whose integrand is proportional to ω) yields zero by
symmetry considerations. This is clarify below. Therefore,
these two terms can be safely disregarded in Eq. (23), and
hence we will focus only in the first term.
In order to develop the integral in Eq. (23), let us

define the rescaled quantities z̃ ¼ z=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − λu2z

p
and L̃ ¼

L=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − λu2z

p
, such that the Green’s function gk [given by

Eq. (11)] at coincident arguments can be written in terms of
the Lorentz-symmetric GF g0 [given by Eq. (12)] at
rescaled coincident arguments as follows

gkðz; zÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − λu2z
p g̃0ðz̃; z̃Þ; ð25Þ

where

g̃0ðz̃; z̃Þ ¼ −
sinðαz̃Þ sin½αðz̃ − L̃Þ�

α sinðαL̃Þ ð26Þ

with however α2¼ω2−k2⊥−m2þ λ
1−λu2z

ðωu0þ k⃗⊥ · u⃗⊥Þ2.
Therefore, the main difference between g̃0ðz̃; z̃Þ and the
Lorentz-symmetric GF g0ðz; zÞ is that the α has a highly
nontrivial dependence on the frequency ω and transverse
momentum k⃗⊥ as compared with the β2 ¼ ω2 − k2⊥ −m2

appearing in the Lorentz invariant GF. Indeed, one can
confirm that in the limit λ → 0, α → β and hence g̃0ðz̃; z̃Þ
correctly reduces to g0ðz; zÞ, as it should be.
To proceed further we define the three-vector

κ⃗ ¼ ðω; kx; kyÞ ∈ R3, such that the integral in Eq. (23)
can be written as

hT00ik ¼ −i
Z

dω
2π

Z
d2k⃗⊥
ð2πÞ2Δijκiκj

g̃0ðz̃; z̃Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − λu2z

p ; ð27Þ

where Δ ¼ ðΔijÞ is a real-valued 3 × 3 symmetric matrix
whose explicit form is read-off directly from Eq. (23).
Also, the real ternary quadratic form α can be written as
α2 ¼ Λijκiκj −m2, where Λ ¼ ðΛijÞ is another 3 × 3 real-
valued symmetric matrix which we easily read from the
definition of α. The main difficulty to evaluate this integral
is that the quadratic form α, which appears within the g̃0
function, contains crossed-terms (since Λ is nondiagonal).
In order to solve this problem we use the Jacobi’s theorem,
which asserts that every quadratic form in n variables has an
orthogonal diagonalization [40]. This is accomplished with
a change of variables κi ¼ Γijκ

0
j, defined by an orthogonal
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matrix Γ ¼ ðΓijÞ (which is technically constructed with the
normalized eigenvectors of Λ). In the problem at hand the
corresponding matrix is

Γ ¼

0
BBB@

2þλðu2−u2zÞ−δ
εþ

2þλðu2−u2zÞþδ
ε−

0

2λu0ux
εþ

2λu0ux
ε−

− uy
u⊥

2λu0uy
εþ

2λu0uy
ε−

ux
u⊥

1
CCCA; ð28Þ

where u2 ¼ uμuμ and

δ2 ¼ 4þ λf4ðu2 − u2zÞ þ λ½2u20 − ðu − uzÞ2�
× ½2u20 − ðuþ uzÞ2�g;

ε2� ¼ ½δ� λðu2z − u2Þ ∓ 2�2 þ ð2λu0u⊥Þ2: ð29Þ

So, in the primed coordinate system the quadratic form α2

takes the simple diagonal form α2 ¼ Ξijκ
0
iκ

0
j −m2 ¼

Ξ1ω
02 þ Ξ2k02x þ Ξ3k02y −m2, where we have used that

Ξij ¼ ΓinΛnmΓmj ¼ diagðΞ1;Ξ2;Ξ3Þ, with

Ξ1¼
λðu20þu2⊥Þ−δ

2ð1−λu2zÞ
; Ξ2¼

λðu20þu2⊥Þþδ

2ð1−λu2zÞ
; Ξ3¼−1:

ð30Þ

Since the Jacobian of the transformation J ¼ detΓ is 1, the
integral (27) then becomes

hT00ik ¼ −i
Z

dω0

2π

Z
d2k⃗0⊥
ð2πÞ2Πijκ

0
iκ

0
j

g̃0ðz̃; z̃Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − λu2z

p ; ð31Þ

where Πij ¼ ΔnmΓniΓmj. Also, considering that g̃0 is even
under the change κ0i → −κ0i, only even terms in the
integrand will survive (i.e., Π11ω

02 þ Π22k02x þ Π33k02y ),
while crossed-terms integrates out to zero (e.g., Π12ωkx
and Π13ωky). This analysis justifies the vanishing of the
second integral in Eq. (23). Now with a convenient change
of variables we can express the function g̃0 exactly as the
reduced GF g0 in the absence of Lorentz violation, as we
shall see. Let us introduce double primed coordinates
through the change of variables κ00i ¼ Ωijκ

0
j, where

Ωij ¼ diagð ffiffiffiffiffi
Ξ1

p
;

ffiffiffiffiffiffiffiffiffi
−Ξ2

p
;

ffiffiffiffiffiffiffiffiffi
−Ξ3

p Þ. So, in the double primed
coordinates the quadratic form α2 becomes α2 ¼
ω002 − k002x − k002y −m2, which is exactly equal to the β2

appearing in the Lorentz-symmetric case. Therefore, the
integral in Eq. (31) can be written as an integral in terms of
the reduced GF g0ðz̃; z̃Þ evaluated at the rescaled length L̃
as follows

hT00ik ¼
−iffiffiffiffiffiffiffiffiffiffi

detΞ
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − λu2z
p Z

dω
2π

Z
d2k⃗⊥
ð2πÞ2

�
Π11

Ξ1

ω2

−
Π22

Ξ2

k2x −
Π33

Ξ3

k2y

�
g0ðz̃; z̃ÞjL̃; ð32Þ

where we have dropped the double primes since they are
integration variables. After performing a Wick’s rotation,
ω → iζ, it is clear that the integrals over ζ2, k2x and k2y have
the same contribution. So, substituting the required matrix
elements we obtain

hT00ik ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þλu2
p

Z
dζ
2π

Z
d2k⃗⊥
ð2πÞ2ζ

2
sinhðγz̃Þsinh½γðz̃− L̃Þ�

γ sinhðγL̃Þ ;

ð33Þ

where γ2 ¼ ζ2 þ k2⊥ þm2. To obtain this result we have
used that ðΠ11=Ξ1Þ þ ðΠ22=Ξ2Þ þ ðΠ33=Ξ3Þ ¼ 1 and
ð1 − λu2zÞ detΞ ¼ 1þ λu2.
Following the same procedure, we can evaluate the

vacuum energy density hT00iv. Substituting the reduced
vacuum GF (13) into Eq. (18), and performing the above
analysis to the integral we find

hT00iv ¼ −
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ λu2
p

Z
dζ
2π

Z
d2k⃗⊥
ð2πÞ2

ζ2

2γ
: ð34Þ

Finally we substitute the above results (33) and (34) into
Eq. (21). Performing the integration over z and neglecting a
constant term (independent of L) we finally obtain

ECðLÞ ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − λu2z
1þ λu2

s Z
dζ
2π

Z
d2k⃗⊥
ð2πÞ2

ζ2

2γ
L̃½coth ðγL̃Þ − 1�:

ð35Þ

The resulting integrals can be easily computed; however,
we recognize it as the standard Casimir energy density
where Lorentz symmetry is preserved, with the only
difference that the distance L between plates has been
rescaled by the factor

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − λu2z

p
. In this way we establish

that

ECðLÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − λu2z
1þ λu2

s
E0ðL̃Þ; ð36Þ

where L̃ ¼ L=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − λu2z

p
and

E0ðLÞ ¼
8<
:

− π2

1440L3 if m ¼ 0

− m2

8π2L

P∞
n¼1

1
n2 K2ð2mnLÞ if m ≠ 0

; ð37Þ
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beingK2ðxÞ the second-order Bessel function of the second
kind. As expected, our results reduce to the Lorentz-
invariant energy densities in the limit λ → 0 [35,41]. The
summation appearing in the Casimir energy for a massive
scalar field do not have closed analytical form; however, it
can be approximated in the limit of small and large masses.
In the limit mL̃ ≪ 1 the Casimir energy (36) becomes

ECðLÞ ≈ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − λu2z
1þ λu2

s �
π2

1440L̃3
−

m2

96L̃

�
; ð38Þ

while in the limit mL̃ ≫ 1 we find

ECðLÞ ≈ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − λu2z
1þ λu2

s
m2

16π2L̃

ffiffiffiffiffiffiffi
π

mL̃

r
e−2mL̃: ð39Þ

Now let us analyze our results. We observe that in the
massless case, the Casimir energy always leads to attraction
(negative pressure). In Fig. 1, by fixing the value of
λðu20 − u2⊥Þ > 0, we plot the ratio ECðLÞ=E0ðLÞ as a
function of

ffiffiffi
λ

p
uz ∈ ½0; 1� for timelike (blue-dashed line),

spacelike (red-continuous line) and lightlike (black-dotted
line) cases. We observe that, in the timelike case u2 > 0, the
ratio decreases monotonically from r0 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þλðu2
0
−u2⊥Þ

p < 1,

at uz ¼ 0, to rc ¼ 1 − λðu20 − u2⊥Þ at uz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u20 − u2⊥

p
(or

u2 ¼ 0). There, the sign of u2 flips and the spacelike case
u2 < 0 starts. In this case, the ratio decreases monotoni-
cally from rc to zero at

ffiffiffi
λ

p
uz ¼ 1. The lightlike case

decreases from 1, at
ffiffiffi
λ

p
uz ¼ 0, to zero at

ffiffiffi
λ

p
uz ¼ 1. From

Eq. (36) we observe that in a lightlike particular case, for
which uz ¼ 0 and u20 − u2⊥ ¼ 0, the Casimir energy (and
hence the pressure) does not see Lorentz violation, i.e.,

ECðLÞ ¼ E0ðLÞ. So, in all cases, the Casimir energy in the
presence of Lorentz violation is always smaller than the
Lorentz-symmetric case.

B. Stress on the plates

Now let us derive the Casimir stress upon the plate at
z ¼ L by direct evaluation of the normal-normal compo-
nent of the stress-energy tensor, whose general expression
is given by Eq. (20). To this end, we have to compute
the discontinuity of hTzzi at that plate. Let hTzzik be the
vacuum stress due to the confined scalar field, and be hTzzij
the vacuum stress due to the scalar field at the right side of
the plate [35,41]. So the Casimir stress upon the plate at
z ¼ L is

FCðLÞ ¼ hTzzik − hTzzij: ð40Þ

Let us calculate each one separately. The stress upon the
plate due to the confined field must be computed sub-
stituting the reduced Green’s function gkðz; z0Þ into Eq. (20)
and evaluating the result at z ¼ L. To this end, we follow
the same procedure as that in the previous section.
A straightforward calculation yields

hTzzik ¼ −
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ λu2
p

Z
dζ
2π

Z
d2k⃗⊥
ð2πÞ2

γ

2
cothðγL̃Þ: ð41Þ

Of course, this integral diverges. The proper subtraction of
the pressure due to the field outside yields a finite value.
Substituting the reduced Green’s function gjðz; z0Þ into
Eq. (20) we find

hTzzij ¼ −
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ λu2
p

Z
dζ
2π

Z
d2k⃗⊥
ð2πÞ2

γ

2
: ð42Þ

Inserting these results into Eq. (40) we obtain that the
Casimir stress upon the plate at z ¼ L is

FCðLÞ ¼ −
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ λu2
p

Z
dζ
2π

Z
d2k⃗⊥
ð2πÞ2

γ

2
½cothðγL̃Þ − 1�:

ð43Þ

The resulting integral corresponds to the pressure in the
absence of Lorentz violation; however, evaluated at the
rescaled length L̃. The final expression for the stress is then

FCðLÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ λu2
p F 0ðL̃Þ; ð44Þ

where

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

FIG. 1. Casmir energy for a massless Lorentz-violating scalar
field (in units of the Lorentz-symmetric CE E0) as a function offfiffiffi
λ

p
uz for an arbitrary fixed length. For the timelike (blue-dashed

line) and the spacelike (red-continuous line) cases we take
λðu20 − u2⊥Þ ¼ 0.2. The black-dotted line shows the lightlike case.
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F 0ðLÞ ¼
8<
:

− π2

480L4 if m ¼ 0

1
4π2

R∞
0

τ2
ffiffiffiffiffiffiffiffiffiffi
τ2þm2

p
e2L

ffiffiffiffiffiffiffiffi
τ2þm2

p
−1
dτ if m ≠ 0

: ð45Þ

One can further see that this result coincides with the
negative derivative of the Casimir energy (36) with respect
to L, i.e.,

FCðLÞ ¼ −
∂ECðLÞ
∂L : ð46Þ

As a consistency check we verify that our result (44)
agrees with the one expected from the coordinate redefi-
nition method in the regime λu2z ≪ 1 [31,32]. We recall that
in this case, the change of spacetime coordinates x0μ ¼
xμ − 1

2
λuμuνxν transforms the Lorentz-violating scalar field

theory into the Lorentz-invariant theory. So, in the primed
coordinate system the Casimir energy will be the one
predicted by the Lorentz-invariant theory, with however a
redefinition of the plate-to-plate separation according to the
spacetime transformation and an overall factor arising from
the Jacobian of the transformation. One can directly verify
that the multiplicative factor appearing in Eq. (44) corre-
sponds with the inverse square root of the Jacobian J ¼
1þ λu2, which is consistent with the definition of the
Green’s function as the vacuum expectation value of the
product of two fields. Also, if the distance between
the plates is L in the unprimed coordinate system, the cor-
responding length in the primed system will be L0 ¼
Lð1þ 1

2
λu2zÞ, which coincides with the leading order

approximation of our L̃.
As a final remark, we point out that although the

expectation value of the Lagrangian (19) does not contrib-
ute to the Casimir energy (36), it does to the Casimir
stress (44). As we shall see in the next section, it also plays
a fundamental role regarding the behavior of the field near
the boundaries.

C. Local effects

In the previous sections we derived an expression for the
global Casimir energy by computing the integral of hT00iren
in the region between the plates. We have also validated our
results by the direct calculation of the Casimir stress. It is
worth mentioning that these results can also be obtained by
other global methods, for example, summing over the
ground state modes or by evaluation of the Lifshitz formula
for the Casimir energy. However, Green’s function methods
allow us to study the local energy density, or, more
generally hTμνi, which will reveal new information about
the divergence structure of the theory [34,35,42]. This is
precisely the goal of this section.
Let us start with the energy density per unit volume

between the plates. Using the results of Eqs. (24) and (33),
after some algebraic simplifications we obtain

hT00i ¼ −
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ λu2
p

Z
dζ
2π

Z
d2k⃗⊥
ð2πÞ2

�
ζ2

2γ
cothðγL̃Þ

þ k2⊥ þm2

2γ

cosh½γð2z̃ − L̃Þ�
sinhðγL̃Þ

	
: ð47Þ

We evaluate this by introducing the polar coordinates
k⊥ ¼ ρ cos θ and ζ ¼ ρ sin θ, where ρ ∈ ½0;∞Þ and θ ∈
½−π=2; π=2� (since the plane ζk⊥ covers the right half of
R2). Straightforward calculations yield

hT00i ¼ −
1

12π2
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ λu2
p

Z
∞

0

�
ρ4

γ�
2

e2γ
�L̃ − 1

þ ρ4

γ�

þ ρ2

γ�
ð2γ�2 þm2Þ e

2γ� z̃ þ e2γ
�ðL̃−z̃Þ

e2γ
�L̃ − 1

	
dρ; ð48Þ

where γ� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þm2

p
. We observe that the second term

produces a constant energy density, independent of L, so it
can be discarded as irrelevant [35]. The first term is found
to be proportional to the Casimir energy EC. Comparing
such term with the expression (35) for the Casimir energy
we find

U ¼ −
1

6π2
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ λu2
p

Z
∞

0

ρ4

γ�
1

e2γ
�L̃ − 1

dρ ¼ EC=L: ð49Þ

Also, with a simple change of variables, the third term in
Eq. (48) can be written (and defined) as

fðzÞ ¼ −
1

192π2L̃4

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λu2

p
Z

∞

2mL̃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 − ð2mL̃Þ2

q

× ½2y2 þ ð2mL̃Þ2� e
yz=L þ eyð1−z=LÞ

ey − 1
dy: ð50Þ

All in all, the energy density per unit volume is expressed as

hT00i≡ UðzÞ ¼ Uþ fðzÞ: ð51Þ

We have relabeled the energy density for later use. So,
the only part of the vacuum energy corresponding to an
observable force is that coming from the first term,U, since
the z-dependent term, fðzÞ, produces another divergent
constant term and as such it does not contribute to
the pressure. This can be easily confirmed by integrating
it over z:

Z
L

0

fðzÞdz ¼ −
1

48π2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − λu2z
1þ λu2

s

×
Z

∞

2m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − 4m2

p
ðx2 þ 2m2Þ dx

x
: ð52Þ

Therefore the function fðzÞ describes the local behavior of
the energy density. In the massless case, the function fðzÞ
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can be expressed in terms of the Hurwirtz zeta function,
ζðs; aÞ ¼ P∞

n¼0ðnþ aÞ−s, as follows:

fðzÞ ¼ −
1

16π2L4

ð1 − λu2zÞ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λu2

p ½ζð4; z=LÞ þ ζð4; 1 − z=LÞ�;

ð53Þ

which differs from the expression for the Lorentz-
symmetric case only by the overall factor which depends
on the Lorentz-violating parameters λ and uμ. It is clear
from the Eq. (53) that the energy density for a massless
scalar field diverges quartically as z approaches to the
plates. For a massive scalar field it is not clear the degree of
divergence [due to the intricate structure of the integral in
Eq. (50)]. In Fig. 2 we show the singular part of the local
energy density for mL ¼ 1 and u20 ¼ u2⊥. The black-
continuous line corresponds to the Lorentz symmetric case
(λuz ¼ 0), while the blue-dashed and red-dotted lines
correspond to Lorentz-violating cases with λuz ¼ 0.5
and λuz ¼ 0.95, respectively. Our results indicate that there
are no local effects when λuz ¼ 1, independently of the
values of u0 and u⊥. Indeed, this is clear from Eq. (53) for
the massless case.
Next we turn to the remaining components of the stress-

energy tensor. From the rotational invariance around the
z-axis, the components of the stress perpendicular to nμ,
hT11i and hT22i, are equal. In addition, from the math-
ematical structure of the vacuum stress (16) we find the
relation hT11i ¼ −hT00i. This is clearly seen by writing
explicitly the 11-component of the VS and performing an
analysis similar to that of Sec. VA. The 33-component was
extensively discussed in Sec. V B. Let us relabel this
component as P ¼ hTzzi. In the Lorentz-symmetric case,
those are the only nonzero components of the vacuum
stress [34,35,42]. In the problem at hand, as suggested by

the stress-energy tensor in Eq. (3), also the a3-components
will not be zero, with a ¼ 0, 1, 2. This is of course a direct
consequence of the Lorentz-symmetry breaking. The vac-
uum expectation value of these components can be easily
calculated using the above procedures. We close this
section with an expression for the vacuum stress-energy
tensor:

hTμνi ¼ ðημν þ nμnνÞUðzÞ þ nμnνPðzÞ

− ðημα þ nμnαÞuαnν 2λuz
1 − λu2z

½U − PðzÞ�; ð54Þ

where nμ ¼ ð0; 0; 0; 1Þ is the normal to the plates. Clearly,
in the limit λ → 0, the last term vanishes and hence we
recover the usual structure of the VS [34].

VI. CONCLUSIONS

In this paper we have considered a Lorentz-breaking
extension of a real massive scalar quantum field theory.
Such extension is described by the CPT-even aetherlike
term λðu · ∂ϕÞ2, where λ is a dimensionless parameter and
uμ is a background (constant) four-vector which control
Lorentz symmetry breaking [29]. Concretely, here we have
analyzed the effects of Lorentz violation in the Casimir
effect between two parallel conductive plates separated
by a distance L. To this end, we have employed a field
theoretical approach, based on Green’s function techniques,
which allow us to study the properties of the vacuum from
the behavior of local field quantities. In the problem at
hand, the stress-energy tensor Tμν represents the appro-
priate quantity, since T00 represents the local energy
density, T0μ gives the flow of energy and momentum,
and the stress components Tij provide the mechanical
properties of the vacuum [43].
A local formulation implies the introduction of the

vacuum stress hTμνi, i.e., the vacuum expectation value
of the stress-energy tensor. Formally, the vacuum stress can
be obtained by applying a certain second-order differential
operatorOμν upon the Green’s function Gðx; x0Þ and taking
the limit x0 → x, i.e., hTμνi ¼ limx0→x OμνGðx; x0Þ. This is
the so called point-splitting technique, which is possible
given that the Green’s function represents the vacuum
expectation value of the time-ordered product of fields, i.e.,
Gðx; x0Þ ¼ −ih0jT ϕðxÞϕðx0Þj0i [34,35,42]. In the problem
at hand, the explicit form of the differential operator is read-
off from Eq. (16). In order to compute the vacuum stress
between the plates, in Sec. II we have derived in detail
different Green’s functions for the Lorentz-violating mas-
sive scalar field theory.
We first tackled the problem by integrating the energy

density hT00i over z in the region between the plates. This
gives the Casimir energy, i.e., ECðLÞ ¼

R
L
0 hT00idz. We

found that it can be expressed in a simple fashion in terms
of the Lorentz-symmetric Casimir energy E0ðLÞ as

0.2 0.4 0.6 0.8 1.0

–5

5

10

15

FIG. 2. Singular part of the local energy density between the
plates. The black-continuous line correspond to the Lorentz-
symmetric case. The blue-dashed and red-dotted lines exhibit the
effects of Lorentz violation, with λu2z ¼ 0.5 and λu2z ¼ 0.95,
respectively.
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ECðLÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − λu2z
1þ λu2

s
E0ðL̃Þ; ð55Þ

where L̃ ¼ L=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − λu2z

p
is a rescaled length. This result is

valid for both the massless and massive cases, for which
E0ðLÞ ¼ − π2

1440L3 and E0ðLÞ ¼ − m2

8π2L

P∞
n¼1

1
n2 K2ð2mnLÞ

[35,41], respectively. Clearly, our result correctly reduces
to the standard case in the limit λ → 0, as it should be. In
Fig. 1 we show the Casimir energy as a function of

ffiffiffi
λ

p
uz,

and we consider the cases in which uμ is: timelike,
spacelike and lightlike. In all cases, the Casimir attraction
is smaller than the Lorentz symmetric force. From a high-
energy physics point of view, a slightly deviation is
expected, since Lorentz-violating parameters are usually
assumed to be small. In that case, the leading order
contribution of the above result for λu2z ≪ 1 can be derived
through the coordinate redefinition method. Nevertheless,
Lorentz-violating effective field theories also emerge in
condensed matter systems, where the symmetry breaking
parameters are not necessarily small and hence the coor-
dinate redefinition method does not provide a good
approximation. Instead, we have to employ nonpertubative
methods, as the one used in this paper, to obtain the Casimir
energy. As a result, we have obtained closed analytical
expressions for arbitrary values of λ and direction of uμ

provided λu2z < 1 to avoid instabilities in the theory. Based
on this, we think that condensed matter systems represents
a possible arena to test our results. As a consistency check,
we also derived an expression for the Casimir pressure by
direct evaluation of the normal-normal component of
the vacuum stress FC. The result, as expected, coincides
with the one obtained by differentiating the Casimir

energy, i.e., FC ¼ − ∂EC∂L , and which indeed can also by
written in terms of the Lorentz-symmetric force F 0

as FCðLÞ ¼ 1ffiffiffiffiffiffiffiffiffiffi
1þλu2

p F 0ðL̃Þ.
We have also computed the general structure of the

vacuum stress hTμνiðzÞ, which is found to be nonsymmetric
due to the presence of Lorentz violation. In particular, the
time-time component U ≡ hT00iðzÞ gave us the local
behavior of the energy density between the plates. We
found it can be written as the sum of two terms,
U ¼ Uþ fðzÞ, whereU ¼ EC=L gives the physical energy
and the function fðzÞ encodes the local effects (see Eq. (50)
and Fig. 2). In the massless case, the function fðzÞ takes a
particularly simple form in terms of the Hurwitz zeta
function, i.e., fðzÞ ∼ 1

L4 ½ζð4; z=LÞ þ ζð4; 1 − z=LÞ�, which
is quartically divergent as in the Lorentz-symmetric case.
In the massive case, it is not clear the degree of
divergence.
Our results can be generalized in different ways. For

example, it is straightforward to calculate the Casimir effect
between two parallel plates which satisfy Neumann or
Robin boundary conditions. Also, it is possible to study the
Casimir effect for different geometries, such as spherical
and/or cylindrical conductive shells. Further, the temper-
ature effects can be included straightforwardly. We leave
these problems for future works.
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