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Many scenarios of new physics predict the existence of neutrino nonstandard interactions, new vector
contact interactions between neutrinos, and first generation fermions beyond the Standard Model. We
obtain model-independent constraints on the Standard Model effective field theory at high energies from
bounds on neutrino nonstandard interactions derived at low energies. Our analysis explores a large set of
new physics scenarios and includes full one-loop running effects below and above the electroweak scale.
Our results show that neutrino nonstandard interactions already push the scale of new physics beyond the
TeV. We also conclude that bounds derived by other experimental probes, in particular by low-energy
precision measurements and by charged lepton flavor violation searches, are generally more stringent. Our
study constitutes a first step toward the systematization of phenomenological analyses to evaluate the
impact of neutrino nonstandard interactions for new physics scenarios at high energies.
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I. INTRODUCTION

The Standard Model (SM) provides a successful descrip-
tion of a vast amount of particle physics phenomena. This
includes many predictions at high-energy colliders, with
the recent discovery of the Higgs boson as the latest
example, as well as an astonishing agreement with a long
list of precision measurements performed at low-energy
experiments. However, despite its success, there are several
well-known problems the SM cannot address. Among
them, the existence of nonzero neutrino masses is arguably
the most robust one. After the discovery of neutrino flavor
oscillations, it has become clear that the leptonic sector of
the SM must be extended with some additional states
responsible for the generation of neutrino masses. Even
though the underlying physics is not known, this fact has
been completely established due to the high precision
achieved in the determination of the neutrino oscillation
parameters [1].
Many neutrino mass models have been proposed over

the years. In most scenarios, the new Beyond the Standard
Model (BSM) degrees of freedom have masses well above

the electroweak scale, making them unreachable to current
colliders. In this case, one is allowed to use effective field
theory (EFT) techniques, integrate out the heavy states, and
describe their impact at low energies by means of a
collection of effective operators with canonical dimension
larger than four. Following this procedure, in addition to the
well-known dimension-five Weinberg operator that induces
Majorana neutrinos, one usually obtains other nonrenor-
malizable operators with potentially observable effects in
low-energy experiments.
In this work, we use bounds on the so-called neutrino

nonstandard interactions (NSI) [2–6] derived at low-energy
experiments to set constraints valid at high energies. In
order to do that, we make use of the Standard Model
effective field theory (SMEFT) [7,8] and the low-energy
effective field theory (LEFT) [9], two well-known EFTs
valid at energies above or below the electroweak scale,
respectively. The link between neutrino NSI and well-
established EFTs, such as the LEFTand the SMEFT, allows
one to study the phenomenology of a wide class of new
physics (NP) scenarios in a model-independent way and
easily confront results coming from a large diversity of
experiments. In fact, this approach has been adopted in
many recent works, deriving bounds from low-energy
scattering [10] or reactor [11] experiments, or studying
the interplay with searches for lepton flavor violating
processes [12]. Lepton number violating NSI have been
considered in the context of the SMEFT in [13], whereas a
remarkable effort to provide a consistent EFT description of
NSI has been made in [11,14]. The generalization of
neutrino NSI including scalar or tensor couplings, the
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so-called neutrino generalized interactions (NGI) [15,16],
have also been discussed using an EFT language in [17].
Embedding NSI (or NGI) into EFTs as well established

as the SMEFT and the LEFT provides a robust theoretical
background and creates a direct link to other phenomeno-
logical directions. Among other advantages of this
approach, one can easily compare the bounds obtained
from neutrino NSI to bounds derived by other experimental
probes. Here we will be interested in low-energy precision
measurements and charged lepton flavor violation. We will
systematically study a substantial region of the SMEFT
parameter space with the help of DsixTools [18,19],
a Mathematica package for the renormalization group
equations (RGEs) running and matching in the SMEFT
and the LEFT. This tool allows us to include full one-loop
running effects (in the SMEFT and in the LEFT) in our
numerical analysis. As a result of this, we will obtain robust
numerical results and assess the relevance of RGE running
for the NP scenarios considered in our study.
The rest of the paper is structured as follows. In Sec. II,

we review the formalism and current experimental bounds
on neutrino NSI. Section III introduces the SMEFT and the
LEFT, the two EFTs considered in our analysis, while
Sec. IV shows how these theories can be used in connection
to neutrino NSI. Finally, we present our results in Sec. V
and conclude in Sec. VI. Additional definitions are given in
the Appendix.

II. NEUTRINO NONSTANDARD INTERACTIONS

As commented in the introduction, new neutrino vector
interactions beyond the Standard Model can arise from
neutrino mass models and other BSM theories. In the
low-energy regime, neutrino NSI with matter fields
can be formulated in terms of an effective four-fermion
Lagrangian as follows:

LNSI
CC ¼ −

GFffiffiffi
2

p ðϵff0Lpr ½ν̄pγμð1 − γ5Þer�½f̄γμð1 − γ5Þf0�

þ ϵff
0R

pr ½ν̄pγμð1 − γ5Þer�½f̄γμð1þ γ5Þf0�Þ ð1Þ

and

LNSI
NC ¼ −

GFffiffiffi
2

p ðϵfLpr ½ν̄pγμð1 − γ5Þνr�½f̄γμð1 − γ5Þf�

þ ϵfRpr ½ν̄pγμð1 − γ5Þνp�½f̄γμð1þ γ5Þf�Þ; ð2Þ

where ϵff
0L;R

pr and ϵfL;Rpr are dimensionless coefficients that
quantify the strength of the NSI between neutrinos of flavor
p and r and the matter field f; f0 ¼ u, d with f ≠ f0 for
the case of charged current (CC)-NSI and f ¼ e, u, d for
neutral current (NC)-NSI.
Neutrino NSI can affect experiments at the neutrino

production via CC-NSI, changing the flavor distribution of
the initial neutrino flux, and detection via both CC and NC

NSI, depending on the detection technique of the experi-
ment. Besides, neutrino NC-NSI can affect their propaga-
tion through matter as well, modifying the effective matter
potential felt by neutrinos. In this work, we will concentrate
on NC-NSI.1

The potential signal of NSI on neutrino experiments has
been analyzed in detail in the literature recently [6,23–25].
The impact of this signal on the extraction of neutrino
oscillation parameters from experimental data has also been
extensively discussed; see, for instance Refs. [26–30].
However, since no signal of NSI has been experimentally
reported yet, at the moment we only have upper bounds on
their magnitude. These limits come from a variety of
neutrino experiments, from oscillation experiments using
solar, atmospheric, reactor or accelerator neutrino sources,
to laboratory experiments measuring neutrino-electron and
(coherent) neutrino-nucleus scattering. The size of the
constraints on the NSI couplings depends on the neutrino
flavors implied in the process, the most stringent one
corresponding to the ϵdμτ coupling, bounded to be below
1% (at 90% C.L.) by the neutrino telescope IceCube [31].
From the point of view of particle physics models, NSI

are mainly thought to come from interactions of an ultra-
violet (UV) complete theory mediated by a heavy particle X
of mass mX ≫ mEW. Other alternative approaches to
generate these new interactions have also been proposed.
In particular, a possible explanation is to take the mass of
the mediator particle much below the electroweak scale,
mX ≪ mEW [32–34]. This choice can avoid the strong
bounds coming from charged lepton processes, linked to
NSI due to gauge invariance [35]. This would allow the
prediction of larger sizes of the NSI couplings, accessible to
current or near future experiments. In any case, here we will
focus on the first possibility, where the EFT approach
applies.
For completeness, we would like to comment on the

possibility of neutrino scalar and tensor four-fermion inter-
actions, considered lately in the literature [15–17,36]. Note,
however, that these NGI involve right-handed neutrinos and,
therefore, they are not relevant to our study since, as we will
discuss in the following section, our EFT analysis does not
involve new particles.

III. EFTs

The SM of particle physics successfully describes a wide
range of phenomena. However, it still leaves some ques-
tions unanswered, including the identity of the particle(s)
accounting for dark matter or how neutrino masses are
generated. For this reason, it is common to think of the SM
as an effective theory valid up to a certain high-energy scale

1The effect of CC-NSI on reactor and long-baseline neutrino
experiments has been discussed, for instance, in Refs. [20–22].
For a detailed analysis of CC-NSI in the context of EFTs,
see [14].
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ΛUV, at which some unknown NP degrees of freedom
would lie. The gauge group of a field theory valid above the
electroweak scale should contain the SM gauge group and
full particle content and, at energies below ΛUV, reduce to
the SM. Generally, in most theories beyond the SM, this
reduction occurs via decoupling of heavy particles with
masses of order ΛUV or larger. This leads to the appearance
of higher dimensional operators in the SM Lagrangian
suppressed by powers of ΛUV. The EFT built with all the
operators that respect the SM gauge group with dimension
d ≥ 5 is the SMEFT. The SMEFT Lagrangian is given by

LSMEFT ¼ LSM þ
X
d≥5

LðdÞ
SMEFT; ð3Þ

with

LðdÞ
SMEFT ¼

Xnd
i¼1

CðdÞ
i

Λd−4
UV

QðdÞ
i ; ð4Þ

where LSM is the SM Lagrangian, QðdÞ
i are operators of

dimension d, and CðdÞ
i the corresponding Wilson coeffi-

cients (WCs). We note that the CðdÞ
i WCs have been defined

as dimensionless quantities by making explicit the sup-
pression by the high-energy scale ΛUV. The full set of
SMEFT operators up to dimension six was given in [8],
defining the so-called Warsaw basis. Finally, the complete
one-loop anomalous dimension matrix for the dimension-
six operators in this basis was obtained in [37–40]. This
describes the energy evolution of the Wilson coefficients as

μ
dCi

dμ
¼ 1

16π2
X
j

γSijCj; ð5Þ

where μ is the renormalization scale and γS the anomalous
dimension matrix for the operators of the SMEFT. Among
all the operators of the SMEFT, we list the most relevant
operators for the study of neutrino NSI (p, r, s, t are flavor
indices) which are as follows:

• Q ll
prst

¼ ½l̄pγ
μlr�½l̄sγμlt� • Q lu

prst
¼ ½l̄pγ

μlr�½ūsγμut�
• Q le

prst
¼ ½l̄pγ

μlr�½ēsγμet� • Qð3Þ
lq
prst

¼ ½l̄pγ
μτIlr�½q̄sγμτIqt�

• Qð1Þ
lq
prst

¼ ½l̄pγ
μlr�½q̄sγμqt� • Q ld

prst
¼ ½l̄pγ

μlr�½d̄sγμdt�;

where l and q are the SM lepton and quark doublets, and e,
u, and d the singlets.
Neutrino experiments mainly deal with energies way

below the electroweak scale. Therefore, a new effective
theory is needed to describe low-energy processes. This
EFT can be derived from the SM by integrating out the
massive electroweak gauge bosons (W�; Z), the Higgs
boson, and the chiral top quark fermion fields (tL and tR).

The gauge group of this LEFT is SUð3ÞC × Uð1ÞQ, i.e., the
symmetry of QCD and QED. The LEFT Lagrangian reads

LLEFT ¼ LQCDþQED þ Lð3Þ
=L þ

X
d≥5

LðdÞ
LEFT: ð6Þ

The first term contains the QCD gauge interaction for two
families of up quarks and three of down quarks, the QED
gauge interaction for these quarks and the three charged
lepton families, and their Dirac mass terms,

LQCDþQED ¼ − 1

4
Gα

μνGα;μν − 1

4
FμνFμν þ θs

g2s
32π2

Ga
μνG̃

a;μν

þ θQED
e2

32π2
FμνF̃μν

þ
X

ψ¼e;νL;u;d

iψ̄γμDμψ − X
ψ¼e;u;d

ψ̄Rr½Mψ �rsψLs

− H:c:; ð7Þ

where r, s are flavor indices and Dμψ ¼ ð∂μ − iQAμ−
igsTa

sGa
μÞ. We note that the three left-handed neutrinos are

gauge singlets with no Dirac mass term. The second term in
Eq. (6) consists of ΔL ¼ �2 Majorana mass terms for the
left-handed neutrinos,

Lð3Þ
=L ¼ −

1

2
½Mν�rsðνTLrCνLsÞ þ H:c: ð8Þ

HereMT
ν ¼ Mν is the symmetric Majorana mass matrix. In

the case of three flavors of neutrinos, there will be six
different ΔL ¼ 2 operators and six conjugate ΔL ¼ −2
operators. Finally, the last piece contains operators of
dimension five or higher,

LðdÞ
LEFT ¼

Xnd
i¼1

LðdÞ
i

vd−4
OðdÞ

i ; ð9Þ

where OðdÞ
i are dimension d operators and LðdÞ

i their WCs

coefficients. Again, the LðdÞ
i WCs have been defined as

dimensionless quantities by introducing an explicit sup-
pression by 1=vd−4, where v is the Higgs vacuum expect-
ation value that sets the electroweak scale. The full set of
LEFT operators up to dimension six and their tree-level
matching relations with the SMEFToperators can be found
in [9].2 We will stick to this basis of operators, referred to as
the San Diego basis. The complete one-loop anomalous
dimension matrix for this basis of LEFT operators, γL, was
derived in [42], such that

2We note that the one-loop SMEFT-LEFT matching relations
were recently derived in [41], although we will not use them in
our analysis.
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μ
dLi

dμ
¼ 1

16π2
X
j

γLijLj ð10Þ

describes the evolution of the Li WCs with the renorm-
alization scale μ. We now list some LEFT operators of
relevance for the study of neutrino NC NSI which are as
follows:

• OV;LL
νu
prst

¼ ½ν̄L;pγμνL;r�½ūL;sγμuL;t�
• OV;LR

νu
prst

¼ ½ν̄L;pγμνL;r�½ūR;sγμuR;t�
• OV;LL

νd
prst

¼ ½ν̄L;pγμνL;r�½d̄L;sγμdL;t�
• OV;LR

νd
prst

¼ ½ν̄L;pγμνL;r�½d̄R;sγμdR;t�
• OV;LL

νe
prst

¼ ½ν̄L;pγμνL;r�½ēL;sγμeL;t�
• OV;LR

νe
prst

¼ ½ν̄L;pγμνL;r�½ēR;sγμeR;t�;

where νL, eL=R, and uL=R and dL=R are the chiral left-/right-
handed neutrino, charged lepton, and up-quark and down-
quark fields.
The electroweak scale sets the limit between the SMEFT

and the LEFT and determines the energy scale at which
these two theories must be matched by integrating out the
W and Z gauge bosons, the Higgs boson, and the top quark.
When doing so, one must take into account the breaking of
the electroweak symmetry, therefore matching the SMEFT
in the broken phase with the LEFT.3 An obvious feature
arising from this matching will be the breaking of the
SUð2ÞL doublets, originating several LEFT operators from
a single SMEFT operator. For example, from the SMEFT
operatorQll, the LEFToperatorsOV;LL

νe ,OV;LL
ee , andOV;LL

νν

will emerge. Furthermore, the LEFT operators will receive
several contributions. In addition to those originated from
the dimension-six SMEFT operators, pure SM contribu-
tions exist as well. For instance, the matching relation for
the OV;LL

νν LEFT operator is

LV;LL
νν
prst

v2
¼

C ll
prst

Λ2
UV

−
ḡ2Z
4M2

Z
½Zν�pr½Zν�st −

ḡ2Z
4M2

Z
½Zν�pt½Zν�sr; ð11Þ

where p, r, s, t are flavor indices. The first term constitutes
the contribution of the SMEFT operator Qll, whereas the
last two terms correspond to two contributions to the
OV;LL

νν LEFT operator obtained by Z boson exchange.
½Zν� is the Z coupling to a pair of neutrinos which, in
addition to the pure SM coupling, contains contributions

from the SMEFT operators Qð1Þ
Hl and Qð3Þ

Hl. Finally, ḡZ is
an effective coupling containing the contribution of

dimension-six Higgs-gauge-boson operators X2H2.
Equation (11) assumes the SMEFT WCs to be given in
the fermion up basis, defined by diagonal up-quark and
charged lepton Yukawa matrices, since this basis allows
one to identify the top quark, one of the fields integrated out
at this stage. We will adopt this implicit assumption in all
the matching relations given in this paper and omit the
unitary matrices that transform to the up basis in order to
simplify the resulting expressions. The full set of SMEFT-
LEFT tree-level matching relations can be found in [9].4

IV. NEUTRINO NSI IN THE LEFT
AND THE SMEFT

After discussing neutrino NSI and two EFTs of interest,
the SMEFT and the LEFT, we proceed to establish a link
between them. This will allow us to study neutrino NSI in
the language of the SMEFT and the LEFT and, more
importantly, to make use of the theoretical machinery
developed for these two theories. In fact, as shown in
Sec. II, neutrino NSI are encoded by a set of coefficients of
low-energy effective operators. Therefore, the link to the
LEFT is quite straightforward. One can find a one-to-one
relation between the NSI effective operators and the LEFT
operators which, in turn, can be matched to the SMEFT
operators valid at high energies. In Table I, we list all the
NC NSI coefficients and their matching with the LEFT and
SMEFT WCs. This table makes use of the definitions in
Appendix, which are taken from [9]. As explained in
Sec. III, the SMEFT WCs are assumed to be given in the
fermion up basis. The relevant unitary matrices involved in
the transformation to this basis are not explicitly indicated
to simplify the notation.5 Furthermore, we note that the
SMEFT-LEFT matching relations in Table I include pure
SM contributions. These must be removed in the final
matching to the NSI coefficients to properly identify the
nonstandard pieces.
Armed with these matching relations and the RGEs of

both EFTs, we can bring the bounds coming from low
(high)-energy experiments to high (low) energies and
translate them to the most convenient effective theory in
each case. In particular, the main goal of our work is to use
NC neutrino NSI to derive limits on the SMEFT WCs at
high energies. One could naively think that the best method
to do this is to start at low energies, match the NSI
coefficients to the LEFT WCs, run up to the EW scale,

3The Appendix compiles the most relevant analytical expres-
sions for the SM parameters including their modifications in the
presence of contributions from dimension-six SMEFT operators.

4At energies below μ ∼ 5 GeV, one should adopt other EFTs,
better suited to take into account the nonperturbative nature of the
strong interactions in this energy regime (see, for instance,
[11,43]). In order to simplify our study and be able to ignore
this issue, we will never run below 5 GeV and neglect this
possibility.

5Alternatively, [17] gives analogous matching relations in the
down basis, in which the down-quark Yukawa matrix is diagonal.
This reference also includes explicitly the quark mixing matrices
appearing in the transformation to the down basis.
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match the LEFT to the SMEFT, and finally run up to the
high-energy scale ΛUV, where the resulting limit is
obtained. However, this method is inconsistent because
it does not take into account that the LEFT is more general
than the SMEFT. For instance, a low-energy scenario with a
single NSI coefficient or, equivalently, with a single LEFT
WC, might not be consistent with a high-energy SMEFT
origin, since SUð2ÞL gauge invariance imposes relations
between LEFTWCs after SMEFT-LEFTmatching. For this
reason, running up from low energies is not (in general) a
consistent approach to achieve our goal. Instead, one must
do the opposite: to consider a SMEFT parameter point at
high energies, run down to the EW scale, match to the
LEFT, continue running down to low energies, match to
the NSI coefficients, and compare the resulting values to
the experimental bounds. This process can be repeated for
different input SMEFT scenarios and high-energy scales,
thus determining the region of the SMEFT parameter space
that is compatible with the low-energy NSI bounds.

We will now illustrate our procedure with an explicit
example.

A. An example

To make more explicit the method used in our analysis,
we will now follow step by step the full path that takes from
the high-energy SMEFT to the NSI coefficients that play a
role in neutrino experiments. Let us study a process of
interest such as a hypothetical new interaction between
electron neutrinos and left-handed electrons.
First, we start at the high-energy scale ΛUV, where the

SUð2ÞL symmetry is unbroken, and consider an interaction
involving the first generation lepton doublet, le, induced
by the exchange of an unknown heavy vector mediator, X,
with mX ∼ ΛUV. At energies below mX, the tree-level
exchange of the heavy X vector can be effectively described
by a four-fermion interaction, with strength g̃ll · g̃ll, where
g̃ll is the coupling of X to a pair of lepton doublets, and
suppressed by 1

Λ2
UV
. In Fig. 1, we can see a diagrammatic

representation of this. There, we see that integrating out X
leads to the generation of the 4=four-fermion SMEFT
operator Qll ¼ ½l̄pγ

μlr�½l̄sγμlt�, with Wilson coefficient
Cll ¼ g̃ll · g̃ll and suppressed by 1=Λ2

UV. We can now
solve the SMEFT RGEs to obtain the SMEFT Lagrangian
at the electroweak scale, where the SM symmetry breaks
and the SMEFT must be matched to the LEFT. With only
one nonvanishing input SMEFT WC, the main contribu-
tions to the RGEs come from the terms proportional to it.
For the case under discussion, the main term is

_C ll
1111

∼ 2½Y†
eYe�11C ll

1111
: ð12Þ

The next step is to match the SMEFTwith the LEFT. As
already discussed, from a single SMEFT operator, one gets
several LEFToperators. In this case, since we are interested
in electron neutrino-electron interactions, we focus on
OV;LL

νe . We are then studying a four-fermion diagram with
two electron neutrinos and two left-handed electrons. An
important feature to take into account is that this diagram is

TABLE I. Tree-level matching of the NC NSI coefficients (with
flavor indices p and r) to the LEFT and SMEFT Wilson
coefficients. The SMEFT-LEFT matching relations were derived
in [9]. The SMEFT WCs are assumed to be given in the up
fermion basis; see Sec. III for details. The pure SM contributions
are removed in the final matching to the NSI coefficients. We
refer to the Appendix for notation and conventions.

NSI LEFT SMEFT

−2
ffiffiffi
2

p
GFϵ

uL
pr

1
v2 L

V;LL
νu

pr11
1

Λ2
UV
ðCð1Þ

lq
pr11

þ Cð3Þ
lq
pr11

Þ − ḡ2Z
M2

Z
½Zν�pr½ZuL �11

−2
ffiffiffi
2

p
GFϵ

dL
pr

1
v2 L

V;LL
vd

pr11

1
Λ2
UV
ðCð1Þ

lq
pr11

− Cð3Þ
lq
pr11

Þ − ḡ2Z
M2

Z
½Zν�pr½ZdL �11

−2
ffiffiffi
2

p
GFϵ

eL
pr

1
v2 L

V;LL
ve

pr11
1

Λ2
UV
ðC ll

pr11
þ C ll

11pr
Þ − ḡ2

2

2M2
W
½Wl�p1½Wl��r1−

ḡ2Z
M2

Z
½Zν�pr½ZeL �11

−2
ffiffiffi
2

p
GFϵ

uR
pr

1
v2 L

V;LR
νu

pr11
1

Λ2
UV
C lu

pr11
− ḡ2Z

M2
Z
½Zν�pr½ZuR �11

−2
ffiffiffi
2

p
GFϵ

dR
pr

1
v2 L

V;LR
vd

pr11

1
Λ2
UV
C ld

pr11
− ḡ2Z

M2
Z
½Zν�pr½ZdR �11

−2
ffiffiffi
2

p
GFϵ

eR
pr

1
v2 L

V;LR
ve

pr11
1

Λ2
UV
C le

pr11
− ḡ2Z

M2
Z
½Zν�pr½ZeR �11

FIG. 1. Feynman diagram of the process lel̄e → lel̄e via the exchange of an unknown heavy mediator that gives rise to a dimension-
six effective operator in the SMEFT.
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not only generated by the previously discussed dimension-
six SMEFT operator, but also from pure SM diagrams with
W and Z bosons exchange, as we can see in Fig. 2. The
tree-level matching relation between this LEFT operator
and the SMEFT is given by

LV;LL
νe

1111

v2
¼ 2

C ll
1111

Λ2
UV

−
ḡ22

2M2
W
½Wl�11½Wl��11 −

ḡ2Z
M2

Z
½Zν�11½ZeL �11;

ð13Þ

where ½Wl� and ½Zν=eL � are the W and Z couplings to
neutrinos/electrons and ḡ22 and ḡ2Z quantify the strength of

the W and Z interactions. Explicit expressions for these
couplings, including the corrections due to dimension-six
operators, are given in the Appendix.
After the SMEFT-LEFT matching, we solve the RGEs

down to the low-energy scale ΛIR, where the NSI bounds
are set. For the operator we are interested in, the main RGE
term is

_LV;LL
νe

1111
∼
4

3
e2LV;LL

νe
11rr

; ð14Þ

where we sum over the flavor index r. Finally, we perform
the matching between the LEFT and NSI operators. In this

FIG. 2. Feynman diagrams that contribute to the process lel̄e → lel̄e in the SMEFT at tree-level, both from dimension-six operators
and from gauge boson exchange, giving rise to a dimension-six effective operator in the LEFT.
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case, the relation between the coefficients is quite simple,
as shown in Table I. For the example we are going through,
the matching is given by

ϵeLee ¼ −
ðLV;LL

νe
1111

ÞBSM
2

ffiffiffi
2

p
GFv2

; ð15Þ

where ðLV;LL
νe

1111
ÞBSM is the pure BSM contribution to the

LEFT WC LV;LL
νe

1111
. After this plain matching, we get a value

for the NSI coefficient we are interested in at a certain
energy scale, ready to be compared with the experimental
bounds.

V. NUMERICAL ANALYSIS

Having set our notation and described our strategy, we
now proceed to show the results of our numerical analysis.
In order to explore a substantial region of the huge SMEFT
parameter space, we have considered a large number of
SMEFToperators (with specific flavor indices) and applied
the approach discussed in Sec. IV. This way, we have been
able to map a region of interest in the SMEFT onto the NSI
parameter space, where the experimental constraints pre-
viously derived in the literature can be directly applied.
A total of 112 initial nonzero SMEFT WCs have been

selected. For each of them, and assuming only one at a
time, we have considered 14 different values for the NP
scale, ΛUV, in the [0.5, 14] TeV range. This NP scale not
only sets the starting point for the RGE running, but also
the value of the SMEFTWC, taken to be precisely jCij ¼ 1
at μ ¼ ΛUV. Then, as a result of the strategy explained in
Sec. IV, 48 NSI coefficients are obtained at the low-energy
scale ΛIR ¼ 5 GeV for each scenario. This includes NC
NSI with both chiralities. We finally compare these values
with the current NSI experimental bounds and derive limits
for the original SMEFT WCs at high energies.
Our numerical calculations have been obtained with the

help of DsixTools [18,19]. This Mathematica package has
several tools and functionalities for the RGE running and
matching in the SMEFT and the LEFT and is perfectly
suited for our phenomenological exploration. In particular,
we used version 2.0 [19], which fully integrates the LEFT,
and only added the matching between the LEFT and NSI
operators. This approach allows one to explore the relation
between neutrino NSI, the LEFT and the SMEFT in a
systematic way. To the best of our knowledge, our work is
the first to study such connection including full one-loop
running effects. We use DsixTools to solve the LEFT RGEs
numerically while the SMEFT RGEs are solved following a
semianalytical approach based on an evolution matrix
formalism [44]. We take advantage of one of the main
DsixTools functionalities: user-friendly input and output,
which can be given in the DsixTools native format as well
as using the WCxf exchange format [45]. All input
parameters will be assumed to be specified in the up basis.

We have explicitly checked that the charged lepton Yukawa
matrix remains in very good approximation diagonal after
RGE running at high and low energies. This allows for an
easy identification of the neutrino flavor eigenstates,
precisely defined by the basis in which the charged lepton
Yukawas are diagonal. Furthermore, DsixTools transforms
all SMEFT parameters to the up basis before applying the
matching relations of Ref. [9].
In what concerns the experimental NSI limits used in our

analysis, these come from various sources, including
neutrino oscillation and scattering experiments. We have
used the bounds compiled in [6], where an extensive review
of the NSI formalism and experimental limits is done. More
precisely, the most relevant couplings for our analysis come
from the following:

(i) Analysis of neutrino-nucleon scattering data
[24,46] (ϵqLeμ )

(ii) Combined analysis of atmospheric and neutrino-
nucleon scattering data [46] (ϵdVμμ )

(iii) Analysis of the atmospheric neutrino signal in Ice-
Cube DeepCore [31] (ϵqVμτ )

(iv) Combined analysis of solar and KamLAND reactor
data [47] (ϵeLee )

(v) Combined analysis of reactor and accelerator data
[48,49] (ϵeLμμ )

(vi) Combination of oscillation and coherent neutrino-
nucleus scattering data [50] (ϵuVee )

(vii) Analysis of atmospheric neutrino data [6,51] (ϵqVττ )

A. Neutrino NSI from the SMEFT at high energies

Before moving to the discussion of the limits on SMEFT
WCs derived from neutrino NSI, it is illustrative to show
some selected examples of the NSI coefficients generated
by several SMEFT scenarios. We can visualize these results
by plotting the values of the NSI coefficients obtained for a
certain initial nonzero SMEFT WC at several scales along
with the experimental bounds on the NSI coefficients. This
way we can easily determine whether a specific SMEFT
scenario is constrained or not due to neutrino NSI for a
given ΛUV. A first example of this strategy is presented in
Fig. 3. This figure displays the values of the left chiral NC

NSI coefficients arising from the SMEFT WC Cð1Þ
lq
1211

. Three

possible ΛUV values are considered, 0.5, 1, and 2 TeV. As
expected, lower NP scales imply larger NSI coefficients.
The current experimental limits on the different NSI
coefficients are indicated with red lines, implying the
exclusion of any SMEFT parameter point leading to NSI
coefficients at low energies that fall outside of them. For
instance, in this example, we find that the bound on ϵuLeμ
excludes ΛUV ≲ 1 TeV. Also, this figure seems to indicate
that only two NSI coefficients are generated at ΛIR.
Actually, since we are including full one-loop running
effects in our calculation, many NSI coefficients are non-
vanishing at low energies. For this particular example, all
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μ − e flavor violating NSI coefficients are generated.
However, most of them are too small to be visualized in
Fig. 3 and only ϵuLeμ and ϵdLeμ , the two μ − e flavor violating
NSI coefficients with first generation left-handed quarks,
have sizable values. In fact, the sizable values obtained for
these two NSI coefficients could have been predicted just
by using the tree-level matching relation

ϵuLeμ ≃ ϵdLeμ ∼ −
Cð1Þ

lq
1211

2
ffiffiffi
2

p
GFΛ2

UV

; ð16Þ

given in Table I. This approximate relation is reproduced in
our numerical results. Moreover, other NSI coefficients
would only be generated due to operator mixing effects.
Since they have tiny values, we conclude that operator
mixing effects are negligible in this scenario.
One can also find SMEFT scenarios leading to NSI

coefficients compatible with the current limits even for NP
scales as low as ΛUV ¼ 0.5 TeV.6 This is the case when the
input SMEFTWC involves only second or third generation
quarks. Even though nonvanishing NSI coefficients with
first generation quarks are obtained due to quark mixing
effects in the RGEs, these are always tiny. Therefore,
scenarios of this sort will not be considered in our
subsequent analysis, since they cannot be effectively
bounded by neutrino NSI. Similarly, there are scenarios
leading to sizable NSI, but not large enough to be con-
strained. This is, for instance, illustrated in Fig. 4, which
shows the left chiral NC NSI coefficients arising from the
input SMEFT WC C ll

3311

. The only non-negligible NSI

coefficient in this case is ϵeLττ . The joint analysis of solar
neutrino experiments (mostly Super-Kamiokande) and

KamLAND requires −0.12 < ϵeLττ < 0.06 at 90% C.L.
Due to the asymmetry in these experimental limits, scenar-
ios with C ll

3311
< 0 requireΛUV to be above∼0.7 TeV, while

the NP scale can be as low as 0.5 TeV when C ll
3311

> 0.
Therefore, in this case, no relevant bound on ΛUV can be
obtained. Finally, there are also scenarios for which the
current experimental limits on the generated NSI coeffi-
cients turn out to be too weak. An example of this situation
is shown in Fig. 5, where we plot the NSI coefficients

obtained from the initial SMEFTWC Cð1Þ
lq
1311

. The largest NSI

coefficients in this case are ϵuLeτ and ϵdLeτ , and these are only
very weakly constrained.
In general, we have found that SMEFT scenarios with

ΛUV > 3 TeV lead to tiny NSI coefficients at low energies,
always in agreement with the current experimental bounds.
For this reason, the rest of the analysis will concentrate on
NP scales between 0.5 and 3 TeV. Moreover, the previous

FIG. 4. Values for the various chiral left NSI coefficients
obtained assuming the SMEFT WC jC ll

3311
j ¼ 1 at μ ¼ ΛUV for

different values of ΛUV. The red lines correspond to the
experimental bounds on the NSI coefficients compiled in [6].

FIG. 3. Values for the various chiral left NSI coefficients
obtained assuming the SMEFT WC jCð1Þ

lq
1211

j ¼ 1 at μ ¼ ΛUV for
different values of ΛUV. The red lines correspond to the
experimental bounds on the NSI coefficients compiled in [6].

FIG. 5. Values for the various chiral left NSI coefficients
obtained assuming the SMEFT WC jCð1Þ

lq
1311

j ¼ 1 at μ ¼ ΛUV for
different values of ΛUV. The red lines correspond to the
experimental bounds on the NSI coefficients compiled in [6].

6ΛUV ¼ 0.5 TeV is the lowest NP scale considered in our
analysis. Below that value the SMEFT approach is no longer
justified.
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exploration allowed us to identify the SMEFT scenarios
capable to generate sizable NSI coefficients, potentially
resulting in relevant limits on the SMEFT WCs. Obtaining
these limits is our next goal.

B. Limits on SMEFT Wilson coefficients
from neutrino NSI

After our previous exploration, we have identified 18
SMEFT scenarios that give sizeable NSI coefficients for
NP scales ≳1 TeV and performed again the procedure
described in Sec. IV for each of them. After evaluating the
resulting NSI coefficients at low energies assuming jCij ¼
1 at μ ¼ ΛUV for different ΛUV values, one can easily
interpolate to determine the value of the NP scale that
corresponds to the experimental bound of the NSI coef-
ficient, thus setting in this way a lower bound on the
combination ΛUV=

ffiffiffiffiffiffiffiffijCij
p

for that particular SMEFT WC.
The bounds obtained with this method range between

∼700 GeV and ∼2.1 TeV. We observe that the flavor
violating operators involving the second and third lepton
generations get the strongest bounds. This is because the
most restrictive neutrinoNSI experimental bound, compiled
inRef. [6], is theNCNSI involving quarks and themuon and
tau neutrinos. This bound, derived from IceCube DeepCore
data [31], sets the lower limit of ΛUV=

ffiffiffiffiffiffiffiffijCij
p

for three
different SMEFTWCs above ∼2 TeV. One can in principle
find stronger bounds for the associated NSI coefficients in
[52]. However, the range of neutrino energies used to derive
these limits is mostly above the electroweak scale and
therefore cannot be used in our analysis.
We compare the constraining power of neutrino NSI with

that of other experimental signatures in the SMEFT. We
consider the following two classes of WCs:

(i) Lepton flavor violating (LFV) coefficients: The lack
of signals of charged lepton flavor violating (CLFV)
processes is known to strongly constrain the param-
eter space of many NP scenarios. This is expected to
hold also for the SMEFT. Here we consider the
radiative decays μ → eγ, τ → eγ, and τ → μγ, ex-
plored in detail in the context of the LEFT [43]. For
each of the LFV scenarios considered in our phe-
nomenological analysis, we derive a limit on the
SMEFT combination ΛUV=

ffiffiffiffiffiffiffiffijCij
p

. This is achieved
with the same method as for neutrino NSI: for
several values of ΛUV, the RGEs are evaluated down
to the electroweak scale, where the SMEFT and
LEFT are matched at tree level, and then we further
run down to ΛIR, where we impose the current
90% C.L. bounds on the branching ratios of these
processes [53–55] to determine bounds on the LEFT
WCs. This indirectly translates into bounds on the
SMEFT, in exactly the same way neutrino NSI
experimental bounds do. This way, we obtain limits
for two LFV SMEFT WCs. We also compute the

Z → τμ branching ratio as a function of Cð1Þ
Hl
23

and

Cð3Þ
Hl
23

using the effective coupling in Eq. (A8) and

then compare it to the experimental limit from [56]
to set a bound on the size of these WCs. In addition,

we take the bounds compiled in Ref. [57] for Cð1Þ
lq
1211

,

Cð1Þ
lq
2311

, Cð3Þ
lq
2311

, C lu
2311

, and C ld
2311

. As expected, the limits on

the SMEFTWCs derived from μ − e flavor violating
processes are much stronger than those from τ − μ or
τ − e processes.

(ii) Lepton flavor conserving (LFC) coefficients: Refer-
ences [58,59] compile bounds on flavor conserving
four-fermion SMEFT operators derived from a
plethora of low-energy experiments. The list in-
cludes lepton colliders, neutrino scattering on elec-
tron or nucleon targets, atomic parity violation,
parity-violating electron scattering, as well as sev-
eral precisely measured decays. For the coefficient

Cð3Þ
Hl
11

, we extract the bound from [60] and for Cð3Þ
lq
3311

we

use LHC ditau measurements [61]. The authors of
these references present their results in the form of
68% C.L. ranges for the coefficients the LFC
operators. Assuming a Gaussian distribution, and
taking into account some minor differences in
notation and conventions, we translate these ranges
into 90% C.L. bounds in order to have a fair
comparison to the bounds derived from neutrino

FIG. 6. Lower limits on ΛUV=
ffiffiffiffiffiffiffiffijCij

p
, with ΛUV the NP scale

and Ci the SMEFT WC, for several LFV SMEFT WCs, derived
from neutrino NSI (blue bars) and from LFV processes (purple
bars). See text for details.
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NSI. We get limits on ΛUV=
ffiffiffiffiffiffiffiffijCij

p
for seven

LFC WCs.
Our results are presented in Figs. 6 and 7 and compiled in

Table II. As anticipated, the limits from CLFV decays are
more stringent than those from neutrino NSI. In fact, in
some cases, the NP scale is constrained to be above
∼15 TeV for Oð1Þ WCs. Also, the bounds obtained from
low-energy precision measurements (and extracted from
[58,59]) are typically more constraining than those derived
from neutrino NSI.
We point out that the weakest limit obtained with

neutrino NSI experiments is for the C ld
2211

coefficient,

restricted to ΛUV=
ffiffiffiffiffiffiffiffiffiffiffi
jC ld

2211
j

q
> 690 GeV. Since 690 GeV

is well above the electroweak scale, we consider the
SMEFT approach justified. In any case, the bound from
low-energy precision measurements [58,59] is stronger,
pushing ΛUV to almost the TeV scale and, therefore, the
potential NP degrees of freedom contributing to C ld

2211
would

in principle be even heavier.
Finally, a comment on the relevance of RGE running is

in order. Our previous analysis includes the full one-loop
RGE running in the SMEFT and the LEFT implemented in
DsixTools [18,19]. It is therefore essential to assess the

FIG. 7. Lower limits on ΛUV=
ffiffiffiffiffiffiffiffijCij

p
, with ΛUV the NP scale

and Ci the SMEFT WC, for several LFC SMEFT WCs, derived
from neutrino NSI (blue bars) and from several LFC processes
(red bars).

TABLE II. Lower limits on ΛUV=
ffiffiffiffiffiffiffiffijCij

p
, with ΛUV the NP scale and Ci the SMEFTWC. This tables compares the

limits derived from neutrino NSI with the limits obtained from other experimental signatures: LFV processes as well
as collider experiments and low-energy LFC measurements.

SMEFT
NSI

coefficient ΛUV=
ffiffiffiffiffiffiffiffijCij

p
(TeV) Other process ΛUV=

ffiffiffiffiffiffiffiffijCij
p

(TeV)

Cð1Þ
Hl
12

ϵuLeμ >0.91 μ → eγ >6.10

Cð1Þ
Hl
23

ϵdVμτ >1.53 Z → μτ >1.72

Cð3Þ
Hl
11

ϵeLee >1.13 LHC [60] >4.89

Cð3Þ
Hl
23

ϵdVμτ >1.72 Z → μτ >1.72

C ll
2211

ϵeLμμ >1.43 [58,59] >3.29

Cð1Þ
lq
1111

ϵuVee >0.99 [58,59] >4.58

Cð1Þ
lq
1211

ϵuLeμ >1.11 μ → e in Ti [57] >267.06

Cð1Þ
lq
2311

ϵdVμτ >2.10 τ decays [57] >7.87

Cð3Þ
lq
1111

ϵuVee >1.00 [58,59] >8.65

Cð3Þ
lq
1211

ϵuLeμ >1.10 μ → eγ >14.97

Cð3Þ
lq
2311

ϵdVμτ >1.99 τ decays [57] >7.87

Cð3Þ
lq
3311

ϵdVττ >0.93 LHC [61] >4.67

C le
2211

ϵeRμμ >1.01 [58,59] >2.90
C lu

1111
ϵuVee >1.03 [58,59] >3.32

C lu
2311

ϵuVμτ >2.10 τ decays [57] >7.87
C ld

1111
ϵdVee >1.01 [58,59] >3.12

C ld
2211

ϵdVμμ >0.69 [58,59] >0.94
C ld

2311
ϵdVμτ >2.13 τ decays [57] >7.87
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importance of the RGE running in our procedure. To do so,
we have repeated the process described in Sec. IV and
computed the NSI coefficients resulting from the different
SMEFT scenarios considered in our analysis, this time
without RGE running. Comparing to our previous results,
one can evaluate the relevance of running effects. For
ΛUV ¼ 1 TeV, the relative difference in the resulting NSI
coefficients lies between 5% and 10%. This difference
grows, as expected, for higher NP scales. One can also
determine the impact on the bounds on ΛUV=

ffiffiffiffiffiffiffiffijCij
p

. For

example, in the SMEFT scenario with a nonvanishing Cð1Þ
Hl
23

,

the derived bound changes from 1.53 to 1.61 TeV. A similar

change takes place in case of Cð3Þ
lq
2311

, which goes from

1.99 TeV when RGE running is included to 1.89 TeV
when it is absent. Therefore, although a numerical change
can be noticed in some cases, the global picture would not
be affected if running effects are neglected. Nevertheless,
we emphasize that this conclusion holds for the scenarios
considered in our exploratory analysis. One cannot discard
more relevant running effects in other regions of the vast
SMEFT parameter space.

VI. SUMMARY AND DISCUSSION

Neutrino NSI constitute a powerful method to constrain
NP at low energies. However, due to the absence of direct
experimental evidence of their existence, the NP degrees of
freedom might actually lie at very high energies, clearly
above the electroweak scale. In this paper, we bridge the
energy gap between the experiments setting limits on
the neutrino NSI coefficients and the parameters of the
SMEFT, an EFT valid at high energies. This connection
allows for an easy application of our results to a very
general class of NP models.
Our main results are shown in Figs. 6 and 7 and compiled

in Table II. We conclude that current NSI limits already
push the NP scale above the TeV in most cases. We also
find that limits from other experimental probes, in particu-
lar from low-energy measurements or lepton flavor violat-
ing searches, are stronger and require higher values for
ΛUV. While the results obtained in our analysis lead to the
same qualitative conclusions reached by previous works
[10–12], we emphasize the inclusion of full one-loop RGE
running effects at low and high energies. This has allowed
us to derive robust bounds on the SMEFT WCs and assess
the numerical relevance of the running effects in the
scenarios we have considered.
There are several ways in which our analysis can be

extended. It is well-known that dimension-eight operators
may play a relevant role; see, for instance, [10]. One should
also bear in mind that our analysis assumes one SMEFT
WC at a time. In more general scenarios, cancellations are
in principle expected, potentially weakening the bounds.
Similarly, we note that many of the SMEFT operators

considered in our analysis generate both NC-NSI and CC-
NSI, and therefore these should be taken into account
simultaneously in order to derive consistent constraints.
Finally, one can extend the SMEFT with additional fields.
For instance, operators involving light sterile neutrinos,
singlet under the SM gauge group, have been considered in
several works [40,62–66]. They allow for new scalar and
tensorial neutrino four-fermion interactions at low energies
[15,16], recently shown to offer new phenomenological
possibilities of interest [17,36].
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APPENDIX: SMEFT IN THE BROKEN PHASE

Several SM parameters get modified after electroweak
symmetry breaking due to contributions from dimension-
six SMEFT operators. We compile in this appendix their
explicit analytical expressions. These definitions have been
extracted from [9].
The Higgs vacuum expectation value is modified by the

operator QH ¼ CHðH†HÞ3, which describes a six-Higgs
interaction, as

vT ≡
�
1þ 3CHv2

8λΛ2
UV

�
v: ðA1Þ

We define the expansion parameter

δT ≡ vT
ΛUV

ð≪ 1Þ: ðA2Þ

The gauge couplings, the weak mixing angle, and the
effective photon and Z-boson couplings get also modified
by dimension-six SMEFT operators involving the SM
gauge fields and the Higgs doublet. They are given by

ḡ1 ¼ g1ð1þ CHBδ
2
TÞ; ḡ2 ¼ g2ð1þ CHWδ

2
TÞ; ðA3Þ

cos θ̄≡ c̄¼ ḡ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ḡ21þ ḡ22

p
�
1−δ2T

CHWB

2

ḡ1
ḡ2

�
ḡ22− ḡ21
ḡ22þ ḡ21

��
;

sin θ̄≡ s̄¼ ḡ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ḡ21þ ḡ22

p
�
1þδ2T

CHWB

2

ḡ2
ḡ1

�
ḡ22− ḡ21
ḡ22þ ḡ21

��
ðA4Þ
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and

ē ¼ ḡ2s̄ −
1

2
c̄ḡ2δ2TCHWB;

ḡ2Z ¼ ē
s̄c̄

�
1þ ḡ21 þ ḡ22

2ḡ1ḡ2
δ2TCHWB

�
: ðA5Þ

Finally, the fermion couplings to the W and Z bosons are
also modified by dimension-six SMEFT operators. The
W-boson couplings are given by

½Wl�pr ¼ ½δpr þ δ2TC
ð3Þ
Hl
pr
�; ½Wq�pr ¼ ½δpr þ δ2TC

ð3Þ
Hq
pr
�;

½WR�pr ¼
�
1

2
δ2TCHud

pr

�
; ðA6Þ

while the Z-boson couplings can be expressed as

½Zν�pr ¼
�
1

2
δpr −

1

2
δ2TC

ð1Þ
Hl
pr
þ 1

2
δ2TC

ð3Þ
Hl
pr

�
; ðA7Þ

½ZeL �pr ¼
�
δpr

�
−
1

2
þ s̄2

�
−
1

2
δ2TC

ð1Þ
Hl
pr
−
1

2
δ2TC

ð3Þ
Hl
pr

�
; ðA8Þ

½ZeR �pr ¼
�
δprs̄2 −

1

2
δ2TCHe

pr

�
; ðA9Þ

½ZuL �pr ¼
�
δpr

�
1

2
−
2

3
s̄2
�
−
1

2
δ2TC

ð1Þ
Hq
pr
þ 1

2
δ2TC

ð3Þ
Hq
pr

�
; ðA10Þ

½ZuR �pr ¼
�
δpr

�
−
2

3
s̄2
�
−
1

2
δ2TCHu

pr

�
; ðA11Þ

½ZdL �pr¼
�
δpr

�
−
1

2
þ1

3
s̄2
�
−
1

2
δ2TC

ð1Þ
Hq
pr
−
1

2
δ2TC

ð3Þ
Hd
pr

�
; ðA12Þ

½ZdR �pr ¼
�
δpr

1

3
s̄2 −

1

2
δ2TCHd

pr

�
: ðA13Þ

[1] P. F. de Salas, D. V. Forero, C. A. Ternes, M. Tortola, and
J. W. F. Valle, Status of neutrino oscillations 2018: 3σ hint
for normal mass ordering and improved CP sensitivity,
Phys. Lett. B 782, 633 (2018).

[2] L. Wolfenstein, Neutrino oscillations in matter, Phys. Rev. D
17, 2369 (1978).

[3] J. W. F. Valle, Resonant oscillations of massless neutrinos in
matter, Phys. Lett. B 199, 432 (1987).

[4] E. Roulet, MSW effect with flavor changing neutrino
interactions, Phys. Rev. D 44, R935 (1991).

[5] M.M. Guzzo, A. Masiero, and S. T. Petcov, On the MSW
effect with massless neutrinos and no mixing in the vacuum,
Phys. Lett. B 260, 154 (1991).

[6] Y. Farzan and M. Tortola, Neutrino oscillations and non-
standard interactions, Front. Phys. 6, 10 (2018).

[7] W. Buchmuller and D. Wyler, Effective Lagrangian analysis
of new interactions and flavor conservation, Nucl. Phys.
B268, 621 (1986).

[8] B. Grzadkowski, M. Iskrzynski, M. Misiak, and J. Rosiek,
Dimension-six terms in the Standard Model Lagrangian,
J. High Energy Phys. 10 (2010) 085.

[9] E. E. Jenkins, A. V. Manohar, and P. Stoffer, Low-
energy effective field theory below the electroweak scale:
Operators and matching, J. High Energy Phys. 03 (2018)
016.

[10] W. Altmannshofer, M. Tammaro, and J. Zupan, Non-
standard neutrino interactions and low energy experiments,
J. High Energy Phys. 09 (2019) 083.

[11] A. Falkowski, M. González-Alonso, and Z. Tabrizi, Reactor
neutrino oscillations as constraints on effective field theory,
J. High Energy Phys. 05 (2019) 173.

[12] S. Davidson and M. Gorbahn, Charged lepton flavour
change and non-standard neutrino interactions, Phys. Rev. D
101, 015010 (2020).

[13] P. D. Bolton and F. F. Deppisch, Probing nonstandard lepton
number violating interactions in neutrino oscillations, Phys.
Rev. D 99, 115011 (2019).

[14] A. Falkowski, M. González-Alonso, and Z. Tabrizi, Con-
sistent QFT description of non-standard neutrino inter-
actions, arXiv:1910.02971.

[15] M. Lindner, W. Rodejohann, and X.-J. Xu, Coherent
neutrino-nucleus scattering and new neutrino interactions,
J. High Energy Phys. 03 (2017) 097.

[16] D. Aristizabal Sierra, V. De Romeri, and N. Rojas,
COHERENT analysis of neutrino generalized interactions,
Phys. Rev. D 98, 075018 (2018).

[17] I. Bischer andW. Rodejohann, General neutrino interactions
from an effective field theory perspective, Nucl. Phys. B947,
114746 (2019).

[18] A. Celis, J. Fuentes-Martin, A. Vicente, and J. Virto,
DsixTools: The Standard Model effective field theory
toolkit, Eur. Phys. J. C 77, 405 (2017).

[19] A. Celis, J. Fuentes-Martin, P. Ruiz-Femenia, A. Vicente,
and J. Virto, DsixTools 2.0, to be published.

[20] J. Kopp, M. Lindner, T. Ota, and J. Sato, Non-standard
neutrino interactions in reactor and superbeam experiments,
Phys. Rev. D 77, 013007 (2008).

[21] S. K. Agarwalla, P. Bagchi, D. V. Forero, and M. Tórtola,
Probing non-standard interactions at Daya Bay, J. High
Energy Phys. 07 (2015) 060.

[22] I. Girardi, D. Meloni, and S. T. Petcov, The Daya Bay and
T2K results on sin22θ13 and non-standard neutrino inter-
actions, Nucl. Phys. B886, 31 (2014).

TEROL-CALVO, TÓRTOLA, and VICENTE PHYS. REV. D 101, 095010 (2020)

095010-12

https://doi.org/10.1016/j.physletb.2018.06.019
https://doi.org/10.1103/PhysRevD.17.2369
https://doi.org/10.1103/PhysRevD.17.2369
https://doi.org/10.1016/0370-2693(87)90947-6
https://doi.org/10.1103/PhysRevD.44.R935
https://doi.org/10.1016/0370-2693(91)90984-X
https://doi.org/10.3389/fphy.2018.00010
https://doi.org/10.1016/0550-3213(86)90262-2
https://doi.org/10.1016/0550-3213(86)90262-2
https://doi.org/10.1007/JHEP10(2010)085
https://doi.org/10.1007/JHEP03(2018)016
https://doi.org/10.1007/JHEP03(2018)016
https://doi.org/10.1007/JHEP09(2019)083
https://doi.org/10.1007/JHEP05(2019)173
https://doi.org/10.1103/PhysRevD.101.015010
https://doi.org/10.1103/PhysRevD.101.015010
https://doi.org/10.1103/PhysRevD.99.115011
https://doi.org/10.1103/PhysRevD.99.115011
https://arXiv.org/abs/1910.02971
https://doi.org/10.1007/JHEP03(2017)097
https://doi.org/10.1103/PhysRevD.98.075018
https://doi.org/10.1016/j.nuclphysb.2019.114746
https://doi.org/10.1016/j.nuclphysb.2019.114746
https://doi.org/10.1140/epjc/s10052-017-4967-6
https://doi.org/10.1103/PhysRevD.77.013007
https://doi.org/10.1007/JHEP07(2015)060
https://doi.org/10.1007/JHEP07(2015)060
https://doi.org/10.1016/j.nuclphysb.2014.06.014


[23] P. S. Bhupal Dev et al., Neutrino non-standard interactions:
A status report, SciPost Phys. Proc. 2, 001 (2019).

[24] O. G. Miranda and H. Nunokawa, Non standard neutrino
interactions: Current status and future prospects, New J.
Phys. 17, 095002 (2015).

[25] T. Ohlsson, Status of non-standard neutrino interactions,
Rep. Prog. Phys. 76, 044201 (2013).

[26] O. G. Miranda, M. A. Tortola, and J. W. F. Valle, Are solar
neutrino oscillations robust?, J. High Energy Phys. 10
(2006) 008.

[27] F. J. Escrihuela, O. G. Miranda, M. A. Tortola, and J. W. F.
Valle, Constraining nonstandard neutrino-quark interactions
with solar, reactor and accelerator data, Phys. Rev. D 80
(2009) 105009; Phys. Rev. D 80, 129908 (2009).

[28] P. Coloma, Non-standard interactions in propagation at the
deep underground neutrino experiment, J. High Energy
Phys. 03 (2016) 016.

[29] M. Masud and P. Mehta, Nonstandard interactions and
resolving the ordering of neutrino masses at DUNE and
other long baseline experiments, Phys. Rev. D 94, 053007
(2016).

[30] I. Esteban, M. C. Gonzalez-Garcia, M. Maltoni, I. Martinez-
Soler, and J. Salvado, Updated constraints on non-standard
interactions from global analysis of oscillation data, J. High
Energy Phys. 08 (2018) 180.

[31] M. G. Aartsen et al. (IceCube Collaboration), Search for
nonstandard neutrino interactions with IceCube DeepCore,
Phys. Rev. D 97, 072009 (2018).

[32] Y. Farzan, A model for large non-standard interactions of
neutrinos leading to the LMA-dark solution, Phys. Lett. B
748, 311 (2015).

[33] Y. Farzan and I. M. Shoemaker, Lepton flavor violating non-
standard interactions via light mediators, J. High Energy
Phys. 07 (2016) 033.

[34] Y. Farzan and J. Heeck, Neutrinophilic nonstandard inter-
actions, Phys. Rev. D 94, 053010 (2016).

[35] M. B. Gavela, D. Hernandez, T. Ota, and W. Winter, Large
gauge invariant non-standard neutrino interactions, Phys.
Rev. D 79, 013007 (2009).

[36] I. Bischer and W. Rodejohann, General neutrino interactions
at the DUNE near detector, Phys. Rev. D 99, 036006 (2019).

[37] E. E. Jenkins, A. V. Manohar, and M. Trott, Renormaliza-
tion group evolution of the Standard Model dimension six
operators I: Formalism and lambda dependence, J. High
Energy Phys. 10 (2013) 087.

[38] E. E. Jenkins, A. V. Manohar, and M. Trott, Renormaliza-
tion group evolution of the Standard Model dimension six
operators II: Yukawa dependence, J. High Energy Phys. 01
(2014) 035.

[39] R. Alonso, E. E. Jenkins, A. V. Manohar, and M. Trott,
Renormalization group evolution of the Standard Model
dimension six operators III: Gauge coupling dependence
and phenomenology, J. High Energy Phys. 04 (2014) 159.

[40] R. Alonso, H.-M. Chang, E. E. Jenkins, A. V. Manohar, and
B. Shotwell, Renormalization group evolution of dimen-
sion-six baryon number violating operators, Phys. Lett. B
734, 302 (2014).

[41] W. Dekens and P. Stoffer, Low-energy effective field theory
below the electroweak scale: Matching at one loop, J. High
Energy Phys. 10 (2019) 197.

[42] E. E. Jenkins, A. V. Manohar, and P. Stoffer, Low-energy
effective field theory below the electroweak scale: Anoma-
lous dimensions, J. High Energy Phys. 01 (2018) 084.

[43] W. Dekens, E. E. Jenkins, A. V. Manohar, and P. Stoffer,
Non-perturbative effects in μ → eγ, J. High Energy Phys. 01
(2019) 088.

[44] I. Brivio et al., Computing tools for the SMEFT, in
Computing Tools for the SMEFT, edited by J. Aebischer,
M. Fael, A. Lenz, M. Spannowsky, and J. Virto (2019),
https://arxiv.org/abs/1910.11003.

[45] J. Aebischer et al., WCxf: An exchange format for Wilson
coefficients beyond the Standard Model, Comput. Phys.
Commun. 232, 71 (2018).

[46] F. J. Escrihuela, M. Tortola, J. W. F. Valle, and O. G.
Miranda, Global constraints on muon-neutrino non-standard
interactions, Phys. Rev. D 83, 093002 (2011).

[47] A. Bolanos, O. G. Miranda, A. Palazzo, M. A. Tortola, and
J. W. F. Valle, Probing non-standard neutrino-electron inter-
actions with solar and reactor neutrinos, Phys. Rev. D 79,
113012 (2009).

[48] S. Davidson, C. Pena-Garay, N. Rius, and A. Santamaria,
Present and future bounds on nonstandard neutrino inter-
actions, J. High Energy Phys. 03 (2003) 011.

[49] J. Barranco, O. G. Miranda, C. A. Moura, and J. W. F. Valle,
Constraining non-standard neutrino-electron interactions,
Phys. Rev. D 77, 093014 (2008).

[50] P. Coloma, M. C. Gonzalez-Garcia, M. Maltoni, and T.
Schwetz, COHERENT enlightenment of the neutrino dark
side, Phys. Rev. D 96, 115007 (2017).

[51] M. C. Gonzalez-Garcia, M. Maltoni, and J. Salvado, Testing
matter effects in propagation of atmospheric and long-
baseline neutrinos, J. High Energy Phys. 05 (2011) 075.

[52] J. Salvado, O. Mena, S. Palomares-Ruiz, and N. Rius, Non-
standard interactions with high-energy atmospheric neutri-
nos at IceCube, J. High Energy Phys. 01 (2017) 141.

[53] A. M. Baldini et al., MEG upgrade proposal, arXiv:
1301.7225.

[54] A. M. Baldini et al. (MEG Collaboration), Search for the
lepton flavour violating decay μþ → eþγ with the full
dataset of the MEG experiment, Eur. Phys. J. C 76, 434
(2016).

[55] B. Aubert et al. (BABAR Collaboration), Searches for
Lepton Flavor Violation in the Decays τ� → e�γ and
τ� → μ�γ, Phys. Rev. Lett. 104, 021802 (2010).

[56] G. Aad et al. (ATLAS Collaboration), Search for lepton-
flavour-violating decays of the Higgs and Z bosons with the
ATLAS detector, Eur. Phys. J. C 77, 70 (2017).

[57] M. Carpentier and S. Davidson, Constraints on two-lepton,
two quark operators, Eur. Phys. J. C 70, 1071 (2010).

[58] A. Falkowski and K. Mimouni, Model independent con-
straints on four-lepton operators, J. High Energy Phys. 02
(2016) 086.

[59] A. Falkowski, M. González-Alonso, and K. Mimouni, Com-
pilation of low-energy constraints on 4-fermion
operators in the SMEFT, J. High Energy Phys. 08 (2017) 123.

[60] J. Ellis, C. W. Murphy, V. Sanz, and T. You, Updated global
SMEFT fit to Higgs, diboson and electroweak data, J. High
Energy Phys. 06 (2018) 146.

[61] A. Cerri et al., Report from Working Group 4, CERN
Yellow Rep. Monographs 7, 867 (2019).

HIGH-ENERGY CONSTRAINTS FROM LOW-ENERGY NEUTRINO … PHYS. REV. D 101, 095010 (2020)

095010-13

https://doi.org/10.21468/SciPostPhysProc.2.001
https://doi.org/10.1088/1367-2630/17/9/095002
https://doi.org/10.1088/1367-2630/17/9/095002
https://doi.org/10.1088/0034-4885/76/4/044201
https://doi.org/10.1088/1126-6708/2006/10/008
https://doi.org/10.1088/1126-6708/2006/10/008
https://doi.org/10.1103/PhysRevD.80.105009
https://doi.org/10.1103/PhysRevD.80.105009
https://doi.org/10.1103/PhysRevD.80.129908
https://doi.org/10.1007/JHEP03(2016)016
https://doi.org/10.1007/JHEP03(2016)016
https://doi.org/10.1103/PhysRevD.94.053007
https://doi.org/10.1103/PhysRevD.94.053007
https://doi.org/10.1007/JHEP08(2018)180
https://doi.org/10.1007/JHEP08(2018)180
https://doi.org/10.1103/PhysRevD.97.072009
https://doi.org/10.1016/j.physletb.2015.07.015
https://doi.org/10.1016/j.physletb.2015.07.015
https://doi.org/10.1007/JHEP07(2016)033
https://doi.org/10.1007/JHEP07(2016)033
https://doi.org/10.1103/PhysRevD.94.053010
https://doi.org/10.1103/PhysRevD.79.013007
https://doi.org/10.1103/PhysRevD.79.013007
https://doi.org/10.1103/PhysRevD.99.036006
https://doi.org/10.1007/JHEP10(2013)087
https://doi.org/10.1007/JHEP10(2013)087
https://doi.org/10.1007/JHEP01(2014)035
https://doi.org/10.1007/JHEP01(2014)035
https://doi.org/10.1007/JHEP04(2014)159
https://doi.org/10.1016/j.physletb.2014.05.065
https://doi.org/10.1016/j.physletb.2014.05.065
https://doi.org/10.1007/JHEP10(2019)197
https://doi.org/10.1007/JHEP10(2019)197
https://doi.org/10.1007/JHEP01(2018)084
https://doi.org/10.1007/JHEP01(2019)088
https://doi.org/10.1007/JHEP01(2019)088
https://arxiv.org/abs/1910.11003
https://arxiv.org/abs/1910.11003
https://arxiv.org/abs/1910.11003
https://doi.org/10.1016/j.cpc.2018.05.022
https://doi.org/10.1016/j.cpc.2018.05.022
https://doi.org/10.1103/PhysRevD.83.093002
https://doi.org/10.1103/PhysRevD.79.113012
https://doi.org/10.1103/PhysRevD.79.113012
https://doi.org/10.1088/1126-6708/2003/03/011
https://doi.org/10.1103/PhysRevD.77.093014
https://doi.org/10.1103/PhysRevD.96.115007
https://doi.org/10.1007/JHEP05(2011)075
https://doi.org/10.1007/JHEP01(2017)141
https://arXiv.org/abs/1301.7225
https://arXiv.org/abs/1301.7225
https://doi.org/10.1140/epjc/s10052-016-4271-x
https://doi.org/10.1140/epjc/s10052-016-4271-x
https://doi.org/10.1103/PhysRevLett.104.021802
https://doi.org/10.1140/epjc/s10052-017-4624-0
https://doi.org/10.1140/epjc/s10052-010-1482-4
https://doi.org/10.1007/JHEP02(2016)086
https://doi.org/10.1007/JHEP02(2016)086
https://doi.org/10.1007/JHEP08(2017)123
https://doi.org/10.1007/JHEP06(2018)146
https://doi.org/10.1007/JHEP06(2018)146
https://doi.org/10.23731/CYRM-2019-007.867
https://doi.org/10.23731/CYRM-2019-007.867


[62] F. del Aguila, S. Bar-Shalom, A. Soni, and J. Wudka, Heavy
Majorana neutrinos in the effective Lagrangian description:
Application to Hadron colliders, Phys. Lett. B 670, 399
(2009).

[63] A. Aparici, K. Kim, A. Santamaria, and J. Wudka, Right-
handed neutrino magnetic moments, Phys. Rev. D 80,
013010 (2009).

[64] S. Bhattacharya and J. Wudka, Dimension-seven operators
in the standard model with right handed neutrinos, Phys.

Rev. D 94 (2016) 055022; Phys. Rev. D 95, 039904
(2017).

[65] Y. Liao and X.-D. Ma, Operators up to dimension seven in
Standard Model effective field theory extended with sterile
neutrinos, Phys. Rev. D 96, 015012 (2017).

[66] J. Alcaide, S. Banerjee, M. Chala, and A. Titov, Probes of
the Standard Model effective field theory extended
with a right-handed neutrino, J. High Energy Phys. 08
(2019) 031.

TEROL-CALVO, TÓRTOLA, and VICENTE PHYS. REV. D 101, 095010 (2020)

095010-14

https://doi.org/10.1016/j.physletb.2008.11.031
https://doi.org/10.1016/j.physletb.2008.11.031
https://doi.org/10.1103/PhysRevD.80.013010
https://doi.org/10.1103/PhysRevD.80.013010
https://doi.org/10.1103/PhysRevD.94.055022
https://doi.org/10.1103/PhysRevD.94.055022
https://doi.org/10.1103/PhysRevD.95.039904
https://doi.org/10.1103/PhysRevD.95.039904
https://doi.org/10.1103/PhysRevD.96.015012
https://doi.org/10.1007/JHEP08(2019)031
https://doi.org/10.1007/JHEP08(2019)031

