PHYSICAL REVIEW D 101, 095008 (2020)

Classifying accidental symmetries in multi-Higgs doublet models
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The potential of n-Higgs doublet models (nHDMs) contains a large number of SU(2), -preserving
accidental symmetries as subgroups of the symplectic group Sp(2n). To classify these, we introduce prime
invariants and irreducible representations in bilinear field space that enable us to explicitly construct
accidentally symmetric "HDM potentials. We showcase the classifications of symmetries and present the
relationship among the theoretical parameters of the scalar potential for the following: (i) the two Higgs
doublet model (2HDM), and (ii) the three Higgs doublet model (3HDM). We recover the maximum number
of 13 accidental symmetries for the 2HDM potential, and for the first time, we present the complete list of

40 accidental symmetries for the 3HDM potential.
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I. INTRODUCTION

The discovery of the Higgs particle at the CERN Large
Hadron Collider (LHC) [1,2], which was previously
predicted by the Standard Model (SM) of particle physics
[3—7], generated renewed interest in beyond the SM (BSM)
Higgs physics. This is corroborated by the fact that the SM
fails to address several key questions, such as the origin of
the observed matter-antimatter asymmetry and the dark
matter relic abundance in the Universe.

There is a plethora of well-motivated new physics
models with additional Higgs scalars that have been
introduced to solve these problems [8—13]. To distinguish
such models, one usually employs symmetry transforma-
tions that leave the particular model invariant. These
symmetries impose constraints over the theoretical param-
eters of the models and thus enhance their predictability to
be probed in future experiments.

In this paper we construct potentials of multi-Higgs
doublet models (nHDMs) with n scalar doublets based
on SU(2), -preserving accidental symmetries. These sym-
metries can be realized in two sets: (i) as continuous
symmetries, and (ii) as discrete symmetries (Abelian and
non-Abelian symmetry groups). To find continuous sym-
metries, we present an algorithmic method that provides the
full list of proper, improper, and semisimple subgroups for
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any given integer n. We also include all known discrete
symmetries in nHDM potentials [14—24]. Previous analy-
ses led to a maximum of 13 accidental symmetries for
the two Higgs doublet model (2HDM) potential, where
the maximal symmetry group is Gy = Sp(4)/Z, ®
SU(2), [25]. Here, we extend this theoretical framework to
nHDM potentials based on the maximal symmetric group
Sp(2n)/Z, ® SU(2), [26,27]. The maximally symmetric
nHDM (MS-nHDM) can provide natural SM alignment
that exhibits quartic coupling unification up to the Planck
scale [26-29].

Identifying the symplectic group Sp(2n) as the
maximal symmetry group allows us to classify all
SU(2), -preserving accidental symmetries in ntHDM poten-
tials. We introduce prime invariants to construct acciden-
tally symmetric potentials in terms of fundamental building
blocks that respect the symmetries. In the same context, we
use irreducible representations to derive all potentials that
are invariant under non-Abelian discrete symmetries.

The layout of this paper is as follows. In Sec. II, we
define the nHDMs in the bilinear scalar field formalism.
Given that Sp(2n) is the maximal symmetry of the nHDM
potential, we adopt the biadjoint representation of this
group which becomes relevant to this bilinear formalism. In
Sec. III, we start with classifying continuous symmetries
for nHDM potentials. As illustrative examples, we classify
all accidentally symmetric potentials for the 2HDM and the
three Higgs doublet model (3HDM). Then, we introduce
prime invariants to build potentials that are invariant under
SU(2), -preserving continuous symmetries. In Sec. IV, we
discuss possible and known discrete symmetries for tHDM
potentials and recover the discrete symmetries for the
2HDM and the 3HDM cases [21,23,24]. This section also
includes our approach to building 3HDM potentials with
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the help of irreducible representations of discrete sym-
metries. Having discussed the classifications of sym-
metries, we provide the list of all SU(2),-preserving
accidental symmetries for the 2HDM and the 3HDM
potentials including the relationships among the theoretical
parameters of the scalar potentials. Section V contains our
conclusions. Finally, technical details are delegated to
Appendixes A, B, C, and D.

II. BILINEAR FORMALISM AND THE
MAXIMAL SYMMETRY SP(2n)

The nHDMs contain n scalar doublet fields, ¢;(i =
1,2,...,n), which all share the same U(1),-hypercharge
quantum number, i.e., Yy = 1/2. The most general form of
the nHDM potential may conventionally be expressed as
follows [30]:

n

vV, = Z mlzj(fﬁjfﬁj) + Z Aijkl(¢j¢j)(¢z¢l>’
by

ijki=1

(2.1)

with 4,5 = Ax;;- In general, the SU(2), x U(1)y invariant
nHDM potential contains n’ physical mass terms along
with n?(n* + 1)/2 physical quartic couplings.

An equivalent way to write the nHDM potential is based
on the so-called bilinear field formalism [53,31-34]. To this
end, we first define a 4n-dimensional (4n-D) complex ®,,
multiplet as

¢
b»
b3
*
b1 ¢>
b :
@, ,fz R S IS DU S B
io”¢; io” ) io” ¢}
ic* ¢} o’ o’
io* ¢} i’ 3
(2.2)
where ¢'>3 are the Pauli matrices and ic’¢; (with

i=1,2,...,n) are the U(1), hypercharge conjugate of
¢;. Observe that the ®, multiplet transforms covariantly
under an SU(2), gauge transformation as

®, > U,d, U, eSU?2),. (2.3)

Note that U is the 2 x 2 unitary matrix that may also be
represented as ¢’ ®1,® U, in the &, space.

Additionally, the @, multiplet satisfies the Majorana-type
property [34],

O, = CoD;, (2.4)
where C=6*® 1, ® 6° (C=C~! =) is the charge
conjugation operator and 1, is the n x n identity matrix.

With the help of the @, multiplet, we may now define
the bilinear field vector [25,33,34],
R = ®)3AD,, (2.5)
withA =0,1,2,...,n(2n — 1) — 1. Notice that n(2n — 1)-
vector R% is invariant under SU(2), transformations thanks
to (2.3).
The matrices 2 have 4n x 4n elements and can be
expressed in terms of double tensor products as
M=("® 1% ® o, ® tz ® o), (2.6)
where 7§ and 75 are the symmetric and antisymmetric
matrices of the SU(n) symmetry generators, respectively.

Specifically, for the case of the 2HDM, the following six
matrices may be defined:

1 1
3,013 = 50_0 ® o*13 ® o0, Y2 = 563 ® o ® o,

1 1
224:—562®(72®60, 225:—561®62®60.
(2.7)

Correspondingly, for the 3HDM, we have the following
15 matrices:

1
230,1,23,78 _560®G0146 8 ®60,

1
2,456 = E0_3 ® G257 ® o,

_ %0,2 ® G237 @ o,

1
¥, 121314 — E61 ® G>7 ® o,

239,10.]1

(2.8)

where G' are the standard Gell-Mann matrices of SU(3)
[35]. Note that the X/ matrices satisfy the property

C'zAc = (=7, (2.9)
which means that X4 are C even.

Consequently, the vectors R3 and R4 for the 2HDM and
the 3HDM cases are given by
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bl + Py
bl + Pl
—ilpipr — i)
b1 — breh
—[pTic*pr — B3ic*p}]
i[plic*¢, + plic* ]
D11+ Boba + P
bl + 3,
b5+ Pl
Dips + Db
—ilpipr — 3p1]
—ilpids — plh]
—ilpids — pl)
bidy — Dl
H 0161 + dibr — 20305]
—[¢Tic*p, — phic*p;]
—[plic* s — Pic*pi]
—[plic*ps — plic* 3]
i[plic*p, + ¢lic* ]
iplic*¢s + plic* ;]
i[plic*¢s + plic> ;)

RA =

(2.10)

With the aid of the n(2n — 1)-dimensional vectors R4, the
potential V,, for an nHDM can be written in the quadratic
form as

1 1 ,
V=3 MR} + L RIRY.

(2.11)
where M’} is the 1 x n(2n — 1)-dimensional mass matrix
and L}, is a quartic coupling matrix with n(2n —1) x
n(2n — 1) entries. Evidently, for a U(1),-invariant nHDM
potential, the first n* elements of M%; and n”> x n* elements
of L}, are only relevant, since the other U(1)y-violating
components vanish. The general 2HDM and 3HDM
potentials with their corresponding M) and L%, are
presented in Appendix A.

The gauge-kinetic term of the @, multiplet is given by

Tn = (Du(l)n)-i- (D”q)n>’ (212)

N =

where the covariant derivative in the @, space is

D,=6"®1,Q (6" + ig,Wic'/2)

160 ®1,® ig—ZYB#oO. (2.13)
In the limit gy — 0, the gauge-kinetic term 7', is invariant
under Sp(2n)/Z, @ SU(2), transformations of the ®,
multiplet. In general, the maximal symmetry group acting
on the @, space in the nHDM potentials is

G(r?—nHDM = Sp(2n)/Z, ® SU(2),.

which leaves the local SU(2), gauge kinetic term of @,
canonical. The local SU(2), group generators can be
represented as 6 ® 1, ® (¢'3/2), which commute with
all generators of the Sp(2n) group.

Let us turn our attention to the Sp(2n) generators K2,
with B=0,1,...,n(2n + 1) — 1. They satisfy the impor-
tant relation [25]

C'KBC = —KB = —(KB)T, (2.14)

which implies that K are C odd. The Sp(2n) generators
may conveniently be expressed in terms of double tensor
products as [36]

KE=("®1,®0" 0 @12®0")., (2.15)

where 7§ (tﬁ) are the symmetric (antisymmetric) generators
of the SU(n) symmetry group. For instance, the ten
generators of Sp(4) are [25]

1 1
Kg.l,?) 2563 ®60’1’3 ® 60, K% :EO.O ® 02 ® 00’

1 1
K‘2‘75-8 :Eol ® 0.0,3.1 ® 00, Kg,7~,9 — 502 ® 60’3’1 ® 00.

(2.16)
Likewise, the Sp(6) group has 21 generators, which are

1
KO12345 — 5 o3 @ GU13468 @ 0.

1
Kg,7.8 — 5GO ® G2,5,7 ® O'O,

1
gOIILIZISI 561 ® GO13468 @ 50,

1
Ké5,16,l7,18,l9.20 = _ 62 ® GO13468 @ 50,

: (2.17)

It is interesting to state the Lie commutators between the
>4 and K2 generators,

(K2, 51) = 2if B, (2.18)
where 1,J =1,...,n(2n— 1) — 1 and fB" is a subset of
the structure constants of the SU(2n) group. Employing
(2.18), we may define the Sp(2n) generators in the
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biadjoint representation (i.e., the adjoint representation in
the bilinear formalism) as
(T8),, = =if " = Te([Z. KEZ)).  (2.19)

Note that the dimensionality of the biadjoint representation
differs from the standard adjoint representation. The former
representation has (2n?> —n —1) x (2n*> —n —1) dimen-
sions, whereas the latter has n(2n + 1) x n(2n + 1) dimen-
sions [37-40]. The generators of T2 for Sp(4) and Sp(6)
corresponding to the 2HDM and 3HDM are presented in
Appendix B

Knowing that Sp(2n) is the maximal symmetry group
allows us to classify all SU(2),-preserving accidental
symmetries of nHDM potentials. These symmetries can
be grouped into two categories: (i) continuous symmetries,
and (ii) discrete symmetries (Abelian and non-Abelian
symmetry groups). In the next section, we demonstrate the
structure of continuous symmetries and prime invariants
for building nHDM potentials.

III. CONTINUOUS SYMMETRIES
AND PRIME INVARIANTS

The symplectic group Sp(2n) acts on the ®,, space, such
that the bilinear vector R/ transforms in the biadjoint
representation of Sp(2n) defined in (2.18) and (2.19). It is
therefore essential to consider the maximal subgroups
of Sp(2n). Then, the accidental maximal subgroups
would be the combinations of smaller symplectic groups,
such as [41]

Sp(2n) > Sp(2p) @ Sp(2q). (3.1)
where p + g = n. The other maximal subgroup is
Sp(2n) D SU(n) ® U(1). (3.2)

The breaking pattern of SU(n) in the maximal subgroups
are

SU(n) > SU(p) ® SU(¢q) ® U(1) (3.3)
> Sp(2K) (3.4)
> SO(n), (3.5)

with p + ¢+ 1 = n and n < 2k. The breaking pattern for
SO(n) is
O(n) > 8O(p) ® SO(q). (3.6)

where p + g = n. Note that local isomorphisms should
also be taken into account, such as

SO(3) = SU(2) = Sp(2)
SO(4) = SU(2) ® SU(2),
SO(5) = Sp(4),

SO(6) = SU(4).

Following this procedure, it is straightforward to identify
all accidental continuous symmetries for tHDM potentials.
For the simplest case, i.e., that of the 2HDM, the above
breaking chain gives rise to the following continuous
symmetries [25]:

(

(

(

(d)SUQR)yr = 0(3) ® O(2),
( ® [0(2))%,
(

f)U(l)pQ®Sp(2) =0(2) ® 0(3).

(9) U(1)pq ® U(1)y 2 0(2) @ O(2),
where HF indicates Higgs family symmetries that only
involve the elements of ® = (¢;, ¢, ..., $,)" and not their
complex conjugates. In the case of 3HDM, the maximal

symmetry is Sp(6), so in addition to all symmetries in (3.7)
we find

(3.7)

(3.8)

We may now construct accidentally symmetric nHDM
potentials in terms of fundamental building blocks that
respect the symmetries. To this end, we introduce the
invariants S,, D2, and T2. In detail, S, is defined as

S, = oD, (3.9)

which is invariant under both the SU(n), ® U(1), gauge
group and Sp(2n). Moreover, we define the SU(2),-
covariant quantity D¢ in the HF space as
D¢ = Ol . (3.10)
Under an SU(2), gauge transformation, D% — D¢ =
0% D!, where O € SO(3). Hence, the quadratic quantity
D? = D¢D¢ is both gauge and SU(n) invariant. Finally, we
define the auxiliary quantity 7', in the HF space as

T, = ®dT, (3.11)
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which transforms as a triplet under SU(2),, ie., T, —
T,=U,T,U I As a consequence, a proper prime invariant
may be defined as 72 = Tr(7TT*), which is also both gauge
and SO(n) invariant.

In addition to the above maximal prime invariants, it is
useful to define minimal invariants. For instance, prime
invariants that respect Sp(2) can be derived from the

doublets (ioqzj;b*f) and <i642§éb’f>’
i J

b;

5= (0l =107)

P2 g
ioc“¢;

)=@@+@m

Sy = @l-]e) (o ) =l ol G2

Likewise, to obtain minimal SU(2) ® U(1) invariants

from (¢i) and ( . %5[ *) we define
?; o ¢j

?,
b;

la ; a ¢i
Dij = ((ﬁj —1¢1T<72 )o <i62¢j~)

oy = (.o (4 ) = loh + o, =

= pjo"p; — pjo"d; = =DIf, (3.13)
where the identity 6%6%¢> = —(c%)T has been used.

By analogy, to construct an SO(2)-invariant expression

from the doublet <¢i
b;

), we may use quantities such as

Tij = ¢i¢iT + ¢j¢]T' = Tji‘ (3-14)

Moreover, extra prime invariants can be constructed from

(ia(g(iﬁj) and (i(j;)&}f ), e.g.,

Sij = bi; + (i5°9}) (ic°h}) = plep; + bl
D e —
o1

(3.15)

iDI¢ = plop; + (ic*p}) o (ic*p}) = plo'h; — dlo’ ;.
(3.16)

since

Note that Di¥'Djs" depends on S;; and Sj; j;,

_Di‘/jz = Slzj - (¢}L¢j)(¢;¢j) = Slzj - SiiSjj- (3~17)
Observe that T;; and §;; are not invariant under phase
reparametrizations, ¢; — e'%¢;, and so they need to be
appropriately combined with their complex conjugates.

We are now able to build a symmetric scalar potential

Vm in terms of prime invariants as follows:

sy
Vim = —#2S, + AsS2 + ApD3 + A7 T3 (3.18)

Obviously, the simplest form of the nHDM potentials
obeys the maximal symmetry Sp(2n), which has the same
form as the SM potential,

Vom = 2 (¢7°¢) + A" ),
with a single mass term and a single quartic coupling. For

example, the 2HDM Sp(4)-invariant potential, the so-called
MS-2HDM is given by [29]

Vusauom = —#1 (|12 + [#2]?) + 41 (|1 > + |a]*)2,

(3.19)
with the obvious relations among the parameters,
,u% = ,u%, m%z =0, 24, =241 = 13,
Ay =Re(ds) =g = 4, = 0. (3.20)

Note that the functional form of the potential in (3.19)
is V=V[S] = V[Si; + Sx].

Similarly, the 3HDM potential invariant under Sp(6)/Z,
will be a function of the symmetric block §; = S;;+
522 -+ S33, i.e.,

Vussuom = —#1(|1* + |2 + |#5]%)

+an(dil® + 1 + 15177 (3:21)

where the nonzero parameters are

Hi=po =p3, Ay =Ap =33 = 241120 = 241133 = 2A0033.

Remarkably, the MS-nHDM potentials obey naturally the
SM-alignment constraints, and all quartic couplings of the
MS-nHDM potential can vanish simultaneously [27,29].

Another example is the SU(3) ® U(1)-invariant 3HDM
potential. The corresponding symmetric blocks are S; =
Si1 4 Sx + S33 and D3 = D3, + D3, + D3, givenin (3.9)
and (3.10), respectively. Therefore, the SU(3) ® U(1)-
invariant 3HDM potential takes on the form

Vsuaeu) =—#1 (911> + 2> +95]%)
+ A1 ([ [* + [ |* 413 ]*)
+ 41122 (111210 > + b1 Pl |* + 12 1P | 3 1)

+ (2211 = 2112) (|92 l* + | 3> + L3 ]?).
(3.22)

with the following relations between the parameters:
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H1 = M2 = U3,
Al = Aoy = Az,

/11122 = /11133 = /122333

/11221 = }*1331 = /12332 = 2ﬂ'll - 11]22-

This method can be applied to all continuous symmetries
of nHDM potentials. We present all explicit symmetric
blocks under all continuous symmetries for the 2HDM and
the 3HDM potentials in Appendix C. The complete list of
accidental symmetries for the 2HDM and 3HDM poten-
tials, along with the relations among the nonzero param-
eters, are exhibited in Tables I and II.

IV. DISCRETE SYMMETRIES AND IRREDUCIBLE
REPRESENTATIONS

As discussed in Sec. II, Sp(2n) is the maximal symmetry
group for tHDM potentials. This will help us to classify all
SU(2), -preserving accidental symmetries of such poten-
tials. In addition to continuous symmetries shown in
Sec. III, there are also discrete symmetries as subgroups
of continuous symmetries. Known examples of this type
are the standard charge-parity (CP) symmetry, the cyclic
discrete group Z,,, the permutation group S,,, or a product of
them possibly combining with continuous symmetries. In
general, these discrete symmetries can be grouped into
Abelian and non-Abelian symmetry groups. In this section,
we discuss all possible and known discrete symmetries for
nHDM potentials, including our approach to build ntHDM
potentials
by employing irreducible representations of discrete sym-
metry groups.

A. Abelian discrete symmetries

To start with, let us first consider the Abelian discrete
symmetry groups [42,43]
Zz,Z3,Z4,ZZXZZ,...,Z”,..., (41)
where Z, = {1, w, ..., "V} with " = 1. Note that iff n
and m have no common prime factor, the product Z,, x Z,,
is identical to Z,,,,. These discrete symmetries can be
imposed to restrict the independent theoretical parameters
of the model. For example, in the 2HDM, the Z, symmetry
is invoked to avoid flavor changing neutral currents [44] or
to ensure the stability of dark matter [45].
In addition to these discrete symmetries, there are
generalized CP (GCP) transformations defined as
GCPl¢:] = Gijﬁ’ (4.2)
with G;; € SU(n) x U(1), where U(1) can always be elimi-
nated by U(1), transformation. The GCP transformations
realize different types of CP symmetry. For example, in the

case of the 2HDM (BHDM), there are two types of CP
symmetries: (i) standard CP or CP1: ¢, 5(¢h3) = @7 ,(¢3),
and (ii) nonstandard CP or CP2: ¢ — ¢35, ¢ = —¢]
(D3 = @3) [46,47]." In general, without continuous group
factors, the discrete symmetries for the 2HDM are CP1,
CP2, and Z,. The generators of these discrete symmetries
can be expressed in terms of double tensor products as

Acpi = 0> ®@ 0 ® 0, (4.3)
Acpz = iO'2 ® O'2 ® 02, (44)
Ay, =0"Q®0c ®0". (4.5)

In the bilinear Rg‘ space, the transformation matrices (or the
generating group elements) associated with CP1, CP2,
and Z, discrete symmetries are given by

Depy = diag(1,-1,1,1,-1), (4.6)
Depy = diag(—1,-1,-1,1,-1), (4.7)
Dy, = diag(-1,-1,1,~1,-1). (4.8)

where the U(1),-conserving elements are denoted in
boldface.

Let us turn our attention to the 3HDM potential. In this
case, the corresponding CP1 discrete symmetry can be
represented as

Acp; = 0* @ G' ® o, (4.9)
resulting in the following transformation matrix in the R}
space:

Dcp, = diag(1,1,1,-1,-1,-1,1,1,1,1,1,—-1,—-1,-1).

(4.10)
On the other hand, CP2 discrete symmetries may be
given by
0 -iG* ® o?
Acpr = _.. , 4.11
= (gme o) @
with [48]

'In some of the earlier literature, there has been a third class of
CP symmetries called CP3 which relies on SO(2)y [or SO(3)
for a 3HDM potential] and the standard CP symmetry. However,
continuous SO(n)yr symmetries lead automatically to CP-
invariant nHDM potentials, without introducing further restric-
tions on the theoretical parameters. In other words, CP1 is an
emergent symmetry that results from SO(#) g, so CP3 should not
be regarded as a new CP symmetry.
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0 -1 0
G*=|1 0 o0 [, (4.12)
0 0 eia

where the phase e’ is an arbitrary phase factor. This results in the following transformation matrix in the bilinear R4 space
(dots stand for zero elements):

-1
—cosa . . sina

cosa . . —sina

sina . . cosa .

—sina . . —cosa

DCP2 =

—cosa . . sina

. cosa . . —sina

—sina . . cosa

. sina . . —cosa

(4.13)

Note that the CP2 transformation matrix D¢p, in the bilinear R4 space is nondiagonal, contrary to the 2HDM case. We must
remark here that in the case of 2HDM, AZ,, = —1g # 1g and A¢y, = 1g, and in the bilinear space D%y, = 14. However, in
the case of the 3HDM, we have Ap, # —1,5, A¢p, = 1}, and D¢y, = 114, in agreement with a property termed CP4
in [48]. Without loss of generality, we set a = 0.

In addition, there are several Abelian discrete symmetries for the 3HDM potential [49], i.e.,

22,2/2,23,24,22 XZz. (414)
The generators of these Abelian discrete symmetries are given by

Ay,=0"®2%00". Ay=0"®7 00

2

Ay, =diaglzs ® 6%, 23" ® ¢"], Ay = diaglzy @ 0%, 24" ® 0], (4.15)
where
7, = diag[1, -1, 1], 7, = diag[l, -1, -1],
73 = diag[o?, w, 1], 74 = diag[i, —i, 1], (4.16)

with @ = ¢?7/3_ In the bilinear R} space, as a result of flipping the sign of the one or two doublets, the following diagonal
transformation matrices for the discrete symmetries Z, and Z, may be derived:

Dy, = diag(-1,1,-1,-1,1,-1,1,1,=1,1,=1,-1,1,-1), (4.17)

Dy =diag(-1,-1,1,-1,-1,1.1,1,-1,-1,1,-1,~1,1). (4.18)
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In the same way, the transformation matrices for Z; and Z, may be represented by the nondiagonal matrices

-1 . V3o
-1 . -3 . ..
: -1 . V3.,
-V3 . -1 .
V3 . -1 . .
-3 -1..
1 2 ..
DZ;*g ) , (4.19)
.2 .
-1 V3
-1. . =3
)
V3o -l
V3. -1
|
1 ) Therefore, all possible combinations RéR{% (i,j=1,....8)
1 that respect the Z, symmetry may be obtained as
- (R (RIP. RRL (KR (RYP. KRS
R R'“[(R3ERY) — (R} F R (R3ERY)® + (RS F RY)™.
-1 . (4.22)
1 T These combinations lead to the following Z,-invariant
D 1 1. 3HDM potential:
z,=5 1
. Vz, = =il P = i31al* = 3|3 |
1 + Al [ + Ao lhol* + A5 *
1 + A2l Plhal* + Auizs |1 213 P + Ansalba Pl ps |
. 1 + Ao Bl hal? + i3s3 B3 2 + Aoz ldiehs
S + 323 (91603) (B5h3) + A3 (D361) (932)
-1 . A i
+=02 (9142 + 752 (3). (4.23)
(4.20)

Now, with the help of the D-transformation matrices, we
can construct accidentally symmetric nHDM potentials.
For example, in the case of Z, symmetry, applying the
transformation matrix Dz, on the U(1)y-conserving ele-

ments of R} yields

R} — —R}, R} — —-R3,
R - +R3, R§ — +R3,
R} > —RS, Rl - +Rj,
Ry > -R}, R}- +R}. (4.21)

where the complex phase of 41,1, can be rotated away by a
field redefinition.

In the same fashion, we can use this procedure to
construct nHDM potentials invariant under all Abelian
discrete symmetries. Tables I and II give the parameter
relations of the 2HDM and 3HDM potentials constrained
by these symmetries.

B. Non-Abelian discrete symmetries

Non-Abelian discrete symmetries constitute another
class of discrete symmetries, which may be thought of
as combinations of Abelian discrete symmetries. The most
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familiar non-Abelian groups can be summarized as fol-
lows [20,50]:

(1) Permutation group Sy. The best known non-
Abelian discrete groups are the permutation groups.
The order of this group is N!. An S, group is an
Abelian symmetry group and consists of a permu-
tation in the form (x;,x,) = (x5,x;). Thus, the
lowest order non-Abelian group is S;.

(i) Alternating group Ay. This group consists of only
even permutations of Sy, and thus, its order is N!/2.
The smallest non-Abelian group of this class is Ay
since Az = Z;.

(iii) Dihedral group Dy. This group is also denoted
as A(2N) and its order is 2N. The Dy group is
isomorphic to ZyxZ, that consists of the cyclic
rotation Zy and its reflections. Note that D3 = S3.

(iv) Binary dihedral group Q,y. This group, which is
also called quaternion group, is a double cover of
Dy, symmetry group and its order is 4N.

(v) Tetrahedral group Ty. This group is of order 3N
and isomorphic to ZyxZ3, where N is any prime
number. The smallest non-Abelian discrete sym-
metry of this type is 7;. This would imply that a T -
symmetric ntHDM potential will also be symmetric
under Z.

(vi) Dihedral-like groups. These generic groups obey the
following isomorphisms:

T(2N?) = (Zy x Z'y)*Z,,

A(BN?) = (Zy x Z'y)¥Z3,

T3N3 x (Zy x Z'y x 2"y )% Z;,

A(6N?) = (Zy x Z' ) xS5. (4.24)

The simplest groups of this type are X(2) = Z,,
A(6) = S5, A(24) = S,, A(12) = A,, and 3(24) =
Z, x A(12).

(vil) Crystal-like groups (M), with ¢ = 1, 2, 3. These
groups are of order M and are given by

2(60¢).  E(1684).  I(364).
2(72¢), >(216¢), 2(360¢), (4.25)
where X(60) = As and X(216) ~ A,.

The decomposition of tensor products of three-

dimensional irreducible representations of these groups
are given in Appendix D. Note that imposing many of
these symmetry groups lead to identical potentials or to
potentials that are invariant under continuous symmetries.
These non-Abelian discrete symmetries can be the sym-
metry of nHDM potentials for sufficiently large n, as
discussed in Sec. III.

In the case of the 3HDM, the complete list of non-
Abelian discrete symmetries has been reported in [20-24].
There are two non-Abelian discrete symmetries as

subgroups of SO(3), namely D; and D,. In addition,
there are non-Abelian discrete symmetries as subgroups
of SU(3),

Ay, S4, {2(18),A(27),A(54)},2(36),  (4.26)
where the symmetry groups stacked in curly brackets produce
identical potentials. Here, we discuss the cases D3 and Ay,
while the description of the rest of these types of symmetries
for the 3HDM potential may be found in Appendix D.

Let us start with the smallest non-Abelian discrete group
D5 = S5. The irreducible representations of the D3 sym-
metry group can be expressed by two singlets, 1 and 1/, and
one doublet 2. The 2 ® 2 tensor product of this group
decomposes as

D;:2@2=161 2. (4.27)
Moreover, the generators of D5 discrete symmetry group
should satisfy the conditions: g; = 1, g3 = l,and g, - g, =
9> - (g1 - g1). Thus, two generators of D5 in terms of double
tensor products are given by

A}, = diaglg; ® 6°, 91" ® 07, A, =" ® g ® 0,

(4.28)
where
@* 00 0 -10
=10 0|, g=|-1 00 (4.29)
0 01 0 0 1

Imposing D3 on the U(1)-conserving part of the R4 vector
will lead to the following linear decomposition:

1 2 6
1 RO 2: R3 2// . R3 + R3
(R3), \ pd )’ ’ 3 5 )’
, 5 R3 Ry + R3
(R3). 2 3 2 6
_R% - R3 R3 - R3
17:(RY) 2 2 .
30 5 6 |’ 3 5
R3 — R3 Ry - R3
(4.30)

Note that in the bilinear space, there are three singlets
1, 1/, and 1”, and two doublets, 2 and 2’. Thus, given the
irreducible representations in (4.30), we may parametrize
the D;-invariant 3HDM potential as follows:

VD3 _ —Mll _le// —l—/\012 —I—A11/2 +A21//2
+A51- 17+ A2T 24 AT
+ A2T -2/ A2 27 4 AG2T 2 (4.31)

This can be rewritten as

095008-9
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Vo, = =ui (91> + |al?) — 131¢h3]?
+ A (11 [* + [a*) 4 233 ps|*
+ 2122|1 Pleal” + Auisa (|1 Plebs® + 1215 ]?)
+ A1 |B 2 P + Aano (s > + |43 [?)
+ A3t (B31) (i) — (D1h2) (B5h2)
+ (9102)(D1¢3) = (#51) (3¢63))
+ 21323 (01003) (D3h3) + Aans (B301) (P3h2), (4.32)

where 113,35 is complex while all other couplings are real.
Another example of a non-Abelian discrete symmetry
for the 3HDM potential is A4, which is a subgroup of
SU(3). This symmetry group consists of three singlets, 1,
1, and 17, and one triplet 3. The 3 ® 3 tensor product of A,
decomposes:
A;:3R3=10101"03073. (4.33)

The generators of the A, discrete symmetry group in terms
of double tensor products are

A}, = A ®g ®d, Afh =R ¢ ®c", (4.34)
where
01 0 0 0
a=]00 1] g=[0 -1 o (4.35)
1 0 O 0O 0 -1

satisfy the conditions ¢j =¢3 = (g;-¢92)° =1. The
A,-symmetric blocks in the bilinear space can be repre-
sented as

L: (¢l + dids + i3 ),
1: (¢l + iy + 03 ),
1: (piy + wdiy + ?Pls ),

R} R}
3: | R3 |, 3| -’ (4.36)
R RS

Thus, an A4-invariant 3HDM potential may be written as

Va, = =M1+ Ag1% + A 1717 + A,37 -3

+ A3 -3+ A3T-3. (4.37)

Equivalently, the A;-symmetric potential can be rewritten
as follows:

Va, = =111 P + 12 +1312) + 201 (|1 |* + 1o * + [3]*)
+21122(|01 P|po|* + |1 P13 | + b2 P |5 )
+ 001 (|12 + ]3> + | pheps )

FAR2 (1) + (9 s+ (400)7)
R (102 (G P BiaP). (438)

In a similar way, the remaining 3HDM potentials that are
invariant under non-Abelian discrete symmetries may be
obtained. These are presented in Appendix D.

In Tables I and II, we present all SU(2),-preserving
accidental symmetries for the 2HDM and the 3HDM
potentials. The 2HDM potential has a total number of
13 accidental symmetries [34], of which 6 preserve U(1),
[46,47,51] and 7 are custodially symmetric [25]. Given the
isomorphism of the Lie algebras: SO(5) ~ Sp(4), the
maximal symmetry group of the 2HDM in the original
@-field space is Gy = [SP(4)/Z,] ® SU(2), [25].

For the case of the 3HDM potential, we find that there
exists a total number of 40 SU(2), -preserving accidental
symmetries, of which 18 preserve U(1), and 22 are
custodially symmetric. The maximal symmetry group of
the 3HDM potential in the original ®d-field space is
G3iom = [Sp(6)/Z,] ® SU(2), [25]. Note that the 40
accidental symmetries are subgroups of Sp(6).

V. CONCLUSIONS

The nHDM potentials may realize a large number of
SU(2), -preserving accidental symmetries as subgroups of
the symplectic group Sp(2n). We have shown that there
are two sets of symmetries: (i) continuous symmetries and
(ii) discrete symmetries (Abelian and non-Abelian sym-
metry groups). For the continuous symmetries, we have
offered an algorithmic method that provides the full list of
proper, improper, and semisimple subgroups for any given
integer n. We have also included all known discrete
symmetries in nHDM potentials.

Having defined the biadjoint representation of the
Sp(2n) symmetry group, we introduced prime invariants
and irreducible representations in the bilinear field space
to construct the scalar sector of nHDM potentials. These
quantities have been systematically used to construct
accidentally symmetric nHDM potentials by employing
fundamental building blocks that respect the symmetries.

Using the method presented in this paper, we have been
able to classify all symmetries and the relations among
the theoretical parameters of the scalar potential for the
following: (i) the 2HDM and (ii) the 3HDM. For the 2HDM
potential, we recover the maximum number of 13 acci-
dental symmetries. For the 3HDM potential, we derive for
the first time to our knowledge the complete list of 40
accidental symmetries.
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Our approach can be systematically applied to nHDM APPENDIX A: THE 2HDM AND THE
potentials, with n > 3, once all possible discrete sym- 3HDM POTENTIALS

metries have been identified. In Sec. II, we have shown that the potential V, for an

nHDM can be written down in the quadratic form with the
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(2016-2020). In the case of 2HDM, the general potential is given by
|

Voupm = —M%(Qﬂ(/’l) - ﬂ%(fﬁ;(/’z) - [m%z(fﬂf/’z) +H.c ]
+ 4 (‘f’;ﬁbl )+ /12(¢;¢2)2 + 43 (¢i¢l )(4’;472) + /14(¢I¢2)(¢§¢1)

3258102 + 28160 @100) + 4o (12) (98n) + M. (A1)

1 1 ,
V= =5 MR+ Li RIRY.

Thus, in the bilinear formalism, the mass M3 and the quartic couplings L2
following forms [25]:

414 matrices for the 2HDM potential assume the

M3 = (4} + p3.2Re(mi,), —2Im(mi, ), ui = p3.0.0) (A2)
and
/11 +ﬂ,2 +ﬂ.3 Re(/16 +/17) —Im(ﬂﬁ +/17) /11 —/12
Re(/lﬁ‘l—jq) l4+Re(/15) —Im(ﬂ.s) Re(ﬂﬁ—jq) ..
—Im(/l(,"’/l’]) —Im(ls) /’{4—Re(ﬂ5) —Im(l(,—/%/) ..

L2, = . A3
AA M=%  Re(lg—47) =Im(Ag—147) A1 +Ar—1s (A3)

Evidently, for a U(1),-invariant 2HDM potential, not all the elements of M3 and LZ‘ 4 are nonzero, but only those for which
AA'=0,1,2,3.
In the case of 3HDM, the general potential has the following form:

Viiom = ~#i(h11) = #3(haba) = i3(h3hs) = by (h1h2) + mis(iebs)
+ms(d3hs) + Hoe] + A1 ($1¢1) + Aoa($32)* + Axs (h3h3)°
+ A1 (161 (93¢) + 21133 (91601) (B3h3) + Aoxss (B32) (9363)
+ Aot (1) (Bibr) + Auzs1 (] 03) (D)) + Assa (D5h3) (Bih2)

P22 (g g2 4 B2 (g2 4 B (gl

+ /11213(¢I¢2)(¢ $3) + o113 (i )( #3) + s (
+ M350 (3) (D52) + Aaros (Bi1) (Baeps) + s (
+ 21112(01) (D) + Aonia (32 (] 2) + Aria(
+ /11123(¢I¢1)( $3) + A13(dr2 )(¢T¢3) + /12223(

+ 3312 (33) (D) + A3313(h1003) (B[ h3) + A3303 (hih3) (hap3) + Hec.|. (A4)

bid3) (Biehs)
S1) (¢ b12) (d3h3)
b1¢1)(#13)

) (d3h3)

3
3
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In the bilinear formalism for this model, the mass M3 and the quartic couplings Li , Matrices are given by

M = (ﬂ% + 45 + 43, 2Re(mi, ), 2Re(mi;), 2Re(m3;), —2Im(md, ), —2Im(mis).

— 2Im(m3;). ui —

and

app Aoy

oy Ay

gz Agn

aps a3

Qog A4

Qps dis

Ape d16

3
Lyy=1 aopr ap

apg dig

: 3 _ 73 _
with Ly, =Ly, and A,A" = 0,1, ...,

) 1
Mm%

am
ap
an
ass
Aoy
ass
dre
azy

asrg

ap3 Aos Aos

a3 dyg dis

a3 Apy4 dos

a3z ds4 dzs

A3y Qg4 Ags

ass dys dss

ase d4e dse

aszy d4g dsy

asg dug dsg

Ao
aie
are
ase
Aye
ase
Aee
Ae7

deg

Aoz
ayz
as7
asy
Ay7
dsy
ae7
ar

arg

14. The nonzero elements of Lf‘ 4 are

(w7 + 45 = 243),0,0,0,0,0, 0)

(AS)

apy = % (/111 + A2 + Az + A + Az + /133)’
ayp = %Re(ﬂ.nm + /12213 + 13313)’

Aoy = —%Im(ﬂnlz + /12212 + /13312>’

g = 21111(/11123 + /1222‘5 + /13323)

apg = ‘f 2211 + 220120 = A1izs + 2400 — Aopsz — 4as),
ap, = Re(/11213 + /12113),

Ay = _Im(iIZIZ)’

ajs = Im(Ay123 = A1223),

ayg = %Re(ﬂmz + A1 = 243312),

ay; = 2RC(/11323 + /11332)7

aps = —Im(4313),

ay; = Re(Ai113 = An3)s

ayy = Re(/12323 + 2/12332)’

aszs = —Im(4i305 + A1332),

as; = Re(41123 — Ao3),

Ay = 2},1221 - Re(ﬂlzu),

ass = Re(da1o3 — A1223)s

a3 = \/Lglm(2/l3312 = M2 = A1)

ass = Re(Ad133r — A1323)s

asg = \/iglm(213313 = A1z = 42213)5
ag7 = Im(dyn03 = A1123)s

az; = A+ Ap — 241122,
agg = % (A1 + Ao + Hz3 + 221122 — 444133 — 4hoaz3).

apr =
aops
aos

ar

ags
ap;s =
ayg

Ay =
Ay =
lre =
frg =
azy =
aze =
asg

Q45 =

Ay =

dss

as7
Aes

Aes

arg =

2Re(/hnz + A1z + 43312,
Re(4y123 + 4203 + 43323,
ilm(/lms + 213 + A3313),
(2411 + 113z — 240 — A9233),
e(di212) + 1221
e(A1223 + 42123
Im (45113 = 41213)>
(
(
(

| T T
W le—‘ I ‘M|I\)

Re /11112 - /12212)

Re(21313) + 2413315
Im(413 —/11213)
Im (4133 — 41323,
\}_Re(/llm + o213 = 243313)s
Im(4123 = A1223)s

—Im(4y3,3),

= TRe(/llm + 2003 = 243323),

= Re(dy113 — A1213),

Im (12 = A1112)s

= Ai331 — Re(A1313)+

= Im(/12213 - 21113)’
= 32 — Re(4a323),
= L\/_Im(2/13323 = A3 = Aa223)s

\/—(/1” Aoy = 21133 + 220033)s
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Note that the remaining elements denoted by dots are zero. Specifically, for a U(1),-invariant 3HDM potential, all
elements of Mf\ and Li 4 corresponding to A,A" =9,10,...,14 vanish.

APPENDIX B: THE BIADJOINT REPRESENTATIONS OF SP(4) AND SP(6)
In Sec. II, we introduced the Sp(2n) generators in the biadjoint representation as
(T3)1y = —ifa" = Tr([Z. K7]Z5).

The maximal symmetry of the potential in the case of 2HDM is Sp(4). With the help of the above relation, we may derive

the following ten generators in the biadjoint representation of Sp(4):

00000 00000 00i00 0-i000
00000 00-i00 00000 i 0000
°=(00000|, 7'=|0i 000, T>°=| -i0000 |, 7°=]00 000
0000 i 00000 00000 00000
000—i0 00000 00000 00000
00000 0000 00000 000i0
000—-i0 00000 0000 00000
T*=[00000|, °=| 00000, 7°=]0 0000 |, 7= 00000
0i000 00000 00000 —-i0000
00000 —-i0000 0-i000 00000
0000 0 00000
0000 0 00000
T8=10000—i |, T°=|000-i0
0000 0 00i 00
00i00 00000

Note that these generators are identical to

establishing the local group isomorphism: Sp(4) = SO(5).

For the case of the 3HDM, the maximal symmetry is Sp(6). Similarly, the 21 generators of Sp(6) in the biadjoint

representation read

T0=i

095008-13
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T?=i

T0=i

, T'=i
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T14 —

5

T8 —; , TY=i

-1-V3 . . ... e
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TABLE L.

Parameter relations for the 13 accidental symmetries related to the 2HDM potential [25]. Note that all entries which contain

a symplectic group are only custodially symmetric, and so violate U(1),. The subscript ¢, + ¢, shows an Sp(2) transformation that acts
on both (¢, ic’¢;)" and (¢,, ic*¢;)T. Additionally, the subscript ¢,¢, denotes an Sp(2) transformation acting on (¢, ic>¢3)T.

No. Symmetry Nonzero parameters for 2HDM potentials
1 CP1 /,l%, l,{%, Re(m%z), Al’ /12, /13, 14, Re(/’{s), RC(AG), Re(/17)
2 Z, His 130 Ay Aas A3, Aas As,y A
3 CP2 /l% = ﬂ%, j’l = /12, /13, /14, Re(ls)
4 U(l) //l%, /4%, l], )pz, 23, ),4
5 CPI ® SO(Z) /l% = ﬂ%, j’l = /12, /13, /14, Re(ls) = 2/11 —/134
6 SU?2) w =3, A=Ay, A3, Ay =201 — s
7 Sp(2)4, 44, His #3, Re(miy), A1, A, A3, Ay = Re(4s), Re(4g), Re(2y)
8 (CP1xS,) ® Sp(2) 4, 14, w2 =3, Re(m3,), Ay = 4y, 43, 44 = Re(4s), Re(4s) = Re(y)
9 (82%Z,) ® Sp(2) 4,44, 1 =13, A = Ao, A3, Re(ds) = +44
10 U(1) ® Sp(2) 4,4, B =3, A=A =23, Ay
11 Sp(2),, ® Sp(2),, Hi 13 Ay, Ao A3
12 S> ® Sp(2)4, ® Sp(2),, Wi =15, A = A, A3
13 Sp4) Wi =15 = =34
-3 .
-3
-2 ..
1.
A |
0L

>

APPENDIX C: PRIME INVARIANTS AND SYMMETRIC rHDM POTENTIALS

In Sec. III, we have shown that one can systematically construct symmetric zHDM potentials in terms of fundamental
building blocks.
Here, we will employ maximal and minimal invariants to construct 2HDM potentials invariant under continuous
symmetries. The symmetry groups and the respective functional forms of the 2HDM potentials in terms of prime invariants
may be listed as follows:
CP1 ® SO(2) V[Sll + 522, D%Z’ T%Z]
SU(Z) V[S]] + 522, D%Z]
SP(2) 4,44, € SP(2)4, ® SP(2)y,: VI[S11. 822, S1a)-

@
(i)
(ii1)
(iv)
)
(vi)

U(1) ® Sp(2)

14)2

N V[Sll +522, D/]ZZ]

Sp(2), ® Sp(2)y,: VISi1:S2al-
Sp(): V[Sy| + Sx].
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Likewise, we may use maximal and minimal invariants
to construct the 3HDM potentials. The symmetry
groups and the 3HDM potentials as functions of prime
invariants are

(i) SO(2),,

VIS, + SzzyDu’ T%. S3. Dy + D35, Tt + T33].

(ii) SO(2),, 4, ® SP(2),,: [511 + Sy, Dy, T, S33)-

(iii) SU(2 )¢1,¢2 VIS +522,D12,S33, Di; + D3;].

(iv) SU(2)4 4, ® SP( )g,: VIS11 + S22, Diy, S3l.

(v) Sp( 1ot [5117522,533,5127513,523]-

vi) Sp(2)y, 19, ®SP( )iy V[511v522,5337512}-

(vii) Sp(2 g(/;l{/;z ® Sp(2),: V[Su + 522’D12’ 533]

(viii) S VIS + 522, 53%D'12’ D{ + D3]

(ix) S ( )o ® Sp(2) 4, ® Sp(2),,: V[5117522,533]-
(x) 30(3)3 VISi1 + Sy + Sa3, D12 +Diy + D3, T, +
Tt + T3]

(xi) Sp(4) ® Sp(2)y,: V[S11 + Sn. S33].
(xii) SU(3) ® U(1):

V[S11 + Sx + S33, Di, + D15 + D33.
(xiii) Sp(6): V[Si; + Sy + S33)-
In the above list, we have used the subscript ¢+
¢» + ¢ to show a transformation that acts simultaneously
on (¢, ic*P)T, (¢, ic*P3)T, and (¢h3, ic?P5)T. Also, the
subscripts ¢¢,, and ¢3 denote Sp(2) transformations that
act on (¢, ic’¢3)" and (¢h3, ic>¢3)T, respectively. Finally,
the subscripts ¢, ¢, denote SU(2) or SO(2) transforma-
tions acting on (¢, ¢,)T.

APPENDIX D: IRREDUCIBLE
REPRESENTATIONS OF NON-ABELIAN
DISCRETE SYMMETRIES

The most familiar non-Abelian subgroups of SU(3) are
summarized in Sec. IV. The direct sum decomposition of
3 ® 3 tensor products in terms of irreducible representa-
tions of these groups are listed below:

MH1IDIdIddldldldldl: ABN?

Q1oIolaldldld2:Z(2N?)

B 111303 A,

4 1020202 2: A(6N?)

S 12030 3:8,

6) 12@6: A(6N?)

7 1®3D5:A;5

) 104d4:X(369)

9) 1@ 8:%(72¢),%(168),2(216¢),
(10) 3@ 3 @ 3: Z(36¢), A(3N?),
(11) 3p6:%(72¢),%(168),%(216¢),
(12) 4 @ 5: A;

(13) 9: Z(216¢), 2(360¢)
As can be seen from the above list, only the decompositions
(1)—(9) are relevant for building SU(2), -preserving ntHDM

(360¢)
A(6N?)

£(360¢),A(6N?)

invariant potentials, since they contain a singlet. However,
only those symmetries for which their prime factor decom-
position lead to distinct nHDM potentials can be consid-
ered as candidates for a novel symmetry of a model. For
example, the A5 symmetry with Z, prime factors 2, 3, 5
does not lead to a distinct 3HDM potential. Moreover, in
the case of the 3HDM, the decompositions given in (6) and
(9) produce potentials invariant under SU(3). The remain-
ing possibilities (10)-(13) have been checked up to Z,
prime factors of the model, but they do not seem to lead to
new forms of symmetric potentials.

For the case of the 3HDM, there are two non-Abelian
discrete symmetries as subgroups of SO(3), namely D5 and
D,. In addition, there are non-Abelian discrete symmetries
as subgroups of SU(3) [20-24],

A S4. {Z(18), A(27), A(54)}.2(36).  (D1)

In Sec. IV, we have shown the procedure for constructing
3HDM potentials invariant under the non-Abelian discrete
symmetries D3 and A4. Here, we apply this method for the
rest of non-Abelian discrete symmetries of the 3HDM
potential [20-24].

The other two-dimensional non-Abelian discrete sym-
metry of the 3HDM is D,. The 2 ® 2 tensor product of D,
decomposes as

Dy:2@2=1016®1"61". (D2)
This group is generated by two generators,
Aj, = diaglg; ® 6°, 91" ® 0],
Ap, = diaglg, ® 0, 9" ® o], (D3)
with
i 0 0 0 -1 0
g=|10 —-i 0], e=|-1 0 0 (D4)
0 0 1 0 0 1

that satisfy the conditions ¢gf =1, g5 =1, and g, - g;-
g = g7'. The irreducible representations of D, in the
bilinear space may be given by
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TABLE II.

Nonzero parameters for the 40 accidental symmetries related to the 3HDM potential. Note that all entries which contain a

symplectic group are only custodially symmetric, and so violate U(1),. *"The generators of U(1) and U(1)’ are diag(e’®, e**, 1) and
diag(e'/3, e'P13, e=12/3), with a,f € [0, 27), respectively. Moreover, the subscripts ¢, ¢, denote SU(2) or SO(2) transformations
acting on (¢, ¢,)" and the subscript ¢, + ¢, + ¢h3 shows an Sp(2) transformation acting on all doublets (¢, ic>¢})T, (¢, ic>¢3)T, and
(¢3, ic>¢3)T. Finally, the subscripts ¢ ¢, and ¢5 indicate an Sp(2) transformation acting on (¢, ic*$3)T and (¢3, ic>¢3) T, respectively.

No. Symmetry Nonzero parameters for 3HDM potentials

1 CP1 K1, 13, 13, Re(mi,), Re(mis), Re(mdy), Ais Ao, Az,
122> Aizzs 422335 Ai2a1s Ai3sts 423320 Re(A1212), Re(41313), Re(Aasn3),
Re(41213), Re(4a113), Re(41223), Re(4a3), Re(41323), Re(4i3s),
Re(41112), Re(4n12), Re(4s312), Re(41113), Re(413), Re(4s313),
Re(41123), Re(4223), Re(43303)

2 Z, /4%’ /4%, ﬂ%, A11s A2y A3z, A2y A113zs 422335 221 Ai3ats Aasses
{m%y 12125 413135 423235 412325 411135 422135 43313 and H.c.}

2 z, s 135 130 At A22s 4330 Aoz, A1izss 42033 Aioots A13ans Aosss
{m%y A1212> 413135 423235 412135 411235 422235 43323 and H.c.}

3 Z, ® le ll%’ ll%, ﬂﬁ, 115 A2y 433, A2z, A1133s 422335 A2t Ai3ats Aasses
{41212, 413135 42323 and H.c.}

4 Z3 /4%’ /4%, ﬂ%, At1s A2y 4335 A2z, A1133s 422335 221> Ai3ats Aasses
{21213, 1323, 42123 and H.c.}

5 Zy ﬂi IJ%, M_%a 115 A2y 4335 A1i22s A1133s 422335 1221 Ai3ars Aoz,
{41212, 41323 and H.c.}

5 Zﬁ; ﬂ%’ /4%, /é, A11s A2z A3z, A1z, A1133s 422335 221 Ai3ars A2z,
{41313, 43212 and H.c.}

6 aU(l) ﬂ%, /4%’ ll%s Atts A2y 433, A2y A113zs 422335 221> Ai3ats a3z

) {41323 and H.c.}

6’ u(1y Mi #%, ﬂ§, 115 A2y 4335 A1i22s A1133s 422335 1221 Ai3ars Aoz,
{miy. Ai212, 11125 42125 3312, Ai3zp and Hee.}

7 u(l) ® u(1y ﬂ%’ /4%, /4%’ At1s A2y 4335 A2z, A1133s 422335 221 Ai3ats A2z

8 Z, @ U(1) /{43 ﬂ%y ﬂ%d, I/%I“’ }/122, 335 A1122s 11335 422335 412215 1331, 42332,

1212 and H.c.

9 CP1 ® Sp(2),, 1, 43, 13, Re(miy), A, A, Aass Aioas 1133, Aaosss diors Re(Aia12),
Re(41112), Re(4n12), Re(43312)

10 CPI®Z, ® SP(2)¢3 /4%’ ﬂ%y ﬂ%, A1t Axs 4335 Ai2zs A1133s 422335 A1t Re(/11212>

11 U(l) ® SP(2)¢3 M% #%, ﬂﬁ, A11s A2y A3z, A2y A1i3ss 422335 Ao

12 CP2 ﬂ% = #%’ u§, A= A, A3z, Anioas dimars A1z = A23ss sz = Aasas
Re(41313) = Re(h33), Re(A1212), {41112 = =421 and Hec.}

13 CP2 ® Sp(2)¢3 /4% = /4%, ﬂg, Al = Aaas 33> Ai22s Ai2a1s 41133 = 422335 Re(/11212),
{41112 = =421, and H.c.}

14 SO(2)¢I.¢2 ﬂ% = #%’ M,%, At = A2, 335 A2z Ai2a1s A3z = A2233s A1z = Aoz,
Re(41313) = Re(4y323), Re(A1212) = 2411 = (41122 + 41221,

15 D; ll% = ﬂ%’ Mg, At = A2y A3, Anioas Aisz = A3z, Aoty Aiszr = Aossos
{42131 = —41232, 41323 and H.c.}

16 D, Hi = 135 B35 A1 = Aoz, A3z, Arioas A113s = 42233> 41221 {41212 and Heel},
A3z = Ax3z = Re(d33))

17 D; ® SP(2)¢3 M% = #%» M%v A = A2y 4335 Alioas A1z = Asss Ao

18 D, ® Sp(2),, WY = 135 132 At = A, A33. Aioas Az = 42233 Aioa1s Re(Aia12)

19 50(2)4514)2 ® SP(2)¢3 M% = /4%’ Mg, A = 25 4335 Aioas Aisz = Aoosss
A1 = Re(Aia12) = A1y — %/11122

20 SU(2)¢I.¢2 ﬂ% = ﬂ%’ uﬁ, At = A 433, Aoz = 241 — Aiars Ao
A1133 = 42233, 41331 = Aoz

21 SU(2)¢]‘¢2 ® SP(2)¢3 ﬂ% = /4%’ u,%, At = Ay B33, Aoz = 241 — Aiars Aizz = Aaoszs
A1221

22 SP(2) g, 44,445 K3, 45, 13, Re(mi,y), Re(miy), Re(m3s), Ains Aas 233,

122> A13zs 422335 Aioa1 = Re(Apa12), A13z1 = Re(4y313),

(Table continued)
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TABLE 1I. (Continued)

No. Symmetry Nonzero parameters for 3HDM potentials
Jazzr = Re(433), Re(A1213) = Re(4a113), Re(A1n23) = Re(Aaa3),
Re(4133) = Re(41332), Re(4y112), Re(4aa12), Re(43312),
Re(/11113) Re(4213), Re(43313), Re(41123), Re(42003), Re(43323)
23 Zy @ Sp(2)y, 4y Wiy 135 43, Re(miy), i1y Axs A3z, A112as Aisss Aa23ss
Amr = Re(A1212), A3z = Re(41313), Aoszzn = Re(Aa323),
Re(/llm) Re(4213), Re(43313)
23 le ® SP(2)¢,+¢2+¢3 /41’ ﬂz: ﬂzs Re(m23) A1t 4225 4335 A122s A1133s 2233,
A1 = Re(A212), A3z = Re(41313), Aoz = Re(Aas23),
Re(41123), Re(423), Re(43303)
24 Z,® Z’z ® Sp(2)¢]+¢2+4,3 /4%’ H%y ﬂ%, A1t Ans 4335 A122s 411335 422335
/11221 = Re(/lmz)’ 331 = Re(Ai313), 42330 = Re(Ar303)
25 Z4 @ Sp(2)y, 4yt //‘17 13, ﬂ3, /111, A2y 33, A12as Aisss 42233, 41221 = Re(Aa12)
26 (CPIXSz) ® Sp(2)¢1+¢2+¢3 /41 /42, ﬂ3, Re(mlz) Re(ml3) Re(m23) /111 = 122, 133,
Ai22s M133 = 42233, Ai221 = Re(Aa1n)s
331 = A3z = Re(4y313) = Re(4303), Re(4133) = Re(4332),
Re(41223) = Re(4y123) = Re(41213) = Re(dyy13),
Re(43313) = Re(43323), Re(41112) = Re(Apa12),
Re(43312), Re(41113) = Re(41123) = Re(4an13) = Re(4dyn03)
27 Dy ® Sp(2)¢|+¢z+¢3 /4% = /4%’ u?;, Al = Adp = %/11122, 33, A3z = 42233,
21221 = Re(ﬂmz)
28 SP(2)¢,+¢2 ® SP(2)¢3 /41’ /42’ /437 Re(mm) At 425 433> A1122s A1133s 422335
A1 = Re(41212), Re(4y112), Re(4ay2), Re(43312)
29 Sp(2)¢]¢2 ﬂ% = #%’ M,%, Al =Adp = %/11122’ 335 A1133 = A3z, Aot
21331 = 12332
30 SP(2) 4, ® SP(2),, 1= 13, 13, At = A = S A4100, A3, Aiizs = Aaosss Ao
31 Ay /4% = /4% = u§, A = Ao = 233, Ao = 113z = Aansss
A1 = 41331 = Aoz, {Ai212 = 1313 = o33, and Hec.}
32 Sy ll% = /l% = uﬁ, At = A = 433, Aiie = sz = Aansss
221 = szt = Aoz Re(Aia12) = Re(di313) = Re(4asns)
33 SO@Q3) ui =13 =13, Ay = A = Azz, Arian = A1z = Aoz
A1 = 41331 = Aoz,
Re(A1212) = Re(4i313) = Re(dasn3) = 2411 = (A1122 + A1221)
34 S+ ® Sp(2)¢,+¢2+¢3 /4% = /4% = /43, Ay =4p =13 = %/11122 = %/11133 = %/12233’
Aot = Aizst = Aoz = Re(A1212) = Re(d1313) = Re(Aa303)
35 A(54) ,U% = ﬂ% = /42, Al = Ao = 433, A2z = 4113z = Aanzss
Ai2a1 = 41331 = Aoz, {41213 = o1z = 43231 and H.c.}
36 2(36) M% = M% = M%, At = A = 33, Aiie = Az = Aan3ss
/11221 = Ai331 = A2332, Re(41213) = Re(41323) = Re(L13) =
1 (2/111 - /11122 - oat)
37 313(2)4;I ® Sp(2)¢2 ® SP(2)¢3 13 13, ﬂg, A1s 225 4335 A11225 A1133s 42233
38 Sp(4) ® SP(2)¢3 ﬂ% ﬂ%’ uﬁ, Al =Adn = %11122’ 33, A3z = A3z
39 SU(3) ® U(l) /41 = /4% = ﬂg’ At = Ay = 33, Az = sz = Aansss
A1 = A3zt = Aoz = 2441 — A
40 Sp(6) Ul =13 =13, Ay = A = Ay = 1A = 5 Az = 340
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n(ﬂm+£@+ﬂ%)
16(%@—@@)
v (Sl dio =200 ).
rﬁ(ﬂ@+@m)

1" (-—4¢I¢2—-¢£¢1]>,

T( B3 + iy + Prs + i
—i

: C ). (D)
[d@—ﬂ@ﬁﬂ@@—@@&

Hence, the D,-invariant 3HDM potential takes on the form

VD4 — —Mll - M21” + A012 + A11/2 + A21”2 + A31”/2
+ A1 4 As1-17 + Ag2T - 2. (D6)

This potential can also be written as

Vo, = —ui(|¢1* + |92*) — 1313 1> + A1 (|1 ]* + |a|*)
+ 233|¢hs]* + Aiimal i Plbal® + Aniaa (10113 |
+ 2P 13 + Aot |12 + D21 (¢1662)°
+ diast (|93 2 + 133> + |p3eba |

+ (9303) (D1 b3) + (i) (i), (D7)

where all parameters are real.
Likewise, we find the S, invariant 3HDM potential. The
S4 group can be defined by the two generators [16—18,20],

A}% ="® g ® A§4 =R 9 ®c", (D8)

with
010 0 -1 0
=100 1], e=|-1 0 0], (D9
1 00 0 O

which obey the conditions g} =¢3 =1 and g, - g3
g1 = g»- The 3 ® 3 tensor product of S, consists of one
singlet 1, one doublet 2, and two triplets 3 and 3/,

S, 3@3=1020303. (D10)

The S,-symmetric blocks 1, 2, 3, and 3’ may be obtained as

L (i + dihs + i3 ).
_(ﬂ@+#@m+w@m>
C\ Pl + odips + PP )

blbr + D
3: | plos + ol
Dyps + Pl
—ilpir — Pl]
3| ilpids — bl
—ilp3ps — Pio]

(D11)

Therefore, the S,-invariant 3HDM potential takes on the
following form:

Vs, = =M1+ Ag12 + A 2T -2+ A3T - 34+ A;37 3.
(D12)

Note that the S,-invariant 3HDM potential has a similar
form to the As-invariant 3HDM potential shown in
Eq. (4.38). However, in the Sy-invariant 3HDM potential
all parameters are real, due to the absence of 3T -3 and
37.3 terms which are allowed by the A, symmetry. In
addition, if Re(/llzn) = 2/111 - (/11122 + /11221), one gets an
SO(3)-invariant 3HDM potential.

The next symmetry of the 3HDM potential is the A(54)
symmetry group, which can be defined through the three
generators:

AlA(54) = diaglg; ® ¢°, 9;* ® '],
Ay =0° ® 9 ® 0",

A3A<54) =" ®g; ® 0", (D13)

where

®w* 0 0 0O 1 0
g = 0 o 0 g = 0 0 1 s

0 0 1 1 0 0

01 0
=11 0 0 (D14)

0 0 1

These generators satisfy the conditions g3 = 1, g3 = 1, and
@3 =1. The 3®3 tensor product of A(54) can be
decomposed in one singlet 1 and four doublets 2, 2/, 2,
and 2" as

A34):3Q3=10202 2" 2". (D15)

The irreducible representations of A(54) in the bilinear
space can be represented as [52]
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L (i) + dihs + i3,
m(ﬂ@+w@@+&ﬂm>
Dby + O Piepy + woplhs )
2M<ﬂ@+d@+£@)
Drp1 + Bibs + Pips )
,ﬁ<£%+wﬂ@+w%wﬁ
Py, + iy + Py )
- (aﬂngﬁl + (]5;(152 + w¢'l'¢3 > ‘
¢£¢3 + 602(,25;451 + wd)'{'cﬁz

Having obtained the A(54)-symmetric blocks, the A(54)-
invariant 3HDM potential is given by

(D16)

VA(54) = —Ml ‘I‘ A012 + /\]2T . 2 + A22/T . 2/

+ A32//T . 2// + A42///T . 2///’ (D17)

and can be rewritten in the following form:

Ve = —ui (|1 >+ o * + |3 *) + 401 (| [*
+1al* +131*) + A (|1 Pl + 11 P3|
12163 ) + A1 (101 + b1 s
+103h3?) + 21213 (61002 (D1h3) + (D361 (36b3)
+ (@302)(@31)) + 2013 ($361) (361)
+ (@102 (@36b2) + (P3603) (1 653))-
The largest non-Abelian discrete symmetry of 3HDM

is the X(36) group [21-24]. The relevant 3 ® 3 tensor
product of X(36) may be decomposed as

(D18)

2(36):3@3=10404. (D19)
The three generators of this group are
A§(36) = diaglg; ® ¢°, 9;* ® ¢°].
Az = 0" ® 92 ® 0,
A3 56 = diaglgs ® 0, 95" ® 6", (D20)

with

1 0 O 0O 1 0
a=(0 o 0 |, =10 0 1],
0 0 @ 1 0 0
| 1 1 1
g = 11 o o |, (D21)
)
1 o o

which obey the conditions g; = g3 = 1 and g} = 1. Now,
we can define the irreducible representations of X(36)
as [52]
1: (¢I¢1 + ¢§¢2 + 452473 )s
@’ Pl s + Pibs + ol
0’ ids + digpy + 0l
@’ Pl s + 0Py + Pl
@’ Pi b3 + wPipi + Pl
op| s + opid + 0Pl
v opidy + Pibr + PPl
PPl + P Pis + Pl
wp|dy + Py + Pl

Finally, the X(36)-invariant potential then takes on the form

(D22)

Vsae) = —M1+Ag12 + A47 -4+ A4 -4, (D23)

Equivalently, the X(36)-invariant 3HDM potential can be
given by
Vs36)
= =11 (11]* + 12” + 3*) + 201 (11 [* + |haf* + [3])
+ 2122 (|1 Plpal* + |1 [P[h3]* + [hal?|p3]?)
+ A1 (@] dal? + |13 2 + |33 )

Jr%(2/111 — A2 —/11221)((¢I¢2)(¢I¢3)
+ (A1) (D3h3) + (Do) (P1¢h) + Hoc),

with all real parameters.

These symmetries for the 3HDM potential, along with
their nonzero theoretical parameters, are presented in
Table 11

(D24)
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