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Given the lack of evidence for new particle discoveries at the Large Hadron Collider (LHC), it is critical
to broaden the search program. A variety of model-independent searches have been proposed, adding
sensitivity to unexpected signals. There are generally two types of such searches: those that rely heavily on
simulations and those that are entirely based on (unlabeled) data. This paper introduces a hybrid method
that makes the best of both approaches. For potential signals that are resonant in one known feature, this
new method first learns a parametrized reweighting function to morph a given simulation to match the data
in sidebands. This function is then interpolated into the signal region, and then the reweighted background-
only simulation can be used for supervised learning as well as for background estimation. The background
estimation from the reweighted simulation allows for nontrivial correlations between features used for
classification and the resonant feature. A dijet search with jet substructure is used to illustrate the new
method. Future applications of Simulation Assisted Likelihood-free Anomaly Detection (SALAD) include a
variety of final states and potential combinations with other model-independent approaches.
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I. INTRODUCTION

An immense search effort by the LHC collaborations has
successfully probed many extreme regions of the Standard
Model phase space [1–7]. Despite strong theoretical and
noncollider experimental motivation, there is currently no
convincing evidence for new particles or forces of nature
from the LHC searches. However, many final states are
uncovered [8,9] and the full hypervariate phase space
accessible by modern detector technology is only starting
to be probed holistically with deep learning methods
[10–13]. There is a great need for new searches that can
identify unexpected scenarios.
Until recently, nearly all model independent searches

relied heavily on simulation. Generically, these searches
operate by comparing data with background-only simu-
lation in a large number of phase space regions. Such
searches have been performed without machine learning at
D0 [14–17], H1 [18,19], ALEPH [20], CDF [21–23], CMS
[24,25], and ATLAS [26–28]. A recent phenomenological

study proposed extending this idea to deep learning
classifiers [29,30]. While independent of signal models,
these approaches are dependent on the fidelity of the
background model simulation for both signal sensitivity
and background accuracy. If the background simulation is
inaccurate, then differences between simulation and (back-
ground-only) data will hide potential signals. Even if a
biased simulation can find a signal, if the background is
mismodeled, then the signal specificity will be poor.
A variety of approaches have been proposed to enhance

signal sensitivity without simulations. Such proposals are
based on clustering or nearest neighbor algorithms [31–33],
autoencoders [34–39], probabilistic modeling [40], weak
supervision [41,42], density estimation [43], and others
[44]. These approaches must also be combined with a
background estimation strategy. If simulation is used to
estimate the background, then the specificity is the same
as the model-dependent searches. Many of these appro-
aches can be combined with a resonance search, as
explicitly demonstrated in Refs. [41,42]. The background
estimation strategy may impose additional constraints on
the learning, such as the need for decorrelation between a
resonant feature and other discriminative features [45–55].
A detailed overview of model independent approaches can
be found in Ref. [43].
While it is desirable to be robust to background model

inaccuracies, it is also useful to incorporate information
from Standard Model simulations. Even though these
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simulations are only an approximation to nature, they
include an extensive set of fundamental and phenomeno-
logical physics models describing the highest energy
reactions all the way to signal formation in the detector
electronics. This paper describes a method that uses a
background simulation in a way that depends as little on
that simulation as possible. In particular, a model based on
the deep neural networks using classification for tuning
and reweighting (DCTR) procedure [56] is trained in a
region of phase space that is expected to be devoid of
signals. In a resonance search, there is one feature where
the signal is known to be localized and the sideband can be
used to train the DCTR model. This reweighting function
learns to morph the simulation into the data and is para-
metrized in the feature(s) used to mask potential signals.
Then, the model is interpolated to the signal-sensitive
region and the reweighted background simulation can be
used for both enhancing signal sensitivity and estimating
the Standard Model background. As deep learning classi-
fiers can naturally probe high dimensional spaces, this
reweighting model can in principle exploit the full phase
space for both enhancing signal sensitivity and specificity.
This paper is organized as follows. Section II intro-

duces the Simulation Assisted Likelihood-free Anomaly
Detection (SALAD) method. A dijet search at the LHC is
emulated to illustrate the new method. The simulation and
deep learning setup are introduced in Sec. III, and then the
application of DCTR is shown in Sec. IV. The signal
sensitivity and specificity are presented in Secs. V and VI,
respectively. The paper ends with conclusions and outlook
in Sec. VII.

II. METHODS

Let m be a feature (or set of features) that can be used
to localize a potential signal in a signal region (SR).
Furthermore, let x be another set of features which are
useful for isolating a potential signal. The prototypical
example is a resonance search where m is the single
resonant feature, such as the invariant mass of two jets,
while x are other properties of the event, such as the
substructure of the two jets. The SALAD method then
proceeds as follows:
(1) Train a classifier f to distinguish data and simulation

for m ∉ SR. This classifier is parametrized in m by
simply augmenting x with m, f ¼ fðx;mÞ [57,58].
If f is trained using the binary cross entropy or the
mean squared error loss, then asymptotically, a
weight function wðxjmÞ is defined by

wðxjmÞ≡ fðxÞ
1 − fðxÞ

¼ pðxjdataÞ
pðxjsimulationÞ ×

pðdataÞ
pðsimulationÞ ; ð2:1Þ

where the last factor in Eq. (2.1) is an overall
constant that is the ratio of the total amount of data
to the total amount of simulation. This property of
neural networks to learn likelihood ratios has been
exploited for a variety of full phase space reweight-
ing and parameter estimation proposals in high
energy physics [56,57,59–62].

(2) Simulated events in the SR are reweighted using
wðxjmÞ. The function wðxjmÞ is interpolated auto-
matically by the neural network. A second classifier
gðxÞ is used to distinguish the reweighted simulation
from the data. This can be achieved in the usual way
with a weighted loss function such as the binary
cross-entropy:

lossðgðxÞÞ ¼ −
X

mi∈SRdata

log gðxiÞ

−
X

mi∈SRsimulation

wðxijmiÞ logð1 − gðxiÞÞ:

ð2:2Þ

Events are then selected with large values of gðxÞ.
Asymptotically,1 gðxÞ will be monotonically related
with the optimal classifier:

gðxÞ
1 − gðxÞ ∝

pðxjsignalþ backgroundÞ
pðxjbackgroundÞ : ð2:3Þ

It is important that the same data are not used for
training and testing. The easiest way to achieve this
is by using different partitions of the data for these
two tasks. One can make use of more data with a
cross-validation procedure [41,42].

(3) One could combine the previous step with a standard
data-driven background estimation technique such
as a sideband fit or the ABCD method. However,
one can also directly use the weighted simulation to
predict the number of events that should pass a
threshold requirement on gðxÞ:

NpredictedðcÞ ¼
X

mi∈SRsimulation

wðxijmiÞI½gðxiÞ > c�;

ð2:4Þ

for some threshold value c and where I½·� is the
indicator function that is one when its argument is
true and zero otherwise. The advantage of Eq. (2.4)
over other data-based methods is that gðxÞ could
be correlated with m; for sideband fits, threshold
requirements on g cannot sculpt local features in the
m spectrum.

1Sufficiently flexible neural network architecture, enough
training data, and an effective optimization procedure.
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III. SIMULATION

A large-radius dijet resonance search is used to illustrate
the SALAD method. The simulations are from the LHC
Olympics 2020 community challenge R&D dataset [63].
The background process is generic 2 → 2 parton scattering

(labeled QCD for quantum chromodynamics) and the
signal is a hypothetical W0 boson that decays into an X
boson and a Y boson. Each of the X and Y decays to quarks.
The masses of the W0, X, and Y particles are 3.5, 0.5, and
0.1 TeV, respectively. The mass hierarchy between the W0
particle and its decay products means that the X and Y
particles are Lorentz boosted in the lab frame, and therefore
their two-prong decay products are captured inside a single
large-radius jet. Particle-level simulations are produced
with PYTHIA8 [64,65] or HERWIG++ [66] without pileup
or multiple parton interactions and a detector simulation is
performed with DELPHES3.4.1 [67–69]. Particle flow objects
are clustered into jets using the FASTJET [70,71] imple-
mentation of the anti-kt algorithm [72] using R ¼ 1.0 as the
jet radius. Events are selected by requiring at least one
such jet with pT > 1.3 TeV. In the remaining studies, the
PYTHIA dataset is treated as “data,” while the HERWIG

dataset is treated as “simulation,” to mimic the scenario in
practice where the simulation is different from data.
Figure 1 presents the invariant mass of the leading two

jets. The pT selection is evident from the peak around
3 TeV. The signal peaks around the W0 mass, and aside
from the kinematic feature from the jet selection, the

FIG. 1. The invariant mass of the leading two jets.

FIG. 2. The four features used for machine learning: jet mass (top) and the N-subjettiness ratios τ21 (bottom) for the more massive jet
(left) and the less massive jet (right).
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background distribution is featureless. The spectra from
PYTHIA and HERWIG are nearly identical, which may be
expected since the invariant mass is mostly determined by
hard-scatter matrix elements and not final state effects.
To demonstrate the SALAD approach, two features2

about each of the leading jets are used for classification.
The first feature is the jet mass, and the second feature is
the N-subjettiness ratio [74,75] τ21 ¼ τ2=τ1. This second
feature is the most widely used feature for differentiating
jets that have two hard prongs (as in the signal) from jets
that have only one hard prong (as for most of the
background). The two jets are ordered by their mass
and the four features used for machine learning are
presented in Fig. 2. As expected, the signal mass dis-
tributions show peaks at the X and Y masses and the τ21

distributions are small, indicating two-prong substructure.
PYTHIA and HERWIG differ mostly at low mass and across
the entire τ21 distribution.
The baseline performance for classifying signal versus

the QCD background is presented in Fig. 3. As is the case
for all neural networks presented in the following sections,
three fully connected layers with 100 hidden nodes on each
intermediate layer are implemented using KERAS [76] and
TENSORFLOW [77] with the ADAM [78] optimization algo-
rithm. Rectified linear units are the activation function
for all intermediate layers and the sigmoid is used for the
final output layer. Networks are trained with binary cross
entropy for 50 epochs with early stopping (with patience
10). The supervised classifier presented in Fig. 3 effectively
differentiates signal from background, with a maximum
significance improvement of about 10. It is expected that
the performance of any model independent approach will
be bounded from above by the performance of this
classifier.

FIG. 3. A supervised classifier trained to distinguish signal from PYTHIA QCD. The top plot is a histogram of the neural network
output, the left bottom plot is a receiver operating characteristic (ROC) curve, and the right bottom plot is a significance improvement
(SIC) curve. ϵS is the signal efficiency or true positive rate and ϵB is the background efficiency or false positive rate.

2In principle, SALAD can readily accommodate the full phase
space as used by the original DCTR method [56] based on particle
flow networks [73]; this will be explored in future studies.
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IV. PARAMETRIZED REWEIGHTING
WITH DCTR

The first step of theDCTR reweightingprocedure is to train a
classifier to distinguish the data (PYTHIA) from the simulation
(HERWIG) in a sideband region. The output of such a classifier
is shown in Fig. 4, where the signal region is defined as
mjj ∉ ½3250; 3750� GeV. There are about 850k events in the
sideband region and 150k events in the signal region. Unlike
the classifier in Fig. 3, the separation in Fig. 4 is not as
dramatic because PYTHIA and HERWIG are much more similar
than the signal is with QCD. While the background data and
simulation are still significantly different, it is important that
the simulation be relatively close to the data. One can always
ensure that there are no regions of phase spacewhere the data
probability density is nonzero while the simulation proba-
bility density is zero by augmenting the simulation with e.g.,
uniform phase space. However, this will lead to very large or
very small weights in the DCTR method and therefore a large
effective statistical uncertainty in the background prediction
and a suboptimal classifier.

FIG. 4. A histogram of the classifier output for a neural network
trained to distinguish data (PYTHIA) and simulation (HERWIG) in
the sideband region. The ratio between the simulation (HERWIG)
or simulation þ DCTR and data (PYTHIA) is depicted by orange
circles (green squares) in the lower panel.

FIG. 5. The four features used for machine learning in the sideband region, before and after applying DCTR: jet mass (top) and the
N-subjettiness ratios τ21 (bottom) for the more massive jet (left) and the less massive jet (right). The ratio between the simulation
(HERWIG) or simulation þ DCTR and data (PYTHIA) is depicted by orange circles (green squares) in the lower panels.
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As expected, the network is a linear function of the
likelihood ratio so the ratio plot in Fig. 4 is linear.
Interestingly, the signal is more HERWIG-like than
PYTHIA-like. The reweighting function is applied to the
HERWIG in Fig. 4 to show that the reweighted simulation
(Simþ DCTR) looks nearly identical to the data. All of the
events used for Fig. 4 are independent from the ones used
for training the network. Figure 5 shows that this reweight-
ing works for all of the input distributions to the neural
network as well.
The next step for SALAD is to interpolate the reweighting

function. The neural network presented in Fig. 4 is trained
to be conditional on mjj, and so it can be evaluated in the
SR for values of the invariant mass that were not available
during the network training. Note that the signal region
must be chosen large enough so that the signal contami-
nation in the sideband does not bias the reweighting
function. For this example, for 25% signal fraction in
the signal region, the contribution in the sideband is about
1% and has no impact on the DCTR model. Figure 6 shows
a classifier trained to distinguish data and simulation in
the signal region before and after the application of the
interpolated DCTR model. There is excellent closure, also
for each of the input features to the classifier as shown
in Fig. 7.

FIG. 6. A histogram of the classifier output for a neural network
trained to distinguish data (PYTHIA) and simulation (HERWIG) in
the signal region. The ratio between the simulation (HERWIG) or
simulation þ DCTR and data (PYTHIA) is depicted by orange
circles (green squares) in the lower panel.

FIG. 7. The four features used for machine learning in the signal region, before and after applying DCTR: jet mass (top) and the
N-subjettiness ratios τ21 (bottom) for the more massive jet (left) and the less massive jet (right). The ratio between the simulation
(HERWIG) or simulation þ DCTR and data (PYTHIA) is depicted by orange circles (green squares) in the lower panels.
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V. SENSITIVITY

After reweighting the signal region to match the data,
the next step of the search is to train a classifier to distinguish
the reweighted simulation from the data in the signal
region. If the reweighting works exactly, then this new
classifier will asymptotically learnpðsignalþ backgroundÞ=
pðbackgroundÞ, which is the optimal classifier by the
Neyman-Pearson lemma [79]. If the reweighting is sub-
optimal, then some of the classifier capacity will be diverted
to learning the residual difference between the simulation
and background data. If the reweighted simulation is nothing
like the data, then all of the capacity will go toward this task
and it will not be able to identify the signal. There is
therefore a tradeoff between how different the (reweighted)
simulation is from the data and how different the signal is
from the background. If the signal is much more different
from the background than the simulation is from the back-
ground data, it is possible that a suboptimally reweighted
simulation will still be able to identify the signal (see Sec. VI
for problems with background estimation).
Figure 8 shows the sensitivity of the SALAD tagger to

signal as a function of the signal-to-background ratio (S=B)

in the signal region. In all cases, the background is the QCD
simulation using PYTHIA.3 The PYTHIA lines correspond to
the case where the simulation follows the same statistics as
the data (¼ PYTHIA). The area under the curve (AUC)
should be as close to one as possible, and a tagger that is
operating uniformly at random will produce an AUC of 0.5.
Antitagging (preferentially tagging events that are not
signal-like) results in an AUC of less then 0.5. The
maximum significance improvement is calculated as the
largest value of ϵS=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵB þ 0.01%

p
, where the 0.01% offset

regulates statistical fluctuations at low efficiency.
When the S=B ∼Oð1Þ, then the performance in Fig. 8 is

similar to the fully supervised classifier presented in
Sec. III. As S=B → 0, the PYTHIA curves approach the
random classifier, with an AUC of 0.5 and a max

FIG. 8. Four metrics for the sensitivity of the SALAD classifier as a function of the signal-to-background ratio (S=B) in the signal
region: the AUC in the top left, the maximum significance improvement (top right), the false positive rate at a fixed 50% signal efficiency
(bottom left), and the significance improvement at the same fixed 50% signal efficiency (bottom right). The evaluation of these metrics
requires signal labels, even though the training of the classifiers themselves do not have signal labels. Error bars correspond to the
standard deviation from training five different classifiers. Each classifier is itself the truncated mean over ten random initializations.

3Note that the full one million PYTHIA events are divided
in two pieces, one that acts as the test set for all methods
and one that is used for further study. The remaining half is
further split in half to represent the data or the simulation for the
lines marked “PYTHIA” in Fig. 8. For a fair comparison, the
HERWIG statistics are comparable to 25% of the full PYTHIA
dataset.
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significance improvement of unity. The HERWIG curve has
an AUC less than 0.5 as S=B → 0 because the signal is
more HERWIG-like than PYTHIA-like (see Fig. 4), and
thus a tagger that requires the features to be datalike
(data ¼ PYTHIA) will antitag the signal. Likewise, the
efficiency of the tagger on the simulation is higher than
50%when placing a threshold on theNN that keeps 50% of
the events in data. The maximum significance improvement
quickly drops to unity for HERWIG when S=B≲ 1%,
indicating the network is spending more capacity on
differentiating PYTHIA from HERWIG than finding a signal.
For all four metrics, SALAD significantly improves the

performance of the HERWIG-only approach. In particular,
the SALAD tagger is effective to about S=B≲ 0.5%,
whereas the HERWIG-only tagger is only able to provide
useful discrimination power down to about S=B ∼ 1%.
For the significance improvement and false positive rate at
a fixed true positive rate, the SALAD tagger tracks the
PYTHIA tagger almost exactly down to below 1%. The
AUC about halfway between PYTHIA and HERWIG at high
S=B, which is indicative of poor performance at low
efficiency.

VI. BACKGROUND ESTIMATION

The performance gains from Sec. V can be combined
with a sideband background estimation strategy, as long as
threshold requirements on the classifier do not sculpt
bumps in the mjj spectrum. However, there is also an
opportunity to use SALAD to directly estimate the back-
ground from the interpolated simulation. Figure 9 illus-
trates the efficacy of the background estimation for a single
classifier trained in the absence of a signal. Without the
DCTR reweighting, the predicted background rate is too low
by a factor of 2 or more below 10% data efficiency. With

the interpolated reweighting function, the background
prediction is accurate within a few percent down to about
1% data efficiency.
In practice, the difficulty in using SALAD to directly

estimate the background is the estimation of the residual
bias. One may be able to use validation regions between
the signal region and sideband region, but it will never
require as much interpolation as the signal region itself.
One can rely on simulation variations and auxiliary
measurements to estimate the systematic uncertainty from
the direct SALAD background estimation, but estimating
high-dimensional uncertainties is challenging [80,81].
With a low-dimensional reweighting or with a proper
high-dimensional systematic uncertainty estimate, the
parametrized reweighting used in SALAD should result
in a lower uncertainty than directly estimating the uncer-
tainty from simulation. In particular, any nuisance param-
eters that affect the sideband region and the signal region
in the same way will cancel when reweighting and
interpolating.

VII. CONCLUSIONS

This paper has introduced SALAD, a new approach to
search for resonant anomalies by using parametrized
reweighting functions for classification and background
estimation. The SALAD approach uses information from
simulation in a way that is nearly background-model
independent while remaining signal-model agnostic. The
only requirement for the signal is that there is one feature
where the signal is known to be localized. In the example
presented in the paper, this feature was the invariant mass of
two jets. The location of the resonance need not be known
ahead of time and can be scanned using a series of signal and
sideband regions. This scanning will result in a trials factor
per nonoverlapping signal region. An additional look else-
where effect is incurred by scanning the threshold on the
neural network. In practice, one could use a small number of
widely separated thresholds to be broadly sensitive. As long
as the data used for training and testing are independent,
there is no additional trials factor for the feature space used
for classification. Strategies for maximally using the data for
training can be found in Refs. [41,42].
While the numerical SALAD results presented here did

not fully achieve the performance of a fully supervised
classifier trained directly with inside knowledge about
the data, there is room for improvement. In particular, a
detailed hyperparameter scan could improve the quality
of the reweighting. Additionally, calibration techniques
could be used to further increase the accuracy [57]. Future
work will investigate the potential of SALAD to analyze
higher-dimensional feature spaces as well as classifier
features that are strongly correlated with the resonant
feature. It will also be interesting to compare SALAD with
other recently proposed model independent methods.
When the nominal background simulation is an excellent

FIG. 9. The predicted efficiency normalized to the true data
efficiency in the signal region for various threshold requirements
on the NN. The x axis is the data efficiency from the threshold.
The error bars are due to statistical uncertainties.
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model of nature, SALAD should perform similarly to the
methods presented in Refs. [29,30] and provide a strong
sensitivity to new particles. In other regimes where the
background simulation is biased, SALAD should continue
to provide a physics-informed but still mostly back-
ground/signal model-independent approach to extend
the search program for new particles at the LHC and
beyond.

CODE AND DATA AVAILABILITY

The code can be found at https://github.com/bnachman/
DCTRHunting, and the datasets are available on Zendo as
part of the LHC Olympics [63].
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