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We evaluate the gluon and quark contributions to the spin of the proton using an ensemble of gauge
configurations generated at physical pion mass. We compute all valence and sea quark contributions to high
accuracy. We perform a nonperturbative renormalization for both quark and gluon matrix elements. We find
that the contribution of the up, down, strange, and charm quarks to the proton intrinsic spin is
1
2

P
q¼u;d;s;c ΔΣqþ ¼ 0.191ð15Þ and to the total spin

P
q¼u;d;s;c J

qþ ¼ 0.285ð45Þð10Þ. The gluon contri-

bution to the spin is Jg ¼ 0.187ð46Þð10Þ yielding J ¼ Jq þ Jg ¼ 0.473ð71Þð14Þ confirming the spin sum.
The momentum fraction carried by quarks in the proton is found to be 0.618(60) and by gluons 0.427(92),
the sum of which gives 1.045(118) confirming the momentum sum rule. All scale and scheme dependent
quantities are given in the MS scheme at 2 GeV.
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I. INTRODUCTION

The spin decomposition of the proton reveals important
information about its nonperturbative structure. Since the
proton is composed of quarks and gluons, it is expected that
its spin arises from the intrinsic spin and orbital angular
momentum of its constituents. The first attempts to measure
the proton spin were performed at SLAC in the E80 [1,2]
and E130 [3,4] series of experiments. The successful quark
model that describes well properties of the low-lying
hadrons predicted that all the spin is carried by the three
valence quarks. The first major surprise came from the
measurements of the EuropeanMuon Collaboration (EMC)
[5,6] that determine the proton spin-dependent structure
function down to x ¼ 0.01. Their conclusion was that only
about half of the proton spin is carried by the valence
quarks. This came to be known as the proton spin puzzle. It
triggered a series of precise measurements by the Spin

Muon Collaboration (SMC) in 1992–1996 [7] and by
COMPASS [8] since 2002. For a review on these experi-
ments and related ones see Ref. [9]. Recent experiments
using polarized deep inelastic lepton-nucleon scattering
(DIS) processes indeed confirmed that only about 25%–
30% [10–15] of the nucleon spin comes from the valence
quarks. These experiments also suggest a strange quark
contribution to the intrinsic spin, ΔΣsþ . Phenomenological
analyses point to a negative value but the error is large,
giving values of ΔΣsþ ranging from −0.120ð81Þ [10,14,
16,17] to −0.026ð22Þ [18]. We use the shorthand notation
qþ ¼ qþ q̄ to denote the sum from quark and antiquark
contributions to the intrinsic spin and momentum fraction.
Results from inclusive DIS experiments have, however,
small sensitivity to the gluon helicity Δg. In contrast,
polarized proton-proton collisions, in particular jet or
hadron production at high transverse momentum available
from the Relativistic Heavy Ion Collider (RHIC) [19–21]
at BNL provide tighter constraints on

R
0.2
0.05 ΔgðxÞdx ¼

0.005þ0.129
−0.164 . Despite the tremendous progress in the deter-

mination of the gluon helicity, large uncertainties remain
mostly in the small-x range. Thanks to its large kinematic
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reach in x and Q2, the planned Electron-Ion Collider (EIC)
[22] will provide significantly more input to constrain Δg.
While experiments play a crucial role in the under-

standing of the sources of the proton spin, they need to be
complemented by phenomenological analyses, which
involve model dependence and parametrizations. Lattice
QCD (LQCD), on the other hand, provides the initio
nonperturbative framework that is suitable to address the
key questions of how the nucleon spin and momentum are
distributed among its constituents using directly the QCD
Lagrangian. Tremendous progress has been made in
simulating lattice QCD in recent years. State-of-the-art
simulations are being performed with dynamical up, down,
and strange quarks with mass tuned to their physical values
(referred to as the physical point). A subset of simulations
also includes a dynamical charm quark with mass fixed to
approximately its physical value. This progress was made
possible using efficient algorithms and in particular
multigrid solvers [23] that were developed for twisted
mass fermions [24].
A number of recent lattice QCD studies were carried out

to extract the intrinsic spin carried by each quark flavor.
They include previous works by the Extended Twisted
Mass Collaboration (ETMC) [25–27], by PNDME [28],
and by χQCD [29]. First attempts to compute the gluon
average momentum fraction were carried out by the
pioneering work of the QCDSF Collaboration [30,31] in
the quenched approximations. Results on the gluon
momentum fraction using dynamical gauge field configu-
rations appeared only recently. They used mostly simu-
lations with larger than physical pion mass relying on chiral
extrapolations to obtain final results [32–34]. A first
attempt to fully decompose the nucleon spin was carried
out by χQCD [35] in the quenched approximation, fol-
lowed by a study of the gluon spin [36] using 2þ 1
dynamical fermions on four lattice spacings and four
volumes including an ensemble with physical values for
the quark masses. ETMCwas the first to compute the gluon
momentum fraction directly at the physical point without
the need of a chiral extrapolation [26]. The latter provides
significant progress, since chiral extrapolations in the
nucleon sector introduce uncontrolled systematic errors.
In this study we will provide the complete quark flavor

decomposition of the proton spin. This requires the com-
putation of both valence and sea quark contributions. It also
includes the computation of the gluon contributions to the
spin and momentum fraction of the proton. In order to
evaluate the quark loop contributions that are computa-
tionally very demanding, we apply improved techniques
that are developed and implemented on graphics cards
(GPUs) [37], as well as noise reduction techniques [38,39].
This work updates our previous results on the proton spin
presented in Ref. [26] in several respects: (i) While
Ref. [26] used an ensemble of twisted mass fermions
generated with two degenerate light quarks (Nf ¼ 2) [40],

we here use an ensemble of twisted mass fermions [41,42]
that includes, besides the light quarks, the strange and the
charm quarks all with masses fixed to their physical values
(Nf ¼ 2þ 1þ 1); (ii) we perform a more elaborated
analysis of excited state contributions; (iii) we use larger
statistics; (iv) we compute the gluon contribution to the
proton spin taking into account the generalized form factor
B20ð0Þ; and (v) we use nonperturbative renormalization not
only for the quark operators but also for the gluon operator.
The remainder of this paper is organized as follows:

In Sec. II we provide the theoretical basis for the nucleon
spin decomposition [43]. Sections III and IV describe the
methodology to extract the nucleon bare matrix elements
needed, while Sec. V explains the renormalization pro-
cedure and the conversion to the MS scheme. Our final
results are discussed in Sec. VI and compared with other
studies in Sec. VII. Finally, in Sec. VIII we summarize our
findings and conclude.

II. NUCLEON SPIN DECOMPOSITION

A key object for the study of the spin decomposition is
the QCD energy-momentum tensor (EMT) Tμν. The
symmetric part of the EMT can be separated [44] into
two terms, the traceless term, denoted by T̄μν, and the trace
term T̂μν as

Tμν ¼ T̄μν þ T̂μν: ð1Þ

Only the traceless part is relevant for this study. Keeping
only the gauge-invariant parts of T̄μν, this can be expressed
in terms of the gluon part T̄μν;g and the quark part T̄μν;q as

T̄μν ¼ T̄μν;g þ T̄μν;q; ð2Þ

where

T̄μν;g ¼ FfμρFνg
ρ ð3Þ

and

T̄μν;q ¼ ψ̄iγfμD
↔

νgψ ; ð4Þ

where Fμν is the gluon field-strength tensor and the notation
f� � �g means symmetrization over the indices in the
parentheses and subtraction of the trace. The symmetrized

covariant derivative D
↔

is defined as D
↔ ¼ ðD⃖þ D⃗Þ=2.

The angular momentum density M0ij can be written in
terms of the EMT as

Mαμν ¼ T̄ανxμ − T̄αμxν ð5Þ

and the ith component of the angular momentum
operator as
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Ji ¼ 1

2
ϵijk

Z
d3xM0jkðxÞ: ð6Þ

Substituting Eq. (3) into Eq. (6), as discussed in
Refs. [43,45], the gauge invariant gluon angular momen-
tum operators is

J⃗g ¼
Z

d3xðx⃗ × ðE⃗ × B⃗ÞÞ; ð7Þ

where E⃗ and B⃗ are the chromoelectric and chromomagnetic
fields. Substituting Eq. (4) into Eq. (6), we obtain the
gauge-invariant quark angular momentum operator [43,45],

J⃗q ¼
Z

d3x

�
ψ̄
γ⃗γ5

2
ψ þ ψ̄ðx⃗ × iD⃗Þψ

�
: ð8Þ

The first term in Eq. (8) is the quark intrinsic spin operator
and the second term is the orbital angular momentum.
Putting gluon and quark operators together we have that

J⃗ ¼ J⃗g þ J⃗q ¼ J⃗g þ
�
Σ⃗q

2
þ L⃗q

�
: ð9Þ

This is the so-called Ji decomposition [43] which does not
allow one to decompose Jg any further in a gauge invariant
manner. Jaffe and Manohar suggested a non-gauge-invari-
ant way to decompose further [46] the gluon angular
momentum, with the issue of the gauge invariance being
addressed in Ref. [47]. In this work we use Ji’s decom-
position [43] and thus compute the total gluon angular
momentum Jg.
In order to compute the nucleon spin, we need to

evaluate the nucleon matrix elements of the EMT. They
can be decomposed into three generalized form factors
(GFFs) in Minkowski space as follows [45]:

hNðp0; s0ÞjTμν;q;gjNðp; sÞi ¼ ūNðp0; s0Þ ×
�
Aq;g
20 ðq2ÞγfμPνg

þ Bq;g
20 ðq2Þ

iσfμρqρPνg

2mN

þ Cq;g
20 ðq2Þ

qfμqνg

mN

�
uNðp; sÞ;

ð10Þ

where uN is the nucleon spinor with initial (final) momentum
pðp0Þ and spin sðs0Þ, P ¼ ðp0 þ pÞ=2 is the total momen-
tum, and q ¼ p0 − p is the momentum transfer. A20ðq2Þ,
B20ðq2Þ, and C20ðq2Þ are the three GFFs. In the forward
limit, Aq;g

20 ð0Þ gives the quark and gluon average momentum
fraction hxiq;g. Summing over all quark and gluon contri-
butions gives the momentum sum hxiq þ hxig ¼ 1. As
shown in Ref. [43] the nucleon spin can be written in terms
of A20 and B20 in the forward limit as

J ¼ 1

2
½Aq

20ð0Þ þ Ag
20ð0Þ þ Bq

20ð0Þ þ Bg
20ð0Þ�; ð11Þ

where we consider a reference spin axis. The spin sum
J ¼ 1

2
together with the momentum sum are satisfied if

Bq
20ð0Þ þ Bg

20ð0Þ ¼ 0. Although Aq;g
20 ð0Þ and thus the aver-

age momentum fractions are extracted from the nucleon
matrix element directly at zero momentum transfer, Bq;g

20 ð0Þ
can be computed only at nonzero momentum transfer
requiring an extrapolation to Q2 ¼ 0.
Since we have a direct way to compute the quark

contribution Jq and the intrinsic spin 1
2
ΔΣq, we can

determine the quark orbital angular momentum by

Lq ¼ Jq −
1

2
ΔΣq: ð12Þ

III. COMPUTATION OF THE BARE NUCLEON
MATRIX ELEMENTS

A. Ensembles of gauge configurations

In Table I we give the parameters of the Nf ¼ 2þ 1þ 1
ensemble analyzed in this work denoted by cB211.072.64
[48]. For completeness we also list the parameters of the
Nf ¼ 2 ensemble analyzed in our previous study [26],
referred to as cA2.09.48. In both cases the lattice spacing is
determined using the mass of the nucleon [48–51].
The ensembles are produced using the Iwasaki [52]

improved gauge action and the twisted mass fermion
formulation [41,42]. A clover term [53] was added to
stabilize the simulations. The twisted mass fermion for-
mulation is very well suited for hadron structure providing
an automatic OðaÞ improvement [42] with no need of
improving the operators.

TABLE I. Simulation parameters for the cB211.072.64 [48] and cA2.09.48 [40] ensembles. cSW is the value of the clover coefficient,
β ¼ 6=g, where g is the coupling constant, Nf is the number of dynamical quark flavors in the simulation, a is the lattice spacing, V is
the lattice volume in lattice units,mπ is the pion mass,mN is the nucleon mass, and L is the spatial lattice length in physical units. For the
parameters of the cA2.09.48 ensemble, the second error arises from the systematic error on the determination of the lattice spacing due to
the extrapolation to the physical value of mπ [40]. For the cB211.072.64 ensemble this systematic error is negligible.

Ensemble cSW β Nf a [fm] V amπ mπL amN mN=mπ mπ [GeV] L [fm]

cB211.072.64 1.69 1.778 2þ 1þ 1 0.0801(4) 643 × 128 0.05658(6) 3.62 0.3813(19) 6.74(3) 0.1393(7) 5.12(3)
cA2.09.48 1.57551 2.1 2 0.0938(3)(1) 483 × 96 0.06208(2) 2.98 0.4436(11) 7.15(2) 0.1306(4)(2) 4.50(1)
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B. Construction of correlation functions

To compute the nucleon matrix elements one needs to
evaluate two- and three-point functions in Euclidean space.
To create states with the quantum numbers of the nucleon
we use as the interpolating field

J Nðt; x⃗Þ ¼ ϵabcuaðxÞ½ubTðxÞCγ5dcðxÞ�; ð13Þ
where uðxÞ, dðxÞ are the up, down quark fields and C is the
charge conjugation matrix. The interpolating field in
Eq. (13) does not only create the nucleon state but also
excited states with the quantum numbers of the nucleon,
including multiparticle states. In order to increase the
overlap of the interpolating field with the ground state
we employ Gaussian smearing [54,55] on the quark fields
as well as APE smearing [56] on the gauge links entering

the hopping matrix of the smearing function. More details
about how we tune these smearing parameters are given in
Refs. [49,51]. The nucleon two-point function is given by

CðΓ0; p⃗; ts; t0Þ ¼
X
x⃗s

e−iðx⃗s−x⃗0Þ·p⃗

× Tr½Γ0hJ Nðts; x⃗sÞJ̄ Nðt0; x⃗0Þi�; ð14Þ

where x0 is the initial lattice site at which states with the
quantum numbers of the nucleon are created, referred to as
the source position, and xs is the site where they are
annihilated, referred to as sink. An appropriate operator
Oμν probes the quarks and gluons within the nucleon at a
lattice site xins referred to as the insertion point. The
resulting three-point function is given by

CμνðΓρ; q⃗; p⃗0; ts; tins; t0Þ ¼
X
x⃗ins;x⃗s

eiðx⃗ins−x⃗0Þ·q⃗e−iðx⃗s−x⃗0Þ·p⃗0
× Tr½ΓρhJ Nðts; x⃗sÞOμνðtins; x⃗insÞJ̄ Nðt0; x⃗0Þi�: ð15Þ

The operatorOμν may represent the EMTwith two Lorentz
indices or the helicity operator with one Lorentz index. The
Euclidean momentum transfer squared is given by Q2 ¼
−ðp0 − pÞ2 and Γρ is the projector acting on the spin
indices. We consider Γ0 ¼ 1

2
ð1þ γ0Þ and Γk ¼ iΓ0γ5γk

taking the nonrelativistic representation of γμ.

C. Analysis of correlation functions to extract the
nucleon matrix elements

The information about the desired nucleon matrix
element is contained in the three-point correlation function
of Eq. (15). In order to extract it, we construct appropriate
combinations of three- to two-point functions, which in the
large Euclidean time limit, cancel the time dependence
arising from the time propagation and the overlap terms
between the interpolating field and the nucleon state. An
optimal choice that benefits from correlations is the ratio
[57–60]

RμνðΓρ; p⃗0; p⃗; ts; tinsÞ

¼ CμνðΓρ; p⃗0; p⃗; ts; tinsÞ
CðΓ0; p⃗0; tsÞ

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CðΓ0; p⃗; ts − tinsÞCðΓ0; p⃗0; tinsÞCðΓ0; p⃗0; tsÞ
CðΓ0; p⃗0; ts − tinsÞCðΓ0; p⃗; tinsÞCðΓ0; p⃗; tsÞ

s
: ð16Þ

The sink and insertion time separations ts and tins are taken
relative to the source. In the ratio of Eq. (16), taking the
limits ðts − tinsÞ ≫ a and tins ≫ a, with a the lattice
spacing, the nucleon state dominates. When this happens,
the ratio becomes independent of time

RμνðΓρ; p⃗0; p⃗; ts; tinsÞ ⟶
ts−tins≫a

tins≫a
ΠμνðΓρ; p⃗0; p⃗Þ ð17Þ

and yields the desired nucleon matrix element. In practice,
ðts − tinsÞ and tins cannot be taken arbitrarily large, since the
signal-to-noise ratio decays exponentially with the sink-
source time separation. Therefore, one needs to take ðts −
tinsÞ and tins large enough so that the nucleon state
dominates in the ratio. To identify when this happens is
a delicate process. We use three methods to check for
convergence to the nucleon state as summarized below.
Plateau method: The ratio of Eq. (16) can be written as

ΠμνðΓρ; p⃗0; p⃗Þ þOðe−ΔEðts−tinsÞÞ þOðe−ΔEtinsÞ þ � � � ;
ð18Þ

where the first term is time independent and contributions
from excited states are exponentially suppressed. In
Eq. (18) ΔE is the energy gap between the nucleon state
and the first excited state. In order to extract the nucleon
matrix element of the operator of interest, we seek to
identify nucleon state dominance by looking for a range of
values of tins for which the ratio of Eq. (16) is time
independent (plateau region). We fit the ratio to a constant
within the plateau region and seek to see convergence in the
extracted fit values as we increase ts. If such a convergence
can be demonstrated, then the desired nucleon matrix
element can be extracted.
Summation method: One can sum over tins the ratio of

Eq. (16) [61,62] to obtain

Rμν
summedðΓρ;p⃗0;p⃗;tsÞ¼

Xts−2a
tins¼2a

RμνðΓρ;p⃗0;p⃗;ts;tinsÞ

¼cþΠμνðΓρ;p⃗0;p⃗Þ× tsþOðe−ΔEtsÞ:
ð19Þ
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Assuming the nucleon state dominates, ΠμνðΓρ; p⃗0; p⃗Þ is
extracted from the slope of a linear fit with respect to ts. As
in the case of the plateau method, we probe convergence by
increasing the lower value of ts, denoted by tlows used in the
linear fit, until the resulting value converges. While both
plateau and summation methods assume that the ground
state dominates, the exponential suppression of excited
states in the summation is faster and approximately
corresponds to using twice the sink-source time separation
ts in the plateau method.
Two-state fit method: In this method we explicitly

include the contributions from the first excited state. We
thus expand the two- and three-point function correlators
entering in the ratio of Eq. (16) to obtain

Cðp⃗; tsÞ ¼ c0ðp⃗Þe−E0ðp⃗Þts þ c1ðp⃗Þe−E1ðp⃗Þts þ � � � ð20Þ

and

CμνðΓρ;p⃗0;p⃗;ts;tinsÞ¼Aμν
0;0ðΓρ;p⃗0;p⃗Þe−E0ðp⃗0Þðts−tinsÞ−E0ðp⃗Þtins

þAμν
0;1ðΓρ;p⃗0;p⃗Þe−E0ðp⃗0Þðts−tinsÞ−E1ðp⃗Þtins

þAμν
1;0ðΓρ;p⃗0;p⃗Þe−E1ðp⃗0Þðts−tinsÞ−E0ðp⃗Þtins

þAμν
1;1ðΓρ;p⃗0;p⃗Þe−E1ðp⃗0Þðts−tinsÞ−E1ðp⃗Þtins

þ���; ð21Þ

where c0ðp⃗Þ and c1ðp⃗Þ are the overlaps of the ground and
first excited states with the interpolating field and E0ðp⃗Þ
and E1ðp⃗Þ the corresponding energies. The parametersAμν

i;j

are the matrix elements of the i, j states multiplied by the
corresponding overlap terms. Note that Aμν

0;1 ≠ Aμν
1;0 for

nonzero momentum transfer. Our procedure to determine
these parameters is as follows: we first fit the effective mass
using the two-point function of Eq. (20) at p⃗ ¼ 0⃗ and
finite momentum p⃗ to extract the nucleon mass mN ,
c1ðp⃗Þ=c0ðp⃗Þ, and ΔEðp⃗Þ ¼ E1ðp⃗Þ − E0ðp⃗Þ, where for
E0ðp⃗Þ we use the dispersion relation E0ðp⃗Þ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

N þ p⃗2
p

. In Fig. 1 we compare the energy E0ðpÞ
extracted directly from the finite momentum two-point
function and the dispersion relation. As can be seen, the
dispersion relation is well satisfied and holds for all the
momenta that are used in this study. Inserting the expres-
sions of Eqs. (20) and (21) in Eq. (16) and using E0, ΔE,
and c1=c0 extracted from the two-point correlators we fit
the resulting ratio to extract the remaining four parameters,
Mμν

0;0 ≡Aμν
0;0=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c0ðp⃗0Þc0ðp⃗Þ

p
, Aμν

0;1=A
μν
0;0, Aμν

1;0=A
μν
0;0, and

Aμν
1;1=A

μν
0;0. The first parameter Mμν

0;0 is the desired ground
state matrix element and the rest are excited states con-
tributions. In the case of zero momentum transfer, Aμν

1;0 ¼
Aμν

0;1 and we only have three parameters to determine.

For all the three methods we minimize χ2 defined as

χ2 ¼ rTC r; ð22Þ

where C is the covariance matrix, r ¼ y − fðp;xÞ the
residual vector between our data y and the model function
fðp;xÞ and p a vector holding the parameters of the fit.
After determining the nucleon matrix element we can

extract the charges, moments, and GFFs. For zero momen-
tum transfer we have

ΠiðΓk; 0⃗; 0⃗Þ ¼ gAδik ð23Þ

in the case of the helicity operator. The average momentum
fraction can be obtained from the matrix element of the
one-derivative vector operator at zero momentum transfer,

Π44ðΓ0; 0⃗; 0⃗Þ ¼ −
3mN

4
hxi; ð24Þ

Π4iðΓ0;pi; piÞ ¼ ipihxi; ð25Þ

where in the second expression the nucleon is boosted in
the ith direction with momentum pi. As already discussed
in connection to Eq. (10), B20ð0Þ cannot be extracted
directly. We thus compute B20ðQ2Þ as a function of Q2 and
extrapolate to zero Q2. More details about the procedure to
extract B20ðQ2Þ will be given in Sec. IV B.

D. Connected and disconnected three-point functions
and statistics

The three-point function, defined in Eq. (15), receives
contributions from two types of diagrams: one when the

FIG. 1. Red points show the energy of the nucleon ENðp⃗2Þ in
GeV as extracted from finite momentum two-point functions,
and the grey band shows the dispersion relation ENðp⃗2Þ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
N þ p⃗2

p
as a function of p⃗2 in GeV2.
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operator couples directly to a valence quark, known as the
connected contribution and one when the operator couples
to a sea quark resulting in a quark loop, known as the
disconnected contribution. The gluon operator as defined
in Eq. (3), produces a closed gluon loop and thus a
disconnected contribution. To evaluate the connected con-
tributions we use standard techniques that involve the
computation of the sequential propagator through the sink.
In this approach the sink-source time separation, the
projector, and the momentum at the sink p⃗0 are kept fixed.
We perform the computation of the connected three-point
functions fixing the sink momentum to zero; i.e., we set
p⃗0 ¼ 0⃗. We then compute the sequential propagator for
both the unpolarized and the polarized projectors Γ0 and Γk,
k ¼ 1, 2, 3, respectively.
In total we analyze 750 configurations separated by four

trajectories. We use seven values of the sink-source time
separation ts ranging from 0.64 fm to 1.60 fm. In order to
keep the signal-to-noise ratio approximately constant we
increase the number of source positions as we increase ts.
The statistics used for each value of ts are given in Table II.
A range of ts and the increasingly larger statistics for larger
ts allow us to better check excited state effects and to thus
reliably extract the nucleon matrix elements of interest.
The disconnected contribution involves the disconnected

quark loop correlated with the nucleon two-point correlator.
The disconnected quark loop is given by

Lðtins; q⃗Þ ¼
X
x⃗ins

Tr½D−1ðxins; xinsÞG�eiq⃗·x⃗ins ; ð26Þ

where D−1ðxins; xinsÞ is the quark propagator that starts and
ends at the same point xins and G is an appropriately chosen
γ-structure. For the helicity operator we use γ⃗γ5 and for the

quark part of EMT γμDν
↔
. A direct computation of the quark

loops would need inversions from all spatial points on the
lattice, making the evaluation unfeasible for our lattice size.
We, therefore, employ stochastic techniques combined with

dilution schemes [63] that take into account the sparsity of
the Dirac operator and its decay properties. Namely, we
employ the hierarchical probing technique [38], which
provides a partitioning scheme that eliminates contributions
from neighboring points in the trace of Eq. (26) up to a
certain coloring distance 2k. Using Hadamard vectors as the
basis vectors for the partitioning, one needs 2d�ðk−1Þþ1

vectors, where d ¼ 4 for four-dimensional partitioning.
Note that the computational resources required are propor-
tional to the number of Hadamard vectors, and therefore, in
d ¼ 4 dimensions, increase 16-fold each time the probing
distance 2k doubles. Contributions entering from points
beyond the probing distance are expected to be suppressed
due to the exponential decay of the quark propagator and
are treated with standard noise vectors that suppress all off-
diagonal contributions by 1=

ffiffiffiffiffiffi
Nr

p
, i.e.,

1

Nr

X
r

jξrihξrj ¼ 1þO
�

1ffiffiffiffiffiffi
Nr

p
�
; ð27Þ

where Nr is the size of the stochastic ensemble.
Hierarchical probing has been employed with great success
in previous studies for an ensemble with a pion mass of
317 MeV [64]. For simulations at the physical point, it is
expected and confirmed [49] that a larger probing distance
is required since the light quark propagator decays more
slowly because of the smaller quark mass. We avoid the
need for increasing the distance by combining hierarchical
probing with deflation of the low modes [65]. Namely, for
the light quarks we construct the low mode contribution to
the quark loops by computing exactly the smallest eigen-
values and corresponding eigenvectors of the squared Dirac
operator and combine them with the contribution from the
remaining modes, which are estimated using hierarchical
probing. Additionally, we employ the one-end trick [66],
also used in our previous studies [26,27,37], and fully
dilute in spin and color.
For the calculation of the nucleon matrix element of the

gluonic part of the EMT, we use the gluon field strength
tensor

FμνðxÞ ¼
i

8g0
½UμðxÞUνðxþ aμ̂ÞU†

μðxþ aν̂ÞU†
νðxÞ

þ UνðxÞU†
μðxþ aν̂ − aμ̂ÞU†

νðx − aμ̂ÞUμðx − aμ̂Þ
þ U†

μðx − μ̂ÞU†
νðx − aν̂ − aμ̂ÞUμðx − aν̂ − aμ̂Þ

×Uνðx − aν̂Þ þ U†
νðx − aν̂ÞUμðx − aν̂Þ

×Uνðx − aν̂þ aμ̂ÞU†
μðxÞ − H:c:�; ð28Þ

with g the bare coupling constant. For the gauge links
entering the field strength tensor we apply stout smearing
[67] with parameter ρ ¼ 0.129 [33]. As will be discussed in
Sec. IVA, we investigate the signal-to-noise ratio as we
increase the number of stout steps.

TABLE II. Parameters used for the evaluation of the connected
three-point functions. In the first column we give the value of ts in
lattice units and in the second column in physical units. In all
cases 750 gauge configurations are analyzed. In the third column
we give the number of source positions, and in the fourth column
the total number of measurements. The last column gives Ninv,
which is the total number of inversions per configuration.

ts=a ts [fm] Nsrcs Nmeas Ninv

8 0.64 1 750 120
10 0.80 2 1500 240
12 0.96 4 3000 480
14 1.12 6 4500 720
16 1.28 16 12000 1920
18 1.44 48 36000 5760
20 1.60 64 48000 7680
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While the evaluation of the gluon loop is computation-
ally cheap because no inversions are needed, the calculation
of the quark loops is very expensive. We use the same
combination of methods for the calculation of the flavors of
the quark loops except for deflation, which is only used for
the light quark loops. The parameters used for the evalu-
ation of the quark loops are collected in Table III. Two
hundred low modes of the square Dirac operator are
computed in order to reduce the stochastic noise in the
computation of the light quark loops. For the charm quark
we use a coloring distance 22 in hierarchical probing
instead of 23 used for the light and the strange quark loop
since charm quarks are relatively heavy. Instead we
compute 12 stochastic vectors. We evaluate the nucleon
two-point functions for 200 randomly chosen source
positions which sufficiently reduce the gauge noise for
large enough sink-source time separations of the discon-
nected three-point functions. Since they are available, we
use the same number of two point functions for all source-
sink time separations.
In summary, we perform in total 12,690,000 inversions

for the connected and 16,272,000 for the disconnected
contributions by employing the DD-αAMG solver and its
QUDA version [24,68,69] to accelerate the inversions.
Using GPUs and the DD-αAMG solver are essential to
obtain the required statistics.

IV. BARE NUCLEON MATRIX ELEMENTS

As already discussed, for the decomposition of the
nucleon spin we need the axial charges for each quark
flavor, which give the quark helicities, the average momen-
tum fractions, and B20ð0Þ. The extraction of the axial
charges or 1

2
ΔΣq for the cB211.072.64 ensemble is pre-

sented in Ref. [25], while the evaluation of the isovectors
A20 and B20 is in Ref. [51]. In this section we focus in the
extraction of the remaining quantities needed for the full
decomposition of the nucleon spin.

A. Average momentum fraction hxi
The average momentum fraction hxi is extracted directly

from the nucleon matrix element at zero momentum
transfer from Eqs. (24) and (25). In the case of the
connected contribution, since we only have access to
three-point functions with p⃗0 ¼ 0⃗, we are restricted to
using Eq. (24). In Fig. 2 we show the bare ratio which
leads to the extraction of the connected contribution to the
isoscalar hxiuþþdþ

B . The ratio for each ts has been con-
structed between three- and two-point functions with the
same source positions to benefit from the correlations
between numerator and denominator. One can easily
observe a clear contamination from excited states at small
time separations. In fact for ts < 1 fm no plateau is
detected and the ratio clearly decreases as ts increases.
We note that we exclude tins=a ¼ 0; 1; ts=a − 1; ts=a since
they do not carry physical information. For ts ≳ 1.12 fm we
fit within the plateau region discarding five points from left
and right, thus tins ∈ ½2þ τ; ts − τ − 2� with τ=a ¼ 5 for all
ts values. This range is found to yield a good χ2=d:o:f.
In Fig. 3 we show the summed ratio of Eq. (19). As can

be seen, a linear fit describes well the results.
Our approach for the two-state fits has been discussed in

Sec. III C. We extract mN , ΔE, and the overlap ratio c1=c0
using the full statistics of the two-point function produced
with 264 source positions. However, as discussed above,
for the construction of the ratio we use the same source
positions for three- and two-point functions. We fit the
resulting ratios simultaneously for all values ts ≥ tlows . We
vary tlows , to check the convergence of the extracted nucleon

TABLE III. Parameters and statistics used for the evaluation of
the disconnected three-point functions. The number of configu-
rations analyzed is Ncnfs ¼ 750 and the number of source
positions used for the evaluation of the two-point functions is
Nsrcs ¼ 200 per gauge configuration. In the case of the light
quarks, we compute the lowest 200 modes exactly and deflate
before computing the higher modes stochastically. Nr is the
number of noise vectors, and NHad is the number of Hadamard
vectors. Nsc ¼ 12 corresponds to spin-color dilution, and Ninv is
the total number of inversions per configuration.

Flavor Ndef Nr NHad Nsc Ninv

Light 200 1 512 12 6144
Strange 0 1 512 12 6144
Charm 0 12 32 12 4608

FIG. 2. The ratio of Eq. (16) for zero momentum from where
the connected contribution to hxiuþþdþ

B using Eq. (24) is extracted
as a function of tins for source-sink time separations ts=a ¼ 8, 10,
12, 14, 16, 18, 20 using blue circles, orange down triangles, green
up triangles, red left triangles, purple right triangles, brown
rhombus, and magenta crosses, respectively. The bands show a
constant fit to the points within the range of the band.
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matrix element. We show the resulting fits to the ratios in
Fig. 4 for tlows =a ¼ 12. Additionally, we plot in the middle
panel the predicted time dependence of the ratio when
fixing tins ¼ ts=2 for tlows =a ¼ 12. In the same panel we
include values extracted using the plateau method. For
ts=a < 14 where no plateau could be identified we plot the
midpoint ts=2. As can be seen, the two-state fit predicts
well the residual time dependence of values extracted using
the plateau method. It also shows that the plateau values,
even for ts ¼ 1.6 fm, still have excited state contributions
and convergence is not demonstrated. The two-state fit
suggests that ts > 2 fm is needed to sufficiently suppress

contributions from excited states. This would require
ts ∼ 26a ¼ 2.08 fm requiring an order of magnitude more
statistics as compared to the statistics used for
ts ¼ 20a ¼ 1.6 fm. However, the values extracted from
the two state fits are consistent as we vary tlows . They also
agree with the value extracted from the summation method
when tlows ¼ 16a ¼ 1.28 fm is used in the fit, as shown in
the right panel of Fig. 4. We thus take as our final
determination of the connected bare hxiuþþdþ

B the value
extracted from the two-state fit for tlows =a ¼ 12 with
χ2=d:o:f: ¼ 1.2. The selected value is shown by the hori-
zontal grey band spanning thewhole range of Fig. 4.We find
for the connected bare isoscalar momentum fraction

hxiuþþdþ
B ¼ 0.350ð35Þ: ð29Þ

The isovector average momentum fraction hxiuþ−dþB for
the cB211.072.64 ensemble is reported in Ref. [51].
For completeness and easy reference we repeat the analysis
following the same procedure as for the connected
hxiuþþdþ

B . The results are shown in Fig. 5. As can be seen,
the effect of excited states is similar to what is observed for
the connected isoscalar case. The value determined from
the two-state fit for tlows =a ¼ 8 varies only very mildly as
we increase tlows , and it is in agreement with the value
extracted from the summation method for tlows =a ¼ 14.
We thus select as our final value the one extracted from the
two-state fit using tlows =a ¼ 8, obtaining

hxiuþ−dþB ¼ 0.149ð16Þ: ð30Þ
In Figs. 6 and 7 we present our results for the quark

disconnected contributions to the isoscalar and strange
average momentum fractions. Since for the disconnected

FIG. 3. The summed ratio of Eq. (19) is shown as a function of
ts (red circles). The slope yields the connected hxiuþþdþ

B . The
linear fits are shown by the blue bands as we increase, from top to
bottom, the smallest value of ts used in the fit, tlows .

FIG. 4. Excited state analysis for determining the connected isoscalar average momentum fraction hxiuþþdþ
B using Eq. (24). In the left

panel, we show results for the ratio of Eq. (16) with symbol and color notation as in Fig. 2. The results are shown as a function of the
insertion time tins shifted by ts=2. The dotted lines and associated error bands are the resulting two-state fits. In the middle panel, we
show the plateau values or middle point when no plateau is identified as a function of source-sink separation using the same symbol used
for the ratio in the left panel for the same ts. The grey band is the predicted time dependence of the ratio using the parameters extracted
from the two-state fit when tlows ¼ 12a ¼ 0.96 fm. In the right panel, we show values of the connected hxiuþþdþ

B extracted using the two-
state fit (black squares) and the summation method (green filled triangles) as a function of tlows together with the χ2=d:o:f. for each fit.
The open symbol shows the selected value for the connected hxiuþþdþ

B with the grey band spanning the whole range of the figure being
its statistical error.
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contribution one can use a boosted nucleon without the
need of additional inversions, one can extract it both from
the diagonal part of the EMT as in Eq. (24) and from the
nondiagonal as in Eq. (25). If we use the diagonal part of
EMT, there is a large nonzero vacuum expectation value,
which, although it cancels after the trace subtraction, leads
to large statistical fluctuations. In the case of Eq. (25),
where the off-diagonal components enter, this problem
does not arise. We thus boost the nucleon using the first

nonzero momentum, namely p⃗ ¼ n̂2π=Lwith n̂ ¼ ð1; 0; 0Þ
and all other permutations, and we average over the three
directions and two orientations to obtain a good signal-to-
noise ratio as presented in Figs. 6 and 7.
Unlike the connected contributions, for light both dis-

connected and strange, the ratios show fast convergence,
indicating that excited states are suppressed, within our
statistical uncertainties. We thus perform a fit within the
plateau range that includes tins ∈ ½3a; ts − 3a�. The values

FIG. 5. Excited state analysis for determining the isovector average momentum fraction hxiuþ−dþB using Eq. (24). The notation follows
that in Fig. 4.

FIG. 6. Excited state analysis for determining the disconnected contribution to the isoscalar average momentum fraction using
Eq. (25). The notation is the same as that in Fig. 4. The sink-source time separations shown are ts=a ¼ 6, 7, 8, 9, 10, 11, 12, 13 with blue
circles, orange down triangles, green up triangles, red left triangles, purple right triangles, brown rhombus, magenta crosses, gold
squares, and cyan pentagons, respectively. The final value is determined by taking the weighted average of the converged plateau values
shown with the open symbols. The grey band spanning the whole range of the figure shows the error bar of the weighted average value.

FIG. 7. Excited state analysis for determining the strange average momentum fraction as extracted from Eq. (25). The notation is the
same as that in Fig. 6.
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extracted from the plateau fits converge to a constant and
are consistent with the results extracted from the summa-
tion method. We take the weighted average of the con-
verged plateau values, namely for the plateau values
extracted for ts > 0.7 fm in both cases, to determine our
final value. The summation method yields fully compatible
results with the plateau method, which remain consistent as
we increase the low fit point tlows in the range ½6a; 9a�,
corroborating the fact that for these quantities excited states
contamination is suppressed compared to the statistical
error. We find for the disconnected contribution to the
isoscalar average momentum fraction

hxiuþþdþ
B ¼ 0.109ð20Þ ð31Þ

and

hxisþB ¼ 0.038ð10Þ ð32Þ

for the average momentum carried by strange quarks. We
perform the same analysis for the charm quarks. We find

hxicþB ¼ 0.008ð8Þ; ð33Þ

which is compatible with zero.
In Fig. 8 we present our analysis for the gluon average

momentum fraction. For this case we employ stout smear-
ing on the gauge links entering in the field strength tensor
of Eq. (28) to improve the signal of the gluonic part of the
EMT. We show the case where the number of stout steps nS

is 10. We analyze both the diagonal and the off-diagonal
components of EMT given by Eqs. (24) and (25). When
using the diagonal components, due to the subtraction of a
large trace, large gauge fluctuations are observed. This is
analogous to the quark disconnected contributions dis-
cussed above. Although the vacuum expectation value for
the traceless part of the EMT, h0jT̄44

g j0i, is compatible with
zero, as expected by the subtraction of the trace, we find
that subtracting it from the corresponding nucleon matrix
element significantly improves the signal due to the
correlation between the two terms. For the vacuum expect-
ation value h0jT̄4i

g j0i we find that it is also compatible with
zero but subtracting it from the nucleon matrix element
does not improve the signal. Therefore, in this case,
subtraction of the vacuum expectation value is not per-
formed. The gluonic ratios using the diagonal and non-
diagonal elements of EMT are shown in Fig. 8. For both
cases the plateau values, obtained by fitting in the range
tins=a ∈ ½3; ts − 3� for each ts, show convergence and
agreement with the results extracted using the summation
method. Thus, we use the plateau values for ts ≳ 1 fm to
perform a weighted average finding a value which is in
agreement with the summation method. The values
extracted when using the diagonal and off-diagonal
EMT are in agreement. Given that the results using the
off-diagonal elements EMTare more accurate, our value for
hxigB is determined from the matrix element of the off-
diagonal elements of EMT. We find

hxigB ¼ 0.407ð54Þ ð34Þ

FIG. 8. Excited state analysis for determining the gluon average momentum fraction hxigB. In the upper panel we show hxigB extracted
using Eq. (24) and in the lower panel using Eq. (25). In both cases we use stout smearing with nS ¼ 10 steps. The notation is the same as
that in Fig. 6. We show results for ts=a ¼ 6, 8, 10, 12, 14, 16, 18 with blue circles, orange down triangles, green up triangles, red left
triangles, purple right triangles, brown rhombus, and magenta crosses, respectively.

C. ALEXANDROU et al. PHYS. REV. D 101, 094513 (2020)

094513-10



for nS ¼ 10 stout smearing steps. We note that for the
disconnected quantities there is no clear signal for con-
tamination of excited states within the relatively large
statistical errors, as can be seen in, e.g., Fig. 6, 7, and 8.
Therefore, two-state fits are omitted.
By performing the same analysis for different steps of

stout smearing we can investigate the dependence on the
smearing steps nS. In Fig. 9 we show the dependence of the

extracted value of hxigB on the number of stout smearing
steps when using both the diagonal and the off-diagonal
elements of EMT. As can be seen, the errors decrease as nS
increases and the values converge when nS ≳ 8. This means
that the renormalization functions should also converge
for nS ≳ 8, since the renormalized matrix element should be
independent of the stout smearing. Details about the
renormalization will be provided in Sec. V.

B. B20 at zero momentum transfer

As already discussed in connection to Eq. (10), direct
access to B20ð0Þ is not possible due to the vanishing of the
kinematical factor in front of B20ðQ2Þ. Therefore, one
needs to compute B20ðQ2Þ for finite Q2 and extrapolate to
Q2 ¼ 0 using a fit Ansatz. In order to accomplish this,
one has to isolate from the other two GFFs appearing in
the decomposition of Eq. (10). We thus need to compute
the three-point function of the one-derivative vector oper-
ator for finite momentum transfer using both unpolarized
and polarized projectors and for both diagonal and off-
diagonal elements of the traceless EMT.
To isolate B20ðQ2Þ from A20ðQ2Þ andC20ðQ2Þ one has to

first minimize

χ2 ¼
X
ρ;μ;ν

X
p⃗0;p⃗∈Q2

�
GμνðΓρ; p⃗0; p⃗ÞFðQ2; ts; tinsÞ − RμνðΓρ; p⃗0; p⃗; ts; tinsÞ

wμνðΓρ; p⃗0; p⃗; ts; tinsÞ
�
2

; ð35Þ

where R is the ratio of Eq. (16) and w its statistical error.
The kinematical coefficients G are defined in the Appendix.
The three form factors are the components of

FðQ2; ts; tinsÞ ¼

0
B@

A20ðQ2; ts; tinsÞ
B20ðQ2; ts; tinsÞ
C20ðQ2; ts; tinsÞ

1
CA: ð36Þ

The time dependence ts; tins appears due to contributions
from excited states that will be analyzed using the methods
discussed in Sec. III C. In the following discussion we
suppress the time dependence for simplicity. As discussed,
one can extract the form factors by minimizing the χ2 in
Eq. (35) or alternatively show that it is equivalent to

F ¼ V†Σ−1U†R̃; ð37Þ

where

R̃μνðΓρ; p⃗0; p⃗Þ≡ ½wμνðΓρ; p⃗0; p⃗Þ�−1RμνðΓρ; p⃗0; p⃗Þ;
G̃μνðΓρ; p⃗0; p⃗Þ≡ ½wμνðΓρ; p⃗0; p⃗Þ�−1GμνðΓρ; p⃗0; p⃗Þ; and

G̃ ¼ UΣV; ð38Þ

where we compute the singular value decomposition (SVD)
of G̃ in the last line. U is a Hermitian N × N matrix with N
being the number of combinations of μ, ν, ρ and compo-
nents of p⃗0, p⃗ that contribute to the same Q2. V is a
Hermitian 3 × 3 matrix since we have three GFFs. Typi-
cally, N ≫ 3 for finite momenta. Σ is the pseudodiagonal
N × 3 matrix of the singular values of G̃. In the following
we use the latter approach since no explicit minimization is
needed.
After extracting B20;BðQ2; ts; tinsÞ using the SVD method

we investigate its dependence on ts and tins following the
same procedure as for the average momentum fraction. In
Fig. 10 we present the analysis for the connected contri-

bution to the bare isoscalar Buþþdþ
20;B for two representative

values of the momentum transfer. As for the case of the
connected contributions to the isoscalar average momen-
tum fraction, we observe large effects from excited states.
As ts increases, the value changes from negative to positive.
Two-state fits yield consistent results as we increase tlows .
The value extracted from the two-state fit for tlows =a ¼ 8 is
in agreement with the value determined using the summa-
tion method for tlows ≥ 1.12 fm, and we thus select it as our
final value.

FIG. 9. Bare results for hxigB as a function of the number of stout
smearing steps. Red squares show results extracted using
Eq. (25), and blue circles show results extracted using
Eq. (24). The open symbol shows the selected value given in
Eq. (34) with its associated error band.
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In Fig. 11 we show results for the connected bare GFF
Buþþdþ
20;B ðQ2Þ as a function of Q2 up to 1 GeV2. As can be

seen, the Q2 behavior is relatively flat for small values of
Q2. In order to extrapolate to zero momentum we use a
dipole form

B20;BðQ2Þ ¼ B20;Bð0Þ
ð1þ Q2

M2Þ2
ð39Þ

supported by the quark-soliton model in the large Nc-limit
for Q2 ≤ 1 GeV2 [70], where M is the mass of the dipole.

Since we are interested in fitting the small Q2 dependence
where the GFF is flat, one can expand Eq. (39) as

B20;BðQ2Þ ¼ B20;Bð0Þ
�
1 −

2Q2

M2

�
ð40Þ

for Q2

M2 ≪ 1. In the zeroth approximation, Eq. (40) yields a
constant and in the first approximation a linear function of
Q2

M2. In Fig. 11 we show the fits to both a constant and linear
forms up to Q2 ¼ 0.4 GeV2. As can be seen, both constant
and linear fits are in agreement, confirming that theQ2=M2

is negligible. We also perform a constant fit extending the
upper fit range to Q2 ¼ 1 GeV2 and find the consistency
between the results using a constant and a linear fit for up to
Q2 ¼ 0.4 GeV2. We take as our value the one extracted
from a constant fit limiting the fit range to Q2 ¼ 0.4 GeV2,
to obtain for the connected isoscalar

Buþþdþ
20;B ð0ÞðConn.Þ ¼ 0.018ð25Þð2Þ; ð41Þ

where the first error is statistical and the second a
systematic extracted by taking the difference between
the mean values of the result from the constant fits when
we use Q2 ¼ 0.4 GeV2 and Q2 ¼ 1 GeV2.
While determining the connected B20ð0Þ is more difficult

than A20ð0Þ since we need to extrapolate to Q2 ¼ 0, the
extraction of the disconnected contributions are very
challenging and require the improvements presented in
this paper to make it possible to compute them to sufficient
accuracy, for the first time, at the physical point. We discuss
below the analysis of the disconnected light and strange

FIG. 10. Excited state analysis for determining the connected contribution to bare Buþþdþ
20;B ðQ2Þ for Q2 ¼ 0.32 GeV2 (top) and

Q2 ¼ 0.60 GeV2 (bottom). The notation is the same as that in Fig. 4.

FIG. 11. The connected bare Buþþdþ
20;B ðQ2Þ as a function of Q2.

The red (blue) band is the result of a constant (linear) fit up to
Q2 ¼ 0.4 GeV2, and the green constant fit up to Q2 ¼ 1 GeV2.
The linear lit taking Q2 ¼ 1 GeV is omitted for clarity since it
coincides with the constant fit. The open symbols are the
extrapolated values at Q2 ¼ 0 with the corresponding colors.
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quark contributions to B20;BðQ2Þ following the same
procedure as that for the connected. In Fig. 12 we show
the results for quark disconnected as a function of Q2.
Although the results are rather noisy for both quark flavors
we can fit the Q2-dependence to the form of Eq. (39). We
find for the disconnected isoscalar

Buþþdþ
20;B ð0ÞðDiscÞ ¼ −0.038ð38Þð14Þ ð42Þ

and for the strange

Bsþ
20;Bð0Þ ¼ −0.017ð18Þð9Þ: ð43Þ

We would like to stress that even if these results for the
disconnected contributions are compatible with zero, being
able to determine a value with a controllable error con-
stitutes significant progress. It enables us for the first time
to have a complete knowledge of all the contributions to the
proton spin, directly at the physical point.
The gluon GFF Bg

20;BðQ2Þ is shown in Fig. 13 as a
function of Q2, and the value extracted using a constant
fit is

Bg
20;Bð0Þ ¼ −0.049ð40Þð19Þ: ð44Þ

In Table IV we tabulate our values on the bare results for
hxi and B20ð0Þ.

V. RENORMALIZATION

One of the main ingredients of this work is the
renormalization of the quark and gluon parts of the
EMT of Eqs. (4) and (3). The renormalization of each
part requires a dedicated calculation, and in this section we
classify them in multiplicative renormalization functions
(Zqq, Zgg) and mixing coefficients (Zqg, Zgq). The latter are
needed to disentangle the quark and gluon momentum
fractions from the bare matrix element of the operators of
Eqs. (3) and (4). Therefore, a 2 × 2 mixing matrix needs to
be constructed for the proper renormalization procedure
that renormalizes the momentum fractions given by

FIG. 12. Disconnected contributions to Buþþdþ
20;B ðQ2Þ in the top

panel and strange contributions to Bsþ
20;BðQ2Þ in the bottom panel

with notation as in Fig. 11. Results are extracted using the plateau
method for a small separation ts=a ¼ 6.

TABLE IV. Bare results for the momentum fraction hxi ¼ A20ð0Þ and B20ð0Þ for the isovector, isoscalar connected, isoscalar
disconnected, strange, charm, and gluon contributions. For details on the extraction of the isovector Buþ−dþ

20;B see Ref. [51]. The second
error on B20ð0Þ is computed by taking the difference in the mean values when we use as upper fit range Q2 ¼ 0.4 GeV2 and
Q2 ¼ 1 GeV2 for the Q2 → 0 extrapolation.

uþ − dþ uþ þ dþ (Connected) uþ þ dþ (Disconnected) sþ cþ g

hxi 0.149(16) 0.350(35) 0.109(20) 0.038(10) 0.008(8) 0.407(54)
B20ð0Þ 0.130(36)(12) 0.018(25)(2) −0.038ð38Þð14Þ −0.017ð18Þð9Þ � � � −0.049ð40Þð19Þ

FIG. 13. Gluon contribution to Bg
20;B with notation as in

Fig. 11. Results are extracted using the plateau method for a
separation ts=a ¼ 10.
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hxiqþR ¼ Zqqhxiq
þ

B þ ZqghxigB; ð45Þ

hxigR ¼ ZgghxigB þ Zgqhxiq
þ

B : ð46Þ

In the above equations, hxiqþ is understood to be the flavor
singlet combination that sums the up, down, strange, and
charm quark contributions. The subscript R (B) represents
the renormalized (bare) matrix elements. We note that a
complete calculation of the 2 × 2 mixing matrix would
require the solution of a system of four coupled renorm-
alization conditions that involve vertex functions of both
gluon and quark EMT operators. In our analysis we
imposed decoupled renormalization conditions for the
nonperturbative calculation of the diagonal elements,
namely Zgg and Zqq, since the mixing coefficients Zgq

and Zqg are small as shown in Ref. [33] using the one-loop
lattice perturbation theory. Furthermore, note that gluon
and quark EMT operators also mix with gauge-variant
(GV) operators (BRST variations and operators vanishing
by the equations of motion), which have zero nucleon
matrix elements and are not considered in the renormaliza-
tion of gluon and quark momentum fractions. However, for
the calculation of the coefficients Zgg, Zgq, Zqg, and Zqq, the
mixing with GV operators cannot be neglected; the calcu-
lation of bare Green’s functions of GV operators with
elementary external fields is needed for the correct extrac-
tion of Zgg, Zgq, Zqg, and Zqq. Green’s functions of GV
operators are difficult to obtain nonperturbatively by
compact lattice simulations as they include ghost fields
and gauge-fixing terms, which are not well-defined in the
Landau gauge. Some relevant work on the nonperturbative
study of the gauge fixing and the BRST formalism in non-
Abelian gauge theories on the lattice can be found in
Refs. [71,72] (and references therein). At the perturbative
level, there is a work in progress [73], regarding two
promising approaches for the complete extraction of Zgg,
Zgq, Zqg, and Zqq that are applicable to the nonperturbative
lattice QCD studies. In short, the first one makes use of
Ward identities for the calculation of Green’s functions of
GV operators [74] and the second one suggests an alter-
native gauge-invariant renormalization scheme (GIRS) in
the spirit of Ref. [75].
In the following subsections we present the nonpertur-

bative renormalization of the quark EMT, the nonpertur-
bative renormalization of the gluon EMT, and our estimates
for the mixing coefficients as extracted from a calculation
within one-loop lattice perturbation theory [33].

A. Quark EMT renormalization

The quark EMT is renormalized nonperturbatively using
an analysis within the Rome-Southampton scheme (RI0
scheme) [76]. This is a very convenient prescription for
nonperturbative calculations and is obtained by applying
the conditions

Zq ¼
1

12
Tr½ðSLðpÞÞ−1SBornðpÞ�

����
p2¼μ2

0

; ð47Þ

Z−1
q Zqq

1

12
Tr½ΓL

qEMTðpÞðΓBorn
qEMTÞ−1ðpÞ�

����
p2¼μ2

0

¼ 1: ð48Þ

The trace in the above conditions is taken over spin and
color indices. The momentum p of the vertex functions is
set to the RI0 scale, μ0. Note that the vertex function ΓL

qEMT

is amputated in the above condition. Also, SBorn (ΓBorn
qEMT) is

the tree-level value of the quark propagator (quark oper-
ator). We employ the momentum source method introduced
in Ref. [77], which offers high statistical accuracy using a
small number of gauge configurations as demonstrated for
twisted mass fermions in Refs. [78–80]. Discretization
effects and other systematic uncertainties in the renormal-
ization functions (Z factors) can be amplified based on the
choice of the momentum. A way around this problem is
the use of momenta with equal spatial components. The
temporal component is then chosen such that the ratio P4≡P

i p
4
i =ð

P
i p

2
i Þ2 is less than 0.3 [81]. Such a ratio is

relevant to Lorentz noninvariant contributions present in
perturbative calculations of Green’s functions beyond
leading order in a [82]. Therefore, a large value of P4
would indicate large finite-a effects in the nonperturbative
estimates too. The momenta employed in this work for the
quark EMT are of the form

ap≡2π

�
nt
T=a

;
nx
L=a

;
nx
L=a

;
nx
L=a

�
; nt∈ ½2;10�; nx∈ ½2;5�;

ð49Þ

taking all combinations of nt and nx that satisfy P4 < 0.3
and 1 ≤ ðapÞ2 ≤ 7. T and L are the temporal and spatial
extent of the lattice, and correspond to T=a ¼ 48, L=a ¼
24 for the Nf ¼ 4 ensembles that are generated specifically
for the renormalization program at the same coupling
constant as the cB211.072.64 ensemble.
An important aspect of our renormalization program is

the improvement of the nonperturbative estimates by
subtracting finite-a effects [80,83], calculated to one-loop
in lattice perturbation theory and to all orders in the lattice
spacing, Oðg2a∞Þ. Note that the dimensionless quantity
appearing in the perturbative expressions is ap (for mass-
less fermions).
Zqq has two components depending on the indices of the

operator defined in Eq. (4). Zqq1 corresponds to the quark
EMT operator with μ ¼ ν, while Zqq2 to μ ≠ ν. Zqq1 and
Zqq2 renormalize the bare matrix elements of the quark
EMT operator obtained with the same constraints on the
external indices. Thus, in our work we use Zqq1 for the
connected contribution and Zqq2 for the disconnected ones,
as described in Sec. IVA.

C. ALEXANDROU et al. PHYS. REV. D 101, 094513 (2020)

094513-14



For the proper extraction of Zqq we use five Nf ¼ 4
ensembles at different pion masses reproducing a β value of
1.778 to match the Nf ¼ 2þ 1þ 1 ensemble on which the
bare matrix elements have been calculated. The Nf ¼ 4

ensembles correspond to a pion mass that ranges between
350 and 520 MeV, allowing one to take the chiral limit.
More details on the Nf ¼ 4 ensembles can be found in
Ref. [51]. The chiral extrapolation is performed using a
quadratic fit with respect to the pion mass of the form

Z̄RI0 ðμ0Þ þ z̄RI
0 ðμ0Þ ·m2

π; ð50Þ
where Z̄RI0 and z̄RI

0
depend on the scheme and the scale.

The pion mass dependence of ZRI0
qq1 is found to be very mild,

as demonstrated in Fig. 14 where we show the data from the
five ensembles for a representative renormalization scale
ðaμ0Þ2 ¼ 2. The same conclusions hold for Zqq2.
Once the chiral extrapolation is performed, we apply the

subtraction of artifacts calculated in one-loop lattice per-
turbation theory. This subtraction procedure leads to
improved estimates, as it significantly reduces discretiza-
tion effects. The next step is the conversion to the MS
scheme, which is commonly used to compare to exper-
imental and phenomenological values. The conversion
procedure is applied on the Z factors obtained on each
initial RI0 scale ðaμ0Þ, with a simultaneous evolution to a
MS scale, chosen to be μ̄ ¼ 2 GeV. Assuming the absence
of mixing, the conversion and evolution use the intermedi-
ate renormalization group invariant (RGI) scheme, which is
scale independent and relates the Z factors between the two
schemes:

ZRGI
qq ¼ ZRI0

qq ðμ0ÞΔZRI0
qq ðμ0Þ

¼ ZMS
qq ð2 GeVÞΔZMS

qq ð2 GeVÞ: ð51Þ
Therefore, the appropriate factor to multiply ZRI0

qq is [84]

CRI0;MS
qq ðμ0; 2 GeVÞ≡ ZMS

qq ð2 GeVÞ
ZRI0
qq ðμ0Þ

¼ ΔZRI0
qq ðμ0Þ

ΔZMS
qq ð2 GeVÞ

:

ð52Þ

The quantity ΔZS
qqðμ0Þ is expressed in terms of the β

function and the anomalous dimension γSqq ≡ γS of the
operator

ΔZS
qqðμÞ ¼

�
2β0

gSðμÞ2
16π2

�− γ0
2β0

× exp
�Z

gSðμÞ

0

dg0
�
γSðg0Þ
βSðg0Þ þ

γ0
β0g0

�	
; ð53Þ

and may be expanded to all orders of the coupling constant.
The expression for the quark EMT operator is known to
three-loops in perturbation theory and can be found in
Ref. [80] and references therein.
The conversion and evolution is followed by a fit to

eliminate the residual dependence on aμ0 using the Ansatz

Z̄qqðaμ0Þ ¼ Zqq þ zqq · ðaμ0Þ2: ð54Þ

For both Zqq1 and Zqq2 we distinguish between the
singlet and the nonsinglet cases, which is necessary for the
proper renormalization and the flavor decomposition pre-
sented in Sec. VI. Their difference is known to be very
small as it first appears in two-loop perturbation theory
[85]. Here, we calculate also the singlet renormalization
function nonperturbatively, which requires both connected
and disconnected contributions to the vertex functions.
In the upper panel of Fig. 15 we plot the nonsinglet

values of Z̄MS
qq1 (at 2 GeV) with and without the subtraction

of the corresponding Oðg2a∞Þ contributions. We also

FIG. 14. ZRI0
qq1 at a scale ðaμ0Þ2 ¼ 2, as a function of the pion

mass squared in lattice units. The dashed lines correspond to the
chiral extrapolation using Eq. (50) leading to a value shown with
an open circle in the chiral limit (Z̄RI0

qq1).

FIG. 15. Z̄MS
qq1 (top) and Z̄

MS
qq2 (bottom) as a function of the initial

RI0 scale ðaμ0Þ2. The purely nonperturbative data are shown with
green crosses, and the improved estimates after the subtraction of
Oðg2a∞Þ terms are shown with red circles. The blue squares
show results of the singlet case after substraction of lattice
artifacts. The dashed lines show the fit using Eq. (54), and the
extrapolated values with an open symbol.
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include the singlet Z̄ðsÞ;MS
qq1 , after subtraction of theOðg2a∞Þ

terms. We find that the singlet and nonsinglet renormaliza-
tion functions are compatible within uncertainties, with the
singlet being more noisy, due to the inclusion of the
disconnected contributions. In the lower panel of Fig. 15

we show the corresponding quantities for Z̄MS
qq2. While the

singlet one has large uncertainties in this case too, it is

smaller than the statistical errors of Z̄ðsÞ;MS
qq1 . In both cases

we have subtracted the vacuum expectation value.
We find that the subtraction procedure significantly

improves the data, leading to a smaller dependence on
the initial scale ðaμ0Þ2. As can be seen from the plot, the
Oðg2a∞Þ terms capture a large part of the discretization
effects. The subtraction of finite-a terms from the non-

perturbative estimates of ZMS
qq1 (as well as Z

MS
qq2) reduces the

slope with respect to ðaμ0Þ2, between momenta with
the same nx value and different nt. As an example,
let us consider the class of momenta with nx ¼ 3

(ðaμ0Þ2 ∈ ½2 − 3.1�Þ. The fit of Eq. (54) as applied on
the unimproved and improved data leads to zunsubqq1 ¼
0.0133ð4Þ and zsubqq1 ¼ 0.0017ð4Þ, respectively. As can be
seen, the slope in the improved data reduces by an order of
magnitude, making it negligible for the values of ðaμ0Þ2
considered in this work.
The final estimates for Zqq1 and Zqq2 are determined

using the fit interval ðaμ0Þ2ϵ½2 − 7�, and we obtain the
following values employing the subtracted data

ZMS
qq1 ¼ 1.151ð1Þð4Þ; ð55Þ

ZMS
qq2 ¼ 1.160ð1Þð3Þ: ð56Þ

The numbers in the first and second parentheses correspond
to the statistical and systematic uncertainties, respectively.
The source of systematic error is related to the ðaμ0Þ2 → 0
extrapolation and is obtained by varying the lower
[ðaμ0Þ2 ¼ 2] and higher [ðaμ0Þ2 ¼ 7] fit ranges and taking
the largest deviation as the systematic error.
We emphasize that the procedure of improving the Z

factors utilizing lattice perturbation theory has an important
implication on the spin and momentum decomposition: the
use of the unimproved Z factors would underestimate both
the intrinsic spin and the quark momentum fraction by 5%.

B. Gluon EMT renormalization

Similar to the case of the quark EMT, we renormalize the
gluon EMT nonperturbatively. This is a crucial improve-
ment compared to our previous work [26,33] in which we
used Zgg from one-loop perturbation theory. The renorm-
alization condition for Zgg involves the gluon-field renorm-
alization function Zg, which in the RI scheme reads

Zg ¼
N2

c − 1

2

3=p̂2P
ρhTr½AρðpÞAρð−pÞ�i

����
p2¼μ2

0

; ð57Þ

Zgg2 ¼
N2

c − 1

2Zg

ð2p̂4p̂iÞ=ðp̂2Þ2
hTr½AρðpÞT̄4i;gAρð−pÞ�i

����
ρ≠i≠4;

pρ¼0;pi¼μi
0

: ð58Þ

In the above equations Nc is the number of colors and
ap̂j ¼ 2 sin ðapj=2Þ. The color factor ðN2

c − 1Þ=2 comes
from the trace over color indices in the tree-level expres-
sions. The gluon fields on the lattice are computed as

AρðpÞ ¼ a4
X
x

eþip·ðxþρ̂=2Þ
��

UρðxÞ −U†
ρðxÞ

2iag0

�
− ðTraceÞ

�
;

ð59Þ

and the gluon propagator in momentum space is given as
hAρðpÞAρð−pÞi in the ρ direction. The numerator 3=p̂2 of
Eq. (57) is the tree-level expression for the gluon propa-
gator in the Landau gauge, in which the Lorentz indices
have been set equal to each other and are summed over.
Similarly, ð2p̂4p̂iÞ=ðp̂2Þ2 in Eq. (58) is the nonamputated
tree-level value corresponding to the gluon EMT in the
Landau gauge. In this study we focus on the T̄4i

g case, since
as shown in Fig. 9 it is significantly more precise.
This setup justifies the presence of Z−1

g in Eq. (58),
instead of Zþ1

g . For simplicity in the notation, the depend-
ence of Zg and Zgg on the RI scale μ0 is implied. Unlike the
case of Zqq, here we use nonamputated vertex functions for
the gluon EMT. Such a choice is desirable, as the 4 × 4
matrix of the gluon propagator in the Landau gauge is not
invertible.
The definition of Zg given in Eq. (57) is convenient, as

there is a sum over the Lorentz indices of the gluon fields.
While a similar condition could be imposed on Zgg, we do
not sum over ρ in Eq. (58). Instead we choose the index ρ to
be different from the Lorentz indices of the operator (4 and
i). This has the advantage that any mixing with other gluon
operators [74] vanishes automatically, at least to one-
loop level.
We also explore an alternative definition of Zgg as

proposed in Ref. [34]. In such a condition for Zg there
is no summation over ρ, which is set equal to the ρ index of
the external gluon fields in Eq. (58), and has the constraint
pρ ¼ 0. Therefore, it is convenient to eliminate Zg from
Eq. (58), obtaining

Zgg2 ¼
2p̂4p̂ihAρðpÞAρð−pÞi
p̂2hAρðpÞT4i

g Aρð−pÞi
����
ρ≠i≠4;pρ¼0;pi¼μi

0

: ð60Þ

One major difference in the calculation of Zgg as
compared to Zqq is the need to reduce the high noise-
to-signal ratio appearing in the calculation of gluonic
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quantities. To this end, some equivalent renormalization
prescriptions have been proposed to reduce the statistical
uncertainties. In the discussion that follows we will inves-
tigate three methods for the extraction of Zgg. Note that for
zero stout steps, nS ¼ 0, all these methods reduce to the
same equation.
Method 1: Application of stout smearing only on the

operator T̄4i
g in Eq. (60), while the external gluon fields

remain unsmeared.
Method 2: Application of stout smearing in both the

operator and the external gluon fields of Eq. (60) as
suggested in Ref. [32]. Since our action is not smeared,
one would need to apply reweighting in the calculation of
both the Z factors and matrix elements. We follow Ref. [32]
and assume that its effect is negligible on the renormaliza-
tion function.
Method 3: A generalization of Method 1 as suggested in

Ref. [86], in which we multiply Eq. (60) by the ratio

Rððaμ0Þ2Þ≡ fððaμ0Þ2Þ
fððaμ0Þ2 → 0Þ ; ð61Þ

where

fððaμ0Þ2Þ ¼
hTr½As

ρðpÞAs
ρð−pÞ�i

hTr½AρðpÞAρð−pÞ�i
����
p2¼μ2

0

: ð62Þ

The presence of an index s implies stout smearing with nS
steps. The multiplication of Eq. (60) by Eq. (61) leads to the
same Zgg in the ðaμ0Þ2 → 0 limit, as Rððaμ0Þ2Þ → 1 when
the above limit is taken. The same number of smearing
steps are applied on the links entering the operator T4i

g and
the gluon fields.
The vertex functions entering Eq. (60) are calculated on

oneNf ¼ 4 ensemble with β ¼ 1.778 and volume 123 × 24
with a pion mass of 350 MeV. While the Z factors are
defined in the massless limit, the use of a single ensemble is
sufficient given the negligible pion mass dependence
observed for the quark case shown in Fig. 14, where the
results are very precise. Focusing on a single ensemble
allows one to reach higher statistics. As a purely gluonic
quantity it is susceptible to large gauge fluctuations, and
therefore about 31,000 configurations are analyzed to
reduce the noise.
In contrast to the quark case, the momenta for the vertex

functions cannot have the same spatial components, due to
the constraint pρ ¼ 0 in the renormalization condition.
Consequently, the value of P4 is larger than 0.35 for such
momenta. We calculate Zgg for momenta satisfying
P4 < 0.4, and within the range 1 ≤ ðaμ0Þ2 ≤ 4. The con-
version factor is calculated to one-loop in dimensional
regularization using the main results of Ref. [33]. Note that
the conversion factor must be obtained for nonamputated
Green’s functions, to match the scheme of Eq. (60). In the
Landau gauge we find

CRI;MS
gg ðμ0; μ̄Þ ¼ 1þ g2

16π2

�
5Nc

12
−
2Nf

3

�
5

3
þ log

�
μ̄2

μ20

���
;

ð63Þ

which must multiply ZRI
gg. In the expression above, μ̄ is the

renormalization scale in the MS scheme and μ0 in the RI
scheme, as defined previously. This conversion factor is
consistent with the expression of Ref. [86], with the only
difference a global minus sign in the one-loop expression,
due to a different definition.
We obtain Zgg in the MS scheme evolving the values

from every scale ðaμ0Þ, and therefore, we must eliminate
any residual dependence on ðaμ0Þ by taking the limit
ðaμ0Þ2 → 0. While such a fit is linear in Zqq where
democratic momenta can be used, here the residual
dependence on ðaμ0Þ2 may be polynomial. We identify
two sources for this behavior: i. Truncation effects in the
conversion factor Cgg, which is only known to one-loop
order; ii. finite-a effects due to pρ ¼ 0, making it unreliable
to go to high ðaμ0Þ2 values. The latter effect can be reduced
by a similar subtraction of finite-a effects as in the case of
Zqq. Since these have not yet been calculated, we cannot
make the subtraction in the current data.

1. Method 1

The most straightforward and conceptually concrete
method to extract Zgg is to use Eq. (60) with stout smearing
applied only on the gauge links of the operator T̄4i

g . In

Fig. 16 we show ðZMS
gg2Þ−1 as a function of the initial scale

FIG. 16. The inverse Zgg2 in the MS as a function of the initial
RI scale ðaμ0Þ2, using Method 1. From top to bottom the plots
show three cases for the number of stout smearing steps, namely
nS ¼ ð3; 5; 10Þ with (green filled triangles,blue filled squares, red
filled circles). The extrapolated values in the ðaμ0Þ2 → 0 limit are
given with open symbols.
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squared for various smearing steps. As we increase the
number of stout steps, the ðaμ0Þ2 → 0 fit requires a higher
degree polynomial to capture the proper ðaμ0Þ2 dependence
since more smearing alters the discretization effects
between the numerator and denominator in Eq. (60). For
the examples shown in Fig. 16 we use a polynomial of
second degree with respect to ðaμ0Þ2 for three and five
steps, and third degree for ten steps of stout smearing. We

observe that the value of ðZMS
gg2Þ−1 increases (ZMS

gg2 decreases)
with the stout steps, which is expected, as the value of the
bare matrix elements increases with the stout steps. As will
be discussed later, we find that the renormalized matrix
element is independent of the number of stout steps
(see Fig. 21).

2. Method 2

The difference between Method 1 and Method 2 is the
use of stout smearing on the gauge links used to construct
the gluon fields entering Eq. (60). As already mentioned,
this would need reweighting. This was assumed to be
negligible in Ref. [32], and we also neglect it here. In
Fig. 17 we show ZMS

gg from Method 2 for a selected number
of stout steps including zero steps, the same for all three
methods. Without smearing there is no noticeable depend-
ence on the scale ðaμ0Þ2 allowing us to fit to a constant
while as increasing the number of steps the dependence
becomes linear. We note that smearing also the gluon
field provides a better correlation with the operator for
higher momenta allowing us to investigate up to
ðaμ0Þ2 ¼ 7. It is worth mentioning that while there is a
big jump on the extrapolated value between nS ¼ 0 and
nS ¼ 5, between nS ¼ 5 and nS ¼ 10 the difference is
relatively small.

3. Method 3

This method is more involved since one has to compute
first Eq. (62) and extrapolate to ðaμ0Þ2 → 0. In Fig. 18 we
show the ratio of smeared to unsmeared gluon propagators.
Note that this ratio does not alter the conversion factor for
Zgg. As we increase the number of smearing steps, the
discretization effects between the numerator and the
denominator change, not canceling in the ratio leading
to a more curved behavior. We fit the results up to a forth
order polynomial since the gluon propagators alone are

very precise. In Fig. 19 we show the ZMS
gg when Eq. (61)

multiplies Eq. (60). The resulting behavior is fitted to a

FIG. 17. ZMS
gg2 using Method 2 with the same notation as in

Fig. 16. From top to bottom we show results for nS ¼ ð0; 5; 10Þ.

FIG. 18. The ratio of Eq. (62) as a function of the initial RI scale
ðaμ0Þ2 for stout smearing steps, nS ¼ ð1; 3; 5Þ with (green
triangles, blue squares, and red circles). The extrapolated values
in the ðaμ0Þ2 → 0 limit are given with open symbols.

FIG. 19. ZMS
gg using Method 3 with notation as in Fig. 16 with

number of stout smearing steps nS ¼ ð1; 3; 5Þ from top to bottom.
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constant since most of the systematics are canceled when
multiplying with Eq. (61).
It is interesting to compare the final extrapolated values

of ZMS
gg2 among the three methods. The results from each

method should agree since they renormalize the same bare
matrix elements. Such a comparison will give an indication
of additional discretization effects, which might remain
after the ðaμ0Þ2 → 0 extrapolation, as well as on the
assumption that reweighting can be neglected in Method
2. The final estimates are plotted in Fig. 20 as a function of
the stout steps, nS. We find that all three methods are overall
compatible as a function of the number of stout smearing

steps. It is worth mentioning that the ZMS
gg2 has a strong

dependence on nS going from zero steps up to five steps,
whereas increasing further the steps the Z factor does not
change significantly. In Fig. 9 we demonstrated that the
bare matrix element shows an increase from zero steps up
to 12 steps, albeit large errors for a small number of steps,
tending to converge after ten steps.
One important consistency check for the calculation of

Zgg is the comparison of the renormalized matrix elements
between different methods, which is demonstrated in
Fig. 21. For simplicity, we neglect the mixing for this
discussion. Such mixing is found to be very small (see
Sec. V C) and, thus, does not alter the main conclusions of
Fig. 21. The multiplication of the bare matrix element hxig

by ZMS
gg2 is shown in Fig. 21 for the three methods

investigated. As can be seen, the three methods yield
compatible results for all stout steps. While the stout
smearing does not alter the values of the renormalized
matrix element, it has the advantage that it reduces the
gauge fluctuations. The chosen value for Zgg in the MS
scheme at 2 GeV is obtained at ten stout steps usingMethod
1 as shown in Fig. 21.

ZMS
gg2 ¼ 1.08ð17Þð3Þ; ð64Þ

which is a conservative choice as it has the largest statistical
uncertainty compared to the other methods (see Fig. 20). A
systematic has been added by varying the highest point in
the polynomial fit from 4 to 3.5 of the initial RI scale
ðaμ0Þ2. The value above will be used in the 2 × 2
renormalization of the bare values given in Table IV.

C. Mixing between fermion and gluon operators

The renormalization of the quark and gluon EMT is more
complicated as compared to other operators studied within
hadron structure (e.g., intrinsic spin). This is due to their
mixing, resulting in a 2 × 2 matrix necessary for the
appropriate renormalization, as given in Eqs. (45) and
(46). In fact, the mixing pattern of the gluon operator of
Eq. (3) is more complicated, as it includes other operators
such as Becchi-Rouet-Stora-Tyutin (BRST) variations or
operators that vanish by the gluon equations of motion [87].
However, such operators do not contribute to matrix
elements between physical states.
All coefficients Zqq; Zqg; Zgg; Zgq of the mixing matrix

can be obtained within lattice perturbation theory, follow-
ing the procedure of our previous work on the gluon EMT
[33]. In particular, to the one-loop level, one needs to
calculate the diagrams of Fig. 22.
Here we are interested in the extraction of Zgq and Zqg

from our perturbative calculation, as Zgg and Zqq are
computed nonperturbatively. In the calculation within
perturbation theory we use up to two steps of stout
smearing for the gluon EMT. This limitation is posed by
the fast increase of algebraic expressions (millions of
terms), for a higher number of stout steps. We find that
the polynomial nature of the perturbative renormalization
functions with respect to the stout parameter leads to a
convergence at a small number of stout steps. This has been
confirmed in other calculations with stout smearing
[33,88]. Using the lattice spacing and coupling constant
of the ensemble under study we extract the mixing
coefficients:

ZMS
qg1 ¼ 0.232; ð65Þ

ZMS
qg2 ¼ 0.083; ð66Þ

ZMS
gq1 ¼ −0.027: ð67Þ

FIG. 21. The renormalized gluon average momentum fraction
computed from T̄4i;g using the three methods described in the
main text. The selected method and value is given with the open
symbol and the corresponding green horizontal band.

FIG. 20. ZMS
gg2 as a function of the number of stout smearing steps,

for the three methods described in the text. For nS ¼ 0 all three
methods reduce to the same method given with the black cross.
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VI. RESULTS

In this section we give the renormalized matrix elements,
by combining the bare matrix elements extracted in Sec. IV
and the renormalization factors in Sec. V yielding our
physical results. The renormalized results are obtained from
the expressions

Xqþ
R ¼ ZqqX

qþ
B þ δZqq

Nf

X
q¼u;d;s;c

Xqþ
B þ Zqg

Nf
Xg
B; ð68Þ

Xg
R ¼ ZggX

g
B þ Zgq

X
q¼u;d;s;c

Xqþ
B ; ð69Þ

where X ¼ hxi, J, and δZqq the difference between singlet
and nonsinglet Zqq and Nf ¼ 4 since we have four flavors
in the sea. In order to fully decompose the quark flavors we
use the corresponding isovector results from Refs. [25,51],
which are also given in Table VI for completeness.
In Fig. 23 we show our results for the proton average

momentum fraction for the up, down, strange, and charm
quarks, for the gluons as well as their sum. The up quark is

the largest quark contribution, namely about 35%, twice
bigger than the down quark. The strange quark contributes
significantly smaller, namely about 5%, and the charm is
restricted to about 2%. The gluon has a significant con-
tribution of about 45%. Summing all the contributions
results in

P
q¼u;d;s;chxiq

þ
R þ hxigR ¼ 104.5ð11.8Þ%, con-

firming the expected momentum sum. Figure 23 also
demonstrates that disconnected contributions are crucial
and if excluded would result in a significant underestima-
tion of the momentum sum.
The individual contributions to the proton spin are

presented in Fig. 24 as extracted from Eq. (11). The major
contribution comes from the up quark amounting to about
40% of the proton spin. The down, strange, and charm
quarks have relatively smaller contributions. All quark
flavors together constitute about 60% of the proton spin.
The gluon contribution is significant, namely about 40% of
the proton spin, providing the missing piece to obtain in
total 94.6(14.2)(2.8)% of the proton spin.
The

P
q¼u;d;s B

qþ
20 ð0Þ þ Bg

20ð0Þ is expected to vanish in
order to respect the momentum and spin sums, as pointed
out by Eq. (11). We find for the renormalized values that

X
q¼u;d;s

Bqþ
20;Rð0Þ þ Bg

20;Rð0Þ ¼ −0.099ð91Þð28Þ; ð70Þ

which is indeed compatible with zero within errors.

(a)

(b)

(c)

(d)

FIG. 22. One-loop diagrams contributing to Zqq; Zqg; Zgg; Zgq.
Diagrams (a) and (b) have an insertion of the quark operator of
Eq. (4) (filled square) and external quark (solid lines) and gluon
(wavy lines) fields, respectively. Diagrams (c) and (d) have an
insertion of the gluon operator of Eq. (3) (filled circle) and
external gluon and quark fields, respectively.

FIG. 23. The decomposition of the proton average momentum
fraction hxi. We show the contribution of the up (red bar), down
(green bar), strange (blue bar), charm (orange bar), quarks and
their sum (purple bar), gluon (cyan bar), and total sum (grey bar).
Note that what is shown is the contribution of both the quarks and
antiquarks (qþ ¼ qþ q̄). Whenever two overlapping bars appear,
the inner bar denotes the purely connected contribution while the
outer one is the total contribution which includes the discon-
nected, also taking into account the mixing. The error bars for the
former are omitted while for the latter they are shown explicitly
on the bars. The percentages written in the figure are for the total
contribution. The dashed horizontal line is the momentum sum.
Results are given in the MS scheme at 2 GeV.
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Since the quark contribution to the proton spin is
computed, it is interesting to see how much comes from
the intrinsic quark spin. In Fig. 25 we show our results for
1
2
ΔΣqþ ¼ 1

2
gq

þ
A . These are taken from Ref. [25] and

included in Table V for easy reference. The up quark
has a large contribution, up to about 85% of the proton
intrinsic spin. The down quark contributes about half
compared to the up and with opposite sign. The strange
and charm quarks also contribute negatively with the latter

being about five times smaller than the former giving a 1%
contribution. The total 1

2
ΔΣqþ is in agreement with the

upper bound from COMPASS [89].
Having both the quark angular momentum and the quark

intrinsic spin allows us to extract the orbital angular momen-
tum using Eq. (12). For a direct calculation using transverse
momentum distributions (TMDs) see Ref. [90]. Our results
are shown in Fig. 26. The orbital angular momentum of the
up quark is negative, reducing the total angular momentum
contribution of the up quark to the proton spin. The con-
tributionof the downquark to the orbital angularmomentum is
positive, almost canceling the negative intrinsic spin contri-
bution resulting in a relatively small positive contribution to
the spin of the proton.
Our final values for each quark flavor and gluon con-

tribution to the intrinsic spin, angular momentum, orbital
angular momentum, and momentum fraction of the proton
are summarized in Table V.

FIG. 24. The decomposition of the proton spin J. The color
notation of the bars is as in Fig. 23. The second error quoted on
the percentages is the systematic error from the Q2 extrapolation
needed in the determination of B20ð0Þ. The dashed horizontal line
indicates the observed proton spin value, and the percentage is
given relative to the total proton spin. Results are given in the MS
scheme at 2 GeV.

FIG. 25. Results for the intrinsic quark spin 1
2
ΔΣ contributions

to the proton spin decomposed into up (red bar), down (green
bar), strange (blue bar), and charm (orange bar). The total
contribution of the four flavor is also shown (grey bar) [25].
The dashed horizontal line is the observed proton spin, and the
percent numbers are given relative to it. Results in the MS scheme
are at 2 GeV.

TABLE V. Results for the proton for the average momentum
fraction hxi, the intrinsic quark spin 1

2
ΔΣ [25], the total angular

momentum J, and the orbital angular momentum L in the MS
scheme at 2 GeV. Results are given separately for the up (uþ),
down (dþ), strange (sþ), charm (cþ), and gluons (g) where for the
quarks results include the antiquarks’ contribution. The sum over
quarks and gluons is also given as Tot.

hxi J 1
2
ΔΣ L

uþ 0.359(30) 0.211(22)(5) 0.432(8) −0.221ð26Þð5Þ
dþ 0.188(19) 0.050(18)(5) −0.213ð8Þ 0.262(20)(5)
sþ 0.052(12) 0.016(12)(5) −0.023ð4Þ 0.039(13)(5)
cþ 0.019(9) 0.009(5)(0) −0.005ð2Þ 0.014(10)(0)
g 0.427(92) 0.187(46)(10)

Tot. 1.045(118) 0.473(71)(14) 0.191(15) 0.094(51)(9)

FIG. 26. Orbital angular momentum L contributions to the
proton spin. The color notation is as in Fig. 25. The second error
quoted on the percentages is the systematic error from the Q2

extrapolation needed in the determination of B20ð0Þ. The dashed
horizontal line denotes the observed proton spin and the per-
centage is given relative to it. Results are given in MS at 2 GeV.
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The results given in Tables V and VI are obtained using
one ensemble of twisted mass fermions. Therefore, it is not
possible to quantitatively determine finite lattice spacing
and volume systematics. However, in Ref. [91] several
Nf ¼ 2 twisted mass fermion ensembles were analyzed
with pion masses in the range of 260 MeV to 470 MeV
and lattice spacings a ¼ 0.089, 0.070, and 0.056 fm as well
as for two different volumes. A continuum extrapolation at
a given value of the pion mass was performed. We found
negligible Oða2Þ terms yielding a flat continuum extrapo-
lation. Therefore, we expect that cutoff effects will be small
also for our current ensemble.

VII. COMPARISON WITH OTHER STUDIES

In order to evaluate the contribution of each quark flavor
to the proton spin and momentum one needs to compute the
quark-disconnected diagrams as done here. The evaluation
of these contributions is much more challenging as com-
pared to the connected ones, in particular at the physical
point. This is the main reason that most lattice QCD studies
to date have mostly computed isovector quantities for
which the aforementioned diagrams cancel. For instance,
in the case of the axial charge, which is an isovector
quantity, there are numerous studies [92], whereas for the
individual quark flavor axial charges gq

þ
A ≡ ΔΣqþ results

computed directly at the physical point are still scarce. In
order to make a comparison with other lattice QCD studies,

we include results obtained using a chiral extrapolation. We
limit ourselves to comparing results that were obtained
having at least one ensemble with close to physical pion
mass, meaning below 180 MeV. Although such a chiral
extrapolation may introduce uncontrolled systematics that
are absent from the results reported here, it allows for a
comparison with published lattice QCD results on these
quantities.
We begin with 1

2
ΔΣqþ and consider the following lattice

QCD studies:
(i) The χQCD Collaboration analyzed three Nf ¼

2þ 1 gauge ensembles of domain-wall fermion
(DWF) generated by the RBC/UKQCD Collabora-
tion with pion masses 171,302, and 337 MeV and
lattice spacings of 0.143,0.111, and 0.083 fm. They
used overlap fermions in the valence sector. They
performed a combined fit in order to extrapolate to
the physical pion mass, the continuum, and infinite
volume limits [29].

(ii) The PNDME Collaboration analyzed several Nf ¼
2þ 1þ 1 gauge ensembles of highly improved
staggered quarks (HISQ) generated by the MILC
Collaboration. They used Wilson clover fermions in
the valence sector. For the connected contributions
they analyzed 11 ensembles with mπ ≃ 315, 220,
135 MeV and lattice spacings a ≃ 0.15, 0.12, 0.09,
0.06 fm. The disconnected contributions were com-
puted on a subset of these ensembles. The strange
quark contributions were computed on seven en-
sembles using all lattice spacings but only one
physical point ensemble was analyzed; the lights
disconnected were computed on six ensembles for
two values of mπ ¼ ð315; 220Þ MeV, which are not
close to the physical pion mass and thus excluded
from the comparison. They performed a combined

TABLE VI. Renormalized results of the nucleon in the MS
scheme at 2 GeV for the isovector hxi, J, and 1

2
ΔΣ.

hxi J 1
2
ΔΣ

uþ − dþ 0.171(18) 0.161(24)(7) 0.644(12)

FIG. 27. Results for 1
2
ΔΣqþ. From left to right: for uþ, dþ, sþ, and cþ quarks. Red, green, blue, and orange denote lattice QCD results,

with filled symbols being results that are computed directly at the physical point and open symbols results that were obtained after a
chiral extrapolation. The inner error bar is the statistical error and the outer one the total that includes systematic errors. In particular, red
circles show the results using the cB211.072.64 ensemble of this work and reported in Ref. [25] with the associated error band. Green
squares show ETM Collaboration results from Ref. [27]; blue upwards pointing triangles show results from χQCD [29]; and orange left
pointing triangles show results from PNDME [28]. Results from global fits of polarized PDFs are shown with black symbols and right
triangles, pentagons, diamonds, and rhombus being from NNPDFpol.1 [17], DSSV08 [11], JAM15 [93], and JAM17 [94], respectively.
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chiral and continuum limit extrapolation to extract
results at the physical point [28].

(iii) The ETM Collaboration analyzed an Nf ¼ 2
ensemble of twisted mass fermion with mπ ¼
130 MeV, a ¼ 0.094 fm, and Lmπ ¼ 3 [27].

In Fig. 27 we show a comparison of our results on the
intrinsic spin 1

2
ΔΣqþ to the aforementioned lattice QCD

studies. As can be seen, there is an agreement among
different lattice QCD analyses. In addition, we compare to
the results extracted from the global-fit analysis of polar-
ized parton distribution. The values from the analysis of the
cB211.072.64 ensemble of this work for the up and down
quarks agree very well with the phenomenological extrac-
tions. We note that the precision reached is comparable to
that of the phenomenological values. For the strange quark
contribution 1

2
ΔΣsþ lattice QCD results achieve a better

accuracy than the results extracted from global fits and
point to a smaller value as compared to those from DSSV08
[11] and JAM15 [93]. Our results for 1

2
ΔΣcþ predict a

nonzero value, showing small but nonzero charm quark
effects in the nucleon.
For the comparison of the average momentum fraction of

each quark flavor and the gluon we consider lattice QCD
results from the following groups:

(i) The χQCD Collaboration using the same gauge
ensembles as described for the case of the intrinsic
quark spin. In addition, they included in the analysis
an ensemble with mπ ¼ 139 MeV and a ¼
0.114 fm [86]. Despite the fact that a physical point
ensemble is included, a chiral extrapolation is still
performed in order to extract their value at the
physical point. In using more precise results for
heavier than physical pion mass ensembles their
result at the physical point is weighted less in the fit.
This procedure may yield better precision at the
physical point but it can also potentially introduce an

unknown systematic error due to the chiral extrapo-
lation.

(ii) The ETM Collaboration using the same setup as for
the intrinsic quark spin.

In Fig. 28 we compare the results for the average
momentum fraction for each quark flavor. The results
highlight the improvement achieved in the current analysis
as compared to the two previous direct determinations
using physical point ensembles by the ETM [26] and
χQCD [86] Collaborations. The statistical errors achieved
in this work are reduced by more than a factor of 2 for the
quark average momentum fraction. This is mostly due to
the precise determination of the disconnected quark loop
contributions mainly by employing improvements such as
the deflation of the low modes and hierarchical probing, the
details of which are given in Table III. In our previous study
we only used volume sources [26]. In the current study we
also use the off-diagonal elements of the EMT, while in the
previous study we used the diagonal ones. This allowed us
to improve further the signal-to-noise ratio in the calcu-
lation of the disconnected part of hxiqþ . An additional
factor is that for the connected contributions we use seven
time separations ts as compared to five in our previous
study. A very important element of our current study is that
we increase the statistics with increasing ts to keep the
errors approximately constant. This allows us to probe
more accurately excited states. It also allows us to use a
two-state fit instead of the plateau method used previously.
A notable outcome of our current work is the remarkable
agreement with the phenomenological extractions resolv-
ing a long standing discrepancy between lattice QCD
results and experimental determinations. Furthermore, we
note our result for the charm hxicþ ¼ 0.019ð9Þ, which
contributes about 1%–2% to the proton momentum.
This is in agreement with global fits of experimental
data [95].

FIG. 28. From left to right we show results for the nucleon average momentum fraction hxi for the up, down, and strange quark flavors
as well as for the gluon. Red circles are the results of this work with the associated error band, green squares show results from the ETM
Collaboration [26], and upwards pointing triangles are from the χQCD Collaboration [86] with filled symbols being the results obtained
directly at the physical point and open symbols using a chiral extrapolation. Results from the global fit analyses are shown in black left
and right pointing triangles, pentagons, diamonds, rhombus, and down pointing triangles from NNPDF3.1 [96], CT14 [97],
MMHT2014 [98], ABMP2016 [99], CJ15 [100], and HERAPDF2.0 [101], respectively.
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In Fig. 28 we also include a comparison of the gluon
momentum fraction where we only show lattice results with
nonperturbative renormalization, thus excluding the pre-
vious result from the ETM Collaboration [26]. We find a
value that is higher compared to our previous work [26].
The nonperturbative renormalization increases Zgg and
accounts in part for this deviation. Since the nonperturba-
tive renormalization is the correct one, our new result is the
value that should be used. There is agreement between the
result of this study and the one from the χQCD
Collaboration as well as with the phenomenological deter-
minations, which are very precise compared to the current
lattice QCD values.
For the angular momentum and orbital angular momen-

tum, the quark decomposition at the physical point has only
been computed by the ETM Collaboration [26]. We show
the comparison between these two studies in Figs. 29
and 30, respectively. The results of this work have
improved accuracy for all quark flavors for this class of
observables. Both Ju

þ
and Luþ have smaller values, while

Jd
þ
and Ldþ are in agreement with our previous results.

This can be understood as follows: Let us examine the
angular momentum first. It receives two contributions, one
from A20 ¼ hxi, which is reduced by approximately the
same amount for up and down quarks and from B20ð0Þ.
Regarding B20 in our previous work we did not include the
disconnected contribution. For the connected contribution,
more sink-source time separations are used reaching larger
separations with more accuracy. The value of Buþ

20 ð0Þ is

reduced and thus adds less to Ju
þ
decreasing it as shown in

Fig. 29. For the down quark it increases (less negative) so it
subtracts less from hxidþ , making it compatible with our
previous value. Since Luþ and Ldþ are derived from J by
subtracting the intrinsic spin as given in Eq. (12) it means
that also Luþ is more reduced. For Jg the result of this study
is the only one available with a nonperturbative renorm-
alization at the physical point.

VIII. CONCLUSIONS AND SUMMARY

This work updates the ETM Collaboration results of
Ref. [26] by making six major improvements: (i) an
analysis of an ensemble of Nf ¼ 2þ 1þ 1 of twisted
mass fermions adding dynamical strange and charm quarks
as compared to an Nf ¼ 2 ensemble; (ii) a more accurate
evaluation of the disconnected contributions yielding the
most accurate lattice QCD determination of these quantities
directly at the physical point to date; (iii) the analysis of
larger sink-source time separations at higher accuracy
eliminating more reliably excited state contributions in
dominant connected contributions; (iv) the computation of
the disconnected GFF B20ðQ2Þ needed for Jq;g; (v) the
nonperturbative evaluation of the difference between the
singlet and the nonsinglet renormalization functions for all
the relevant operators; and (vi) nonperturbative renormal-
ization of the gluon momentum fraction and angular
momentum Jg.

FIG. 29. Results for the angular momentum J for each quark flavor and the gluon. Red circles show results from this work and green
squares show results from our previous study [26]. The notation is as in Fig. 28.

FIG. 30. Results for the orbital angular momentum L for each quark flavor. The notation is as in Fig. 29.
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The major outcomes of this work are the following:
(i) The contribution of quarks to the intrinsic proton

spin is found to be 1
2

P
q¼u;d;s;cΔΣqþ ¼ 0.191ð15Þ.

This is in agreement with the upper bound of the
COMPASS value 0.13 ≤ 1

2
ΔΣ ≤ 0.18 [89]. It is

worth mentioning that our value for 1
2
ΔΣcþ ¼

−0.005ð2Þ is the most precise determination, not
only as determined from lattice QCD but also from
analyses of experimental data.

(ii) The verification of the momentum sum for the proton
computing all the contributions: hxiuþ þ hxidþ þ
hxisþ þ hxicþ þ hxig ¼ 0.359ð30Þ þ 0.188ð19Þ þ
0.052ð12Þ þ 0.019ð9Þ þ 0.427ð92Þ ¼ 1.045ð118Þ.

(iii) The full decomposition of the angular momentum of
the proton. We find for the quark angular mome-
ntum Ju

þþ Jd
þ þ Js

þ þ Jc
þ þ Jg ¼ 0.211ð22Þð5Þ þ

0.050ð18Þð5Þ þ 0.016ð12Þð5Þ þ 0.009ð5Þð0Þ þ
0.187ð46Þð10Þ ¼ 0.473ð71Þð14Þ.

(iv) The computation of the quark orbital angular mo-
mentum obtaining

P
q¼u;d;s;c L

qþ ¼ 0.094ð51Þð9Þ.
A next step of this study is to compute the mixing

coefficients discussed in Sec. V C nonperturbatively and
analyze Nf ¼ 2þ 1þ 1 physical ensembles with finer
lattice spacings and bigger volumes to perform the con-
tinuum and infinite volume extrapolations.
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APPENDIX: EXPRESSIONS FOR GFFS

The following expressions are provided in Euclidean
space. We suppress the Q2 ¼ −q2 argument of the gener-
alized form factors; EN is the nucleon energy for three-
momentum q⃗; for the case p⃗0 ¼ 0⃗, the kinematic factor
K ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m2

N=½ENðEN þmNÞ�
p

; and Latin indices (k, n, and
j) take values 1, 2, and 3 with k ≠ j while ρ takes values 1,
2, 3, and 4.

Π00ðΓ0; q⃗Þ ¼ A20K
�
−
3EN

8
−

E2
N

4mN
−
mN

8

�
þ B20K

�
−
EN

8
þ E3

N

8m2
N
þ E2

N

16mN
−
mN

16

�
þ C20K

�
EN

2
−

E3
N

2m2
N
þ E2

N

4mN
−
mN

4

�
;

ðA1Þ

Π00ðΓn; q⃗Þ ¼ 0; ðA2Þ

ΠkkðΓ0; q⃗Þ ¼ A20K
�
EN

8
þmN

8
þ q2k
4mN

�
þB20K

�
−

E2
N

16mN
þmN

16
−
q2kEN

8m2
N
þ q2k
8mN

�
þC20K

�
−

E2
N

4mN
þmN

4
þ q2kEN

2m2
N
þ q2k
2mN

�
;

ðA3Þ

ΠkkðΓn; q⃗Þ ¼ A20K
�
−i

ϵkn0ρqkqρ
4mN

�
þ B20K

�
−i

ϵkn0ρqkqρ
4mN

�
; ðA4Þ
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Πk0ðΓ0; q⃗Þ ¼ A20K
�
−i

qk
4
− i

qkEN

4mN

�
þ B20K

�
−i

qk
8
þ i

qkE2
N

8m2
N

�
þ C20K

�
i
qk
2
− i

qkE2
N

2m2
N

�
; ðA5Þ

Πk0ðΓn; q⃗Þ ¼ A20K
�
−ϵkn0ρ

�
qρ
8
þ qρEN

8mN

��
þ B20K

�
−ϵkn0ρ

�
qρ
8
þ qρEN

8mN

��
; ðA6Þ

ΠkjðΓ0; q⃗Þ ¼ A20K
qkqj
4mN

þ B20K
�
−
qkqjEN

8m2
N

þ qkqj
8mN

�
þ C20K

�
qkqjEN

2m2
N

þ qkqj
2mN

�
; ðA7Þ

ΠkjðΓn; q⃗Þ ¼ A20K
�
−i

ϵkn0ρqjqρ
8mN

− i
ϵjn0ρqkqρ
8mN

�
þ B20K

�
−i

ϵkn0ρqjqρ
8mN

− i
ϵjn0ρqkqρ
8mN

�
: ðA8Þ
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