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We construct a tensor network representation of the partition function for the massless Schwinger model
on a two-dimensional lattice using staggered fermions. The tensor network representation allows us to
include a topological term. Using a particular implementation of the tensor renormalization group we
calculate the average plaquette and topological charge density for the theory. For a range of values of the
coupling constant for the topological term, Θ, and the gauge coupling, β, we compare with results from
hybrid Monte Carlo simulations when possible and find good agreement. In order to further understand the
role of fermions and topology in this model, we compare calculations of the same observables in a similar
model, the Abelian Higgs model.
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I. INTRODUCTION

In recent years there has been a surge of interest in
applying tensor network methods to calculate the properties
of lattice spin and gauge models [1–10]. In low dimensions
these formulations can avoid the usual sign problems
associated with negative or complex probability weights
that plague Monte Carlo (MC) approaches and can yield
very efficient computational algorithms [11–16]. For com-
pact fields the general strategy has been to employ
character expansions for all Boltzmann factors occurring
in the partition function and subsequently to integrate out
the original fields, yielding an equivalent formulation in
terms of integer—or half-integer—valued fields which can
be interpreted as the indices of local tensors. The indices of
these local tensors are then contracted (summed over), from
which one recovers the full partition function.
However, writing local tensors for models with relativ-

istic lattice fermions is more complicated [17–22]. One
reason is tied to the Grassmann nature of the fermions
which can induce additional, nonlocal sign problems which
may be hard to generate from local tensor contractions.
However, Gattringer et al. have shown in Ref. [23] that a
suitable dual formulation can be derived in the case of the
massless Schwinger model which is free of these sign

problems. Using this dual representation they have for-
mulated a general Monte Carlo algorithm that can be used
to simulate the model even in the presence of nonzero
chemical potential and topological terms [24].
Other directions into the investigation of the Schwinger

model have appeared in recent years as well. One approach
has been the use of other numerical renormalization group
methods like the density matrix renormalization group
(DMRG) with matrix product states or matrix product
operators (MPS or MPO). The massive Schwinger model
with staggered fermions was investigated in Ref. [25] using
the DMRG. In Ref. [26] the mass spectrum of the
Schwinger model was calculated at zero and finite mass,
and in Ref. [27] the authors studied the Schwinger model at
finite temperature using the DMRG with MPO. The effect
of truncation on the number of representations retained in
the electric field basis for the Schwinger model was
investigated in Ref. [28]. In Ref. [29] the confinement
properties of the Schwinger model in the presence of a
topological term were studied, and in Ref. [30] the authors
considered the effects of a topological term on the vacuum
structure of the model, again using the DMRG.
Similarly, Ref. [31] looked at a Zn formulation of the

Schwinger model using the DMRG. They found that at
large n, one recovers similar results to the original
continuous Uð1Þ symmetry in the Schwinger model. Out
of equilibrium properties were looked at in Ref. [32] for
that same model.
In addition, proposals and investigations into the poten-

tial for quantum simulations and computations of the
Schwinger model were done in Refs. [33–39], and an
actual experimental implementation carried out in
Ref. [40]. Besides trapped-ion approaches, experiments
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with Rydberg atoms are being explored as a potential tool for
quantum computation [41]. References [33,34] carried out
initial feasibility and practicality studies surrounding the
quantum computation of the Schwinger model using
trapped-ions, or superconducting qubits. In Ref. [36] the
lattice Schwinger model was considered for quantum sim-
ulation using cold atoms in an optical lattice. In Ref. [37] the
authors considered general Uð1Þ lattice gauge theories, and
they integrate out the gauge degrees of freedom, being left
with amodel of strictlymatter, interacting nonlocally [42]. In
Ref. [35], the authors considered the joint computation of
the lattice Schwinger model using classical and quantum
computers.
More recently, classical computations simulating quan-

tum computations of the Schwinger model have been
carried out. In Refs. [38,39] the vacuum Θ-angle was
studied in small systems using computing libraries which
mimic the behavior of current, and near-term, quantum
computers, quantifying the quantum-computational cost for
a future study of the Schwinger model with a (time-
varying) Θ term.
In this paper we show that the dual world-line formu-

lation from Ref. [23] can be replicated by contraction of a
suitable tensor network. It should be noted that a tensor
formulation of the model allows for the definition of a
transfer matrix, quantum Hamiltonian, and local Hilbert
space. Rather than following a Monte Carlo strategy we
instead use and follow the philosophy of the tensor
renormalization group to coarse grain this tensor network.
Important steps in tackling relativistic fermions with tensor
networks were taken in Refs. [18–20]. There the Schwinger
model with Wilson fermions was approached by using the
Grassmann tensor renormalization group method, where
the Grassmann variables are coarse-grained, as well as the
local tensors [43]. From the tensor network formulation we
calculate the partition function and free energy. We show
that the results agree well with both Ref. [24] and conven-
tional hybrid Monte Carlo simulations where the latter can
be performed.
We start by reviewing the construction of the dual

representation in Sec. II and show how the resulting
dimer/loop representation can be obtained by the contrac-
tion of a suitable tensor network. In Sec. III we present the
form of a transfer matrix for this model in terms of the local
tensors in the tensor network. Then we derive the form of
the fundamental tensor that is needed for the higher-order
tensor renormalization group (HOTRG) algorithm [16] in
Sec. IV. In Sec. V we describe the results of a coarsening of
this tensor network using the HOTRG algorithm, calculate
the free energy and its derivatives and compare the results
to Monte Carlo simulations. Subsequently we go on to add
a topological term to the action with coupling Θ. Finally, to
compare with Schwinger model results, we compute the
same expectation values for a different model, the Abelian
Higgs model, in Sec. VI. We conclude in Sec. VII with a

summary of the advantages and disadvantages of the
method in this context.

II. MASSLESS SCHWINGER MODEL
AND ITS DUAL REPRESENTATION

We begin with the one-flavor staggered action for the
massless Schwinger model on a two-dimensional space-
time (Euclidean) lattice with Ns spatial sites, Nτ temporal
sites, and a total volume V ≡ Ns × Nτ. The action is
given by

S ¼ SF þ Sg ð1Þ

with

SF ¼ 1

2

X
x

X2
μ¼1

ημðxÞ½ψ̄ðxÞUμðxÞψðxþ μÞ

− ψ̄ðxþ μÞU†
μðxÞψðxÞ� ð2Þ

and

Sg ¼ −β
X
x

Re½UPðxÞ�: ð3Þ

The Abelian gauge field, UμðxÞ ¼ eiAμðxÞ, lives on the link
between lattice sites x and xþ μ and the fermions ψðxÞ and
ψ̄ðxÞ live at the sites. Here ημðxÞ is the staggered phase
which for η1ðxÞ ¼ 1 and η2ðxÞ ¼ ð−1Þx1 with x1 the 1̂-
component of x. UP is the usual Wilson plaquette operator
UPðxÞ ¼

P
μ<νUμðxÞUνðxþ μÞU†

μðxþ νÞU†
νðxÞ. The par-

tition function for this model is then given by

Z ¼
Z

D½U�D½ψ̄ �D½ψ �e−S

¼
Z

D½U�eβ
P

x
Re½UPðxÞ�ZFðUÞ ð4Þ

with
R
D½U� ¼Q

x

R
π
−π dAμðxÞ=2π,

R
D½ψ̄ �D½ψ �¼Q

x

R
dψ̄×

ðxÞdψðxÞ, and ZF represents the part of the partition
function that depends on the fermion fields.
Following Ref. [23], and using the same notation for

clarity, we first integrate out the fermions and generate an
effective action depending only on the gauge fields. As a
first step we redefine the link variables such that the
staggered fermion phases ημðxÞ can be absorbed into
modified link variables UμðxÞ → ημðxÞUμðxÞ. Under this
transformation the gauge action picks up an overall
negative sign but the measure is invariant. The
Boltzmann factor associated with each bilinear fermion
term can be written as the product of forward and backward
hopping terms yielding a partition function,
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ZF ¼
Z

D½U�D½ψ̄ �D½ψ �

×
Y
x

X1
k¼0

�
−
1

2
ψ̄ðxÞUμðxÞψðxþ μÞ

�
k

×
X1
k̄¼0

�
1

2
ψ̄ðxþ μÞU†

μðxÞψðxÞ
�

k̄
: ð5Þ

Notice that higher order terms in the expansion of the
Boltzmann factors vanish because of the Grassmann nature
of the fermions. There are several ways to generate a
nonzero contribution to ZF. In each case, the Grassmann
integration at each site must be saturated. To saturate the
Grassmann integrations, exactly one forward and one
backward hopping term must be associated with each site.
This gives rise to a simple collection of possibilities. On the
one hand, there may be a single forward and backward hop
along the same link. This obviously saturates the integra-
tion and is referred to as a dimer. On the other hand, there
may be a forward and backward hop on two different links
at a site. This indicates the passage of fermionic current
through the site, and again saturates the integration measure
there. Furthermore because of gauge invariance any non-
dimer contribution to ZF must correspond to a closed loop.
Figure 1 shows the allowed site contributions. A bold link
indicates the presence of a 1

2
U or a − 1

2
U† factor along that

link. Notice that the links are oriented corresponding to the

presence of an arrow on each bold link whose direction is
conserved through a site.
For a loop l with length LðlÞ one finds a contribution

with absolute value,

�
1

2

�
LðlÞ Y

x;μ∈l
ðUμÞkμðxÞðU†

μÞk̄μðxÞ; ð6Þ

where only a single kμðxÞ or k̄μðxÞ is nonzero per link. In
addition each loop carries a certain Z2 phase which depends
on the length of the loop and its winding, WðlÞ, along the
temporal direction given by

−ð−1Þ12LðlÞð−1ÞWðlÞ: ð7Þ

Here, the overall negative sign is the usual one for closed
fermion loops while the second factor keeps track of the
number of forward hops which is exactly half the total
length of the loop for a closed loop. Finally the factor
ð−1ÞWðlÞ of the loop will be determined by the number of
windings of the loop along the temporal direction assuming
antiperiodic boundary conditions for the fermions. Using
dimers (d) and loops ðlÞ as basic constituents for nonzero
contributions to the fermionic partition function we can
write

FIG. 1. Sixteen nonzero possibilities for ψ, ψ̄ integration at a site. These 16 possibilities end up being exactly the nonzero elements of
the fermion tensor.
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ZF ¼
�
1

2

�
VX
fl;dg

ð−1ÞNLþ1
2

P
l
LðlÞþ

P
l
WðlÞ

×
Y
l

�Y
x;μ∈l

ðUμÞkμðxÞðxÞðU†
μÞk̄μðxÞðxÞ

�
; ð8Þ

where NL is the number of loops, and
P

fl;dg is a sum over
all valid loop and dimer configurations. To proceed further
we will need to construct this loop representation from the
contraction of more basic objects located at sites, and we
take up this task in the next section.

A. Tensor formulation of the fermionic partition
function

We need to construct a local tensor which under
contraction along lattice links yields ZF. Let us ignore
the overall sign for now and just deal with the magnitude.
We allow two types of indices per link to capture separately
the incoming and outgoing fermion lines making the
fermion site tensor a rank eight object. To write down a
tensor, first, let us fix the coordinates so that right and up
are positive (no bar), and left and down are negative (bar).
Since each site is either the end point of a dimer, or has
fermionic current incoming and outgoing from it, then we
can model this with the tensor structure (we leave off the
gauge link factors for now),

Tx
k1k̄1k2k̄2k3k̄3k4k̄4

¼
�
1 if k1þk4þ k̄2þ k̄3¼ 1 and k2þk3þ k̄1þ k̄4 ¼ 1

0 otherwise
; ð9Þ

where each ðki; k̄iÞ ¼ 0, 1. In order to reduce index clutter,
we have made the replacement k1:k1ðx − 1̂Þ, k2:k1ðxÞ,
k3:k2ðxÞ, k4:k2ðx − 2̂Þ, and similarly with the barred ks.
This corresponds to an index ordering (left, right, up, down).
Agraphical representationof this tensor is shown inFig. 2(a).
By repeatedly contracting this site tensor with copies of itself
over the lattice it can be seen that we generate the full set of
closed loops and dimers for themodel at zero gauge coupling
excluding the overall factor of minus one for each closed
fermion loop. The absolute value of the partition function at
zero gauge coupling is then,

Zβ¼∞
F ¼

X
fk;k̄g

Y
x

Tx
k1k̄1k2k̄2k3k̄3k4k̄4

: ð10Þ

Here, fk; k̄g denote the set of k, k̄ values for the entire lattice.
Said another way, the 16 possible vertex configurations for
fermion hopping in Fig. 1 are captured as nonzero tensor
elements in the T tensor.

B. Integrating out the gauge fields

The fermion partition function in the previous section
does not include any contribution or interaction with the
gauge fields. To proceed further we will employ a character
expansion of the Boltzmann factors associated with the
gauge action. This will ensure that each plaquette in the
lattice will carry an integer variable. Integration of the link
gauge field in the background of a particular set of fermion

(a) (b) (c)

FIG. 2. (a) Fermion tensor associated with the sites of the lattice. The two lines in each direction can take on the values of unoccupied,
or occupied with a forward or backwards current. Each pair can then have four states, unoccupied, outgoing fermionic current, incoming
fermionic current, and both outgoing and incoming current, i.e., a dimer. (b) The constraint tensor associated with the links. This tensor
enforces that the difference between the m electric field numbers appropriately matches, and compensates, the fermionic current across
the link. (c) The gauge field tensor associated with each plaquette. This tensor has four indices, but the only nonvanishing elements are
when all indices take the same value; i.e., it is diagonal in all four indices. Each nonzero element is associated with weight factors given
by modified Bessel functions.
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loops restricts the plaquette variables to change by plus or
minus one on crossing any fermion line.
In this section, we will describe this in detail and, along

with the tensor from the previous section, construct a tensor
network that when fully contracted reproduces the full
partition function for the massless Schwinger model.
To integrate the gauge links we first start by performing a

character expansion on the Boltzmann factor corresponding
to the pure gauge plaquette action,

e−β cos ½AμðxÞþAνðxþμÞ−AμðxþνÞ−AνðxÞ�

¼
Xm¼∞

m¼−∞
Imð−βÞeim½AμðxÞþAνðxþμÞ−AμðxþνÞ−AνðxÞ�: ð11Þ

Each plaquette p is now labeled by an integermp. Note that
Imð−βÞ ¼ ð−1ÞmImðβÞ. Furthermore, each link l is shared
by two plaquettes p and p0 each of which supplies a factor
of eimpAl and e−imp0Al . In addition, the link carries a factor of
eiklAl or e−ik̄lAl coming from ZF. Thus, in total, links carry
two m indices inherited from their neighboring plaquettes
together with a k and a k̄ index associated with the
fermionic hopping terms. The integral over the link field
then gives

Z
π

−π

dAl

2π
eiðmp−mp0þkl−k̄lÞAl ¼ δmp−mp0þkl−k̄l;0: ð12Þ

This allows us to write the partition function as

Z ¼
X
fmpg

X
fkl;k̄lg

Y
l

δmp−mp0þkl−k̄l;0

Y
p

Imp
ðβÞ

×
Y
x

Tx
k1k̄1k2k̄2k3k̄3k4k̄4

× ð−1ÞNLþNPþ1
2

P
l
LðlÞ; ð13Þ

where fmpg denotes the set of plaquette integers over the
entire lattice, fkl; k̄lg represent k indices over the links, and
NP ¼ P

p mp. At this point we have included all the minus
signs for completeness. For periodic boundary conditions,
the sum of winding numbers must always be zero, since
one is restricted to the total charge-0 sector of the theory.
Note that for this situation the overall Z2 factor (�1) in
Eq. (8) is always positive [23].
Now, associated with each link are m fields and k fields,

and a constraint between them. Associated with each
plaquette is a single m field. This lets us define a link
tensor, and a plaquette tensor. Link tensors have indices
connecting to fermion tensors (the T tensors) living on each
site, and guage-field indices connecting to plaquette tensors
(on each plaquette). We define this link tensor, A, as,

Amimjkak̄akbk̄b ≡ δmi−mjþka−k̄a;0δka;kbδk̄a;k̄b : ð14Þ

Here mi and mj are plaquette numbers associated with the
surrounding plaquettes to the link, and the k indices are the

k and k̄ indices on that link from Eq. (12). The fermionlike
indices on link tensors are purely diagonal as seen from the
definition involving the δ function constraints on links.
A diagram showing the relative position of the fermion and
plaquette indices is shown in Fig. 2(b). Since there is only a
single m associated with each plaquette, a tensor definition
must only depend on that single m. A plaquette tensor, B,
can be defined as,

Bm1m2m3m4
¼
�
ImðβÞ if m1¼m2¼m3 ¼m4 ¼m

0 otherwise;
; ð15Þ

where the subscripts 1, 2, 3, and 4 simply denote the four
surrounding link indices on the A tensors and are not
explicitly associated with directions, since the tensor is
completely diagonal. A graphical representation for the B
tensor associated with plaquettes is shown in Fig. 2(c).
These definitions of the A and B tensors allow us to write

the partition function as follows:

Z ¼
X
fk;k̄g

X
fmpg

�Y
p

Bmimjmkml

��Y
l

Amimjkak̄akbk̄b

�

×

�Y
x

Tkak̄akbk̄bkck̄ckdk̄d

�
: ð16Þ

This contraction over three unique tensor types can be
represented as the tensor network shown in Fig. 3. Since the
fermionic k indices always come in k, k̄ pairs, we can form
a product state of those two indices to reduce the complex-
ity of the notation,

FIG. 3. Elementary tensors T, A, and B. When these tensors are
contracted in the pattern shown here the world-line representation
of the partition function is generated exactly.
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T → T 0 ¼ Tðka⊗k̄aÞðkb⊗k̄bÞðkc⊗k̄cÞðkd⊗k̄dÞ

¼ TKaKbKcKd
ð17Þ

A → A0 ¼ Amimjðka⊗k̄aÞðkb⊗k̄bÞ ¼ AmimjKaKb
: ð18Þ

The new enlarged K indices take values from 0 to 3,
enumerating the four possible states each link can have
unoccupied, incoming, outgoing, and dimer. The A tensors
are still diagonal in the new K indices.

III. TRANSFER MATRIX

Using the tensors defined in the previous sections, one
can build a transfer matrix for this model. The transfer
matrix can be defined as the product of two types of
matrices. In this section, we first define and construct these
two different matrices. Then, by combining these two
matrices in the appropriate way we can define a transfer
matrix. The partition function is the trace of the Nth

τ power
of this final matrix.
The first type of matrix we define is the B matrix. It is

made by contracting alternating B and A tensors along a
time slice,

Bðm1⊗���mN⊗K1⊗���KNÞðm0
1
⊗���m0

N⊗K0
1
⊗���K0

NÞ

¼ Bmm0m1m0
1
Am0m00K1K0

1
Bm00m000m2m0

2

× Am000m0000K2K0
2
� � �BmðN−1ÞmmNm0

N
; ð19Þ

where a sum over repeated indices is implied.
Diagrammatically B is represented as Fig. 4. An important
feature of this matrix is that it is diagonal, due to the
diagonal nature of the B tensors, and the K indices in the A
tensors. This means incoming states through this matrix do
not change into other states.
In analogy with the construction of B we define the A

matrix as the alternating contraction of T and A tensors
along a time slice,

Aðm1⊗���mN⊗K1⊗���KNÞðm0
1
⊗���m0

N⊗K0
1
⊗���K0

NÞ

¼ Am1m0
1
K̄1K̄2

TK̄2K̄3K1K0
1
Am2m0

2
K̄3K̄4

� � �AmNm0
NK̄NK̄1

ð20Þ

with a diagrammatic representation given by Fig. 5. This
matrix has off diagonal elements and is responsible for the
changing of states between time slices. This matrix moves
fermionic current across space, and through time, with the
appropriate shift in the electric field to balance.
Using the definitions above we can recast the partition

function into an alternating product of B and A matrices.
This alternating product can be broken up and recast as the
Nth

τ power of a single matrix,

T αβ ¼
ffiffiffiffi
B

p
αδAδγ

ffiffiffiffi
B

p
γβ; ð21Þ

where the square root is well-defined since B is diagonal in
all of its indices (and its matrix elements are positive). The
indices in Eq. (21) are collective indices as defined before
in the definitions of the B andA tensors. Now we can write
the partition function as follows:

Z ¼ Tr½T Nt �: ð22Þ

FIG. 4. Construction of part of the B matrix. In principle the
construction continues to the left and right with A tensors
contracted with the B tensors, and so on.

FIG. 5. Construction of matrixA. In principle the construction continues to the left and right, alternating contraction between A and T
tensors. This matrix is responsible for moving fermionic current around in space and time, and adjusting the gradient of the electric field
to compensate.
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IV. FUNDAMENTAL TENSOR FOR TRG

A. Asymmetric tensor

In order to have efficient numerical calculations using
the TRG, the tensor network structure should be transla-
tionally invariant. This means that for whatever fundamen-
tal tensor one uses, it must contract naturally with itself.
That is, the top indices of the fundamental tensor should be
compatible for contraction with the bottom indices, and the
indices on the left side of the tensor should be compatible
for contraction with the indices on the right.
For this goal, we define a tensor, M, using a single

elementary plaquette tensor (the B), two link tensors (the
As), and a single fermion T tensor. This is shown
diagrammatically in Fig. 6. As can be seen from the figure,
there are two different types of indices associated with each
direction in the tensor. Each direction has onem index, and
one K index. However, repeated contraction of this tensor
with itself in the appropriate pattern reproduces the
partition function. This is the only fundamental tensor
necessary to do that. The tensor is then explicitly given as,

Mm1m2m3m4K1K2K3K4
¼

X
m0

1
;m0

2
;K̄1;K̄2

Bm1m0
1
m2m0

2

× Am0
2
m3K1K̄1

TK̄1K2K̄2K3
Am4m0

1
K̄2K4

:

ð23Þ
Here the K indices always have dimension four, however
the m indices run over all integers. The m indices are
constrained by the K indices though. Looking at a single
direction, the total size of the state-space associated with
two of the indices is Ngauge × 4, where Ngauge is the number
of states allowed for the B tensor index in practice.

B. Symmetric tensor

It is possible to form a completely symmetric tensor in
both space and time, as opposed to the asymmetric tensor
constructed above. This tensor formulation relies on
“dressing” the link fermion tensors in their surrounding
gauge field configurations. This is possible because of how
the B tensor is completely diagonal in its four indices.
To construct the symmetric tensor, the first step is to

separate the B tensor into eight smaller pieces, four of
which are associated with the adjacent link tensors, and
the other four are associated with the four adjacent site
tensors,

Bm1m2m3m4
¼

X
α;β;γ;σ

bm1σαbm2αβbm3βγbm4γσ

¼
X

α;β;γ;σ;ρ;λ;χ;ψ

bm1ψαδαβbm2βγδγσbm3σρδρλbm4λχδχψ :

ð24Þ

The b tensors are also diagonal, and the δ matrices are
simply Kronecker deltas. This decomposition can be seen
graphically in Fig. 7. In principle, each of the above sums
runs over all the integers; however, in practice one is forced
to restrict the sum.
The b tensors are contracted with adjacent A tensors, and

the Kronecker deltas are moved to the surrounding site
tensors. The new A tensors, Ã, are given by

Ãðm1Km2Þðm0
1K0m0

2Þ ¼
X
α;β

bαm1m0
1
AαβKK0bβm2m0

2
: ð25Þ

This Ã matrix is diagonal, since it is diagonal in all three
sets of indices (the Ks, and the ms) due to the aforemen-
tioned diagonal nature of the B tensor and the already
diagonal nature of the K indices in the A tensor. This tensor
can be seen in Fig. 8.
For the site tensor (T tensor), we now “wrap” it in

Kronecker deltas which enforce that all four site tensors
around a plaquette have the same m-plaquette number
associated with that plaquette. The new T̃ tensor has the
form,

FIG. 6. Construction of tensor M shown as the four tensors
sharing the blue loop. This is a possible single tensor which can
be contracted with itself recursively to generate the partition
function.

FIG. 7. A graphical representation of how the decomposition of
the B tensor takes place. Each smaller tensor is also diagonal so
that all m indices must take on the same values.
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T̃ðm1K1m8Þðm4K2m5Þðm2K3m3Þðm6K4m7Þ

¼ TK1K2K3K4
δm1m2

δm3m4
δm5m6

δm7m8
; ð26Þ

and can be seen in Fig. 9. At this point, there are no B
tensors remaining. The partition function is simply a
contraction of the Ã and T̃ tensors. To construct a single,
symmetric, translation invariant tensor, we split the diago-
nal Ã into two halves using the singular value decom-
position,

ÃIJ ¼
X
α;β

UIαλαβU
†
βJ

¼
X
α;β;γ

�
UIα

ffiffiffiffiffiffi
λαβ

q 	� ffiffiffiffiffiffi
λβγ

q
U†

γJ

	

¼
X
α

LIαL†
αJ: ð27Þ

Furthermore, there are singular values with value zero, and
they can be removed to decrease the size of the state space.
This is equivalent to taking the square-root of the Ã matrix
and removing the zero columns (rows). With the Lmatrices
we can now form a symmetric tensor, by contracting four of
these matrices with a T̃,

SijklðβÞ ¼
X
α;β;γ;δ

T̃αβγδLαiLβjLγkLδl: ð28Þ

This tensor is symmetric in space and time, and since the L
matrices are diagonal, its nonzero tensor elements are
constrained by the fermion tensor, T. This final S tensor
satisfies the same constraint as the original fermion T
tensor, however with tensor elements with values other
than 1, instead given by linear combinations of modified
Bessel functions which are functions of the gauge coupling.

V. NUMERICAL SIMULATION: HOTRG AND
HYBRID MONTE CARLO

We implemented the HOTRG algorithm to evaluate lnZ
using the tensor defined in Eq. (23) as a translation
invariant tensor for coarse-graining. At each step of the
coarse-graining process, the HOTRG attempts to minimize
the difference between the norms of the approximate
tensor, and the tensor that would result from an exact
contraction at that step. This is the only criteria which is
used to determine the tensor at each step. This is in contrast
to the original tensor renormalization group [1] which uses
the singular value decomposition to approximate the bonds
between blocks, and Refs. [11–15] which attempt to
remove the local entanglement between blocks.
We measured the average plaquette,

hUPi ¼
1

V
∂ lnZ
∂β ; ð29Þ

as a function of the gauge coupling and compared it to
numerical data from Ref. [24]. In this case our computation
using HOTRG completely agrees with the worm algorithm
generated data. Moreover we can add a Θ term to the
original action which results in new couplings, expressed as
linear combinations of the gauge coupling and theta
parameter, η ¼ β

2
− Θ

4π and η̄ ¼ β
2
þ Θ

4π. For the tensor con-
struction here we only need to redefine the plaquette tensor,
B, with ImðβÞ replaced by Imð2

ffiffiffiffiffi
ηη̄

p Þðη=η̄Þm=2.

FIG. 9. The modified fermion tensor. The corners of the decomposed B tensor are moved to the T tensor at each site. These corners are
Kronecker deltas, and enforce that each site around a plaquette has the same plaquette quantum m number.

FIG. 8. The modified Ã tensor (boxed in teal), built from the
original A tensor, and the b tensors from the decomposition of the
two B tensors on the adjacent plaquettes.
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To ensure the formulation is valid, we measured a couple
of observables, including the average plaquette hUpi, and
the topological charge density, hQi as a function of the Θ
parameter. The topological charge density is defined as

hQi ¼ −
1

V
∂ lnZ
∂Θ : ð30Þ

The results of the calculation of the average plaquette as a
function of β for different system sizes can be seen in
Fig. 10 and as a function ofΘ in Fig. 11. If the final number
of states kept associated with each tensor index isDbond, we
typically kept aDbond ≃ 40 and looked for convergence in a
window of 40–50 states. We find good agreement and
convergence across a wide range of β values for the
relatively small number of gauge states, Ngauge ¼ 3 and 5.

The results for the topological charge density can be seen in
Fig. 12, and again we find good agreement across the range
scanned, however to obtain this result a larger Ngauge ¼ 5

was necessary.
However, we have also observed that for large Θ and β

values, the results on larger volumes were significantly
more noisy. It appeared one would need a final Dbond > 60
at least. There appear to be two possible reasons for this
problem; a failure of the (truncated) character expansion to
capture the effects of the topological term or specific
problems associated with the staggered fermions in this
model. To try to diagnose the problem further we have
additionally studied the Abelian Higgs model in the
presence of the same topological term.

VI. THE ABELIAN HIGGS MODEL WITH A
TOPOLOGICAL TERM

Motivated by the poor signal-to-noise ratio in larger
volume calculations of topological observables in the
Schwinger model, we attempted to understand the source
of the noise. On the one hand, perhaps the HOTRG is
unable to capture the important states (as mentioned above)
due to the fact that the truncation scheme is unaware of
which fermion winding numbers are valid and important in
the final partition function. On the other hand, perhaps the
topological nature itself is difficult to capture with only a
local tensor. In order to investigate whether the fermionic
nature is the source of difficulty, or the topological nature,
we studied the Abelian Higgs model with a topological
term. This model is formally similar to the Schwinger
model; with the fermionic fields essentially replaced by
bosonic ones.
The work in this section is not meant to be exhaustive,

and other works on this model have been carried out in the

FIG. 10. Average Plaquette vs β for lattice sizes with
Nτ ¼ Ns ¼ 4, 8, and 16 and compared with Monte Carlo data
from Ref. [24]. For this data Ngauge ¼ 3 is sufficient to achieve
similar accuracy to MC data. Here Dbond ¼ 40 states.

FIG. 11. Average Plaquette vs Θ for a lattice with
Ns ¼ Nτ ¼ 4. Here Ngauge ¼ 5 is necessary to achieve similar
accuracy to the MC data. Here a Dbond ¼ 40 was used.

FIG. 12. The topological charge density as a function of Θ.
Here we compare with Monte Carlo data from Ref. [24]. We find
a slightly larger range of plaquette quantum numbers are
necessary—in contrast to the average plaquette—to achieve
consistent results. In this case, the plaquette numbers had to
be allowed to run from m ¼ −2 to 2. A Dbond ¼ 50was used in
this case.
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past [6,44,45]. Instead, the goal was to identify if the
HOTRG algorithm has difficulty with capturing topological
information of field configurations during truncation, or if
the fermion tensor formulation used here may be the cause
of difficulty.

A. The model

We consider the Abelian Higgs model in 1þ 1
Euclidean dimensions,

S ¼ Sβ þ Sλ þ Sκ þ SΘ ð31Þ

with Sβ the same as before, and

Sλ ¼
X
x

ðλðjϕxj2 − 1Þ2 þ jϕxj2Þ

¼
X
x

ðλðρ2x − 1Þ2 þ ρ2xÞ ð32Þ

is the Higgs potential with ϕx ¼ ρxeiθx a complex scalar
field, ρx ≥ 0, and λ a real number. In addition, there is a
matter-gauge interaction given by

Sκ ¼ −2κ
X
x;μ

ℜ½ϕ�
xUx;μϕxþμ̂�

¼ −2κ
X
x;μ

ρxρxþμ̂ cosðθxþμ̂ − θx þ Ax;μÞ ð33Þ

withUx;μ ¼ eiAx;μ the lattice link parallel transport with Ax;μ

the vector potential and κ a real number. Finally, we include
a topological term,

SΘ ¼ i
Θ
2π

X
x

Im½UP� ð34Þ

with Θ a real number, and UP given as before from Sec. II.
We consider this action in the limit λ → ∞. In this limit,

the length of the Higgs field is forced to one, and the Higgs
potential can be ignored as an overall shift in the action.
This leaves only the Goldstone modes of the Higgs field.
Since UP is a gauge-invariant combination of link varia-
bles, we can perform a change of variables such that
A0
x;μ ≡ Ax;μ þ θxþμ̂ − θx. This leaves Sβ and SΘ unchanged,

however simplifies the matter-gauge term,

Sκ → S0κ ¼ −2κ
X
x;μ

cosðAx;μ
0Þ; ð35Þ

where we will drop the prime in what follows for
convenience.

B. Dual variables and tensor definitions

Dual variable formulations for this model have been
given with, and without, a topological term in a variety of
ways [45,46]. Here we give a review of the derivation in the
presence of a topological term.

The partition function for this model is given by
(ignoring the overall constant out front from the Higgs
field integration),

Z ¼
Z

D½A�e−Sβ−SΘ−Sκ : ð36Þ

The two terms with Up can be Fourier expanded,

Y
x

eβ cosFx;12−iΘ2π sinFx;12 ¼
Y
x

X∞
mx;12¼−∞

Cmx;12
ðβ;ΘÞeimx;12Fx;12 :

ð37Þ
Similarly with the matter-gauge term,

Y
x;μ

e2κ cosðAx;μÞ ¼
X∞

nx;μ¼−∞
Inx;μð2κÞeinx;μAx;μ : ð38Þ

Here the Cs can be solved for numerically, or analytically
[45], and the Is are the modified Bessel functions.
By expanding this way, we are able to carry out the A

integrations exactly at each link. These integrations give a
new, constrained, partition function,

Z ¼
X
fmg

X
fng

�Y
x

Cmx;12
ðβ;ΘÞ

��Y
x;μ

Inx;μð2κÞδnx;μ;ϵμνΔνmx;12

�
:

ð39Þ
In this partition function, the n fields on the links are
constrained to equal the difference in the bounding-
plaquette m fields on the sides. In fact, the n summations
can be carried out because of the constraint, and the
partition function can be simply written as

Z ¼
X
fmg

�Y
x

Cmx;12
ðβ;ΘÞ

��Y
x;μ

IϵμνΔνmx;12
ð2κÞ

�
: ð40Þ

With this formulation, we can again define tensors on the
links, and on the plaquettes (none on the sites) of the lattice
in a similar way to before with the Schwinger model.
We define the B tensor as

Bm1m2m3m4
≡

�
Cmðβ;ΘÞ if m ¼ m1 ¼ m2 ¼ m3 ¼ m4

0 otherwise;

ð41Þ

and the A tensor as

Amm0 ≡ Ijm−m0jð2κÞ: ð42Þ

The A and B tensors here are similar to those from the
Schwinger model described above. For the B tensor, only
the weight associated with the plaquette is different;
however it is still totally diagonal. For the A tensor, the
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fermionic indices are missing from the definition, and the A
tensor is simply a matrix in this case, with elements given
by the modified Bessel functions. The partition function is
then written with a tensor trace as

Z ¼ Tr

�Y
x

BðxÞY
x;μ

Aðx;μÞ
�
; ð43Þ

which implies contracting all the tensor indices appro-
priately.
Constructing a fundamental tensor can be carried out in

an identical fashion to that in Ref. [6]. The A matrix can be
square-rooted, A ¼ LLT , and four L matrices can be
contracted with a single B tensor to form the basic
fundamental tensor,

FIG. 13. The continuum limit of the average plaquette, Eq. (29), as a function of the Θ parameter. The expected 2π periodicity is
tending to restoration for larger volumes. Here a Dbond ¼ 40 was used.

FIG. 14. The continuum limit of the topological charge density. This reveals that hSΘ=Θi tends to a constant in the continuum limit.
We also see the restored 2π periodicity for larger volumes. Here a Dbond ¼ 40 was used.
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Tijkl ¼
X
α;β;γ;δ

BαβγδLαiLβjLγkLδl: ð44Þ

Contraction of this tensor with itself repeatedly, in the
geometry of the lattice, reproduces the partition function
given in Eq. (43).

C. Tensor calculations

Using the tensor formulation from above, we can
calculated the quantity lnZ using the HOTRG. From that,
bulk thermodynamic quantities can be derived. We con-
sidered the same quantities from the Schwinger model
defined in Eqs. (29) and (30). Again, we kept a number of
states, Dbond, in a window of 40–50 for the calculations
mentioned below. This was sufficient for convergence.
In Fig. 13 we see the continuum limit of the average

plaquette [Eq. (29)] keeping β=V fixed. In the continuum,
infinite-volume limit the partition function is periodic in Θ,
and hence one expects to see expectation values show this
same periodicity. One can see the periodicity restored as the
continuum limit is taken in Fig. 13.
In Fig. 14 the topological charge density, hQi, as a

function of Θ is plotted while taking the continuum limit.
Here we see the amplitude decrease by approximately a
factor of 4 for each increase by a factor of 4 in the volume.
This indicates that hQiV approaches a constant while
taking the continuum limit. Also, similarly to hUPi, one
can see the 2π periodicity restored in the continuum limit.
From these two observables, already it is clear that the

Abelian Higgs model in the presence of a topological term
is accessible using the tensor renormalization group and the
HOTRG algorithm. The data appear smooth and converge,
in contrast to the Schwinger model on a 8 × 8 lattice. This
lends evidence to the option that the noisy data in the
Schwinger model while taking the continuum limit arise in
some way from the fermion fields and not the topologi-
cal term.

VII. CONCLUSIONS

In this paper we have constructed a tensor network
formulation of the massless lattice Schwinger model with
staggered fermions. We have considered both the usual
action and one in which a topological term is added. The
addition of the latter term induces a sign problem and
renders the model intractable for a conventional hybrid
Monte Carlo simulation.
We used a bosonic version of the HOTRG algorithm (the

original version), as opposed to a Grassmann version of the
algorithm [18–20]. This is only possible because the
fermions are completely integrated out of the model from
the very beginning, the partition function is left without a
sign-problem and can be computed entirely from local
information.

Using the HOTRG algorithm we have computed the free
energy and its derivatives and compared the results, where
possible, with both hybrid Monte Carlo simulations and
simulations based on a dual representation based on
fermion loops. Where comparison is possible the agree-
ment is good with the tensor network calculation being
superior computationally to Monte Carlo simulations. That
said, we have experienced difficulties measuring observ-
ables for large values of the topological coupling, Θ, and
large values of the gauge coupling, β, as the volume is
increased. Typically the signal for an operator like the
plaquette becomes very noisy after several iterations of the
blocking scheme.
A possible explanation is that the arguments used for the

positivity of terms in the sum of the partition function
assume a complete lattice with boundary conditions and
lattice size already achieved [23]. In contrast, the HOTRG
does not know beforehand what the final size of the lattice
will be, or what the boundary conditions will be at that size.
This in turn gives the algorithm more freedom to choose
which states are relevant during truncation, even though
those very states may be projected out in the final step of
blocking, rendering them useless.
A tensor construction scheme which uses an environ-

ment tensor might achieve better results at larger volumes,
since, the forward-backward iteration from a complete
lattice should retroactively adjust the intermediate states
kept during truncation at smaller volumes. Alternatively,
the Grassmann (HO)TRG could be used. It incorporates the
fermion field integration at each truncation step, as opposed
to the method used here where the fermion fields are
integrated out exactly.
Of course in the continuum limit the Dirac operator of

the massless Schwinger model develops chiral zero modes
in the background of gauge fields with nontrivial topology
ensuring that such configurations do not contribute to the
path integral and thereby removing theΘ dependence of the
free energy. It is logically possible that the problems
encountered in the renormalization group calculation of
the model has its origins in this fact—the noisy dependence
on Θ being the best the truncated system can do to replicate
an independence of the free energy on Θ.
The Θ dependence is restored in the presence of a

fermion mass. However in that case there are nontrivial −1
factors which appear in the dual representation of the
partition function. Part of the phase depends on the number
of closed fermion loops appearing in any particular dual
configuration. It is extremely hard to see how this phase can
be reconstructed from the contraction of local tensors in the
formulation used here, and we have not been able to
generalize the tensor network described here to the case of
nonzero masses.
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This should sound a cautionary note to the idea that

tensor network formulations of lattice field theories are free

of sign problems. In the case of fermion theories this may

not be generically the case, and one may have to resort to

other formulations, e.g., Grassmann (HO)TRG.
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